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Finite Virtual State Machines

Raouf SENHADJI-NAVARRO†a), Nonmember and Ignacio GARCIA-VARGAS†b), Member

SUMMARY This letter proposes a new model of state machine called
Finite Virtual State Machine (FVSM). A memory-based architecture and
a procedure for generating FVSM implementations from Finite State Ma-
chines (FSMs) are presented. FVSM implementations provide advantages
in speed over conventional RAM-based FSM implementations. The results
of experiments prove the feasibility of this approach.
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1. Introduction

The inclusion of embedded memory blocks in FPGA de-
vices has motivated a revival of interest in memory-based
implementations. Manufacturers, like Xilinx or Altera, are
beginning to provide tools to map logic into embedded
memory blocks. Recently, many research works are focused
on RAM-based implementations of Finite State Machines
(FSMs) [1]–[7]. Different approaches have been proposed to
improve the performance of these implementations (such as
speed, area or power consumption) over conventional cell-
based implementations [1]–[4]. In addition, as the function-
ality of a RAM-based FSM is defined by the data stored in
the memory, these implementations offer a simple way to
dynamically modify the functionality (adding or updating
transitions and outputs by means of write operations). This
run-time reconfiguration offers some advantages like being
independent on the placement and routing and being appli-
cable even on FPGAs without dynamic partial reconfigura-
tion capabilities [6], [7].

Nowadays, there is a great interest in developing
hardware implementations of problems traditionally solved
by software in order to achieve the demanded high-
performance. Two prominent examples of such problems
are pattern matching and packet routing in networks [8], [9].
The transformation of these problems into equivalent state
machines results in FSMs with a very large number of states
(from a few thousand to millions). These large FSMs require
novel approaches to obtain efficient implementations.

In this application context, the authors propose a new
model of state machine called Finite Virtual State Machine
(FVSM) to improve the performance of RAM-based FSM
implementations. This model is inspired by the memory hi-
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erarchy of computer science. To the best knowledge of the
authors, multiple memory levels and locality of memory ref-
erences concepts have never been used in RAM-based FSM
designs. The proposed model uses a memory hierarchy of
two levels and exploits the locality of the FSM state refer-
ences. However, unlike the cache accesses done by a pro-
cessor, in which the data may be unavailable, an FSM must
ensure the correct value of the output in any clock cycle.
By using the cache analogy, the proposed approach can be
viewed as a cache prefetching scheme where no cache miss
is allowed.

The proposed architecture has two memory levels:
main and secondary memory. The main memory imple-
ments a RAM-based FSM. Taking into account that only
a subset of the states are reachable in a given period of time,
the FSM is decomposed into different subFSMs, each of
which is composed by the needed states for the FSM op-
eration during a different period of time. At each moment,
the subFSM stored in main memory is the active one. On
the other hand, secondary memory stores information about
all subFSMs.

The FVSM is designed in such a way that any particu-
lar subFSM needed by the evolution of the FSM is dynam-
ically transferred from secondary to main memory before
any of its states are reached. Unlike other approaches [7],
[9], this transfer is not controlled by an external circuit, but
by the active subFSM and it is done without interrupting
the proper FSM operation. The aim of the proposed ap-
proach is to increase the operation speed by exploiting the
fact that the RAM-based implementation of the subFSM on
main memory has a better performance than the more com-
plex full FSM. On the other hand, the model offers some
advantages when it is used on reconfigurable applications.
Any subFSM (even the active one) can be reconfigured in
secondary memory by a host while the active subFSM con-
tinues in operation in main memory. So, the reconfiguration
process can be done without interrupting the FSM operation.

2. Definition and Implementation of an FVSM

An FSM is a 6-tuple (X,Y, S , g, h, s0) where X, Y, and S
are a finite set of inputs, outputs, and states, respectively;
g : S ×X → S is the transition function, h : S ×X → Y is the
output function, and s0 ∈ S is the initial state. Let us define
an FVSM as a 9-tuple (X,Y, F, I, t, o, u, i0, f0) where X, Y , F
and I are a finite set of inputs, outputs, state frames (here-
inafter called frames), and machine instances (hereinafter
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called instances), respectively. The states of the FVSM
(called virtual states) are given by the pairs (i, f ) ∈ I × F.
The functions t : I × F × X → F, o : I × F × X → Y ,
and u : I × F → I are the transition, output and update
functions, respectively. The initial virtual state is (i0, f0)
where i0 and f0 are the initial instance and frame, respec-
tively. Given the present virtual state (i, f ), the next frame
and instance are determined by the transition function and
the update function, respectively; so, the next virtual state is
(u(i, f ), t(i, f , x)) where x ∈ X. An instance change occurs
when the next instance is different to the present one. The
virtual state (i, f ) is called an update state of i′ if u(i, f ) = i′
and i′ � i. Our goal is to model a given FSM as an FVSM.
Let us say that an FSM and an FVSM are equivalent if it
exists a partial function v : I × F → S such that v(i0, f0)= s0

and ∀ s ∈ S , ∀ x ∈ X, ∃ (i, f ) ∈ I × F which satisfies the
following condition: v(i, f ) = s, v(u(i, f ), t(i, f , x)) = g(s, x),
and o(i, f , x) = h(s, x). Each instance determines a differ-
ent subset of FSM states which are stored on the frames
of main memory. These (usually non-disjoint) subsets de-
fine for each instance a different subFSM where the frames
play the role of the FSM states. Figure 1 (a) and Fig. 1 (b)
show an example of FSM and an equivalent FVSM. The
subFSM defined by each instance is represented as a State
Transition Graph (STG) where circles represent frames. In
the STG of the instance i, the circle representing the frame
f is labeled “ f i : s” if v(i, f ) = s. The update states are
denoted by double-line circles; and transitions involving in-
stance changes, by slashed arcs.

Figure 2 shows the general architecture of an FVSM.
It is composed of two memories (main and secondary mem-
ory) controlled by the same clock signal. Main memory is a
simple dual-port memory with asymmetric port widths con-
figured in read-after-write mode [6]. The write port allows
the modification of the active subFSM while the FSM is op-
erating by using the read port. The transitions of the active
subFSM, composed by the next frame encoding bits and the
outputs, are stored in main memory. An instance change
consists in transferring from secondary to main memory the
data needed to transform the present instance (i.e., the ac-
tive subFSM) into the next instance. These data, called an
instance update, are the transitions of the virtual states in
which both instances differ. The address where an instance
update must be stored in main memory is called update ad-
dress. As the read port operates at transition-level, the write
port width must be multiple of the read port width in or-
der to transfer the instance update in a single write opera-
tion. The ratio between the width of write and read data port
(called aspect ratio) is equal to the number of transitions of
the largest instance update. FPGA resources are very suit-
able for implementing these asymmetric memories due to
the high aspect ratio of distributed RAMs (unlimited) and
block RAMs (up to 64 in each Xilinx memory blocks).

Each secondary memory word is composed by an in-
stance update and its corresponding update address. It is
addressed by the instance update selection signal. The op-
erations to load an instance requite two clock cycles. In the

(a) (b)

(c)

(d)

(e) (f)

Fig. 1 (a) An FSM example, (b) an equivalent FVSM, (c) execution
trace, (d) information related to each virtual state, (e) secondary memory
content, and (f) main memory organization in read and write operations.

Fig. 2 General architecture of an FVSM.

first one, the instance update and its update address are read
from secondary memory by setting the instance update se-
lection signal. In the second one, the instance update is
written on main memory at the update address by setting
the update enable signal. The read and write operations are
pipelined by using the registers allowing a throughput of one
update per cycle. This update process is controlled by the
active subFSM and it is carried out simultaneously with the
FSM operation. So, the transitions of the FVSM must be ex-
tended with the instance update selection and update enable
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signals.
Figure 1 (c) shows an execution trace of the FVSM ex-

ample. Given any sequence of inputs (in), the sequence of
outputs (out) generated by both the FSM and its equivalent
FVSM are the same. In each clock cycle (clk), the trace
shows the FSM present state (ps), the FVSM present frame
(pf ), the FVSM present instance (pi), the data contained
by the frames in main memory (these data are detailed in
Fig. 1 (d), and the control signals. The instances changes oc-
cur in cycles 3 and 8 (these changes are shown in bold type).
For example, in cycle 8, the present instance changes from
i1 to i0. This update process starts in cycle 6 by setting ius
signal to zero in order to read the instance update of i0 from
secondary memory (Fig. 1 (e) shows the secondary memory
content). In cycle 7, the ue signal enables the write operation
of the instance update of i0 on main memory. In cycle 8, the
write operation is done. As Fig. 1 (f) shows, each write op-
eration modifies two frames (i.e., four transitions). As main
memory operates in read-after-write mode, the output takes
the value 0 just in cycle 8, which corresponds to the new
virtual state (s5) stored in f1 (the present frame in this cy-
cle) by the update process. The described two-cycles update
process is the same in any instance change of any FVSM.

In an FPGA, the speed of a distributed RAM decreases
with depth because it is composed by smaller RAM com-
ponents connected via multiplexors and decoders, whose
complexity grows with depth. This speed degradation can
also be important when using little memory blocks or mem-
ory blocks in power-aware design [10]. The critical path of
the FVSM architecture is imposed by the memory with the
higher depth in read operation (the depth of the main mem-
ory in write operation is always less than in read operation,
so it has no influence on the critical path). The main memory
depth in read operations increase with the number of inputs
and the number of frames. The number of frames depends
on the number of virtual states of the largest instance and
the required aspect ratio. This ratio grows with the number
of inputs and the number of virtual states of the largest in-
stance update. On the other hand, the secondary memory
depth grows with the number of instance updates. An opti-
mization algorithm, called virtualization algorithm, is used
to find the FVSM implementation with the highest speed.
This algorithm minimizes the maximum depth of both mem-
ories (hereinafter called FVSM depth) taking into account
the above mentioned parameters.

3. Virtualization Algorithm

The optimization problem of finding the best FVSM imple-
mentation is solved by a branch-and-bound algorithm whose
candidate solutions are FVSMs. The algorithm dynamically
constructs the tree of candidate solutions, each of which is
defined by a subset of FSM states which will be the update
states of the FVSM. The fact that the secondary memory
only has one read port imposes restrictions over the imple-
mentability of the FVSM. Not all candidate solutions can
be implemented in the proposed architecture. For example,

in the FSM of Fig. 1 (a), the states s2 and s5 can not simul-
taneously be update states of an FVSM implementable in
the proposed architecture because it requires to read two
different instances updates from the secondary memory in
the same clock cycle (transition from s0 to s1). So, only
candidate solutions that are implementable are feasible so-
lutions. The initial candidate solution (the root of the tree) is
an FVSM where all FSM states are update states. Each child
node of a candidate solution is created by selecting a differ-
ent state to be deleted from the set of update states. So, the
main memory depth of a node is less than or equal to that
of their child nodes. This depth is used as a lower bound
of the FVSM depth of any descendant node. Therefore, the
subtree of a candidate solution can be discarded if its main
memory depth is greater than or equal to that the best known
solution.

Each update state determines a different instance which
must be loaded at any output transition of this state. An
instance is composed by all the virtual states that can be
reached from its update state to any different update state.
As the next instance must be loaded after its update state
is reached, this state must also be included in the present
instance. For example, in Fig. 1 (b), the FVSM is created
from an arbitrary candidate solution with s1 and s2 as update
states (see f i1

3 : s1 and f i0
2 : s2 in Fig. 1 (b)). When i0 is the

present instance, i1 is loaded after s2 is reached; so, i0 must
be composed by the virtual states s0, s1, s5, and s2.

4. Experimental Results

Table 1 compares the speed of implementations of RAM-
based FSM and FVSM architectures. The FSM architec-
ture is parametrized by the number of state encoding bits
(seb) and the number of inputs (in). The parameters of the
FVSM architecture are in, the number of frame encoding
bits (feb), and the number of instance update encoding bits
(iueb). Each case of Table 1 corresponds to the parameter

Table 1 Comparison between FSM and FVSM architecture.

in seb feb iueb imp in seb feb iueb imp in seb feb iueb imp
(%) (%) (%)

1 7 4 6 24 1 11 8 8 39 3 9 4 8 79
1 7 5 5 23 1 12 7 8 96 3 9 5 7 72
1 8 4 7 45 1 12 8 7 83 3 9 5 8 58
1 8 4 8 31 1 12 8 8 45 3 9 6 7 54
1 8 5 6 38 2 6 4 5 25 3 9 6 8 40
1 8 5 7 26 2 8 4 7 24 3 10 5 8 101
1 8 5 8 20 2 8 4 8 20 3 10 6 7 97
1 8 6 5 25 2 8 5 6 23 3 10 6 8 79
1 8 6 6 22 2 9 4 8 53 3 10 8 5 35
1 8 7 4 23 2 9 5 7 38 3 10 8 6 32
1 9 4 8 35 2 9 5 8 34 3 11 6 8 88
1 9 5 7 29 2 9 6 6 40 3 11 8 6 38
1 9 5 8 23 2 9 6 7 37 4 7 4 6 40
1 9 6 6 26 2 9 6 8 22 4 7 4 7 32
1 9 7 5 20 2 10 5 8 72 4 7 4 8 20
1 10 5 8 55 2 10 6 7 75 4 8 4 7 77
1 10 6 7 50 2 10 6 8 57 4 8 4 8 62
1 10 6 8 36 2 10 7 7 36 4 8 5 6 41
1 10 7 6 44 2 10 7 8 31 4 8 5 7 47
1 10 7 7 34 2 11 6 8 91 4 8 5 8 38
1 10 7 8 28 2 11 7 7 66 4 8 6 5 22
1 10 8 5 22 2 11 7 8 61 4 9 4 8 65
1 10 8 7 20 2 12 7 8 138 4 9 5 7 51
1 11 6 8 101 2 12 8 7 46 4 9 5 8 41
1 11 7 7 97 3 6 4 5 22 4 10 5 8 66
1 11 7 8 89 3 8 4 7 29 4 10 7 6 22
1 11 8 6 42 3 8 4 8 22
1 11 8 7 77 3 8 5 6 21



LETTER
2547

Table 2 Comparison between FSM and FVSM implementation of a set
of testbenches.

FSM testbench Implementation
Name s t in FSM FVSM imp

seb feb iueb (%)
fsm01 567 1066 2 10 7 7 36
fsm03 424 657 3 9 6 8 40
fsm06 274 406 3 9 6 7 54
fsm07 276 471 3 9 6 7 54
fsm08 518 947 2 10 7 7 36
fsm13 401 630 3 9 6 8 40
fsm16 526 872 3 10 6 8 79
fsm17 542 861 3 10 6 8 79
fsm18 325 495 3 9 6 7 54

values required to implement the same state machine in both
architectures. The column imp represents the percentage of
increase in clock frequency of the FVSM over the RAM-
based FSM architecture. None of the architectures has been
parametrized by the number of outputs because their per-
formance is not affected by this parameter (the depth of the
memories is independent of this parameter). Both architec-
tures were implemented in a Xilinx xc2v8000-4 FPGA us-
ing distributed RAM. The results show the important speed
improvement that can be achieved by using the FVSM archi-
tecture (Table 1 only contains those cases whose improve-
ment is equal or greater than 20%). As we can see in Ta-
ble 1, the same state machine could be implemented with
different values of feb and iueb parameters depending on the
effectiveness of the virtualization algorithm. Therefore, this
algorithm is a key to improve the operation speed.

In order to demonstrate that the speed improvements of
the FVSM architecture shown in Table 1 can be achieved in
state machine implementations, a set of 20 FSM testbenches
has been virtualized and implemented in the same FPGA
device. In almost half the cases, the speed improvement is
greater than 33%. For each case, Table 2 shows the num-
ber of states (s), the number of transitions (t), the number
of inputs (in), the parameters of the FSM and FVSM imple-
mentations (seb, feb and iueb) and the speed improvement
(imp). This speed improvement depends on the FVSM pa-
rameter values reached by the virtualization algorithm for
each testbench. The values of the parameters in, seb, feb,
and iueb shown in Table 2 correspond to those values shown
in bold type in Table 1.

5. Conclusions and Future Work

The experimental results show that the proposed approach
offers a significant improve in the operation speed with re-
spect to conventional RAM-based FSM implementations.
In general, more important improvements are obtained for
large FSMs, what makes this approach very suitable for
hardware implementation of problems traditionally solved
by software (like pattern matching and packet routing).
Once the usefulness of the approach is proved, the authors
are studying how to take further advantage of the capabili-
ties of the proposed model. In many cases, the virtualization
obtained by the branch-and-bound algorithm is not optimal.
New strategies to refine the algorithm are being studied. On
other hand, as explained in Sect. 2, the aspect ratio of an

FVSM grows with the number of FSM inputs. Different ap-
proaches are being studied to reduce the number of inputs
connected to the main memory (such as FSMs with input
multiplexing [1] or dummy states [5]). This eases the imple-
mentation of FVSMs by using embedded memory blocks
which have a limited aspect ratio. Another approach for re-
ducing the required ratio consists in doing write operations
at a clock frequency multiple of that of read operations. This
allows the reduction of the write data port width.

Furthermore, the authors are considering the use of
more than one port in secondary memory (e.g., Xilinx true
dual-port memory blocks). This architecture improvement
would allow a relaxation of the restriction imposed by the
single port over the implementability of FVSMs. The num-
ber of update states could then be higher and thus the in-
stances would have a smaller size. Therefore, a speed in-
crease would be obtained. In addition, the power consump-
tion of a FVSM implementation can be reduced respect
to the conventional RAM-based implementation if the sec-
ondary memory is only enabled when a transfer is required.
Based on this strategy, the authors are studying the use of
the FVSM in low-power design. Moreover, the authors are
studying the addition of a new level of hierarchy to the
model in order to extend the capacity of the target device
with a new memory level stored in external off-chip mem-
ory. This could allow the implementation of large FSMs that
exceed the capacity of the target device.
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