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Abstract. Canard-induced phenomena have been extensively studied in the last three decades, from
both the mathematical and the application viewpoints. Canards in slow-fast systems with
(at least) two slow variables, especially near folded-node singularities, give an essential
generating mechanism for mixed-mode oscillations (MMOs) in the framework of smooth
multiple timescale systems. There is a wealth of literature on such slow-fast dynamical
systems and many models displaying canard-induced MMOs, particularly in neuroscience.
In parallel, since the late 1990s several papers have shown that the canard phenomenon can
be faithfully reproduced with piecewise-linear (PWL) systems in two dimensions, although
very few results are available in the three-dimensional case. The present paper aims to
bridge this gap by analyzing canonical PWL systems that display folded singularities,
primary and secondary canards, with a similar control of the maximal winding number as
in the smooth case. We also show that the singular phase portraits are compatible in both
frameworks. Finally, we show using an example how to construct a (linear) global return
and obtain robust PWL MMOs.

Key words. slow-fast dynamical systems, canard solutions, mixed-mode oscillations, piecewise-linear
systems

AMS subject classifications. 34C15, 34D15, 34E17, 93C15

DOI. 10.1137/15M1014528

∗Received by the editors March 30, 2015; accepted for publication (in revised form) August 13,
2015; published electronically November 3, 2016.

http://www.siam.org/journals/sirev/58-4/M101452.html
†INRIA Paris-Rocquencourt Research Centre, Le Chesnay, France. Current address: INRIA

Sophia Antipolis Méditerranée Research Centre, MathNeuro Team, Valbonne-Sophia Antipolis,
France (mathieu.desroches@inria.fr). The work of this author was supported by the University
of the Balearic Islands through a research scholarship.

‡Department of Applied Mathematics, Polytechnic University of Catalunya, Barcelona, Spain (an-
toni.guillamon@upc.edu). The work of this author was partially supported by the Spanish Ministry
of Economy and Competitiveness through project MTM2015-71509-C2-2-R and by the Government
of Catalonia through grant 2014-SGR-504.

§Department of Applied Mathematics, University of Sevilla, Sevilla, Spain (eponcem@us.es). The
work of this author was partially supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa in the
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1. Introduction.

1.1. Motivations. One of the most interesting dynamical behaviors exhibited by
multiple timescale systems is the existence of trajectories which, after flowing close to
an attracting slow manifold, remain close to a repelling slow manifold for a significant
amount of time; see [17] for the definition and properties of slow manifolds. These
trajectories are usually called canards [5]. When such trajectories stay close to a
repelling manifold for as long as this manifold exists, then one speaks of maximal
canards.

In planar slow-fast systems, classical canards arise as limit cycles whose ampli-
tude and period grow in an explosive manner as a parameter is varied [15, 35]. A
consequence of this property is that the canard phenomenon is short-lived [12] in the
planar case. More precisely, canards exist in parameter intervals that are exponentially
small in the timescale (small) parameter ε. Furthermore, only one maximal canard
can exist, corresponding to the connection between a one-dimensional attracting slow
manifold and a one-dimensional repelling slow manifold [15, 35]. This fact makes
canards delicate to compute numerically [23] and difficult to relate to experimental
observations. Note that canard-type behavior has been observed experimentally in
controlled electronic circuits [28, 55, 54].

Canard solutions become much more “robust” in three-dimensional systems with
two slow variables. Indeed, they exist for a range of parameters which is not exponen-
tially small in ε. Furthermore, multiple maximal canards can exist along the trans-
verse intersection curves of two-dimensional attracting and repelling slow manifolds.
Moreover, in this context canards can be responsible for the existence of mixed-mode
oscillations (MMOs), that is, trajectories with alternating small-amplitude oscillations
(SAOs) and large-amplitude oscillations (LAOs). The SAOs of canard-induced MMOs
are controlled by special points called folded nodes [22, 57]. This topic has great rele-
vance in applications, in particular, in the context of chemical reactions [24, 41], the
modeling of cellular electrical and secretory activity [16, 26, 34, 51], bistable percep-
tion [7], and optical oscillations [39], among other nonlinear phenomena.

There are different ways to obtain MMOs, for instance, related to the Shilnikov
homoclinic bifurcation [32] and to the break up of an invariant torus [37]. However,
we choose to focus on multiple timescale canard-induced MMOs since this topic has
received a lot of attention in recent years. In the context of multiple timescale sys-
tems, MMOs are an example of what we will call “complex oscillations,” which refers
to oscillatory solutions with both fast and slow components, different amplitudes, and
different frequencies. Roughly speaking, there are two main families of complex oscil-
lations: MMOs and bursting oscillations [10, 13]. In this paper we focus exclusively
on the former in piecewise-linear (PWL) systems, since the very notion of an MMO
has not yet been studied in that framework. Bursting oscillations in PWL systems
also constitute an interesting topic that can be related to canards, but we do not
address this question in the present work.

PWL systems are known to reproduce nonlinear behavior (limit cycles, bifurca-
tions, both local and global phenomena) within a mathematical framework that al-
lows for both qualitative analysis and quantitative characterization of a given system
(parameter and period estimation), where one can gain more control on the system
without losing any interesting (nonlinear) dynamics. Quantitative information via a
PWL approach has been recently used in [18, 20] in the context of hormone secretion,
and in [25] in the context of the estimation of synaptic conductances. Canard dynam-
ics has been investigated in planar PWL slow-fast systems from the 1990s [3, 31] up
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to very recently [8, 19, 49, 52]; see section 2. It is thus natural to try to reproduce
canard-induced MMO behavior in three-dimensional PWL slow-fast systems and in-
vestigate the equivalent of maximal canards (primary, secondary) and folded nodes
(among other folded singularities). A first step in that direction was made in [46],
without a link to folded singularities.

This work is part of a larger research program aimed at building up a theory
for slow-fast dynamics using PWL systems, and then deriving simplified models that
are meaningful for neuroscience applications. Initially, the goal is both to reproduce
complicated smooth slow-fast dynamics in the framework of PWL vector fields and
to propose a simplified interpretation of these phenomena. In particular, the concept
of slow manifold is defined in a more natural way by using PWL systems; also, the
behavior of canard solutions can be seen more clearly when observing it through a
PWL prism. In our opinion, PWL systems offer the optimal framework that keeps
the essential elements for the rich nonlinear dynamics to emerge while allowing for
simplified interpretations. On the application side, the goal is to develop a PWL
version of conductance-based models. Indeed, the voltage equation is the result of
Kirchhoff’s law and can be formulated in terms of PWL functions; the equation
for the gating variables uses sigmoid functions and can also be replaced by PWL
functions. This approach has been taken in [11, 14], but only in the planar context.
Our objective is to extend it to three-dimensional canard-induced MMO systems (as
those in, e.g., [34, 51]) using the theory developed in the present work. The overarching
goal will be to capitalize on the ability of PWL systems to give access to quantitative
information (in terms of parameters, frequency properties, etc.) while keeping the
biophysical interpretation of the variables. This research program includes recent and
ongoing work by the authors and their collaborators [8, 19, 46, 47].

We believe that the results presented in this work constitute an important step in
the realization of the above research program, as it opens the way for a more thorough
analysis of (at least) three-dimensional PWL systems that display canard dynamics
and complex oscillations. Note that there has also been recent interest in canard
phenomena in piecewise-smooth systems, in the context of Filippov vector fields, both
in planar and three-dimensional systems; we refer the reader to, e.g., [33, 48]. The
approach there is different since, instead of approximating folded manifolds of slow
motion by PWL objects, one keeps the smoothness of these manifolds but considers
them as switching manifolds between different vector fields. We will not focus on
this approach in the present work as we believe that PWL systems offer the simplest
framework in which to study these dynamical phenomena.

1.2. Review of the Literature on PWL Slow-Fast Dynamics. Our present work
contains a substantial number of new results concerning canard dynamics in a three-
dimensional PWL setting. The idea of studying canard phenomena by combining
PWL dynamics with multiple timescales dates back to the early 1990s and has had
three main phases, which we review below.

1.2.1. Phase-Plane Analysis. The first community that seems to have studied
canards in PWL systems was from Japan in the 1990s [3, 31, 28, 54, 55]. Whereas
a partial analysis of the planar case was performed, hardly anything was done in the
three-dimensional case. Furthermore, the emphasis was very much on applications
to electrical circuits, which also justifies the use of PWL systems. There is indeed
a long standing tradition of using this particular mathematical framework to model
electrical and electronic circuits, which dates back to the work of Andronov, Vitt,
and Khaikin [2]. In particular, the experimental work done by this Japanese group
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provided the only examples to date of experimental canards. Overall, the main contri-
butions of this group of papers can be summarized as a phase-plane analysis—that is,
describing important dynamical objects for fixed parameter values—of PWL canard
systems in two-dimensional problems. An important finding reported in [3] is the
idea that the dynamics near the fold of the critical manifold (fast nullcline) in van der
Pol–type systems needs a three-piece PWL approximation in order to reproduce ca-
nards. A fourth piece is needed in order to have a global return and to obtain canards
with head. Therefore, based on the difference between the approach of Komuro and
Saito [31] and that of Arima, Okazaki, and Nakano [3], we will refer to PWL systems
similar to that studied by Komuro and Saito as two-piece local systems, given that
their PWL critical manifold has locally two pieces to approximate the quadratic fold
of smooth van der Pol–type systems. Likewise, we will refer to PWL systems having
true canards as three-piece local systems, given that their PWL critical manifold has
locally three pieces to approximate the quadratic fold. Note that the two families of
systems defined above may have three or four linearity zones, respectively, the “last”
zone being used for the global dynamics.

The main argument used to justify this three-piece approximation of a quadratic
fold was that it obtains the correct transition of eigenvalues near the fold: real,
complex, and then real again. In the case where the cubic nullcline is approximated
near one of its fold points by one corner, that is, in the case of a two-piece local system,
the absence of true canards, though with the presence of an explosive growth of cycles
upon parameter variation, was reported in [31] and recently proven rigorously in [8].

1.2.2. Bifurcation Analysis. Instead of considering only snapshots of the param-
eter space corresponding to different dynamical regimes, recent studies on planar
PWL slow-fast systems have focused on understanding the transitions between these
dynamical regimes from a bifurcation viewpoint, namely, identifying bifurcation sce-
narios and characterizing more systematically the behavior of emerging canard-like
cycles. In this second phase of research, the main articles are [8, 38, 49, 52]. The
idea in this group of papers is to revisit the work by the Japanese school and try
to clarify the notions of canard cycle and canard explosion in planar PWL slow-fast
systems. Applications to neuron models were considered [49], also in the context of
stochasticity, in particular, how noise can induce complex oscillations in planar PWL
canard systems [52]. Both two-piece local systems—in [8], referring to the work done
in [31]—and three-piece local systems—in [49], referring to the work done in [3]—were
considered in order to approximate van der Pol–type systems in the canard regime.
Overall, the main contribution of this school is to have defined in a more theoretical
framework the conditions that are needed to obtain families of limit cycles that grow
explosively, and families where true canard explosions occur, in the context of PWL
vector fields with multiple timescales.

1.2.3. Singular Perturbation Analysis. More recent work initiated by Prohens
and Teruel in [46] tries to extend singular perturbation theory to the PWL frame-
work. The present work naturally belongs to this category, starting from the smooth
situation and extending the results to the PWL case. The main objective of this
emerging approach is to revisit geometric singular perturbation theory (GSPT) using
the PWL framework, in dimension greater than two and in the canard regime. In this
way, the planar case can be revisited once more [19], where the existence of canard
cycles in the PWL context is obtained using a similar approach as in [35]. Further-
more, generalizations to higher dimensions are possible. The present paper deals with
three-dimensional PWL systems, with the particular goal of finding the equivalent of
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folded singularities and associated canards in this context. The work done in [46, 47]
permits us to obtain Fenichel-type results for PWL systems with one fast variable
and n slow variables using a matrix formulation. However, even though this configu-
ration reproduces slow-fast behavior far away from the corner, it does not capture the
passage of the flow through the corner curve and, hence, does not allow for complex
oscillations in a PWL framework, a situation to be remedied here. Note that Fenichel
manifolds have been previously characterized for singularly perturbed linear systems
in the context of control theory (see [30]); however, the authors of that work did not
address the question of dynamical passage from an attracting to a repelling Fenichel
manifold, which is the main novelty of the results obtained in [46, 47].

1.3. Main Results of the Paper. In the planar case, all systems that we will
consider can be written in the Liénard form

εẋ = y − f(x),
ẏ = a− x,

(1.1)

where f is a PWL continuous function that makes system (1.1) a two-piece local
system or a three-piece local system. In the three-dimensional case, all systems that
we will consider can be written in the form

εẋ = −y + f(x),
ẏ = p1x+ p2z,
ż = p3,

(1.2)

where pi are parameters and f is as before. The choice of signs in the fast equation
of the three-dimensional system is made in order for the resulting PWL system to be
written in the exact same form as the minimal smooth systems for folded singulari-
ties [45]. From the last equation of (1.2), it is easy to see that such a system cannot
have periodic orbits for p3 �= 0. Our results focus mostly on the local dynamics near
folded singularities, but we also show in section 5 how to construct a global return
by adding extra terms to the ż-equation. We next highlight in more detail the main
findings of this work.

1.3.1. Local Dynamics. We construct three-dimensional minimal PWL slow-fast
systems (with two slow variables) displaying the same (local) dynamics as the smooth
minimal systems for folded singularities. We analyze the singular dynamics in all the
cases that lead to persistent canards (that is, we do not consider the folded focus case)
and show that the resulting singular phase portraits are compatible with the smooth
case. We provide the first interpretation (in terms of GSPT) of the central piece of the
critical manifold introduced by Arima, Okazaki, and Nakano in [3] as a “blow-up” of
the corner curve (equivalent of the fold curve in the PWL setting). What is more, our
analysis shows that the optimal size (in a sense to be made more precise later) of this
central part is a function of the small parameter ε, which agrees with the size of the
blow-up performed in the analysis of the smooth case. Under suitable assumptions,
we describe the dynamics for ε > 0 in the cases of folded node—which is the most im-
portant one, from the MMO viewpoint—and folded saddle. We also report findings in
the PWL context that can help to revisit the smooth case. Indeed, we report the pos-
sibility of SAOs near a folded saddle, both in the PWL and in the smooth framework,
which seems to have been unnoticed in the smooth case. Furthermore, we show that
the so-called weak canard for ε > 0 in the folded-node case is not a maximal canard in
the PWL context; to the best of our knowledge, this question does not seem to be en-
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tirely resolved in the smooth case. Then our result with the PWL framework suggests
the revisiting of the role and properties of the equivalent trajectory in the smooth case.

1.3.2. Global Dynamics. We propose an example of global return for a PWL
slow-fast system with a folded node, so that we can construct robust canard-induced
MMOs. This result is of interest in neuroscience as the frequency properties of such
PWL MMO neuron models can be quantitatively controlled. In order to exhaust the
comparison with the smooth case, in particular, with neuronal MMO models, a more
complete analysis of the possible MMO patterns in the PWL context (such as Farey
tree structure, devil staircase, or chaotic behavior) is among the immediate future
objectives of our research program.

1.3.3. Openings toward New Directions of Research. Through the present
work, we wish to promote two avenues of research. First, we aim to develop an
extension of GSPT within the framework of PWL slow-fast systems; this approach
has been initiated in [19, 46, 47]. Within this extended theory, the aim is to obtain
similar results with a simplified presentation and clarified definitions (in particular,
regarding the uniqueness of the essential dynamical objects). Moreover, we want to
particularly focus on complex canard-induced oscillations. Indeed, the present work
is mostly concerned with MMOs, but our immediate goal is to revisit canard-induced
bursting oscillations in a PWL setting. Second, we provide an important step to-
ward building biophysical PWL models of neurons displaying complex oscillations,
canard-induced MMOs, and bursting oscillations. These can then be analyzed us-
ing singular perturbation theory, just like a number of conductance-based smooth
models have been analyzed in recent years [9, 16, 26, 34, 50, 57]. The objective is to
eventually obtain PWL versions of Hodgkin–Huxley-type models that are both biolog-
ically meaningful and more amenable to analysis. As polynomial systems such as the
FitzHugh–Nagumo model capture the mechanisms of more complex neuronal models,
our results on model (1.2) can also pave the way to understanding the generation of
MMOs in Hodgkin–Huxley-type models [51].

1.4. Outline of the Paper. In section 2, we review planar PWL slow-fast sys-
tems, splitting the study into two parts. In the first part, we review two-piece local
systems [31], where an explosive growth of limit cycles can occur even though true
canards are not possible (hence termed quasi-canards in [8]). In the second part, we
consider the case of three-piece local systems [3] where true canard explosions can oc-
cur. We present the main previous work on these cases as well as more recent results
for PWL slow-fast systems with both three-piece and four-piece critical manifolds,
where only the latter give rise to canard solutions related to those in smooth systems.
In section 3, we introduce our strategy to construct canard-type dynamics in three-
dimensional PWL slow-fast systems, by putting a slow drift onto the parameter that
induces the canard transition obtained in planar two-piece and three-piece local sys-
tems. Direct simulation of such systems naturally reveals transitory MMOs that can
be interpreted as a quasi-canard explosion with a slow drift and as a canard explosion
with a slow drift, respectively. The latter case is the most interesting one for our
purposes because we want to investigate the equivalent of folded singularities and the
associated dynamics (in terms of maximal canards) in the PWL context. Therefore,
in section 4, we analyze the local dynamics created by a canard explosion with a slow
drift and find the PWL equivalent of all the key objects that are present in the smooth
case, namely, folded singularities, the singular weak canard and the singular strong
canard for ε = 0, and persistent canards for 0 < ε � 1, that is, weak canard γw and
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strong canard γs in the folded-node case, and faux canard γf and strong canard γs in
the folded-saddle case; see Figure 4.1. We investigate thoroughly the cases of folded
saddle and folded node, and we also provide the singular phase portraits for the two
folded saddle-node cases. In section 5, we show how to construct a global return near
a PWL folded node, so that we can create robust canard-induced MMOs similar to
what can be done in the smooth case [6, 9]. Finally, in the conclusion section, we
propose two main perspectives that our work unveils.

2. Planar PWL Slow-Fast Systems.

2.1. Quasi-canards. A large class of neuron models (for action potential gener-
ation) is based on the approximation that the membrane of a neuron behaves like
an electrical circuit. Therefore, the voltage equation in such models is obtained by
applying Kirchhoff’s law. The other dynamical equations account for the exchange
of ions across the neuron membrane as ion channels open and close, which organizes
the generation of an action potential. After the model by the Nobel prize winners
A. Hodgkin and A. Huxley [27] (HH) was developed, the first reduction from the
original four-dimensional model to a two-dimensional model was made independently
by R. FitzHugh [21] and J. Nagumo [43] in the early 1960s. In addition to dimension
reduction, the vector field of the HH model was approximated by a polynomial sys-
tem through the crucial observation that the voltage nullcline is roughly cubic shaped.
Hence, the FitzHugh–Nagumo (FHN) model appears as a modified van der Pol system,
thus appropriate to be investigated from the slow-fast perspective. At the beginning
of the 1970s, McKean [40] further simplified the FHN model by approximating the
cubic voltage nullcline by a PWL function. Similar to the HH and FHN models, the
McKean model comes originally from a reaction-diffusion PDE developed to study
the speed of propagation of spiking solutions; many results on traveling pulses were
subsequently obtained in this context [56]. McKean also studied the ODE version of
his model in [40], in the diffusion-free regime. Abbott [1] extended this work on PWL
relaxation oscillations by estimating the period and coupling two such systems.

After a brief mention of the “loss” of canards in PWL systems with two corners
in [28], the first study of a PWL van der Pol system from the perspective of canards
was made by Komuro and Saito in 1991 [31]. They performed a phase-plane analysis
on what is essentially the ODE McKean model and they showed numerically that
the transition from the equilibrium to the relaxation cycle was very rapid in terms of
parameter variation and involved small canard-like cycles; see Figure 2.1(a). They also
reported the absence of cycles resembling canards with head as well as the fact that
the slope of the middle segment constrains how small ε can be. These findings were
recently clarified in [8]. In particular, the authors explain the reason for the absence
of canards, namely, the fact that there is no repelling slow manifold in the system.
However, the name quasi-canard was given to the cycles observed by Komuro and
Saito, precisely because of their shape and their explosive behavior upon parameter
variation. Furthermore, the authors of [8] showed that the small parameter ε is indeed
constrained by the value that the slope of the central segment takes, but one can still
make ε as small as possible while suitably adjusting this slope. Also, they analyzed
the limit of the quasi-canard regime in the parameter plane. In particular, as the
equilibrium in the central zone reaches the corner (exactly on the switching line), the
system admits a continuum of true homoclinic canard connections, which motivated
the term super-explosion in order to explain the discontinuous transition from the
stationary regime to the relaxation regime; see [8] for more detail.
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Fig. 2.1 (a) Quasi-canard solutions of the two-piece local system (1.1) with a three-piece PWL
critical manifold y = f(x), where f(x) = x+ 1

2
(1+k)(|x−1|−|x+1|), and with parameters

ε = 0.2, k = 0.885, and 0.5 ≤ a < 1. (b) Two canard solutions (a headless canard Γhc
and a canard with head Γch) of the three-piece local system from [3] with a four-piece PWL
critical manifold. The vector field has been chosen exactly as in [3], that is, taking the
form of (3.2) but with different slopes in different zones. We have also taken the critical
manifold to be flat in the central zone. The values of the parameter controlling the slow
nullcline (parameter a) for these two canard cycles are a = 0.783913238 for the headless
canard Γhc and a = 0.783913236 for the canard with head Γch. In both panels, C0 denotes
the PWL critical manifold.

2.2. Canards. The main idea to obtain true canard cycles in a planar PWL
systems was introduced by Arima, Okazaki, and Nakano in 1997 [3]. It consists in
approximating the critical manifold near a fold by a three-piece PWL function. The
justification given in [3] is to reproduce the transition between real and complex
eigenvalues that occurs near the fold point in the smooth system. The authors of [3]
also notice that, due to the presence of this extra linearity zone, a separatrix appears
(as an invariant manifold of a virtual equilibrium) which allows for both canards
without head and canards with head to exist; this separatrix provides a canonical
choice of repelling slow manifold. We complement their interpretation by the following
argument. Arima, Okazaki, and Nakano based their work on the previous work by
Komuro and Saito, who considered a cubic-shaped PWL critical manifold (two-piece
local system) with a focus equilibrium in the central zone. Therefore, there is no
invariant manifold of equilibrium that can play the role of repelling slow manifold
and, hence, allow for small and large canards to exist. Only small quasi-canards can
occur in this situation. However, instead of the focus, one could consider a node
equilibrium in the central zone, which would create a repelling slow manifold (one
of the stable manifolds of the node). But the problem here would be that no small
limit cycle can exist, since the cycles are born large (three-zonal). So, in order to
combine the possibility of both small cycles and a repelling slow manifold, one needs
the central zone which introduces complex eigenvalues and the virtual node whose
stable manifold provides a repelling slow manifold to the system. Therefore, Arima
and coworkers found, without providing a complete mathematical understanding, the
minimal PWL setting from which to construct a canard-explosive system.

Figure 2.1(b) shows a canard cycle without head and a canard cycle with head in
the Arima model. Note that the authors of [3] claim that the critical manifold in the
central zone has to have a nonzero but small-enough slope, which in fact is not true.
The only important point is to have complex eigenvalues; therefore, one can choose
the critical manifold in the central zone to be flat. This is the case in the simulations
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shown on Figure 2.1(b). When analyzing a three-dimensional version of this model,
in sections 3 and 4, we will also keep that slope equal to zero in the central zone.

The work by Arima and coworkers was mostly concerned with phase-plane anal-
ysis. In recent years, various attempts have been made to revisit and complement
their results by incorporating some bifurcation analysis. In particular, Pokrovskii and
Sobolev [44] recover (without mentioning it) the main results from [3], that is, the
facts that three pieces are needed to approximate the critical manifold near a fold
point, in order to create canard cycles, and that a fourth piece allows for canards
with head to exist. Also, Rotstein, Coombes, and Gheorghe [49] obtain bifurcation
diagrams corresponding to both supercritical and subcritical canard explosions in this
context. Furthermore, they make the link between canards and excitable dynamics
with threshold crossing, in the context of neuron models.

The latest work on this topic is by Fernández-Garćıa et al. [19], in which the main
idea of Arima and coworkers is revisited once more—without considering the fourth
zone, only locally near the three-piece PWL approximation of the quadratic fold—
from yet a different viewpoint. The main focus is to extend singular perturbation
results from the smooth case [35] in order to prove the existence of maximal canards,
as connections between attracting and repelling slow manifolds, and related families
of canard cycles (break up of such connections) in this context. This provides the first
singular perturbation analysis of planar PWL canard systems. The present work takes
this approach to three-dimensional PWL slow-fast systems, although the presentation
is less technical.

Now that results regarding canard cycles in planar PWL slow-fast systems have
been reviewed, we can develop the main objective of this paper, that is, to construct
and analyze three-dimensional PWL slow-fast systems displaying canard dynamics,
especially near folded singularities.

3. Three-Dimensional PWL Slow-Fast Systems: Transient MMOs. Once the
key elements allowing the existence of canard cycles in planar PWL systems have been
established, it is natural to consider three-dimensional models. The simplest way to
do so is to put a slow drift on the parameter that displays the canard (or quasi-canard)
transition in the planar system. This allows us to construct transient canard trajec-
tories in three-dimensional systems, building on knowledge from the planar case [57].
The problem of making these canards robust (recurrent) is a separate one and requires
the construction of a global return mechanism, which we will investigate through an
example in section 5. Below we simply show how to observe numerically a quasi-canard
and a canard explosion, respectively, with a slow drift on the associated parameter.
One can find a handful of papers dealing with canards in three-dimensional PWL
slow-fast systems [46, 47]. However, none of these papers deals with planar canard
dynamics with a slow drift, except in the context of stochastic systems [52].

We will now follow a formulation similar to that adopted for the planar case,
that is, distinguishing between two-piece local systems and three-piece local systems
to approximate a quadratic fold of a smooth slow-fast system. We will simply add a
trivial slow dynamics on the parameter displaying the explosion in the planar system.
To do so, we consider the slow drift

ȧ = c,(3.1)

with c a real parameter.

3.1. Dynamic Quasi-canard Explosion. We first consider system (1.1) with
f(x) = x + 1

2 (1 + k)(|x − 1| − |x + 1|), to which we append the slow drift (3.1).
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Fig. 3.1 (a) Transient MMO in a three-dimensional version of the two-piece local system (1.1);
the generating mechanism here is a quasi-canard explosion with a slow drift (3.1). The
parameter values for this transient MMO trajectory are ε = 0.1, k = 0.5, c = −0.001. (b)
Transient MMO trajectory Γ solution to the system from [3] with a drift (3.1) on the slow
nullcline. In both panels, C0 denotes the PWL critical manifold.

Not surprisingly, we can observe a dynamic quasi-canard explosion by direct simu-
lation of the resulting system (1.1)–(3.1); see Figure 3.1(a) for a three-dimensional
phase-space view of such a trajectory. This system has the same similarities and the
same missing points, when compared to three-dimensional smooth canard systems, as
the planar system studied by Komuro and Saito when compared to the van der Pol
oscillator. That is, an explosive behavior in the growth of small oscillations but no
repelling slow manifold. Overall, one can create transient MMO dynamics but not of
true canard type. Therefore, the control of SAOs will be different than in the smooth
case near a folded node, and the link to existing smooth models is more tenuous.
Consequently, we will not investigate this type of MMO further as we wish to focus
on canard-induced MMOs; that is, we want to understand the mechanism to create
folded singularities in three-dimensional PWL slow-fast systems. This is why, as a
first step, we will now consider a trivial slow dynamics on the parameter displaying
the canard explosion in the system studied by Arima, Okazaki, and Nakano.

3.2. Dynamic Canard Explosion. We consider system (1.1) with the additional
equation (3.1) and with a PWL function f now defined in four zones, that is, f = Fδ,
where

(3.2) Fδ(x) =

⎧⎪⎪⎨⎪⎪⎩
−x+ (β + 1)δ if x ≥ δ,
βx if |x| ≤ δ,
x− (β − 1)δ if x0 < x < −δ,

−x+ 2x0 − (β − 1)δ if x ≤ x0.

This creates canard-induced MMOs in transient dynamics exactly as in the smooth
case; see Figure 3.1(b) for a three-dimensional phase-space view of such a trajectory.
We (naturally) observe a dynamic canard explosion and, hence, folded-node-type
dynamics. Therefore, we are now confident that we have the correct framework to
find where the equivalent of the folded node is and, more generally, how to understand
folded singularities in a PWL context. In the next section, we will focus on a three-
piece local system in order to unravel the local dynamics near the PWL equivalent
of folded singularities, that is, not only folded node but also folded saddle and folded
saddle-node.
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4. Three-Dimensional PWL Slow-Fast Systems: Local Dynamics near Folded
Singularities. Let us now analyze the minimal system to reveal PWL folded singu-
larities, whose equations are given by (1.2) with f = fδ, where

(4.1) fδ(x) =

{
0 if |x| ≤ δ,
|x| − δ if |x| ≥ δ.

This system has a three-piece critical manifold with a central part that is flat and
of size 2δ > 0. At first, the value of δ is free, but it will be constrained after some
initial simulations of the system. We remark that all the results persist with a more
general PWL function; in particular, making the slope of the critical manifold in the
central part nonzero does not fundamentally alter the overall dynamics. Importantly,
it does not remove the possibility of SAOs, the amplitude of which will not be constant
because the invariant cylinders to be described in the next section no longer exist.
We have chosen to consider a flat piece for the critical manifold in the central zone in
order to have a minimal model that features all the dynamics that we are interested
in.

4.1. General Setting. We start with a few general remarks about the global
behavior of system (1.2) in the PWL setting, that is, with the function f given
by (4.1); see Figure 4.1 for a pictorial illustration of these remarks. In order to
understand the dynamics of system (1.2) in the outer zones, that is, for |x| > δ, we
make use of the results from [46]. As in this previous work, we obtain expressions
for the attracting and the repelling slow manifolds as invariant half-planes spanned
by the eigenvectors associated with the slow eigenvalues (one of these eigenvalues
being zero); their invariance follows from checking a simple algebraic condition. In
particular, the attracting slow manifold is given by

SA
ε =

{
x < −δ, −λ2

Ax+ λAy + εp2z = −δλA − p2p3
λA

ε2
}
,(4.2)

with λA = − 1+
√
1−4εp1

2 , and the repelling slow manifold is given by

SR
ε =

{
x > δ, −λ2

Rx+ λRy + εp2z = −δλR − p2p3
λR

ε2
}
,(4.3)

with λR = 1+
√
1−4εp1

2 ; see [46] for details. Note that due to the symmetry of (4.1) we
have λR = −λA.

We now describe the dynamics in the central zone, that is, on and in between the
two switching planes {x = ±δ}. In this zone, the fast equation reduces to εẋ = −y,
which implies that the direction of the flow on the switching planes depends upon the
sign of y. Moreover, the lines {x = −δ, y = 0} and {x = δ, y = 0} correspond to the
loci of tangency points. On the other hand, it is easy to check that the function of
the state variables

(4.4) H(x, y, z) = εp1(p1x+ p2z)
2 + (p1y − εp2p3)

2

is a first integral for the system in the central zone.
If p1 is negative, the level sets of H constitute two disjoint surfaces, invariant

by the central flow, whose sections with x equal to constant are two branches of a
hyperbola with a common center on the axis given by

x = −p2
p1

z, y =
εp2p3
p1

.(4.5)
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(a)

z

y

SA
ε

SR
ε

γs

{x = −δ} {x = δ}

γf

(b)
y

z

SA
ε

SR
ε

γw

γs

{x = −δ} {x = δ}

Fig. 4.1 Sketch of the flow given by system (1.2) and (4.1) with p1 > 0: attracting slow manifold
(SA

ε ), repelling slow manifold (SR
ε ), weak canard (γw), faux canard (γf ), and strong canard

(γs). Panel (a) describes the case of a folded saddle, and panel (b) that of a folded node.
See sections 4.4.1 and 4.4.2 for details.

Moreover, the matrix defining the vector field in the central zone does not have com-
plex eigenvalues. Therefore, we conclude that, when p1 < 0, no rotation can happen
in this zone.

In contrast, when p1 > 0, the level sets ofH are cylinders, invariant by the central
flow, with a common axis given by (4.5). Furthermore, the nonzero eigenvalues of the
matrix defining the flow in the central zone are ±i

√
εp1, therefore, trajectories do

rotate in this zone. Indeed, the line segment (4.5) organizes the dynamics of the full
system by acting as an axis of rotation for trajectories that display SAOs in the central
zone, which corresponds to the so-called weak canard in the smooth case [53, 57]. In
the remainder of the paper, we will always assume p1 > 0 when considering SAO
dynamics. The dynamics for p1 > 0 in the vicinity of the central zone, together with
important invariant objects, is sketched in Figure 4.1. In particular, the attracting
slow manifold is shown as a red plane in the left zone, the repelling slow manifold as
a blue plane in the right zone, and two level sets of the function H given by (4.4) are
drawn in the central part together with a few phase trajectories (black lines). Two
cases are sketched, corresponding to the folded-saddle scenario (panel (a)) and to the
folded-node scenario (panel (b)), and special solutions are highlighted. Some of these
solutions are canards, such as γw and γs on panel (b). Since the solution on panel
(a) (labeled γf ) has the opposite direction, that is, it goes from the repelling slow
manifold to the attracting one, it is called a faux canard. See section 4.4 for details
about these scenarios in the PWL context.

The number of SAOs increases as trajectories approach the axis of rotation. Given
that the angular velocity of trajectories is constant, equal to

√
εp1 (since the system

is the central zone is linear), the number of complete turns is bounded by the time
needed for an orbit starting on the axis of rotation to flow between the switching planes
{x = ±δ}. This time can easily be computed since the z equation of system (1.2)
and (4.1) is just a constant drift. From (1.2) and (4.5), it is easy to see that on the
rotation axis

ẋ = −p2
p1

ż = −p2p3
p1

ε.

Thus, the time at which an orbit starting at the rotation axis reaches one switching
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plane, having started on the other, is given by

t∗ =
2p1δ

ε|p2p3| .(4.6)

Therefore, the associated maximal winding (or rotation) number μ is obtained as

μ =
δ

π
√
ε

p1
√
p1

|p2p3| .

Note that the quantity μ is reminiscent of the eigenvalue ratio at a folded singularity
in the smooth setting [53, 57]. Even if there is no direct correspondence between
these two quantities, they play the same role in each of the two frameworks, namely,
to control the maximal number of SAOs that can occur in the system. Moreover, in
the smooth case, this maximal winding number is independent of ε. Thus, in order
to reproduce quantitatively the behavior observed in the smooth context, we choose
the size of the central part δ to be a function of

√
ε. Note that this choice is clearly

suggested by the expression obtained for μ. Therefore, from now on, we fix

(4.7) δ = π
√
ε,

and consequently the maximal winding number μ is constant and satisfies

(4.8) μ =
p1
√
p1

|p2p3| .

The choice that we make for δ is necessary in order to obtain, in a PWL framework, a
complete match with the behavior of smooth slow-fast systems near folded singulari-
ties, that is, not only qualitative, but also quantitative in the sense that the maximal
winding number μ is finite, independent of ε, and related, via a scaling factor, to
the corresponding quantity from the smooth case. An important consequence of the
ε-dependence of δ is that the central part of the PWL critical manifold collapses to a
single corner line in the singular limit ε = 0, that is, the three-piece local system for
ε > 0 converges, in the singular limit, to a two-piece local system.

A direct consequence of the above calculations is that one can see the central zone,
needed to obtain canard dynamics, as a blow-up of the corner line that exists in the
singular limit. It is also remarkable that the size of this blow-up, O(

√
ε), matches that

of the smooth case. Indeed, when blow-up is performed near nonhyperbolic points
in smooth slow-fast systems, it can be proven that the region of hyperbolicity, where
canards are shown to exist, is extended in the blown-up locus by a size of O(

√
ε);

see [35]. We believe that this interpretation of the central zone as a blow-up of the
corner line (that appears in the singular limit) is novel and relates to the analysis of
smooth slow-fast systems near nonhyperbolic points. Moreover, this kind of blow-up
seems simpler than its counterpart from the smooth framework in the sense that it
does not increase the dimension of the system, but just adds another linearity zone.
A more geometrical yet complementary view on this central zone is the idea that the
linearization of a parabola by a corner provides a good approximation away from the
fold; however, near the fold three linear pieces are needed in order to avoid losing too
much information.

4.2. Singular Flow. The fact that the central part of the PWL critical manifold
shrinks to a single corner line in the limit ε = 0 implies that the singular dynamics
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of system (1.2) and (4.1) in the PWL setting is restricted to two half-planes, one for
the attracting part of the dynamics and one for the repelling part. Therefore, the
information about the connection from one part to the other is lost. To overcome this
difficulty, we propose to keep track of the limit of the central dynamics, as ε tends
to 0, while maintaining the presence of the central zone; we will say that the central
zone stays “open” in the singular limit. Consequently, the reduced system that we
will consider in order to derive the slow flow is the limit when ε = 0 of system (1.2)
with f = fδ̃, for a certain δ̃ > 0 independent of ε. Then, we can apply the usual
procedure to find the slow flow: we set ε = 0 in (1.2), which yields the following
differential-algebraic system:

−y + fδ̃(x) = 0,(4.9)

ẏ = p1x+ p2z,(4.10)

ż = p3.(4.11)

As is customary with slow-fast systems in the slow (singular) limit, we differentiate the
algebraic equation (4.9) with respect to time and project the overall reduced system
onto the (z, x)-plane. Restricting our attention to points not on the separation planes,
this produces the following planar reduced system:

−f ′
δ̃
(x)ẋ = −(p1x+ p2z),(4.12)

ż = p3.(4.13)

In the smooth case [9], the reduced system is singular along the fold curve of the
critical manifold, defined by {f ′(x) = 0} in the formulation of system (1.2). In
order to overcome this problem, one typically rescales the time by a factor −f ′(x),
thus obtaining a regular system with the possibility of equilibria on the fold curve
provided that p1x+ p2z also vanishes. In the original system, this corresponds to the
cancellation of a simple zero in the numerator and denominator of the right-hand side
of the x equation. The so-called desingularized reduced system (DRS) then has a true
equilibrium on the fold curve, whereas the original reduced system does not. This is
because the time rescaling reverses the orientation of trajectories when f ′(x) > 0, that
is, along the repelling sheet of the critical manifold. Such an equilibrium is therefore
called a folded singularity (or pseudoequilibrium [4]) and, according to its topological
type as an equilibrium of the DRS, one speaks of folded node, folded saddle, and folded
focus.

It is important to note that the singular nature of flow of the reduced system along
the fold curve can be resolved at one point, and that point is the folded singularity.
Moreover, such a point appears (because of the time rescaling performed for the
desingularization) as a way to pass from the attracting to the repelling sheets of the
critical manifold, which defines singular canards. There can be infinitely many such
canards in the limit ε = 0 (this is the case for folded node). However, they are
organized by special singular canards obtained from the two eigendirections of the
folded singularity (provided it has real eigenvalues) called the singular weak canard
and the singular strong canard according to the modulus of the associated eigenvalue.

4.2.1. Singular Weak Canard. Back to the PWL context, since f ′
δ̃
is a piecewise-

constant function, (4.12) does not require any desingularization procedure as in the
smooth case. On the contrary, it gives a regular system in each zone. Namely, in the
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outer zones the reduced system has the form

ẋ = sgn(x)(p1x+ p2z),
ż = p3,

(4.14)

with x < −δ̃ for the attracting (lower) zone and x > δ̃ for the repelling (upper)
zone; see, for instance, Figure 4.4. In the central part, the resulting system is more
degenerate and its equations are given by

0 = p1x+ p2z,

ż = p3.

Therefore, the information is concentrated on exactly one straight line, which coincides
with the limit of the rotation axis for ε = 0; see (4.5). Hence, we define the orbit
corresponding to the ε = 0 limit of the rotation axis as the singular weak canard in
the PWL framework [53, 57].

4.2.2. Maximal Canards and Singular Strong Canard. Since the reduced sys-
tem in the central zone does not give any further information, one needs to find
another strategy in order to define the singular strong canard. Going back to the
system in the central zone for 0 < ε � 1, under natural assumptions we obtain, in
Proposition 4.1 below, explicit solutions passing from the attracting slow manifold to
the repelling one, which then correspond to maximal canards. In particular, there
is exactly one maximal canard that passes from one side to the other without com-
pleting a full rotation; by definition, this special solution is the strong canard; see
Figure 4.1(b). We then define the singular strong canard in the PWL framework as
the limit of this special solution when ε → 0, while maintaining the central zone open.

The overall system is reversible with respect to the involution

(x, y, z, t) �→ (R(x, y, z),−t),

where R(x, y, z) = (−x, y,−z). Consequently, the intersection lines between the slow
manifolds and their nearby switching plane are symmetric with respect to R(x, y, z);
these lines are given by

LA
ε =

{
x = −δ, y +

εp2z

λA
= −δ(1 + λA)− p2p3

λ2
A

ε2
}
,

LR
ε =

{
x = δ, y +

εp2z

λR
= −δ(1− λR)− p2p3

λ2
R

ε2
}
.

(4.15)

Let [x] represent the integer part of x. From the above elements, we conclude the
following result.

Proposition 4.1. Consider system (1.2) and (4.1) with p3 > 0, δ = π
√
ε, and

ε small enough. Assuming that different maximal canards have different flight times,
the following statements hold.

(a) Maximal canards γ are reversible orbits, that is, the intersection points with
the separation planes p ∈ γ ∩ La

ε and q ∈ γ ∩ Lr
ε are related to one another

by the reversibility R; hence q = R(p).
(b) If p1 > 0 and p2 < 0, for every integer k with 0 ≤ k ≤ [μ], where μ is the

maximal rotation number defined in (4.8), there exists a maximal canard γk

D
ow

nl
oa

de
d 

04
/1

9/
17

 to
 1

50
.2

14
.1

82
.2

08
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

 
 
 

 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CANARDS, FOLDED NODES, AND MMOs IN PWL SYSTEMS 669

intersecting the switching plane {x=−δ} at pk = (−δ, yk, zk), where

(4.16)

yk = −
((

k +
1

2

)
p2p3√
p1

+ p1

)
πε

3
2 − p2p3ε

2 +O(ε
5
2 ),

zk = −
(
k +

1

2

)
p3√
p1

π
√
ε+O(ε).

Moreover, γk turns k times around the weak canard γw.
(c) If p1 > 0 and p2 > 0, there exists a unique maximal canard γ0 intersecting the

switching plane at p0 = (−δ, y0, z0) where the coordinates y0 and z0 satisfy
(4.16) with k = 0.

(d) If p1 < 0, there are no maximal canards.

Proof. The proof of the proposition is given in Appendix A.

Therefore, from parts (b) and (c), we can conclude that γ0 is the strong canard
in both the folded-node and the folded-saddle cases, respectively.

Remark 4.2. The assumption about the flight time of maximal canards in Propo-
sition 4.1 implies that every maximal canard is reversible, as is the case in the smooth
context. In this sense we consider this assumption to be very natural. Note that re-
laxing this assumption could make possible nonunique maximal canards with a given
rotation number, which would then be solutions that are not related to the smooth
case and on which we do not want to focus here.

Due to the reversibility of the maximal canards, the projection of the strong
canard onto the (z, x)-plane passes through the origin. In the singular limit, only
one point of the strong canard remains in the central zone, that is, the origin itself.
However, maintaining that zone open and noticing that, from (4.16), the slope (−z0, δ)
of the projection of the strong canard converges to

(
1
2

p3√
p1
, 1
)
as ε tends to zero, we

choose to take this direction through the origin as our definition of the singular strong
canard.

The singular weak and strong canards that we have just defined in the central
zone are the only two directions that remain, in the singular limit ε = 0, as ways
to pass from the attracting part to the repelling part of the critical manifold. This
is because the central zone, kept open in the limit ε = 0, acts as a blow-up of the
corner line in order to understand the possibilities for such passage from one side of
the critical manifold to the other. In the smooth case, this role is played by the folded
singularity, which is not an equilibrium of the reduced flow but an “opening” through
the fold line (along which the reduced system is singular) allowing the passage from
one side to the other. Notice that the two directions that allow for this passage in
the singular limit of the smooth case are obtained from the linearization of the DRS,
as eigenvectors of the folded singularity (true equilibrium of the DRS); see [9] for
details. Hence, they play the same role as the singular canards which we have defined
in the central zone in the PWL setting. We will identify the singular weak and strong
canards in the outer zones, both for the folded-saddle and for the folded-node cases,
in sections 4.4.1 and 4.4.2, respectively.

Although the results presented in Proposition 4.1 are valid for all δ small enough
(with a proper scaling as a function of ε), we wish to emphasize the fact that the PWL
framework also leads to the existence of very simple and explicit maximal canards for
certain specific values of δ. These particular values of δ (within the correct scaling)
allow the overall angle in the central zone to be exactly an odd multiple of π, hence
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making the expression for one “selected” maximal canard very simple. This result
is the purpose of the following proposition and highlights the simplifying aspect of
the PWL framework for canard problems. From the perspective of using the PWL
framework in order to develop simple yet accurate neuron models, the possibility of
such “selected” explicit canard solutions can potentially be of great use in studying
the associated boundary between different levels of activity.

Proposition 4.3. Consider system (1.2) and (4.1) with p1 > 0, p2 < 0, p3 > 0,
and fix δ = δk, where δk = − p2p3

p2
1

((
k + 1

2

)
π
√
εp1 + 1

)
for k = 0, 1, 2, . . . , [μ], where

μ is the maximal rotation number defined in (4.8). Then, the kth secondary canard
(resp., strong canard when k = 0) crosses the left switching plane {x = −δk} at

(x, y, z) =

(
−δk, ε

p2p3
p1

,−
(
k +

1

2

)
π
p3
p1

√
εp1

)
and takes, in the central zone, the following explicit time parametrization:

xsc(t) =
p2p3
p21

cos(
√
εp1t)−√

εp1
p2p3
p21

(√
εp1t−

(
k +

1

2

)
π

)
,(4.17)

ysc(t) = −√
εp1

p2p3
p21

(
sin(

√
εp1t)−√

εp1
)
,(4.18)

zsc(t) =
√
εp3

(√
εt−

(
k +

1

2
√
p1

)
π

)
(4.19)

for 0 ≤ t ≤ (2k + 1)π 1√
εp1

.

Proof. The proof of the proposition is given in Appendix B.

Remark 4.4. The quantity − p2p3

p2
1

plays the role of the parameter ν used to mea-

sure the speed of the slow drift in minimal models for folded singularities; see [9].

Figure 4.2 illustrates Proposition 4.3 for k = 0 to 3 in panels (a), (b), (c), and
(d), respectively.

4.3. Singular Flow Far Away from the Origin. We continue this section with
a remark that furthers the comparison between the smooth version and the PWL
version of the minimal system (1.2), in the singular limit. The singular flow on the
attracting part and on the repelling part of the critical manifold, away from a vicinity
of the origin, are topologically equivalent in the smooth case and in the PWL case.
Indeed, the slow flow of system (1.2) with f(x) = x2 can be understood from the
reduced equation

−2xẋ = −(p1x+ p2z),
ż = p3,

(4.20)

after performing the usual desingularization, which amounts to a time rescaling by
a factor −2x in (4.20). One then studies the (regular) DRS and maps its dynamics
back to the original reduced system with a necessary reversal of time orientation
along trajectories on the repelling part of the critical manifold, that is, in the {x > 0}
half-space. However, one can also consider two systems defined separately on the two
half-spaces {x < 0} and {x > 0}. In this way, the reduced equation

ẋ = sgn(x)(p1x+ p2z),
ż = 2p3|x|(4.21)
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x

y

z

Sa
ε

Sr
ε

x

y

z

Sa
ε Sr

ε

x

y

z

Sr
ε

x

y

z

Sa
ε Sr

ε
Sa
ε

(a) (b)

(c) (d)

Fig. 4.2 Exact canard solutions obtained for δ = δk, k = 0, 1, 2, 3, in panels (a), (b), (c), and (d),
respectively. In each panel, the attracting slow manifold Sa

ε (red) and the repelling slow
manifold Sr

ε (blue) are also shown. In each panel, we have fixed ε = 0.01, p1 = 1, p2 = −1,
p3 = 0.2.

is obtained. Therefore, one can expect that, outside a neighborhood of the origin,
the phase portraits of systems (4.14) and (4.21) are topologically equivalent. Simple
computations will illustrate this point in the next sections with Figures 4.4 to 4.8.

4.4. Folded Singularities in the PWL Setting. The singular canards that we
have defined as special directions in the limit ε = 0 naturally cross at the origin. We
then define this point as the folded singularity for the PWL framework. In order to
classify PWL folded singularities and compare them with the smooth cases (folded sad-
dle, folded node, etc.), we first recall the conditions on parameters pi, i = 1, . . . , 3 [45],
which characterize the different folded singularities in smooth slow-fast systems writ-
ten in the minimal form (1.2):

◦ the folded-saddle case corresponds to p2p3 > 0;
◦ the folded-node case corresponds to p1 > 0 and −p21/8 < p2p3 < 0;
◦ the folded-focus case corresponds to p1 > 0 and p2p3 < −p21/8;
◦ the folded saddle-node case corresponds to p2p3 = 0, with two subcases: type I
(p2 = 0, p3 �= 0) and type II (p2 �= 0, p3 = 0).

Without loss of generality, we will only consider the case p3 ≥ 0 since similar results
are obtained for p3 ≤ 0 by reversing the sign of p2; see (4.14). Moreover, we will not
consider the folded-focus case because it does not create any canards for ε > 0 [53].
Furthermore, we will not consider the folded-node case with p1 < 0 since only faux
canards [5] (that is, trajectories flowing from the repelling side to the attracting side)
exist in this case; in particular, no MMO dynamics can be obtained near an unstable
folded-node singularity. Finally, in the folded-saddle case, we will consider both p1 > 0
and p1 < 0 since in these cases the role of the true canard and that of the faux canard
are exchanged.
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(a2) (b2)

(a1) (b1)

Fig. 4.3 Canards near folded singularities: folded saddles on panels (ai), i = 1, 2, and folded nodes
on panels (bi). The top panels correspond to system (1.2) with f(x) = x2, and the bottom
panels correspond to the same system with a three-piece symmetric PWL function for
f = fδ given in (4.1). In each panel are shown 20 trajectories where only the z-coordinate of
the initial condition is varied; a black dot marks the (x, y)-coordinates, which are constant
across this sweep. Also plotted are the critical manifold C0 as well as switching planes in
the PWL cases, that is, on the bottom panels.

Before engaging in the analysis of the different types of PWL folded singularities,
we first verify numerically whether the criteria on the parameter values are the same
in the PWL setting and in the smooth setting. Taking one parameter set that corre-
sponds to the folded-saddle case (p1 = 1, p2 = 1, p3 = 0.1) and one that corresponds
to the folded-node case (p1 = 1, p2 = −1, p3 = 0.1), direct simulations show that the
observed dynamics in the PWL system and in the smooth system are entirely compa-
rable. The results of the simulations are presented in Figure 4.3. It clearly shows that
the qualitative behavior of system (1.2) is the same in the PWL setting (with f = fδ
given by (4.1)) and in the smooth setting (with f = x2). Furthermore, criteria on the
main parameters in order to obtain folded-node-type dynamics or folded-saddle-type
dynamics also seem to be the same in both frameworks. Indeed, the folded-saddle
condition for p1 > 0 imposes the fact that the flow along the rotation axis goes in
the opposite direction (see (4.5)); when p1 < 0, there is no rotation. The folded-node
condition follows from the fact that μ has to be greater than 1 in that case (see (4.8)).
Up to a positive scaling factor equal to

√
p1/8, this gives the same conditions as in

the smooth case. Namely,
◦ the folded-saddle case corresponds to p2p3 > 0;
◦ the folded-node case corresponds to p1 > 0 and −p1

√
p1 < p2p3 < 0;

◦ the folded-focus case corresponds to p1 > 0 and p2p3 < −p1
√
p1;

◦ the folded saddle-node case corresponds to p2p3 = 0, with two subcases: type I
(p2 = 0, p3 �= 0) and type II (p2 �= 0, p3 = 0).

We will now make this splitting on parameter sets and verify that the singular phase
portraits in the outer zones are compatible in each framework.
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z

x
(a)

z

x
(b1)

(b3)

z

x

z

x
(b2)

Fig. 4.4 Slow flow near a PWL folded saddle (black dot) for the following parameter values: p1 = 1,
p2 = 1, p3 = 0.1. The singular phase portrait of the smooth system for the same parameter
values is shown in panel (a). In panel (b1), the slow flow is presented, in its two-zonal
configuration. In order to reveal the singular weak canard, one performs an opening with
the ε = 0 limit of the central zone considered in that blown-up zone; the result is shown in
panels (b2) and (b3) (zoom). In all panels, the red and the blue lines/curves denote the
singular faux canard and the singular strong canard, respectively; also, in panels (b1)–(b3),
the dashed gray line denotes the z-nullcline.

4.4.1. Folded Saddle: Singular Phase Portrait. Consider system (4.14) with
parameters satisfying p2p3 > 0. It is easy to check that the half straight line given by

p1x+ p2z = −p2p3
p1

(4.22)

is invariant under the flow in the {x > 0} half-plane. Similarly, the half straight line
given by

p1x+ p2z =
p2p3
p1

(4.23)

is invariant under the flow in the {x < 0} half-plane. Furthermore, the x-nullcline,
p1x + p2z = 0, is the locus of tangency points in the direction of z. Therefore, in
the two-zonal system at ε = 0 (that is, without the opening), the origin is a so-
called visible-visible tangency point [29] of the flow; see panel (b1) in Figure 4.4. The
direction of the flow is easily deduced from the z equation in (4.14). This panel shows
that the behavior of the slow flow is equivalent, outside a neighborhood of the origin,
to that of the smooth system presented in panel (a).

However, this description of the singular flow does not provide any information
about the crossing from one zone to the other. As we explained in the previous
section, such crossing through singular canards can only be revealed by maintaining
the central zone open in the singular limit, which corresponds to performing a blow-
up. This behavior is shown in panels (b2) and (b3), the latter being a magnified
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z
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z

x
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Fig. 4.5 Same figure as Figure 4.4 but with p1 = −1. The roles of the singular true canard and the
singular faux canard are now exchanged.

view of the former near the origin. The red and blue orbits in the central zone are
the singular weak and strong canards defined in the previous section. The blow-up
splits the double tangency point at the origin into two tangency points that lie along
the x-nullcline, which corresponds to the direction of the singular weak canard in the
central zone. The resulting tangency point in each outer zone determines a separatrix
that gives one side of each singular canard in that zone. In the central zone, the
singular weak and the singular strong canards are the blown-up images of the two
separatrices meeting at the origin in the two-zonal system (panel (b1)). Note that
after the blow-up is performed, the resulting singular weak canard is connected across
all three zones, whereas the singular strong canard is disconnected. However, both
objects converge in the two-zonal limit to the two separatrices that are tangent to
the corner line at the origin. In fact, this process corresponds to a concatenation of
the real singular flow together with singular directions obtained in the central part
after blow-up, which are necessary to identify the canards. In this way, we are able
to compare the singular phase portrait near the PWL folded singularity (panel (b3))
with that of the smooth case (panel (a)).

The only difference between Figures 4.4 and 4.5 is the sign of p1, positive in the
former and negative in the latter. The role of the sign of p1 is to determine which
singular canard is a true canard and which one is a faux canard. In particular, when
p1 is negative, the singular strong canard happens to be a faux canard. This also hap-
pens in the smooth context, although it is not often commented on in the literature.
However, the identification of the singular canards does not depend on the sign of p1.

4.4.2. Folded Node: Singular Phase Portrait. The singular flow in the folded-
node case, that is, when p2p3 < 0, is obtained in a very similar manner as in the
folded-saddle case. In particular, the two half straight lines (4.22) and (4.23) are still
invariant under the flow in the respective zone. The loci of tangency points also persist
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(a)

z

x

z

x

(b1)

z

x
(b2)(b3)

z

x

Fig. 4.6 Slow flow near a PWL folded node (black dot) for the following parameter values: p1 =
1, p2 = −1, p3 = 0.1. The singular phase portrait of the smooth system for the same
parameter values is shown in panel (a). In panel (b1), the slow flow is presented, in a two-
zonal configuration. In order to reveal the singular weak canard, one performs an opening
with the ε = 0 limit of the central zone considered in that blown-up zone; the result is shown
in panels (b2) and (b3) (zoom). In all panels, the red and blue lines/curves denote the
singular weak canard and the singular strong canard, respectively; also, in panels (b1)–(b3),
the dashed gray line denotes the z-nullcline.

in this case; however, the origin now corresponds to an invisible-invisible tangency,
usually referred to as a Teixeira singularity [29, 47]; see Figure 4.6. Here again, the
singular phase portrait in the two-zonal configuration (panel (b1)) does not allow us
to find the possibilities of crossing from one zone to the other. After performing the
central blow-up, we find the two directions that realize this crossing, corresponding
to the singular weak and strong canards. In order to determine their extensions to
the outer zone, we also use the role of singular canards as separatrices. Indeed, the
singular weak canard separates trajectories that go toward the fold line, either in
forward time or in backward time, from those that go to infinity. On the other hand,
the singular strong canard separates trajectories that cross to the other side from
those that do not; it defines one boundary of the funnel (colored area in Figure 4.6).
See panel (a) for details about the smooth folded-node case. Consequently, we define
the singular weak and strong canards in the outer zones in the same way. We remark
that the central blow-up in this case is more subtle than in the folded-saddle case, in
the following sense: it separates not only the double tangency point at the origin into
two tangency points, but also the intersection points between the singular canards
and the blown-up region. We can then identify the funnel region in the PWL setting;
see panels (b2) and (b3).

Note that in the PWL folded-node scenario, the singular strong canard is con-
nected across all three zones (which is consistent with its role as the boundary of the
funnel region), whereas the singular weak canard is not. The situation is opposite to
that of the PWL folded-saddle case.
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Fig. 4.7 Slow flow near a PWL folded saddle-node, corresponding to p2p3 = 0. The case shown
here is in fact the folded saddle-node of type I (FSNI), that is, p2 = 0: (a) with p1 > 0 and
(b) with p1 < 0. The slow flow is shown. In the folded saddle-node limit, the weak canard
disappears as a canard, that is, as a way to pass from one side to the other.

4.4.3. Limit Cases: Folded Saddle-Node Transitions. The singular phase por-
traits of the folded saddle-node of type I (FSNI), that is, for p2 = 0, are presented
in Figure 4.7: the top panels display the case p1 > 0 and the bottom panels the case
p1 < 0. We can immediately notice that these two phase portraits are compatible
with those in Figures 4.4 and 4.5 in the limit p2 = 0, respectively. Indeed, in that
limit, each tangency point on the boundary of the blown-up region converges to in-
finity. It is easy to see from (4.5) that the axis of rotation at ε = 0 converges to
the horizontal axis x = 0 in the limit p2 = 0. Then this segment does not connect
one side of the critical manifold to the other, which shows that the singular weak
canard does not exist as a canard in the FSNI. This fact is well known in the smooth
context [36]. Regarding the singular strong canard, we can construct it in a similar
fashion to the previous cases of folded saddle and folded node. Namely, performing
the central blow-up and using (4.16) allows us to define the direction corresponding
to the singular strong canard in this zone: (12

p3√
p1
, 1). This particular direction, going

through the origin, hits the two boundaries of the blown-up region at one point, from
which passes a unique trajectory solution to the system in the corresponding outer
zone; see panels (b1) and (b2) of Figure 4.7.

Note that the phase portrait of the FSNI in the smooth case cannot be completely
obtained from the canonical form; see the remark made at the end of section 3.1.1
of [45]. Indeed, one needs to incorporate higher-order terms in one slow equation of
the canonical form; for a detailed analysis of this case, see [36]. Therefore, we need to
extend accordingly the PWL canonical form in order to obtain the complete singular
phase portrait near an FSNI. Presumably, it would be convenient to also include an
absolute-value term in this slow equation. This is beyond the scope of the present
article and will be the subject of future work.
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Fig. 4.8 Slow flow near a PWL folded saddle-node, corresponding to p2p3 = 0; the case shown
here is in fact the FSNII, that is, p3 = 0. Top panels show the smooth singular phase
portraits; middle panels show the PWL singular phase portraits; bottom panels show the
PWL singular phase portraits with the opening performed. However, no information can be
obtained from that opening since z = constant. Hence, no connection is possible between
the attracting zone and the repelling zone. This is consistent with the fact that the weak
canard disappears in the folded saddle-node limit. In all panels, the blue lines correspond
to the singular strong canard. The dashed gray line corresponds to the z-nullcline, which
in this case is a line of equilibria.

In the case of folded saddle-node of type II (FSNII), that is, for p3 = 0, according
to the slow flow given by (4.14), the dynamics is given by a linear flow for the variable
x along the lines {z = constant}. Furthermore, {x = − p2

p1z} is now a line of equilibria
of the slow flow, the stability of these equilibria depending on z and p1; see Figure 4.8
panels (a1)–(a3) for the case p1 > 0, p2 < 0, panels (b1)–(b3) for the case p1 <
0, p2 > 0, and panels (c1)–(c3) for the case p1 > 0, p2 > 0. The top panels show
the singular phase portraits for the smooth system; the central and bottom panels
show the singular phase portraits for the PWL system without and with the opening,
respectively. Similar to the smooth case, we obtain that the singular weak canard
disappears as a direction of travel from one side to the other, given that all dynamics
disappear in the central zone. However, it persists as a line of equilibria, which also
corresponds to the limit for ε = 0 of the axis of rotation. The singular strong canard
persists in the same way as in the smooth case, that is, not as a trajectory that
passes from one side to the other, but as a trajectory that converges to or diverges
from a bifurcation point (the FSNII) depending on the zone; see panels (a1)–(c1) of
Figure 4.8.

Consequently, we have now shown that for all cases giving rise to persistent ca-
nards (i.e., all cases except folded focus), we can construct singular phase portraits
and define singular canards across all three zones, in a way that is entirely compatible
with the smooth case.
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Fig. 4.9 Attracting slow manifold Sa
ε (red) and repelling slow manifold Sr

ε (blue) and secondary
canards (colored orbits) near a folded node. Panel (a) shows the smooth case and panel (b)
shows the PWL case. Also shown are the strong canard γs and the weak canard γw (not
shown on panel (b) since it is not a maximal canard in the PWL, but simply the axis of
rotation).

4.5. Canards for ε > 0. We now gather information about the canard solutions
that perturb from the singular canards studied in the previous section. We will first
focus on canards near a folded node, since this is the most relevant case to use to
study MMOs. Then, we will reveal a novel aspect of canard dynamics near a folded
saddle.

4.5.1. Primary and Secondary Maximal Canards near a Folded Node. All
the orbits γk defined in Proposition 4.1 correspond to maximal canards, i.e., orbits
flowing from the attracting slow manifold to the repelling one. The value of k for
these solutions is directly related to the number of rotations that they complete in
the central zone, and this number is bounded by μ; see (4.8). A theoretical analysis
of the bifurcation of the maximal canards near a PWL folded node is ongoing and
will be the subject of a follow-up paper. Figure 4.9 is a very clear illustration of the
great degree of similarity between the dynamics near a folded node (slow manifolds,
canards) in the smooth case (panel (a)) and in the PWL case (panel (b)). However,
the PWL framework offers a surprising result, namely, the fact that the weak canard,
defined as the axis of rotation of the system in the central zone for ε > 0, is not a
maximal canard. The reason for this is simply that the axis of rotation connects to
the repelling side at a distance of O(ε) from the repelling slow manifold. This is easy
to check using the equations (4.5) of the axis of rotation and the equations (4.15) of
the intersection lines of the slow manifolds with the switching planes. In order to be
a maximal canard, the axis of rotation would need to exactly connect to the repelling
slow manifold. We do not see this unexpected result as a problem, but rather as a
question to be revisited in the smooth theory.

4.5.2. SAOs near a Folded Saddle. Our strategy to construct PWL slow-fast
systems with folded singularities, and its associated canard solutions, is very much
inspired by the work of Arima, Okazaki, and Nakano [3], that is, it relies on introducing
a central zone in between the attracting and the repelling sides of the critical manifold.
Furthermore, we impose that the linear dynamics in that central zone has purely
imaginary eigenvalues in order to ensure spiraling motion in this zone. Now, it can be
immediately seen that the structure of the central dynamics, where the phase space
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Fig. 4.10 Transient small oscillations near a folded saddle; PWL case in panel (a), smooth case in
panel (b).

is foliated by invariant cylinders and every solution spirals around a common axis of
rotation, does not depend on the values of the parameters p1, p2, and p3; however,
p1 must be positive for rotation to occur, as mentioned in section 4.1. In particular,
one can expect to find trajectories displaying small oscillations near a PWL folded
saddle, not only near a PWL folded node; see Figure 4.10(a) for an example of such
a trajectory near a PWL folded saddle. This phenomenon could at first appear to
be a shortcoming of the PWL framework, but in fact it is the exact opposite: it is a
general fact, which also exists in the smooth case and can be naturally understood
using the PWL setting. As an illustration, we show in Figure 4.10(b) an example
of a trajectory displaying SAOs near a smooth folded saddle. To the best of our
knowledge, this fact has not yet been discussed in the smooth literature and it is
being currently investigated in a separate manuscript in revision [42]. This gives a
good example of how the PWL framework not only reproduces all the richness of the
dynamics present in the smooth case, but can also provide new information about the
smooth case, or at least suggest revisiting it. Note that SAOs near folded saddles are
obviously less interesting than SAOs near folded nodes, given that one would need
a nonsmooth global return mechanism (reset, discontinuous jump, etc.) in order to
construct MMOs using such trajectories.

5. Three-Dimensional PWL Slow-Fast Systems: Global Return and Robust
MMOs. In the previous section we analyzed the local dynamics, that is, we identified
(using the singular blow-up) the folded singularities in minimal three-dimensional
PWL slow-fast systems (1.2) with the function f given by (4.1). The natural next
step is to verify that we can also map entirely the global dynamics that occurs in the
smooth case onto that from the PWL case. Indeed, our long-term goal is to construct
and analyze PWL models displaying robust canard-induced MMOs. In this paper,
we only want to demonstrate that one can easily construct a minimal PWL model
displaying MMOs near a folded node. The way to achieve this involves two steps.
First, add a fourth zone to the minimal system (1.2) and (4.1) in order to allow for

LAOs; this corresponds to considering the PWL function f̃δ defined by

(5.1) f̃δ(x) =

⎧⎪⎪⎨⎪⎪⎩
−x− δ if x ≤ −δ,
0 if |x| ≤ δ,
x− δ if δ < x < x0,

−x+ 2x0 − δ if x ≥ x0.

Then, we just need to add linear terms to the z equation in order to obtain a global
return mechanism. The rationale behind this construction is very much inspired by
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Fig. 5.1 Periodic PWL MMO Γ near a folded node. Panels (a1) and (a2) show a phase-space
representation of Γ together with the four-piece PWL critical manifold C0; panel (a2) is
a zoom of panel (a1) near the central flat zone, highlighting the SAOs. Panel (b1) shows
the time profile of Γ for the fast variable x. Panel (b2) shows a similar MMO obtained by
imposing conditions (5.3), that is, with SAOs having a constant amplitude.

the construction of the four-dimensional model presented in [10] and displaying mixed-
mode bursting oscillations (MMBOs). The resulting model is then simply formed by
equations (1.2) and (5.1), where we append to the z equation linear terms in x, y,
and z in order to create a global return; its equations are given by

εẋ = −y + f̃δ(x),
ẏ = p1x+ p2z,
ż = p3 + α1(x− κ) + α2(y − ζ) + α3(z − ξ).

(5.2)

An example of a periodic MMO obtained with the extended model (5.2) and (5.1)
is shown in Figure 5.1. System (5.2) and (5.1) can be seen as a PWL phenomenological
neuron model displaying canard-induced MMOs, similar to three-dimensional versions
of the FHN model studied, e.g., in [57]. Note that the MMOs in this model have SAOs
with increasing amplitude as the trajectory travels through the central zone. This is
simply due to the fact that the eigenvalues in the central zone have nonzero real part
because of the new terms in the z equation and the fact that we have chosen the
values of the αi’s without particular constraints. However, by imposing constraints
on the αi’s and the pi’s, we can obtain an MMO with small oscillations of constant
amplitude, namely,

α1 = α3 = 0,
p2α2 < 0.

(5.3)

It is well known that, in the smooth case, the small oscillations of MMOs near
a folded node do not typically have constant amplitude. Rather, the amplitude first
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decreases and then increases past the folded node. This behavior can also be captured
in a PWL model by splitting the central part of the critical manifold into two zones
and putting a dynamics with complex eigenvalues with negative real part in the first
zone and positive real part in the second (the return does not affect this issue). It
is important to notice that the qualitative behavior and an important part of the
quantitative behavior near PWL folded singularities are obtained with the minimal
system that we have considered. Adding more zones in the central part would only
be useful in order to refine the shape of the SAOs and possibly to fit data. In other
words, we can update the minimal model in order to capture more information from
the smooth case, such as the shape of the SAOs near a folded node.

A natural extension of the present work will be to study the model with return,
(5.2) and (5.1), analytically, in particular, by looking at the structure of periodic
MMOs in this model using return maps. Among other things, we hope to prove that
the possible MMO patterns in a PWL folded node follow a similar Farey arithmetic
as in the smooth case.

6. Conclusion. In this paper, we have presented new advances in the study of
three-dimensional PWL systems with multiple timescales displaying canard solutions.
This is a recent research topic, and we manage to obtain a complete comparison with
the smooth case at the level of the local dynamics near folded singularities. The neces-
sity of using a central zone was introduced in Arima, Okazaki, and Nakano [3] as a way
to obtain the correct eigenvalue transition near the fold. We now interpret it in a sin-
gular perturbation fashion as a blow-up. This blow-up, whose optimal size can be de-
termined in the PWL framework, proves to be the key to understanding the connection
between the attracting slow manifold and the repelling one, that is, the possibility for
canards to exist. Note that with other unfoldings of the singular limit ε = 0 one can-
not reproduce the local dynamics near folded singularities; see, for instance, [46, 47],
where canard solutions can be found but the link with folded singularities is lost.
Another important result presented in this paper is the necessity for a central zone
maintained open in the singular limit. Indeed, the blow-up of the corner vanishes
when ε = 0, but we need to maintain the central zone artificially open in order to un-
derstand the possibilities of passage from one side of the critical manifold to the other,
that is, to reveal the PWL folded singularities. In this way, we also define the singular
weak and strong canards as directions, which echoes their main role in the smooth
case, namely, being the eigendirections of the folded singularity. Finally, we construct
a simple model displaying periodic canard-induced MMOs near a PWL folded node,
by using the analysis done on the local dynamics and adding a linear global return.
This opens the way to studying MMOs in the context of PWL slow-fast systems.

Using the PWL framework, we reproduce all the dynamics from the smooth case,
both qualitatively and quantitatively. In particular, we obtain compatible singular
phase portraits and control the maximum winding number, that is, the number of sec-
ondary canards. What is more, we also suggest elements that naturally appear in the
PWL setting and which could allow one to revisit the smooth case. In particular, we
mention the role of the axis of rotation, that is, the weak canard, which is not a max-
imal canard in the PWL framework, and the possibility of SAOs near a folded saddle.

Based on this work, two main perspectives on using a PWL setting for slow-
fast systems can be emphasized. First, we aim to obtain a theoretical perspective
on revisiting singular perturbation theory with canard dynamics using PWL flows
and obtaining a simplified version of it. Indeed, as we show in the context of three-
dimensional canard problems, all the important dynamics is preserved, and several
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key objects exist in a clearer manner. In particular, there is a natural way to define
uniquely a slow manifold and maximal canards. Furthermore, the PWL framework
allows by construction the separation of the SAOs that are purely linear, that is,
those that stay in the central zone, from the last SAO that has a nonlinear behavior
as it explodes when passing into the right zone and following a (maximal) secondary
canard. There is a high degree of similarity with the smooth case where most of the
SAOs can be understood through a linearization of the dynamics along the axis of
rotation (weak canard) and a reduction to the Weber equation, whereas the last SAO
undergoes a canard explosion and therefore behaves in a very nonlinear way. So, to
paraphrase M. Diener in [12], the natural biotope of canards is that of PWL vector
field; at least, it is the simplest environment in which one can understand them, and
in which the essence of canard dynamics is preserved and everything else is dropped.

The second perspective that this work suggests is on neuronal modeling. PWL
models of spiking neurons have long been developed and successfully analyzed [40, 13].
In parallel, neuron models featuring more elaborate behavior, in particular, alternance
of subthreshold oscillations and spikes, have also been developed and, more recently,
slow-fast ODEs have been increasingly used to construct such models, the role of
folded nodes and canards being pointed out and viewed as central. PWL neuron
models with canards have gained recent interest [52, 49, 8, 19], but the links to more
elaborate models with canards and folded singularities have been missing. With
this work, we bridge this small yet important gap by constructing the correct local
dynamics that allows us to design a folded node in a three-dimensional PWL system.

Another important class of neuronal behavior that is well captured by smooth
slow-fast models is bursting. A number of smooth models have shown the importance
of canards in bursters, in particular, related to spike-adding phenomena. It is then
a natural next step to try to reproduce and revisit these models as well using PWL
systems; there has been already some work in that direction [13], but nothing related
to canards. The current work gives a good basis from which to tackle this problem.

Our short-term objective is to take the PWL approach for neuron models at the
level of smooth ODEs which, hopefully, will produce simplified yet accurate models,
numerically more tractable and also more amenable to analysis and control. In other
words, in the near future we aim to build up biophysical PWL models of neurons,
in particular, to obtain complete PWL versions of conductance-based neuron models,
e.g., the HH model. Previous works exist in this direction [11, 14], mostly relying on
planar two-piece local systems with a global return mechanism. However, a three-
dimensional reduction of the HH model (among many other examples) is known to
produce MMO dynamics [51] due to the presence of an S-shaped critical manifold and
a folded node. Therefore, we plan to construct a three-piece local system to approxi-
mate the voltage nullcline of this three-dimensional reduction of the HH model. More-
over, the differential equations for the gating variables can be made PWL by replacing
sigmoidal activation functions by PWL ones (an example is given in [14]). Thus, we
can in this way obtain a PWL conductance-based PWL MMO model, which will open
the way toward biophysically accurate and mathematically easier neuron models.

Appendix A. In this appendix we give an sketch of the proof of Proposition
4.1. This result deals with maximal canards, which are orbits connecting the slow
manifolds SA

ε and SR
ε , in particular, those that, after starting at LA

ε = SA
ε ∩{x = −δ},

flow through the central zone to LR
ε = SR

ε ∩ {x = δ} (see (4.15)). Therefore, we
first present geometrical arguments revealing the parameter regions for which we can
expect the existence of such orbits.

D
ow

nl
oa

de
d 

04
/1

9/
17

 to
 1

50
.2

14
.1

82
.2

08
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

 
 
 

 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CANARDS, FOLDED NODES, AND MMOs IN PWL SYSTEMS 683

Fig. A.1 Relative position of the straight lines LA
ε (in red) and LR

ε (in blue) represented over a
common zy-plane. The shaded half-plane indicates the boundary conditions for which
orbits cross the central zone. Different panels correspond to different values of the sign
of p1 and p2. The panels in the top row correspond to the folded-saddle case (p2 > 0):
(a1) when p1 > 0 and (a2) when p1 < 0. In both cases one observes the possibility of the
existence of orbits crossing through the central zone from LA

ε to LR
ε . The panels in the

bottom row correspond to the folded-node case (p2 < 0). In panel (b1), when p1 > 0, we
observe that the existence of canard orbits is possible; however, when p1 < 0, in panel (b2)
we observe that the existence of canard orbits is impossible.

From (4.15), the intersection points of the straight lines LA
ε and LR

ε with the
y-axis and the z-axis, that is, (0, y∗), (z∗A, 0) and (0, y∗), (z∗R, 0), respectively, satisfy

y∗ = −δp1ε−
(
p2p3 + δp1

2
)
ε2 +O(ε3),

z∗A =
δp1
p2

+ p3ε+ p1p3ε
2 +O(ε3),(A.1)

z∗R = −δp1
p2

− p3ε− p1p3ε
2 +O(ε3).

If we set δ = π
√
ε, then the sign of y∗, for ε small enough, depends only on the sign

of p1, whereas the signs of z
∗
A and z∗R depend on the signs of p1 and p2. Although the

line LA
ε is contained in the switching plane {x = −δ} and LR

ε in {x = δ}, in Figure
A.1 we represent the different positions of LA

ε and LR
ε in a common (z, y)-plane. The

rows of Figure A.1 correspond to the cases p2 > 0 and p2 < 0, and the columns to
the cases p1 > 0 and p1 < 0.

When p2 > 0 and p1 > 0 we obtain that y∗ < 0, z∗A > 0, z∗R < 0, and the
straight lines LA

ε and LR
ε are located as depicted in Figure A.1(a1). Orbits with

initial conditions on the segment of LA
ε contained in the half-plane {x = −δ, y < 0}

(shadowed regions in Figure A.1(a1)) flow through the central zone by increasing
the coordinate z (since p3 > 0) until they reach the half-plane {x = δ, y < 0}. We
conclude that, in this case, orbits connecting LA

ε and LR
ε may exist, that is, in this
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case we can expect the existence of maximal canards (primary and/or secondary). In
a similar way we conclude the possible existence of maximal canard orbits in any of
the other cases, except when p1 < 0 and p2 < 0; see Figure A.1(b2). In this case,
orbits connecting the segments of LA

ε and LR
ε in the shadowed region by increasing

the z-coordinate cannot exist.
Once we have explored the parameter regions for which we can expect maximal

canards, we deal with the explicit computation of such orbits. That is, we focus
on solutions ϕ(t;p) of system (1.2) and (4.1) flowing through points p ∈ LA

ε and
satisfying the following conditions:

(i) there exists a flight time t(p) > 0 such that ϕ(t(p);p) ∈ LR
ε ; and

(ii) for every t ∈ (0, t(p)) we have that |ϕ(t;p)eT1 | < δ (where eT1 is the transpose
of the first vector in the canonical basis of R3).

Since system (1.2) and (4.1) is reversible with respect to the involution

(x, y, z, t) → (R(x, y, z),−t),

where R(x, y, z) = (−x, y,−z), it follows that Rϕ(t;p) = ϕ(−t;Rp). Therefore, if γp
is a maximal canard with flight time t(p) between LA

ε and LR
ε and q = ϕ(t(p);p),

then γRq is also a maximal canard with the same flight time. Under the assumption
of uniqueness of maximal canards having equal flight time, it follows that Rq = p,
which proves the statement (a) of Proposition 4.1.

As we have just proved, a maximal canard with initial condition (−δ, y, z) ∈ LA
ε

must also flow through the point (δ, y,−z) ∈ LR
ε . We conclude the following extra

restrictions for the initial condition (−δ, y, z); see Figure A.1:

Sign of Parameters Restriction on z
p2 > 0 and p1 > 0 0 > z
p2 > 0 and p1 < 0 0 > z∗A > z

p2 < 0 and p1 > 0 0 > z ≥ z∗A

(A.2)

We note that in the three cases the z-coordinate is negative.
Consider p1 > 0. The solution ϕ(t,p) of system (1.2) and (4.1) through a point

p = (−δ, y, z) has coordinates equal to

x(t) =
p2z − p1δ

p1
cos (

√
εp1t) +

εp2p3 − p1y

p1
√
εp1

sin (
√
εp1t)− p2z + εp2p3t

p1
,

y(t) =

√
εp1(p2z − p1δ)

p1
sin (

√
εp1t)− εp2p3 − p1y0

p1
cos (

√
εp1t) +

εp2p3
p1

,(A.3)

z(t) = εp3t+ z.

Taking into account ϕ(t(p);p) = (δ, y,−z), and isolating t(p) from the third equation
in (A.3), it follows that

(A.4) t(p) = − 2z

εp3
,

and hence the other two equations can be rewritten as

0 =
p2z − p1δ

p1

(
cos

(
−2

√
p1

p3
√
ε
z

)
+ 1

)
+

εp2p3 − p1y

p1
√
εp1

sin

(
−2

√
p1

p3
√
ε
z

)
,

(A.5)

0 =

√
εp1(p2z − p1δ)

p1
sin

(
−2

√
p1

p3
√
ε
z

)
− εp2p3 − p1y

p1

(
cos

(
−2

√
p1

p3
√
ε
z

)
− 1

)
.
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As we are interested in solutions (z, y) of the previous system belonging to the
straight line LA

ε , from (4.15) we express y as a function of z and εp2p3 − p1y =
ελ−1

A

(
p1p2z − δp21 − p2p3

)
, where λA is the fast eigenvalue of the system in the half-

space x < −δ; see (4.2). Since H(−δ, y, z) (from (4.4)) only vanishes at the weak
canard (which does not belong to LA

ε ), we can conclude that

ε2λA
−2
(
p1p2z − δp21 − p2p3

)2
+ εp1(p2z − δp1)

2 �= 0.

Consequently, the trigonometric functions in the system above can be isolated as

cos

(
−2

√
p1

p3
√
ε
z

)
=

ε(p1p2z − δp21 − p2p3)
2 − λ2

Ap1(p2z − δp1)
2

ε(p1p2z − δp21 − p2p3)2 + λ2
Ap1(p2z − δp1)2

,

(A.6)

sin

(
−2

√
p1

p3
√
ε
z

)
= − 2λA

√
εp1(p1p2z − δp21 − p2p3)(p2z − δp1)

ε(p1p2z − δp21 − p2p3)2 + λ2
Ap1(p2z − δp1)2

.

Solutions of system (A.6) are also solutions of

(A.7) tan

(
−2

√
p1

p3
√
ε
z

)
= 2|λA|√εp1

(p1p2z − δp21 − p2p3)(p2z − δp1)

ε(p1p2z − δp21 − p2p3)2 − λ2
Ap1(p2z − δp1)2

.

On the contrary, there are solutions of (A.7) which are not solutions of system (A.6).
By noting that only half of the solutions of (A.7) become solutions of system (A.6),
we focus on the number of solutions of (A.7), which gives access to the number of
canard solutions.

Let us consider the rational function

Q(z) =
(p1p2z − δp21 − p2p3)(p2z − δp1)

ε(p1p2z − δp21 − p2p3)2 − λ2
Ap1(p2z − δp1)2

,

which is the quotient of two polynomials of degree two, with opposite concavities both
depending on the sign of p1. The zeros of Q(z) are

z1 = δ
p1
p2

, z2 = δ
p1
p2

+
p3
p1

,(A.8)

the poles are

z̃1 = δ
p1
p2

+
p3√
p1

√
ε+O(ε), z̃2 = δ

p1
p2

− p3√
p1

√
ε+O(ε),(A.9)

and the asymptotic behavior of Q(z) when z tends to ±∞ is (εp1 − λ2
A)

−1 ≈ −1.
The qualitative behavior of the graph of Q(z) together with the numerator and the
denominator of Q(z) is depicted in Figure A.2, depending on the sign of p2.

Furthermore, the zeros and the vertical asymptotes of the π-periodic function

tan (−2
√
p1

p3
√
ε
z) are

(A.10) rk = −k
p3
√
ε√

p1

π

2
and r̃k = −2k + 1

2

p3
√
ε√

p1

π

2
, k = 0, 1, 2, . . . ,

respectively.
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(a)

z

z̃2

z1

z2

z̃1

(b)

z
z1

z2

z̃2 z̃1

Fig. A.2 Graph of the numerator (blue), the denominator (red), and the rational function Q(z)
(black): (a) for p2 < 0; (b) for p2 > 0.

Consider p2 < 0. For ε small enough it follows that z∗A < z̃1; see (A.1) and (A.9).
Since z∗A is a lower bound for the z-coordinate of the initial condition of maximal
canards (see Table (A.2)), we restrict ourselves to the zeros of (A.7) in (z̃1, 0). The
function 2|λA|√εp1Q(z) is positive in (z̃1, 0); see Figure A.2(b). Therefore, in this
interval, the zeros of (A.7) are each contained in each of the intervals (r̃k, rk) with
k = 0, 1, . . . , N, where N is such that z̃1 ∈ (r̃N , r̃N−1). Recall that only half of these
zeros correspond to initial conditions of maximal canards, in particular, those with
k odd. Note that the right-hand side of the first equation in (A.6) is negative in
(z̃1, 0). We conclude that there exist [N/2] + 1 zeros of (A.7). By using the fact that
z̃1 ∈ (r̃N , r̃N−1), together with formulas from (A.9) and (A.10), we can show that, for
ε small enough,

−4 + π

4π
<

N

2
− p1

√
p1

|p2|p3 =
N

2
− μ <

π − 4

4π
.

Then, for every k = 0, 1, . . . , [μ] there exists an orbit γk through the initial condition
pk = (−δ, yk, zk) with zk ∈ (r̃2k+1, r2k+1). The approximations appearing in state-
ment (b) of Proposition 4.1 are obtained using zk ≈ r2k+1 and pk ∈ LA

ε . In order to
prove that γk is a maximal canard, we need to show that the piece of γk flowing from
pk to R(pk) is fully contained in the central zone {|x| ≤ δ}. We conclude by noting
that γk is contained in a cylinder whose projection onto the xz-plane has amplitude
equal to

(A.11) Δ = δ

(
1 +

p2p3
p1
√
p1

(
k +

1

2

))
,

where Δ < δ; see Figure A.3(a). Finally, the number of rotations of the maximal
canard γk around the weak canard γw is

2kπ < −2
√
p1

p3
√
ε
zk < 2kπ +

π

2
.

In particular, γ0 is the unique maximal canard which runs less than a turn around γw.
Then γ0 is the strong canard. This concludes the proof of statement (b) of Proposition
4.1.
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Fig. A.3 (a) A secondary maximal canard γk in the folded-node configuration (p1 > 0, p2 < 0,
p3 > 0) flowing from the initial condition pk in the switching plane {x = −δ} to the
reversible point R(pk) in the switching plane {x = δ}. The gray region is the invariant
cylinder given by (4.4) with the axis being the weak canard γw and amplitude Δ given by
(A.11). (b) Orbit through pk = (−δ, y,zk) with zk a solution of (A.7) and k ≥ 1. In
the particular case depicted, k = 3. Notice that γk leaves the central zone before reaching
R(pk), and the dashed curve is not part of the orbit. The gray region corresponds with
the invariant cylinder whose axis is the faux canard γf .

If p2 > 0, the graph of 2|λA|√εp1Q(z) is qualitatively represented in Figure A.2(a).

Therefore, this function intersects with the graph of tan (−2
√
p1

p3
√
ε
z) at infinitely many

values zk ∈ (rk+1, r̃k), in particular, those with k even. The expression of zk given in
the proposition is obtained by taking zk ≈ r2k+1. In order to prove that the orbit γk
through the initial condition pk = (−δ, yk, zk) corresponds with a maximal canard,
we proceed as in the folded-node case, that is, by analyzing whether γk also flows
through the point R(pk).

From expression (A.11), the amplitude Δ of the invariant cylinder containing γk
satisfies Δ > δ. Since γk, with k ≥ 1, rotates k times around the faux canard γf ,
we conclude that γk leaves the central zone before approaching R(pk); see Figure
A.3(b). Therefore, only γ0 becomes a maximal canard, namely, the strong canard.
This proves statement (c) of Proposition 4.1.

Consider now p1 < 0 and suppose that p2 > 0 (as we have seen above, if p2 <
0, there are no maximal canards; see panel (b2) of Figure A.1). The solution of
system (1.2) and (4.1) through a point (x, y, z) has coordinates equal to

x(t) =
e
√

ε|p1| t
(√

ε |p1| p2 z + |p1| y −√
ε |p1|

3
2 x+ ε p2 p3

)
2
√
ε |p1||p1|

+
e−

√
ε|p1| t

(
−√ε |p1| p2 z + |p1| y +√

ε |p1|
3
2 x+ ε p2 p3

)
2
√
ε |p1||p1|

+
p2 z + ε p2 p3 t

|p1| ,

y(t) = −
e
√

ε|p1| t
(√

ε |p1| p2 z + |p1| y −√
ε |p1|

3
2 x+ ε p2 p3

)
2 |p1|

+
e−

√
ε|p1| t

(
−√ε |p1| p2 z + |p1| y +√

ε |p1|
3
2 x0 + ε p2 p3

)
2 |p1| − ε p2 p3

|p1| ,

z(t) = εp3t+ z.
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z2
m2 z1

m1 z

Fig. A.4 Graph of the numerator (blue), the denominator (red), and the rational function Q(z)−1

(black) if p1 < 0 and p2 > 0. The values of the function at the extrema m2 and m1 are

±2
√|p1|ε|λA

ε |, respectively.

Proceeding as in the previous case, solutions flowing from (−δ, y, z) to (δ, y,−z) satisfy

sinh

(
−2
√|p1|
p3
√
ε
z

)
= − (εp2p3 + |p1|y)2 − εp1(p2z + |p1|δ)2

(εp2p3 + |p1|y)2 + εp1(p2z + |p1|δ)2 ,

(A.12)

cosh

(
−2
√|p1|
p3
√
ε
z

)
= − 2

√
ε|p1|(εp2p3 + |p1|y)(p2z + |p1|δ)

(εp2p3 + |p1|y)2 + εp1(p2z + |p1|δ)2 .

Taking into account that |p1| = −p1 and (−δ, y, z) ∈ LA
ε , that is, εp2p3 − p1y =

ελ−1
A

(
p1p2z − δp21 − p2p3

)
, solutions of system (A.12) are also solutions of

tanh

(
−2
√|p1|
p3
√
ε
z

)
=

1

2
√
ε|p1||λA|

1

Q(z)
.(A.13)

Notice that the numerator of the rational function Q(z)−1 is always positive and
therefore has no zeros. The poles of Q(z)−1 coincide with the zeros of Q(z) given in
(A.8). Direct derivation of the function Q(z)−1 gives a rational function where the
numerator is a quadratic polynomial and the denominator does not vanish. Then we
find that this function has its extreme values at

m1 = δ
p1
p2

+
p3√|p1|

√
ε, m2 = δ

p1
p2

− p3√|p1|
√
ε,

the former being a local maximum and the latter being a local minimum. Moreover,
Q(m2)

−1 = 2
√
ε|p1||λA| and Q(m1)

−1 = −2
√
ε|p1||λA|. The qualitative behavior

of the graph of Q(z)−1 is represented in Figure A.4. Since 0 < tanh (−2
√

|p1|
p3

√
ε
z) < 1

in (−∞, 0), we conclude that this function does not intersect with Q(z)−1 in this
interval, which proves the statement (d) of Proposition 4.1.

Appendix B. In this appendix we sketch the proof of Proposition 4.3.
As we have proved in the previous appendix, maximal canards through points

p = (−δ, y, z) contained in the switching manifold {x = −δ} are characterized by the
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solutions of (A.5) together with p ∈ LA
ε . A trivial solution of (A.5) is obtained by

setting

(B.1) cos

(−2z
√
p1√

εp3

)
= −1, sin

(−2z
√
p1√

εp3

)
= 0,

which implies

y = yk = ε
p2p3
p1

, z = zk = −(2k + 1)
π

2

p3
p1

√
εp1, k ∈ Z.

Using the conditions (B.1) and the fact that the z-coordinate in the switching plane
{x = −δ} has to be negative, we conclude that δ = δk for k ∈ N, where

δk = −p2p3
p21

(
(2k + 1)

π

2

√
εp1 + 1

)
.

Substituting the values of y = yk, z = zk, and δ = δk in (A.3) we obtain the explicit
time parametrization of the strong canard for k = 0 and of the kth secondary canard
for k ≥ 1,

xsc(t) =
p2p3
p21

cos(
√
εp1t)−√

εp1
p2p3
p21

(√
εp1t−

(
k +

1

2

)
π

)
,

ysc(t) = −√
εp1

p2p3
p21

(
sin(

√
εp1t)−√

εp1
)
,

zsc(t) =
√
εp3

(√
εt−

(
k +

1

2
√
p1

)
π

)
for 0 ≤ t ≤ t(p) = (2k + 1)π 1√

εp1
; see (A.4). This ends the proof of Proposition 4.3.
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[30] P. Kokotović, H. K. Khalil, and J. O’Reilly, Singular Perturbation Methods in Control:
Analysis and Design, Classics Appl. Math. 25, SIAM, Philadelphia, 1999. (Cited on p. 658)

[31] M. Komuro and T. Saito, “Lost solution” in a piecewise linear system, IEICE Trans., Vol.
E, 74 (1991), pp. 3625–3627. (Cited on pp. 655, 656, 657, 659, 660)

[32] M. T. M. Koper, Bifurcations of mixed-mode oscillations in a three-variable autonomous van
der Pol-Duffing model with a cross-shaped phase diagram, Phys. D, 80 (1995), pp. 72–94.
(Cited on p. 655)

[33] K. U. Kristiansen and S. J. Hogan, On the use of blowup to study regularizations of sin-
gularities of piecewise smooth dynamical systems in R3, SIAM J. Appl. Dyn. Syst., 14
(2015), pp. 382–422, doi:10.1137/140980995. (Cited on p. 656)D

ow
nl

oa
de

d 
04

/1
9/

17
 to

 1
50

.2
14

.1
82

.2
08

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

 
 
 

 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CANARDS, FOLDED NODES, AND MMOs IN PWL SYSTEMS 691

[34] M. Krupa, N. Popovic, N. Kopell, and H. G. Rotstein, Mixed-mode oscillations in a three
time-scale model for the dopaminergic neuron, Chaos, 18 (2008), 15106. (Cited on pp. 655,
656, 659)

[35] M. Krupa and P. Szmolyan, Relaxations oscillations and canard explosion, J. Differential
Equations, 174 (2001), pp. 312–368. (Cited on pp. 655, 657, 662, 666)

[36] M. Krupa and M. Wechselberger, Local analysis near a folded saddle-node singularity, J.
Differential Equations, 248 (2010), pp. 2841–2888. (Cited on p. 676)

[37] R. Larter and C. G. Steinmetz, Chaos via mixed-mode oscillations, Philos. Trans. R. Soc.
Lond. Ser. A Math. Phys. Eng. Sci., 337 (1991), pp. 291–298. (Cited on p. 655)
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