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We have performed long-time runs of molecular-dynamics computer simulations of a two-dimensional
Lennard-Jones system, without any scaling procedure. The thermodynamic properties show spontaneous
fluctuations except when the system is far from the melting zone.

In a recent paper,! Toxvaerd studied critically a special
computational technique: ‘‘isothermal-isobaric’> molecular
dynamics (T-p MD) (used by Abraham and Koch? to inves-
tigate melting in a two-dimensional Lennard-Jones system).
By using the calculation of the isothermal compressibility
from the fluctuations of volume, Toxvaerd established that
the scaling procedure was incorrect and cannot be used to
obtain definitive statements about the nature of the phase
transition. Toxvaerd noted that the T-p MD calculations,
inspired by the N-p-T—-ensemble Monte Carlo method, are
obtained from Laplace transforms of the canonical partition
function, and this transformation has to be performed for
constant extensive state variables, excluding the volume.

In an analysis of the ensembles used in molecular-
dynamics simulations, Lado® found that, in the classical lim-
it, for interacting systems with hard-core interactions,
Monte Carlo and molecular-dynamics calculations should
yield the same equation of state without corrections, i.e.,

where the configurational integral Q y.y is defined by
Qy.y= V—NfdrN w(r™),
where

0, UrM) =0,

W(’N)=[1, u(rM =0,

and, as usual, 8= (kzT) ~!, with the only assumptions be-
ing the basic postulates of equilibrium statistical mechanics.
The left-hand side (N-V-T) corresponds to the Monte

- Carlo calculation, that is, with the number of particles,

volume, and temperature constant, and the right-hand side
(N-V-E) corresponds to the molecular dynamics calcula-
tion, with the number of particles, volume, and energy con-
stant.

Nosé* has recently made an exhaustive study of the en-
sembles in molecular dynamics to reproduce both the
canonical and the isothermal-isobaric probability densities in
phase space. The physical system of interest consists of N
particles, to which an external macroscopic variable and its

, AnQy.
(BP)N-V-T=EV +%,M =(Bp)N.v.E,
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FIG. 1. Reduced temperature vs time for a two-dimensional liquid at pr2 =1.00.
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FIG. 2. Same as Fig. 1, but for a two-dimensional solid very close to the melting zone. The density is pr,$,=1.14.

conjugate momentum are added, permitting the energy of
the system to fluctuate in a way similar to Haile and
Gupta’s results with a thermal bath.’

In this Brief Report, we present some results of two long
runs in two dimensions close to and far from the melting
zone, which were performed in order to investigate the fluc-
tuations of the thermodynamic variables during the time of
evolution of the system. Our simulations have been carried
out without any scaling procedures (for pressure and tem-
perature). Just as it is incorrect to perform a simulation us-
ing the constant-pressure method in the melting zone, it is
also incorrect to use the constant-temperature method, be-
cause there are problems related to fluctuations in space and
time independent of the nature of the phase transition (first
or second order).

In our calculations we have chosen a system of N =256
particles interacting with a truncated Lennard-Jones poten-

tial at r.=2.5r, (r, is the position of the potential
minimum). .

The initial positions of the particles formed a two-
dimensional triangular lattice of densities pr2=1.00 and
pri=1.14. To integrate the equations of ‘motion we used
the algorithm proposed by Toxvaerd.® This algorithm is
very accurate, but introduces a drift in the energy because
the equations are not reversible in time; this energy-drift
problem can be solved by rescaling the velocities of the par-
ticles through the heat capacity. In our simulations this was
not necessary, because the maximum drift is less than 104,
and consequently the increment in the temperature is
ksAT/e=10"", and, in addition, the usual periodic boun-
dary conditions were used.

Both systems evolved in exactly the same way. After
every ten time steps (updating the table of the nearest
neighbors), the velocities were renormalized to give the re-

. o, oo -
®oe .o. . .'-.' oo,

=

REDUCED PRESSURE oV,zn /e

w

Ld LJ
* e
- one® *
e e e
000% 6 05%¢e 00 o

20

40 60 80

103 Tive sTeps

FIG. 3. Reduced pressure vs time for a two-dimensional liquid at pr,,z, =1.00.
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FIG. 4. Same as Fig. 3, but for a two-dimensional solid very close to the melting zone. The density is pr,3,=1.14.

duced temperature kg7/e=1.00 (€ is the minimum of the
Lennard-Jones potential). The rescaling procedure was per-
formed during the first 8000 time steps. After that the evo-
lution of the system was free, without any scaling pro-
cedure, the thermodynamic properties being then obtained
as time averages for each 800 time steps. The virial pres-
sure was obtained for the truncated Lennard-Jones poten-
tial, not for a full Lennard-Jones potential.

The state points that we have chosen correspond to the
fluid state (pr2=1.00) and the solid state (pr2=1.14), the
latter very close to the melting zone located thermodynami-
cally by Toxvaerd.” Toxvaerd calculated the point where
fluid and solid have equal chemical potentials corresponding
to the temperature kzT/e=1.00, the difference in our case
being that we have performed long runs (40000 time steps
for a fluid and 80000 time steps for a solid).

Figures 1-4 show the results of our simulations. Each
point in these figures corresponds to an average over 800
time steps. In the liquid system (Figs. 1 and 3) the tem-
perature and pressure show the ‘‘regular’’ fluctuation typical
of the liquid system, and the system is in equilibrium once
free evolution commences. But for the system close to the

melting zone, equilibrium is reached after 20 000 time steps
(Figs. 2 and 4), and the temperature spontaneously drops
twice (arrows), and consequently the pressure rises.

Toxvaerd’ wondered if the equilibrium state of the system
could be obtained in a time interval of 10000 time steps.
Our answer is no, because in the melting zone (or close to
it) the system spontaneously goes back and forth between
two different points of state.

It seems evident that far from a transition in liquid or
solid systems, computer simulations using the 7-p MC
method are reliable because the fluctuations are small.
However, fluctuations play an important role in the melting
zone; so to obtain a definitive statement about the nature of
the phase transition one should use MD simulations of free
evolution, without any scaling procedure, i.e., without tem-
perature or pressure constraints. These constraints imply
that the system is not isolated, but is in contact with an en-
ergy reservoir and that the energy is transferred by a gen-
eralized force.’
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