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Abstract. A postprocessing technique, developed earlier for spectral methods, is extended
here to Galerkin finite-element methods for dissipative evolution partial differential equations. The
postprocessing amounts to solving a linear elliptic problem on a finer grid (or higher-order space)
once the time integration on the coarser mesh is completed. This technique increases the convergence
rate of the finite-element method to which it is applied, and this is done at almost no additional
computational cost. The numerical experiments presented here show that the resulting postprocessed
method is computationally more efficient than the method to which it is applied (say, quadratic finite
elements) as well as standard methods of similar order of convergence as the postprocessed one (say,
cubic finite elements). The error analysis of the new method is performed in L2 and in L∞ norms.
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1. Introduction. Finite-element methods do not seem to have benefited as
much as spectral methods from some of the recent advances in the dynamical sys-
tems approach to partial differential equations (PDEs) like those in [15], [14], [13],
and [41]. Since these advances are mostly based on spectral decompositions, they are
readily adapted to spectral methods, but do not seem to have a clear-cut translation
to finite elements. In [21] and based on the results of [15] and [13], an inexpensive
novel technique to increase the accuracy and computational efficiency of Fourier spec-
tral methods was developed. In this paper, we present a general technique to improve
the convergence rate of Galerkin methods which applies to finite-element methods
(and in the particular case of Fourier–Galerkin methods it coincides with that in [21];
see also [37]). We do this with no direct address to [13].

Let Ω ⊂ Rd be a domain with a smooth boundary. We consider dissipative PDEs
(see, for instance, [8], [24], [25], [41]) which can be written as evolution systems of the
form

du

dt
+ νAu+ F (u) = 0,(1)

in the Hilbert space H (in this work H = L2(Ω)), with solutions determined uniquely
by the initial condition

u(·, 0) = u0.(2)
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POSTPROCESSING FINITE-ELEMENT METHODS 471

Here, ν > 0 is a scalar, A : D(A) ⊂ H → H is a densely defined, unbounded,
self-adjoint, and positive operator with compact inverse. For simplicity, we treat
here only the case A = −∆, where ∆ stands for the Laplacian operator subject
to homogeneous Dirichlet boundary conditions, but our results also apply to other
elliptic operators in divergence form with sufficiently smooth coefficients and (with
adequate modifications) to other boundary conditions. The (nonlinear) operator F
that we consider is one of the following two types:

1. reaction-diffusion equations,

F (u) = g(u),(3)

for some smooth function g : R→ R;
2. reaction-diffusion equations plus nonlinear convection,

F (u) = g(u) + b(u) · ∇u,(4)

for some smooth mapping b : R→ Rd, and g is as above.
For simplicity, we concentrate here on the two types of nonlinearity above, but

both g and b can be made dependent on x and t as well. Also, although we concentrate
on scalar equations, the results here can be extended to systems. We treat here the
case where Ω ⊂ Rd with d > 1; the case d = 1 is particular and much simpler to
analyze.

Let Th = (τhi , φ
h
i )i∈Ih , h > 0, be a family of partitions of suitable domains Ωh,

where the parameter h is the maximum diameter of the elements τhi in Th, and φhi
are the mappings of the reference simplex τ0 onto τhi . For r ≥ 2 we consider the
finite-element spaces

Sh,r =
{
χh ∈ C(Ωh) | χh|τh

i
◦ φhi ∈ P r−1(τ0), χh(x) = 0 ∀x ∈ ∂Ωh

}
,

where P r−1(τ0) denotes the space of polynomials of degree at most r − 1 on τ0.
Let us denote by a(·, ·) the positive definite, bilinear form induced by A, that is,

a(u, v) = (A1/2u,A1/2u) = (∇u,∇v) for u, v ∈ D(A1/2) = H1
0 (Ω), where (·, ·) denotes

the standard inner product in L2(Ω) (or in L2(Ω)d). In a similar manner let ah(·, ·)
be the corresponding bilinear form on Sh,r (in our case ah(χh, ψh) = (∇χh,∇ψh)h,
χh, ψh ∈ Sh,r, where (·, ·)h stands for the standard inner product in L2(Ωh)); and let
us denote by Ah the associated positive, self-adjoint operator in Sh,r, that is,

ah(χh, ψh) = (Ahχh, ψh)h = (χh, Ahψh)h ∀χh, ψh ∈ Sh,r.
Let us also denote by Ph the standard L2 orthogonal projection onto Sh,r, and

by Rh the elliptic projection onto Sh,r (also known as the H1 projection) which, for
u ∈ H1

0 (Ω) is defined by

ah(Rhu, χh)h = ah(u, χh) = (∇u,∇χh)h ∀χh ∈ Sh,r.
The discrepancy between Ω and Ωh is usually solved by an adequate selection of
quadrature rules, although other alternatives are also possible (see section 2.1).

The Galerkin approximation to the solution u of (1)–(2) is described as follows:
Find uh : [0, T ]→ Sh,r such that

d

dt
uh + νAhuh + PhF (uh) = 0,(5)
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472 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

uh(0) = Rhu0.(6)

We use (6) for simplicity in the analysis. Our results may be easily extended to the
case where uh(0) = Phu0.

Next, we motivate and introduce the method studied here. Suppose that we are
interested in the solution u of (1)–(2) at a given time T . At time T , rewriting (1),
we have that νAu(T ) = −F (u(T ))− d

dtu(T ). Thus, u(T ) can be seen as the solution
of an elliptic problem whose right-hand side is not known but can be approximated.
The method we propose is as follows.

(i) First, integrate (5)–(6) up to T to obtain the Galerkin approximation uh(T ).
(ii) Then solve (or, in practice, approximate) the following linear elliptic problem:

Find ũ ∈ D(A) such that

νAũ = −F (uh(T ))− d

dt
uh(T ).(7)

We call this approximation procedure the postprocessed Galerkin method . Under
certain assumptions (to be specified in section 2.1) we can state Theorem 1 below,
whose proof is deferred until section 2.3 (a version of this result in L∞ is presented
in section 4.1). In Theorem 1 and in the rest of the paper, the constants µ and r are

µ =

{
2 if r ≥ 4 and (3) holds,
1 otherwise,

r =

{
0 if r = 3 and (3) holds,
1 otherwise.

Theorem 1. Let T > 0 and r ≥ 3. There exists a constant C > 0 which depends
on K(u), defined in (22) below, such that for h sufficiently small the postprocessed
Galerkin approximation ũ solution of (7) satisfies

‖u(T )− ũ‖L2(Ω) + h ‖u(T )− ũ‖H1(Ω) ≤ Chr+µ |log(h)|r .(8)

We notice that the bound (8) is an improvement over the standard Galerkin error
bound, ‖u− uh‖L2(Ω) + h ‖u− uh‖H1(Ω) ≤ Chr, which is optimal even in the case of
linear problems.

We remark that in practice, of course, ũ cannot be computed exactly since in
general it does not belong to a finite-dimensional space, as opposed to uh. However,
one can approximate the solution ũ of (7) by some ũh belonging to a finite-element
space of piecewise polynomials either of degree r + µ − 1 over Th, or of degree r − 1
but over some finer partition Th′ with hr+µ = h′r.

It must be noticed that, from the practical point of view, the computational cost
of the postprocessing step (7) is a very small fraction of the cost of computing uh(T ) by
time integration from t = 0 to t = T . Thus, ũh is an approximation to u(T ) of higher
order (i.e., asymptotically more accurate) than uh(T ), but it costs (almost) nothing
once uh(T ) is available. We will see the implications of this fact in the numerical
experiments in section 3.

Observe that the combination of the Galerkin method (5)–(6) and the postpro-
cessing step (7) can be seen as a novel two-level or two-grid method for evolution
equations. Two-level methods for nonlinear problems have mostly been developed
and implemented for steady equations (see, e.g., [5], [31], [47], [48], and the references
therein). The basic idea in the steady-state case is to solve the nonlinear problem on
a low-order approximation space (or coarse grid) and then obtain a better approxi-
mation with one or two Newton iterations on a higher-order approximation space (or
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POSTPROCESSING FINITE-ELEMENT METHODS 473

on a finer grid). In this way, the nonlinearities are treated in the (cheaper) low-order
approximation space or coarse grid, and only linear systems are solved in the (more
costly) higher-order approximation space.

On evolution problems, two-level (or further, multilevel) methods can obviously
be used in the nonlinear systems that arise when using implicit time integrators.
Other more refined ideas have recently been suggested [3], [9], [33], [34], but, so far,
the two levels of discretization are used at every time step along the time evolution.
On the contrary, Theorem 1 in this paper states that it is safe to perform the time
evolution on the low-level (or coarse grid) approximation space and obtain the higher-
order correction only once, at t = T , that is, when the time-marching is finished. The
price to be paid is that the low-level (or coarse grid) approximation space must be
composed of piecewise polynomials with a degree of at least 2 (r ≥ 3), since the
postprocessing step (7) does not increase the convergence rate if uh(T ) is computed
by integrating on time on a space of piecewise-linear polynomials.

The postprocessing step (7) is a generalization to finite-element methods of an
earlier postprocessing procedure developed for spectral methods in [16], [21], and
[22]. To be more specific, suppose that instead of Sh,r, the approximation space is
Hm spanned by the eigenfunctions of A associated with the lowest m eigenvalues or
frequencies. Then, the Galerkin approximation (5) would be um : [0, T ] → Hm such
that

dum
dt

+ νAum + PmF (um) = 0,(9)

where Pm is the L2 projection onto Hm. The postprocessing step (7) would be

νAũ = −dum
dt

(T )− F (um(T )).(10)

Projecting (10) ontoHm, since Pm andA commute, we get νAPmũ = −PmF (um(T ))−
dum(t)
dt

∣∣
t=T

, and hence, Pmũ = um(T ), the Galerkin approximation at time T . Thus,
one has only to compute the high-frequency modes q̃ = (I−Pm)ũ. Applying (I−Pm)
to (10) we obtain

νAq̃ = −(I − Pm)F (um),(11)

which is the postprocessing step proposed in [21], [22]. Observe also that q̃ = Φ(um) =
(νA)−1(I − Pm)F (um).

The formulation (11) of the postprocessing step is more natural in the case of
spectral methods. However, when developing this paper, (7) (or (10)) was seen to be
more meaningful and useful. This point of view was also reached independently in
[17], [18].

In fact, in the case of spectral methods, the postprocessed Galerkin method was
developed the opposite way. In the context of inertial manifolds [14] and approxi-
mate inertial manifolds, it was shown in [13] (see also [15]) that given the low modes
Pmu of the solution u of (1)–(2), Φ(Pmu) = (νA)−1(I − Pm)F (Pmu) is a high-order
approximation to the high-frequency modes (I − Pm)u of u. Based on this fact, the
so-called nonlinear Galerkin methods (NLG) [12], [28], [32] were developed (see also
[10], [11], [15], [29], [42], [43], and the many references therein). In these NLG meth-
ods, nonlinear terms are typically evaluated in the whole spectrum (or some generous
truncation of it), for example, F (ym+Φ(ym)), where ym(t) ∈ Hm is the low-frequency
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474 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

component of the NLG approximation ym + Φ(ym). This is computationally costly,
and (to add to the cost) it is done along the time evolution in NLG methods.

Currently, there is enough available evidence [20], [21], [35], [46] that NLG meth-
ods are not competitive from the point of view of efficiency (or at least, not necessarily
competitive). For this reason, the postprocessed Galerkin (spectral) method (9)–(10)
was developed. The aim was to exploit the approximation capabilities of Φ but
without paying for the computational cost of NLG methods (notice that in (9)–(10)
nonlinear terms are applied only to elements of Hm, and Φ is computed only once).

The postprocessed Galerkin method was seen to be computationally more effi-
cient than classical Galerkin spectral methods in [16] and [21]. This is also the case
of Galerkin finite-element methods, as is shown in section 3 and in [30]. The compu-
tational gain is even more significant in the maximum norm. The last section of this
paper is devoted to the error analysis in L∞.

We end this section by giving an idea of the proof of Theorem 1. Evaluate the
PDE (1) at time t = T and subtract it from (7). After rearranging terms and applying
A−1 one sees that

u(T )− ũ =
1

ν
A−1

(
d

dt
uh(T )− d

dt
u(T )

)
+

1

ν
A−1(F (uh(T ))− F (u(T ))).

Thus, at first sight, u(T )− ũ depends on uh(T )− u(T ) (and (duh/dt)− (du/dt)|t=T )
which is only O(hr). However, in due course we will show that

∥∥A−1(F (uh(T )) −
F (u(T )))

∥∥
L2(Ω)

can be bounded in terms of
∥∥A−1(u(T )−uh(T ))

∥∥
L2(Ω)

(A−1/2 instead

of A−1 when F is given by (4)). We write u− uh = (u−Rhu) + (Rhu− uh). Since it
is well known (see, e.g., [44]) that

∥∥A−1(I −Rh)u(T )
∥∥
L2(Ω)

= O(hmin(2r−2,r+2)) (and

the same bound for A−1(I −Rh)ut(T )), we have that

‖u(T )− ũ‖L2(Ω) ≤
C

ν

(∥∥A−1(uh(T )−Rhu(T ))
∥∥
L2(Ω)

+

∥∥∥∥A−1

(
d

dt
uh(T )−Rh d

dt
u(T )

)∥∥∥∥
L2(Ω)

)
+O(hmin(2r−2,r+2)).(12)

The O(hmin(2r−2,r+2)) term above clearly shows that the postprocessed method will
have a strictly higher convergence rate than the Galerkin method on which it is
based, only if r ≥ 3, that is, uh(T ) is a piecewise polynomial with a degree of at least
2. We will duly show that the other two terms on the right-hand side of (12) are

O(hr+µ |log(h)|r).
The argument above shows that there is nothing especially nonlinear about the

idea behind the postprocessed Galerkin method, and the results would be the same if
F were linear. Notice that even in the linear case the method presented here allows
an O(hr+2) (or O(hr+1)) error at the “same” price of a cheaper O(hr) method. In
any case, since most of the interesting phenomena arise in nonlinear problems, for
completeness we consider F as in (3)–(4).

The rest of this paper is organized as follows. Section 2 is devoted to proving
Theorem 1. Numerical experiments are presented in section 3. Finally, we carry the
L∞ analysis in section 4.
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POSTPROCESSING FINITE-ELEMENT METHODS 475

2. The postprocessed Galerkin method.

2.1. Preliminaries. We now present the assumptions under which Theorem 1
holds. We restrict ourselves to quasi-uniform meshes Th, so that the following inverse
estimate holds for any element τ ∈ Th and vh ∈ Sh,r (see, e.g., [39]):

‖vh‖Wm,p(τ)≤ Chl−m−d( 1
q− 1

p )‖vh‖W l,q(τ) , 0 ≤ l ≤ m ≤ 2, 1 ≤ q ≤ p ≤ ∞.(13)

Also, we assume the following restriction between the order of approximation r
and the dimension d:

d ≤ 2r − 1.(14)

This is required by the presence of the nonlinear term F , but it can be loosened if
F is linear. Since finite elements are most advantageous when dealing with complex
geometries, we consider only d ≥ 2. Following the ideas presented here, the one-
dimensional case admits a much simpler treatment.

In this situation, for 1 ≤ p ≤ ∞, and for any v ∈ D(A)∩W r,p(Ω), an interpolant
Ih(v) ∈ Sh,r exists such that

‖v − Ih(v)‖Lp(Ω) + h ‖v − Ih(v)‖W 1,p(Ω∩Ωh) ≤ C
(
hr + δ(h)

) ‖v‖W r,p(Ω) ,(15)

(we extend by zero Ih(v) in Ω\Ωh), where δ(h) = maxx∈Ωh dist(x, ∂Ω). For x ∈ Ω∩Ωh,
this bound follows from the standard theory of interpolation and the Bramble–Hilbert
lemma. For x ∈ Ω\Ωh, v(x) can be bounded using of the mean-value theorem (see,
e.g., (19) below).

However, for the purpose of analysis, we may assume (see, e.g., [39]) that Ωh ⊆ Ω,
since one may consider a domain Ωδ with a smooth boundary such that Ω∪Ωh ⊂ Ωδ,
and max {dist(x, ∂(Ω ∪ Ωh)) | x ∈ ∂Ωδ} ≤ c0δ(h) for some c0 > 0. Then, for each
t, replace u(t) by the solution uδ(t) of −∆uδ(t) = fu(t), where fu(t) is a suitable
extension of −∆u(t) to Ωδ (see [39] for details). The sets Ωδ must be built so that for
δ sufficiently small we have that

‖vδ‖W l+2,p(Ωδ)
≤ Cp ‖fv‖W l,p(Ωδ)

= Cp ‖∆v‖W l,p(Ω) , 0 ≤ l ≤ r,

for every p ∈ [2,∞) and every v ∈ W r+2(Ω). Here Cp > 0 constant that depends
on p but not on δ. This can be readily done if Ω is bounded and r + 2 smooth, or
uniformly r + 2 smooth [1, p. 67].

We will also assume that the solution of (1) satisfies

M3 = max
0≤t≤T

∥∥A3/2u(·, t)∥∥
L2(Ω)

< +∞.(16)

To ensure the estimate (16) for every solution of (3), (4), with initial data in D(A3/2),
it is sufficient to require, for example, that both g and b satisfy g(0) = 0 and b(0) = 0.
If, in addition, the right-hand side of (1) has a smooth forcing term f = f(x, t) instead
of zero, then it is sufficient that f(x, t) has a zero trace at the boundary of Ω.

In the understanding of the postprocessed Galerkin method, the elliptic projection
Rhu of u will play a prominent role. To simplify notation we write

rh = Rhu.
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476 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

Under these conditions the following bounds hold for 1 ≤ l ≤ r:
‖u− Phu‖L2(Ω)

‖u− rh‖L2(Ω) + h ‖u− rh‖H1(Ω)

}
≤ Chl ‖u‖Hl(Ω) ,(17)

and, for 0 ≤ s ≤ 2,∥∥A−s/2(u− Phu)
∥∥
L2(Ω)∥∥A−s/2(u− rh)
∥∥
L2(Ω)

}
≤ Chl+s ‖u‖Hl(Ω) , s = min(s, r − 2).(18)

For these bounds to hold, care must be taken to approximate the boundary with the
necessary accuracy (see, e.g., [44, section 5.1]). Henceforth, we will assume that for
some constant cδ > 0,

δ(h) = max
x∈Ωh

dist(x, ∂Ω) ≤ cδhr+2.

We also remark that (16) plays a role in order to bound ‖∇(u− rh)‖L2(Ω) in terms

of hl−1 ‖u‖Hl(Ω) in (17), due to the skin-layer Ω\Ωh. To be more precise, let D ⊂ Ω

be such that max{dist(x, ∂Ω) | x ∈ D} ≤ cδ(h). For any v ∈ D(A), since v = 0 on
∂Ω, one can check that

‖v‖L2(Ω\D) ≤ Cδ(h) ‖∇v‖L2(Ω) .(19)

Hence, taking D = Ωh, we have that

‖∇v‖L2(Ω\Ωh) ≤ C ‖v‖1/2L2(Ω\Ωh) ‖v‖1/2H2(Ω\Ωh) ≤ Cδ(h)1/2 ‖v‖H2(Ω) .

For v ∈ D(A3/2) better estimations can be obtained as follows. Consider Ω1 ⊂⊂
Ωh with a sufficiently smooth boundary such that max{dist(x, ∂Ωh) | x ∈ Ω1} ≤
c0δ(h) for some c0 > 0. Then ‖∇v‖L2(Ω\Ωh) ≤ ‖∇v‖L2(Ω\Ω1). Using the divergence
theorem, trace theorems, and the smoothness of Ω, one can show that ‖∇v‖2L2(Ω\Ω1) ≤
‖∆v‖L2(Ω\Ω1)(‖v‖L2(Ω\Ω1) + ‖∇v‖L2(Ω\Ω1)). Now, recalling (19), we have that∥∥∇v∥∥

L2(Ω\Ωh)
≤ Cδ(h) ‖v‖H3(Ω) .

For the L2 projection Ph we will use stronger estimates than those in (17). More
precisely, there exists a constant C > 0 such that

‖v − Phv‖Lq(Ω) ≤ C ‖v‖Lq(Ω) , 1 ≤ q ≤ ∞,(20)

∀v ∈ Lq(Ω) (see, e.g., [44, p. 39]). Similarly, for the elliptic projection

‖Rh‖∞ ≤ C(21)

(see [39]), where, here and in the rest of the paper, ‖·‖p denotes the operator norm
in L(Lp(Ω)) for 1 ≤ p ≤ ∞. We remark that for piecewise-linear finite elements (i.e.,
r = 2) the bound (21) does not hold (C should be replaced by C(1 + |log(h)|)). In
this paper, however, we restrict ourselves to r ≥ 3.

The error estimates in sections 2.2 and 2.3, as well as the constant C in Theorem
1 depend on

K(u, t) = ‖u(·, t)‖Hr(Ω) + ‖ut(·, t)‖Hr(Ω) , K(u) = max
0≤t≤T

K(u, t).(22)
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POSTPROCESSING FINITE-ELEMENT METHODS 477

Notice then, that we are assuming sufficient smoothness of the solution as well as of
the initial condition. It must be stated that if (1) is autonomous and g and b in the
nonlinear terms F in (3)–(4) are analytic, due to the analyticity in time of the solutions
of (1)–(2), for most initial conditions u0, it is possible to bound ‖ut(·, t)‖Hr(Ω) in terms
of maxz∈S ‖u(·, z)‖Hr(Ω) for z in an adequate neighborhood S of [0, T ] in the complex
plane (see, e.g., [7, pp. 104–109]).

We will frequently use the following version of Sobolev’s lemma: for p ∈ [1,∞),
there exists a constant C = C(Ω, p) such that

‖v‖Lp′ (Ω) ≤ C ‖v‖W s,p(Ω) for
1

p
≥ 1

p′
≥ 1

p
− s

d
and v ∈W s,p(Ω)

whenever p′ < ∞. For p′ = ∞ the above inequality holds for 1
p ≥ 1

p′ >
1
p − s

d , and,
furthermore, in this case v is also a continuous function.

Also the following inequality, which is easily obtained from Hölder’s inequality,
will be frequently used:

|(f, vw))| ≤ ‖f‖L2(Ω) ‖v‖Lp(Ω) ‖w‖Lq(Ω) ,
1

p
+

1

q
=

1

2
.(23)

2.2. Analysis of the Galerkin method. In this section we obtain bounds for
uh − rh. The main result is Theorem 2 at the end of the section. Its proof will be
obtained as a consequence of several previous lemmas.

In the following, we need the residual or truncation error Th of the elliptic pro-
jection rh = rh(t) = Rhu(t). Notice that rh satisfies

d

dt
rh + νAhrh + PhF (rh) = Th,(24)

where the truncation error Th is

Th = Ph(F (rh)− F (u)) +
d

dt
rh − Phut.(25)

In general, ‖Th‖L2(Ω) is not smaller than ‖ut − drh/dt‖L2(Ω) = O(hr). In fact,
the above is definitely true in the linear case when F = 0. On the other hand,
notice that in Lemma 4 below, we bound not only ‖Th‖L2(Ω) but also an integral of

e−ν(t−s)AhTh(s) with respect to s. It is the smoothing effect of the semigroup e−νtAh

that gives the extra power hµ |log(h)|r in Theorem 2 with respect to the O(hr) decay
of ‖Th‖L2(Ω).

Lemma 1. Let vh : [0, T ]→ Sh,r satisfy the threshold condition,

‖rh(t)− vh(t)‖L2(Ω) ≤ cthhr,(26)

for t ∈ [0, T ]. Set µ = 0 if the nonlinearity F is given by (3); otherwise set µ = 1
when F is given by (4). Then there exists a constant C, which depends on cth and
max0≤t≤T ‖u(t)‖Hr(Ω), such that for t ∈ [0, T ]∥∥A−µ/2h Ph(F (vh(t))− F (rh(t)))

∥∥
L2(Ω)

≤ C ‖vh(t)− rh(t)‖L2(Ω) .(27)

Furthermore, for F given by (4) we have that

‖Ph(F (vh(t))− F (rh(t)))‖L2(Ω) ≤ C
(‖∇(vh(t)− rh(t))‖L2(Ω)

+ h−1 ‖vh(t)− rh(t)‖L2(Ω)

)
.(28)
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478 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

Proof. Let us take t ∈ [0, T ], and for simplicity, let us drop the explicit dependence
on t. We first notice that both vh and rh are bounded in L∞ in terms of u, since
‖vh‖L∞(Ω) ≤ ‖vh− rh‖L∞(Ω) + ‖rh‖L∞(Ω), which, thanks to the inverse estimate (13)

and the threshold condition (26), is bounded by cthh
r−d/2 +‖rh‖L∞(Ω). Then in view

of the fact thatRh is bounded in L∞ (recall (21)), Sobolev’s lemma, and the restriction
(14) between the dimension d and r we have that ‖vh‖L∞(Ω), ‖rh‖L∞(Ω) ≤ C‖u‖Hr(Ω).
As a consequence, for any smooth function f ,

f(vh), f(rh) ∈ Lp(Ω) for 1 ≤ p ≤ ∞.(29)

Thus, for F as in (3), the statement (27) is a direct consequence of the mean-value
theorem.

For F as in (4) we first prove (27). Notice that A
−µ/2
h Ph = A

1−µ/2
h A−1

h Ph =

A
1−µ/2
h RhA

−1. In addition, for χh ∈ Sh,r, we have that ‖A1/2
h χh‖L2(Ω) = ‖∇χh‖L2(Ω),

and ‖A−1 · ‖H1(Ω) ≤ C‖A−1/2 · ‖L2(Ω). Then, using (17) we have that∥∥A−1/2
h Ph(F (vh)− F (rh))

∥∥
L2(Ω)

≤ C∥∥A−1/2(F (vh)− F (rh))
∥∥
L2(Ω)

.

Let us estimate the right-hand side above by duality. Since A−1/2 is bounded, we
need only to study the convection term. Let us denote eh = vh − rh. We have that

b(vh) · ∇vh − b(rh) · ∇rh = b(vh) · ∇eh + (b(vh)− b(rh)) · ∇rh.(30)

Let φ ∈ C∞0 (Ω) be a test function. Taking the inner product in (30) with φ and
integrating by parts the first term on the right-hand side above becomes(

b(vh) · ∇eh, A−1/2φ
)

=
(
eh,div

(
b(vh)A−1/2φ

))
=
(
eh, b

′(vh) · ∇vhA−1/2φ
)

+
(
eh, b(vh) · ∇A−1/2φ

))
.(31)

We now take p such that

1

p
=

{
1/4 if d = 2

1/2− 1/d if d > 2.

Then, by Sobolev’s lemma, we have that ‖ · ‖Lp(Ω) ≤ C‖ · ‖H1(Ω), and, in particular,

‖A−1/2φ‖Lp(Ω) ≤ C‖φ‖L2(Ω). We also take q such that 1/q + 1/p = 1/2. For this
value of q, thanks to (14), it is immediate to check that

‖u‖W 1,q(Ω) ≤ C ‖u‖Hr(Ω) .(32)

Applying (23) to the right-hand side of (31), we have that∣∣(eh, b′(vh) · ∇vhA−1/2φ
)∣∣ ≤ C ‖eh‖L2(Ω) ‖b′(vh)‖L∞(Ω) ‖∇vh‖Lq(Ω) ‖φ‖L2(Ω) ,∣∣(eh, b(vh) · ∇A−1/2φ
)∣∣ ≤ C ‖eh‖L2(Ω) ‖b(vh)‖L∞(Ω) ‖φ‖L2(Ω) .

Also, for the second term on the right-hand side of (30), thanks to the mean-value
theorem and (29), arguing as above we have that∣∣((b(vh)− b(rh))∇rh, A−1/2φ

)∣∣ ≤ C ‖eh‖L2(Ω) ‖∇rh‖Lq(Ω) ‖φ‖L2(Ω) .

Thus, (27) is proved, provided we show that

‖∇vh‖Lq(Ω) , ‖∇rh‖Lq(Ω) ≤ C ‖u‖Hr(Ω)(33)
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POSTPROCESSING FINITE-ELEMENT METHODS 479

for some C > 0, independent of u. For this purpose we write

‖∇vh‖Lq(Ω) = ‖∇(vh − rh)‖Lq(Ω) + ‖∇rh‖Lq(Ω) .

On the one hand, due to the inverse estimate (13) and the threshold condition (26),
we have that ‖∇(vh − rh)‖Lq(Ω) ≤ Ch−1+d(1/q−1/2)‖vh − rh‖L2(Ω) ≤ Ccth (assuming
h < 1 if d = 2). On the other hand, for ∇rh we write ∇rh = ∇(rh− Ih(u)) +∇Ih(u),
where Ih(u) is the interpolant of u. Using the inverse estimate (13), we have that

‖∇rh‖Lq(Ω) ≤ Ch−1+d(1/q−1/2) ‖rh − Ih(u)‖L2(Ω) + ‖∇Ih(u)‖Lq(Ω) .

By writing rh − Ih(u) = (rh − u) + (u − Ih(u)), in view of (17) and (15), it follows
that ‖∇rh‖Lq(Ω) ≤ C(‖u‖Hr(Ω) + ‖u‖W 1,q(Ω)). This and (32) lead to (33).

To prove (28), as before, we need only to treat the convection term, so we con-
centrate on (30). Therefore, because of (29) and by using the mean-value theorem,
we have that

‖F (vh)− F (rh)‖L2(Ω) ≤ C
(‖∇(vh − rh)‖L2(Ω) + ‖∇rh‖L∞(Ω) ‖vh − rh‖L2(Ω)

)
.

Thus, (28) is proved, provided we show that ‖∇rh‖L∞(Ω) ≤ Ch−1‖u‖Hr(Ω). For this
purpose, we take s = 1/d and then, due to the inverse estimate (13), we have that
‖∇rh‖L∞(Ω) ≤ Ch−1‖rh‖Ls(Ω). Then, the proof is easily concluded with arguments
similar to those used in proving (33).

Lemma 2. Fix cth > 0 and T > 0. Then there exists a constant S > 0 such
that for any C1 mapping vh : [0, T ]→ Sh,r satisfying vh(0) = rh(0) and the threshold
condition (26) for t ∈ [0, t1], where t1 ≤ T the following bound holds:

max
0≤t≤t1

‖vh(t)− rh(t)‖L2(Ω) ≤ S max
0≤t≤t1

∥∥∥∥∫ t

0

eν(t−s)Ah(T̂h(s)− Th(s)) ds

∥∥∥∥
L2(Ω)

,(34)

where

T̂h(s) =
d

dt
vh + νAhvh + PhF (vh).(35)

Proof. Let us call eh = rh − vh and Eh = Th − T̂h. Subtracting (35) from (24),
and taking into account that eh(0) = 0, for t ∈ [0, t1], we have that

eh(t) =

∫ t

0

e−ν(t−s)AhPh(F (vh(s))− F (rh(s))) ds+

∫ t

0

e−ν(t−s)AhEh(s) ds.(36)

We take µ = 0 if the nonlinearity F is as in (3) and µ = 1 otherwise. By writing

e−ν(t−s)AhPh(F (vh(s))−F (rh(s))) = A
µ/2
h e−ν(t−s)Ah(A

−µ/2
h Ph(F (vh(s))−F (rh(s))),

and using Lemma 1, from (36) we obtain that

‖eh(t)‖L2(Ω) ≤
C

νµ/2

∫ t

0

‖eh(t)‖L2(Ω)

(t− s)µ/2 ds+ max
0≤t≤T

∥∥∥∥∫ t

0

e−ν(t−s)AhEh(s) ds

∥∥∥∥
L2(Ω)

,

where we have taken into account that ‖Aµ/2h e−ν(t−s)Ah‖2 ≤ (ν(t − s))−µ/2. Then a
generalized Gronwall lemma (see, e.g., [25, p. 6]) leads to (34).

We remark that, with minor modifications, it is easy to prove that (34) also holds
when vh(0) 6= rh(0).
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480 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

Lemma 3. Let v ∈ Hr(Ω) ∩ H1
0 (Ω) and fix c > 0. Then, there exists a con-

stant C = C(‖v‖Hr(Ω) , c) such that for µ = 0, 1, 2 and ∀χ ∈ H1
0 (Ω) ∩ L∞(Ω) with

‖χ‖L∞(Ω) ≤ c, we have that∥∥A−µ/2(F (v)−F (χ))
∥∥
L2(Ω)

≤ C
(∥∥A(i−µ)/2(v−χ)

∥∥
L2(Ω)

+‖v − χ‖Lq(Ω)‖v − χ‖Hi(Ω)

)
,

(37)
where i = 0 when F is given by (3) and i = 1 when F is given by (4). Here q =
max(2, d/µ′), where µ′ = µ− 1/2 if d/µ = 2; otherwise µ′ = µ.

Proof. We concentrate on the more difficult case of nonlinear convection (4).
Observe that due to the restriction (14) on the dimension d and the fact that we are
demanding ‖χ‖L∞(Ω) ≤ c, then, for any smooth function f , both f(v) and f(χ) are
in Lp(Ω) for 1 ≤ p ≤ ∞.

We estimate the left-hand side of (37) by duality. Let us then take φ ∈ C∞0 (Ω).
Let us also take p such that

1

p
=

 1/2− µ/d if d/2 > µ,
1/2− (µ− 1/2)/d if d/2 = µ,
0 if d/2 < µ.

(38)

With this choice of p, due to Sobolev’s inequality, we always have that∥∥A−µ/2φ∥∥
Lp(Ω)

≤ C ‖φ‖L2(Ω) .

We take q such that 1/p+ 1/q = 1/2. Notice then that this is the value of q in (37).
Also, with Sobolev’s inequality and (14), it is easy to show that

‖·‖Wµ,q(Ω) ≤ C ‖·‖Hr(Ω) , ‖·‖L2q(Ω) ≤ C ‖·‖Hr−1(Ω) .(39)

We notice that (A−µ/2(F (v) − F (χ)), φ) = ((F (v) − F (χ)), A−µ/2φ). We treat
the nonlinear convection term b(v) · ∇v − b(χ) · ∇χ in more detail. In the following,
we denote ε = v − χ. Observe that

b(v) · ∇v − b(χ) · ∇χ = b(v) · ∇ε+ (b(v)− b(χ)) · ∇v − (b(v)− b(χ)) · ∇ε.(40)

We first bound the last term on the right-hand side above. We have that∣∣((b(v)− b(χ)) · ∇ε, A−µ/2φ)∣∣ ≤ ‖b(v)− b(χ)‖Lq(Ω)d ‖∇ε‖L2(Ω)d

∥∥A−µ/2φ∥∥
Lp(Ω)

≤ ‖b(v)− b(χ)‖Lq(Ω)d ‖∇ε‖L2(Ω)d ‖φ‖L2(Ω) .

Since b is smooth we have that ‖b(v)− b(χ)‖Lq(Ω)d ≤ C‖ε‖Lq(Ω). Thus,∥∥A−µ/2(b(v)− b(χ)) · ∇ε∥∥
L2(Ω)

≤ C ‖ε‖Lq(Ω) ‖ε‖H1(Ω) .(41)

For the first term on the right-hand side of (40) we deal with the more difficult
case µ = 2. Integrating by parts twice and observing that the boundary terms vanish,
we have that (b(v) · ∇ε, A−1φ) = (∇A−1ε,∇div((A−1φ)b(v))). Then, the following
bound is easily obtained:∣∣(b(v) · ∇ε, A−1φ

)∣∣ ≤ C∥∥∇A−1ε
∥∥
L2(Ω)d

‖b(v)‖L∞(Ω)

∥∥A−1φ
∥∥
H2(Ω)

+
∣∣(∇A−1ε, (b′(v)(∇v)T + div(b(v))I)∇A−1φ

)∣∣
+
∣∣(∇A−1ε,

(
A−1φ

)∇div(b(v))
)∣∣.(42)
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POSTPROCESSING FINITE-ELEMENT METHODS 481

We can bound the last term on the right-hand side of (42) as follows:∣∣(∇A−1ε,
(
A−1φ

)∇div(b(v))
)∣∣ ≤ ∥∥∇A−1ε

∥∥
L2(Ω)d

∥∥A−1φ
∥∥
Lp(Ω)

‖∇div(b(v))‖Lq(Ω)d

≤ C∥∥∇A−1ε
∥∥
L2(Ω)d

‖∇div(b(v))‖Lq(Ω)d ‖φ‖L2(Ω) .

Since ∇div(b(v)) = (∇2v)b′(v) + (b′′(v) · ∇v)∇v, using (39) we have that

‖∇div(b(v))‖Lq(Ω)d ≤ C
(‖v‖W 2,q(Ω) + ‖∇v‖1/2L2q(Ω)2

) ≤ C ‖v‖Hr(Ω)

for some C = C(‖v‖Hr(Ω)). It follows that∣∣(∇A−1ε,
(
A−1φ

)∇div(b(v))
)∣∣ ≤ C∥∥∇A−1ε

∥∥
L2(Ω)d

‖φ‖L2(Ω) .(43)

Using similar arguments, we obtain the following estimate for the second term on
the right-hand side of (42):∣∣(∇A−1ε, (b′(v)(∇v)T + div(b(v))I)∇A−1φ

)∣∣ ≤ C∥∥∇A−1ε
∥∥
L2(Ω)d

‖φ‖L2(Ω) .

Thus, in view of (42) and (43), it follows that∥∥A−1
(
b(v) · ∇ε)∥∥

L2(Ω)
≤ C∥∥∇A−1ε

∥∥
L2(Ω)d

.(44)

Finally, the second term on the right-hand side of (40) can be treated similarly
as the first one (i.e., after applying A−1, it can be bounded by the right-hand side of
(44)). This and (41) show that for µ = 2,∥∥A−µ/2(b(v)·∇v−F (χ)·∇χ)

∥∥
L2(Ω)

≤ C(∥∥A(1−µ)/2ε
∥∥
L2(Ω)

+‖ε‖Lq(Ω) ‖ε‖H1(Ω)

)
.(45)

In the case where µ = 1, we first notice that ‖A−1/2 ·‖L2(Ω) = ‖∇A−1 ·‖L2(Ω). We
then return to (40) and estimate again the first two terms by duality (recall that the
third term has already been dealt with). For example, for φ ∈ C∞0 (Ω)2, integrating
by parts twice, we obtain (∇A−1(b(v) · ∇ε), φ) = (ε,div((A−1div(φ))b(v))). It is now
easy to proceed as in the case µ = 2. Finally, the bound (45) in the case µ = 0 is a
direct consequence of (40).

The arguments above can be (more easily) applied to the reaction term, yielding∥∥A−µ/2(g(v)− g(χ))
∥∥
L2(Ω)

≤ C(∥∥A−µ/2(v − χ)
∥∥
L2(Ω)

+ ‖v−χ‖Lq(Ω)‖v−χ‖L2(Ω)

)
for µ = 0, 1, 2. This and (45) lead to (37).

Lemma 4. There exists a constant C, that depends on K(u) which is given in
(22), such that for t ∈ [0, T ] the following bounds hold for µ = 1, 2:

‖Th(t)‖L2(Ω) ≤ Chr−i,(46) ∥∥A−µ/2h Th(t)
∥∥
L2(Ω)

≤ Chr+min(µ−i,µ), µ = 1, 2,(47) ∥∥A−µ/2Th(t)
∥∥
L2(Ω)

≤ Chr+min(µ−i,µ), µ = 1, 2,(48)

where i = 0 when F is given by (3) and i = 1 when F is given by (4).
Proof . In view of the expression of Th in (25), the estimate (46) is a direct

consequence of the fact that Ph is bounded, Lemma 3 (for µ = 0) and (17).
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482 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

Concerning (47)–(48), notice that, for µ = 1, 2, A
−µ/2
h Ph = A

1−µ/2
h RhA

−1. In

case µ = 1, observe that ‖A1/2
h Rh · ‖L2(Ω) = ‖∇Rh · ‖L2(Ω) = ‖A1/2Rh · ‖L2(Ω). By

writing Rh = I + (Rh − I), for both µ = 1, 2, and for v ∈ L2(Ω), we have that∥∥A−µ/2h Phv
∥∥
L2(Ω)

≤ ∥∥A1−µ/2A−1v
∥∥
L2(Ω)

+
∥∥A1−µ/2(I −Rh)A−1v

∥∥
L2(Ω)

.

Since by (17), ‖A1−µ/2(I −Rh)A−1‖2 = O(hµ) for µ = 1, 2, then∥∥A−µ/2h Phv
∥∥
L2(Ω)

≤ ∥∥A−µ/2v∥∥
L2(Ω)

+ Chµ ‖v‖L2(Ω) .

As a result we get∥∥A−µ/2h Th
∥∥
L2(Ω)

≤ ∥∥A−µ/2(F (rh)− F (u))
∥∥
L2(Ω)

+
∥∥∥A−µ/2(rh − u)t

∥∥∥
L2(Ω)

+ Chµ
(
‖F (rh)− F (u)‖L2(Ω) + ‖(rh − u)t‖L2(Ω)

)
.(49)

To prove (48), we observe that A−µ/2Ph = A−µ/2(Ph−I)+A−µ/2. Hence, in view
of (18),

∥∥A−µ/2Th∥∥L2(Ω)
is bounded by the right-hand side of (49). Then, applying

Lemma 3 and (17)–(18), we obtain∥∥A−µ/2h Th
∥∥
L2(Ω)

,
∥∥A−µ/2Th∥∥L2(Ω)

≤ C(hr+min(µ−i,µ) + hr−i ‖u− rh‖Lq(Ω)

)
.(50)

To finish the proof we have to show that ‖u− rh‖Lq(Ω) = O(hµ). For this purpose we
write

‖u− rh‖Lq(Ω) ≤ ‖u− Phu‖Lq(Ω) + ‖Phu− rh‖Lq(Ω) .

Thanks to (13), we have that ‖Phu − rh‖Lq(Ω) ≤ Chd(1/q−1/2)‖Phu − rh‖L2(Ω). But
d(1/q−1/2) = min(0, µ′−d/2), and due to (14), d(1/q−1/2) = min(0, µ−r). Hence,

‖Phu− rh‖Lq(Ω) ≤ Chmin(0,µ−r) ‖u− rh‖L2(Ω) ≤ Chµ ‖u‖Hr(Ω) .(51)

On the other hand, replacing v by v = u−Ih(u) in (20), where Ih(u) is the interpolant
of u, in view of (15) and (39), we have that

‖u− Phu‖Lq(Ω) ≤ Chµ ‖u‖Wµ,q(Ω) ≤ Chµ ‖u‖Hr(Ω) .

This, together with (51) implies that

‖u− rh‖Lq(Ω) ≤ CK(u)hµ.(52)

Observe that the presence of time derivatives in (49) accounts for the presence of
ut in (22).

Lemma 5. There exists a positive constant C = C(K(u)) such that

max
0≤t≤T

∥∥∥∥∫ t

0

e−ν(t−s)AhTh(s) ds

∥∥∥∥
L2(Ω)

≤ Chr+µ |log(h)|r .(53)

Proof. Let us take µ = 1 if r = 3 and F is given by (3); otherwise we take µ = 2.

By writing e−ν(t−s)AhTh = A
µ/2
h e−ν(t−s)Ah(A

−µ/2
h Th), we have that∥∥∥∥∫ t

0

e−ν(t−s)AhTh(s) ds

∥∥∥∥
L2(Ω)

≤
(∫ T

0

∥∥∥Aµ
2

h e
−ν(t−s)Ah

∥∥∥
2
ds

)
max

0≤t≤T

∥∥∥∥A−µ2h Th(t)

∥∥∥∥
L2(Ω)

.
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POSTPROCESSING FINITE-ELEMENT METHODS 483

Let λm, λM be the smallest and largest eigenvalues of Ah, respectively. In the case
µ = 2 one can easily check that

∥∥Ahe−ν(t−s)Ah∥∥
2
≤
λMe

−νλM (t−s) if ν(t− s) ≤ λ−1
M ,

(ν(t− s))−1 if λ−1
M ≤ ν(t− s) ≤ λ−1

m ,
λme

−νλm(t−s) if ν(t− s) ≥ λ−1
m .

On the other hand, for the case µ = 1, one has ‖A1/2
h e−ν(t−s)Ah‖2 ≤ (ν(t − s))−1/2.

Taking into account that λm is bounded from below by the coercivity constant of
a(·, ·) = (A1/2, A1/2), and that λM ≤ ‖Ah‖2 ≤ C/h2, it follows from the above that
for some constant 0 < C = C(T ),

max
0≤t≤T

∥∥∥∥∫ t

0

e−ν(t−s)AhTh(s) ds

∥∥∥∥
L2(Ω)

≤ C

νµ/2
|log(h)|r max

0≤t≤T
∥∥A−µ/2h Th(t)

∥∥
L2(Ω)

.

Thus, (53) follows from the above and Lemma 4.
Theorem 2. There exist positive constants C = C(K(u)) and h0 given by (55)

below, such that for every h ∈ (0, h0],

max
0≤t≤T

‖rh(t)− uh(t)‖L2(Ω) ≤ Chr+µ |log(h)|r .(54)

Proof. This theorem is a direct consequence of Lemma 2 with vh replaced by
uh (and hence T̂h = 0) and Lemma 5. It remains only to check that vh(t) = uh(t)
satisfies the threshold condition (26) for t ∈ [0, T ]. This can be done by a standard
continuity argument as follows. Let us take

h0 = min

(
c2th

(2SC)2
, e−2

)
,(55)

where S is the stability constant in (34), C is the error constant in (53), and cth is
the threshold constant in (26). Observe that h0 ≤ e−2 implies that h1/2| log(h)| ≤
2e−1 < 1, for h ≤ h0. Let us define

t1 = t1(h) = max{ s | vh(t) = uh(t) satisfies (26) for t ∈ [0, s] }.
Since rh(0) − uh(0) = 0, by continuity we have that t1 > 0. We now show that
t1(h) ≥ T for h ≤ h0. Suppose that t1(h) < T for some h ≤ h0. Since vh = uh
satisfies (26) for t ∈ [0, t1(h)], it follows that

‖rh(t1)− uh(t1)‖L2(Ω) ≤ SChr+µ |log(h)|r ≤ SChr+1/2(h1/2 |log(h)|)
≤ SChr+1/2 = hrSCh1/2 ≤ hrSC cth

2SC
≤ cth

2
hr.

Then, there exists t2 > t1 such that (26) holds for vh = uh and t ∈ [0, t2]. But this
contradicts the definition of t1. Therefore, it must be t1(h) ≥ T .

2.3. The postprocessing step. In this section we prove Theorem 1, but first we
analyze how ũ (and hence u), which lives in the infinite-dimensional spaceD(A3/2) (re-
call (16)), can be approximated in some finite-element space with an O(hr+µ| log(h)|r)
error.

We consider a finite-element space S̃h; this will be either
(1) S̃h = Sh′,r, with (h′)r ≤ Chr+µ| log(r)|r,
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484 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

that is, piecewise polynomials of degree r over a finer grid; or, if u(T ) ∈ Hr+µ,
(2) S̃h = Sh,r+µ,

that is, piecewise polynomials of degree r + µ over the same grid.
Let ũh ∈ S̃h be the solution of

νÃhũh = −P̃h
(
F (uh(T )) +

d

dt
uh(T )

)
,(56)

where P̃h is the L2 projection onto S̃h, and Ãh is the linear, positive, self-adjoint
operator induced by the bilinear form a when restricted to S̃h. Observe then that ũh
is the elliptic projection R̃hũ of ũ onto S̃h. Notice also that the right-hand side of
(7) is in H1(Ω) but not in H2(Ω). Thus, at first sight, applying (17) we have that
‖ũ− ũh‖L2(Ω) = O(h3). However, as we will show next, ‖ũ− ũh‖L2(Ω) is indeed of the

order of O(hr+µ| log(h)|r).
Since ũh is the elliptic projection of ũ, it is a well-known fact that

‖∇(ũ− ũh)‖L2(Ω)d ≤ ‖∇(ũ− χ̃h)‖L2(Ω)d ∀χ̃h ∈ S̃h.

Now, take χh = Ĩh(u), the interpolant of u in S̃h, and write ũ − Ĩh(u) = (ũ − u) +
(u− Ĩh(u)). Then Theorem 1 and the interpolation error (15) show that

‖∇(ũ− ũh)‖L2(Ω)d = O(hr+µ−1 |log(h)|r),

which by (17) leads to ‖ũ − ũh‖L2(Ω) = O(hr+µ| log(h)|r) by using standard duality
arguments and (17).

Lemma 6. There exists a positive constant C that depends on K(u), such that
the following bounds hold for µ = 1, 2:∥∥A−1(rh(T )− uh(T ))t

∥∥
L2(Ω)

≤ C(‖rh(T )− uh(T )‖L2(Ω) + hr+µ
)
,∥∥A−1/2(rh(T )− uh(T ))t

∥∥
L2(Ω)

≤ C(h−1‖rh(T )− uh(T )‖L2(Ω) + hr+1−i),
where i = 0 when F is given by (3); otherwise i = 1 when F is given by (4).

Proof. We drop the explicit dependence on the argument T . We have that

(rh − uh)t = −νAh(rh − uh) + Ph(F (uh)− F (rh)) + Th.(57)

Consider the third term on the right-hand side above. We have already established
bounds for A−µ/2Th in Lemma 4, for µ = 1, 2.

For the first term on the right-hand side of (57) we write A−µ/2Ah = (A−µ/2 −
A
−µ/2
h Ph)Ah + A

1−µ/2
h . Then, due to the inverse estimate (13), it follows that

‖As/2h ‖2 ≤ Ch−s for s = 1, 2. This and (17) lead to∥∥A−µ/2Ah(uh − rh)
∥∥
L2(Ω)

≤ Chµ−2 ‖uh − rh‖L2(Ω) , µ = 1, 2.(58)

Finally, for the second term on the right-hand side of (57), by writing A−µ/2 =

(A−µ/2 −A−µ/2h ) +A
−µ/2
h , from (17) and Lemma 1, it follows that∥∥A−µ/2Ph(F (uh)− F (rh))

∥∥
L2(Ω)

≤ C ‖uh − rh‖L2(Ω) .

This together with (57), (58), and Lemma 4 finishes the proof.
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POSTPROCESSING FINITE-ELEMENT METHODS 485

Proof of Theorem 1. Subtracting (7) from (1) and applying νA−1 we have that

u(T )− ũ = ν−1

(
A−1(F (uh(T ))− F (u(T ))) +A−1

(
duh
dt

(T )− du

dt
(T )

))
.(59)

Since ‖∇·‖L2(Ω) =
∥∥A1/2·∥∥

L2(Ω)
, then by Lemma 3 and an argument similar to that

leading from (50) to (47), we obtain the following bounds:

‖u− ũ‖L2(Ω) ≤ C
∥∥A−1(uh − u)

∥∥
L2(Ω)

+
∥∥A−1(uh − u)t

∥∥
L2(Ω)

+ ε2,(60)

‖u− ũ‖H1(Ω) ≤ C
∥∥A−1/2(uh − u)

∥∥
L2(Ω)

+
∥∥A−1/2(uh − u)t

∥∥
L2(Ω)

+ ε1,(61)

where for µ = 1, 2, εµ = ‖u − uh‖Lq(Ω)‖u − uh‖Hi(Ω), with q as indicated in Lemma
3 and i = 1 when F is given by (4); otherwise i = 0.

Let us first find an upper bound for εµ. We write

u− rh = (u− rh) + (rh − uh).(62)

For rh − uh, using the inverse estimate (13) and Theorem 2, we have that

‖rh − uh‖Lq(Ω) ≤ Ch
d
q− d2 ‖rh − uh‖L2(Ω) ≤ CK(u)hr+µ+ d

q− d2 |log(h)|r .

But d/q−d/2 = −d/p, which, in view of (38), allows us to write r+µ−d/p ≥ µ+µ−1,
where we have used that r ≥ 3 in the case d/2 < µ. This and (52) lead to

‖u− uh‖Lq(Ω) ≤ CK(u)hmin(µ+µ−1,µ) |log(h)|r .

Using again (62), applying (17), (13), and Theorem 2, one can show that

‖u− uh‖Hi(Ω) ≤ CK(u)hr−i,

where i = 1 when F is given by (4); otherwise i = 0. Hence, it follows that

ε2 ≤ CK(u)hr+µ |log(h)|r , ε1 ≤ CK(u)hr+1−i |log(h)|r .
Let us now turn to the other terms in (60)–(61). Using (62) and taking into

account that A−µ/2 is bounded, we have that∥∥A−µ/2(u− uh)
∥∥
L2(Ω)

≤ ∥∥A−µ/2(u− rh)
∥∥
L2(Ω)

+ C ‖rh − uh‖L2(Ω) ,∥∥A−µ/2(u− uh)t
∥∥
L2(Ω)

≤ ∥∥A−µ/2(u− rh)t
∥∥
L2(Ω)

+
∥∥A−µ/2(rh − uh)t

∥∥
L2(Ω)

.

Then, (17)–(18) and Lemma 6, together with (54), yield the bound (8).

3. Numerical experiments. We consider the reaction-diffusion system

∂u1

∂t = 1− 4u1 + u2
1u2 + ν∆u1

∂u2

∂t = 3u1 − u2
1u2 + ν∆u2

}
known as the Brusselator (see, e.g., [27]), in Ω× [0, T ], where Ω = [0, 1]2 and T = 10,
subject to the Neumann boundary condition

∂u1

∂n
=
∂u2

∂n
= 0 on ∂Ω.
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Fig. 1. Evolution of ‖u‖L2(Ω)2 .
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u 2  

Fig. 2. Component u2 of the solution at T = 10.

Although for simplicity we have developed the analysis for Dirichelet boundary con-
ditions, our analysis can be modified to cover the Neumann boundary conditions case
as well.

We set ν = 0.002. We complement this system with the initial condition

u1(x, y, 0) = 1− 1
4 (2y − 1)((2y − 1)2 − 3),

u2(x, y, 0) = 3− (2x− 1)((2x− 1)2 − 3).

The corresponding solution becomes nearly periodic in time, and develops moderately
large gradients. Figure 1 shows the evolution of ‖u‖L2(Ω)2 up to time T = 20, and a
periodic behavior can be observed. In Figure 2, the component u2 of the solution, at
time T = 10, is portrayed; the gradient takes values above 50 in some points of the
domain.

In our calculations we take the so-called regular pattern triangulations of Ω, which
are induced by the set of nodes (j/N, k/N), 0 ≤ j, k ≤ N , where N = |Ω| /h is an
integer. For the Galerkin method (5) we used Lagrange quadratic elements on these
triangulations (i.e., r = 3) and for the postprocessing step, since the solution u =
(u1, u2)T is smooth, we choose Lagrange cubic elements on the same triangulations.

Since the Laplacian is noninvertible when subject to Neumann boundary condi-
tions, for the postprocessing step we solve

νÃhũ1,h + 4ũ1,h = 1 + P̃h(u2
1,hu2,h)− d

dt
u1,h,(63)

νÃhũ2,h + P̃h
(
ũ2

1,hũ2,h) = 3ũ1,h − d

dt
u2,h,(64)

solving first (63) (notice that νÃh+̃4Id is invertible) and then (64).
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POSTPROCESSING FINITE-ELEMENT METHODS 487

For the time integration, a variable-formula, variable-coefficient implementation
of the backward differentiation formulae (BDF) was used with orders up to six (see,
e.g., [26]). This method is widely used in the numerical integration of stiff ordinary
differential equations (ODEs), like those arising from the spatial discretizations of
dissipative PDEs. This BDF code was previously used in [16],[19], [20]. In [19], this
code is shown to be more efficient than other widely used integrators in dissipative
PDEs (including semi-implicit methods). Without an efficient time integrator, as
shown in [19], [20], it may take an unaffordable amount of computing time to reach
the levels of accuracy described below.

For each h used in the triangulations of Ω, every experiment was carried out with
different values of the tolerance TOL (an input value to the time integrator) below
which local time discretization errors are desired. The smallest error obtained was
selected for the plots. There was always a point, depending on h, at which further
reducing the tolerance did not reduce the errors any more. This means that the
error arising from time discretization is much smaller than the error arising from the
finite-element spatial discretization. When this happens, one can be sure that the
errors observed are due only to the spatial discretization and do not depend on the
time integrator used. In view of [19] we were particularly careful to ensure that the
dominant error in all the computations presented here was the spatial discretization
error in order to avoid wrong conclusions from our numerical experiments. Also, for
the computational cost in Figures 4–6 below, the largest tolerance among those with
which the spatial discretization error was dominant was used. We refer to this value
of the tolerance as the optimal tolerance. A smaller tolerance would result in a larger
cost but no smaller error. A larger one, on the other hand, would imply a larger error,
but then the same error could be obtained at less cost with the same tolerance and
larger h.

In Figure 3 we present a convergence diagram showing the errors committed by the
methods when used with h = |Ω| /N , N = 12, 24, 48. By errors we mean the difference
between the approximations (u1,h, u2,h) or (ũ1,h, ũ2,h) and the exact solution (at the
end of the section we explain how it was obtained). In this and in the rest of the plots,
the computational results of the classical quadratic elements are joined by continuous
lines, and those of the postprocessed method by discontinuous (dashed) lines. With
this, we get an idea of what the result would have been for intermediate values of h.
It can be seen that as h is decreased from left to right, the errors in both methods
decrease from top to bottom, but they decrease faster in the postprocessed method.
Measures of the slopes of the plots confirm the rates predicted by the theory (i.e., the
errors in the plot decrease like N slope = const.h−slope).

The improved convergence rate of the postprocessed method observed in Figure
3 also implies improved efficiency. This can be checked in Figure 4, where the same
errors as in Figure 3 are plotted against the smallest amount of CPU time that
the methods needed to achieve them, that is, the cost of integrating the method
with the optimal tolerance (notice that, for a given h, the optimal tolerance of the
postprocessed quadratics is, in general, smaller than that of the quadratics). The
reason for this improvement is that the error of the Galerkin method is reduced when
the postprocessing is done, but this is done at very little cost (less than 10% of
the whole computation, including the extra cost of integrating in time with smaller
tolerances). In fact, the cost of the postprocessing step is equivalent to the cost of
roughly 10 time steps, and the number of time steps in the results shown in Figure 4
varies between 109 and 344.
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Fig. 3. Convergence diagram.
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Fig. 4. Efficiency diagram.

The postprocessed quadratic elements are not only more efficient than the classical
quadratics but also more efficient than the classical cubic elements, which have the
same convergence rate as the postprocessed quadratics. In Figure 5 we have plotted,
besides the results of Figure 4, those of the classical cubic elements, that is, the
standard Galerkin method (5)–(6) but with r = 4. These are represented by asterisks
joined by dotted lines. Notice how the discontinuous line (postprocessed method) is
always on the left (less CPU time) of the dotted line of the cubics. In this example,
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Fig. 5. Efficiency diagram.
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Fig. 6. Efficiency diagram in L∞.

the postprocessed quadratics save between 15% and 17% of the cost of the cubics.
More significant is the gain in the maximum norm in Figure 6, where the postprocessed
quadratics require between 21% and 25% less computing time than the classical cubics.

A significant detail can be observed in Figures 5 and 6: The postprocessed method
is more efficient than classical methods for quite large errors (already above 10−3).
This is in contrast to our previous experience with spectral methods, where, typically,
postprocessing brings a substantial improvement only for quite small errors (below
10−5) [16], [21].
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Fig. 7. Evolution of PCG iterations for h =
√

2/48 and TOL = 0.001: − · − MAXIPCG = 8, −−
MAXIPCG = 11, −− MAXIPCG = 18818.

We end this section by commenting on the more relevant details of the methods
used. Recall that the time integration is done with the BDF. Since these are fully
implicit methods, then, at every time step, a system of nonlinear equations of the
form

αvh + (δt)(νAhvh + PhF (vh)) = 0,(65)

has to be solved, where δt is the time steplength. This was done by Newton iteration.
The exact Jacobian matrices were replaced by the Jacobian matrix of the linear terms,
that is,

αMh + (δt)νSh,(66)

where Mh and Sh are the mass and stiffness matrices (see, e.g., [45]).
The corresponding linear systems were solved by the preconditioned conjugate

gradient method (PCG) with incomplete Cholesky (ICH) factorization of (66) as
preconditioner (see, e.g., [23]). Both PCG and ICH algorithms were taken from
the SLAP library. A single ICH factorization of (66) proved to be extremely costly
(between 5% to 10% of the whole computation from t = 0 to T = 10). Thus,
it was computed at the first step and reused in later steps until the PCG did not
converge, when it was recalculated again. By convergence in the PCG method we
mean achieving a relative error below a prescribed value TOLPCG in less than a fixed
number of iterations MAXIPCG.

In our present case, we chose TOLPCG = 10−3 for the linear systems in the Newton
iteration of (65), and 10−9 for those in the postprocessing (63)–(64). To set the value
of MAXIPCG, we performed a practical study for various values of h and settle it to
MAXIPCG = 11, which usually forced the computation of two ICH decompositions. In
Figure 7, the number of PCG iterations (the maximum for the two or three linear
systems solved per step) for different values of MAXIPCG are shown, together with the
CPU times of the corresponding runs. It can be seen how if MAXIPCG is generous
(dashed line) the code computes only one ICH factorization at t = 0 but in the end
performs a crippling number of iterations. If MAXIPCG is too tight (dash-dotted line)
the second ICH decomposition is computed too soon, at t = 1.6662; the number of
PCG iterations is drastically reduced from then onward, but the overall number of
iterations (and hence the cost) is larger than for MAXIPCG = 11 (continuous line).
Notice how in this last case, the number of iterations is drastically reduced at t =
2.5005 when the second ICH factorization is computed, and remains the lowest from
then onward.
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POSTPROCESSING FINITE-ELEMENT METHODS 491

For the linear systems in the postprocessing step (63)–(64), it proved far more
effective to use the diagonal of the corresponding matrices as a preconditioner. A far
greater number of PCG iterations were taken (in the example of Figure 7, 70 for ũ1,h

and 308 for ũ2,h for systems of 21025 unknowns), but it compensated for the cost of
a new ICH factorization (notice that the matrices in the postprocessing step are of
larger dimension than those in (66)).

The initial guess for Newton’s method in (65) was computed by standard tech-
niques of extrapolation in the BDF code (see, e.g., [26]), and for the PCG method
in the corresponding linear systems the initial iterates were set to 0 (notice that the
solutions of this systems are the increments of Newton iterations that are supposed
to be small). For the linear system in the postprocessing step (63)–(64), the initial
guess was the Galerkin approximation uh expressed in the nodal basis of the cubic
elements.

It may be asked if other linear algebra techniques would have changed the results
shown here. This would be especially the case if a faster (if existing) linear algebra
would have favored the cubic elements but not the quadratics (and hence, neither
the postprocessed method), although it is difficult to devise why it should be so.
Obviously, it is out of the scope of this paper to test all possible linear system solvers,
especially when there does not seem to be a clear-cut criterion for when to apply
the many existing techniques competing for attention. The PCG used here seems to
us a very reasonable choice, especially if we take into account the very low number
of iterations that it took to solve the systems in our examples (recall Figure 7).
Furthermore, a significant improvement could have been made to the postprocessing
step with multilevel techniques (see, e.g., [4]), which would have favored yet further
the postprocessed Galerkin method. We tested direct (sparse) solvers, but they were
remarkably more costly than the PCG. We also checked that explicit time integrators
were much less efficient than the BDF (i.e., the system of ODEs (5) is genuinely stiff).

In all the results shown here, the initial condition (6) was replaced by the inter-
polant Ih(u0), which is much cheaper to compute than the elliptic projection in (6).
We also performed the experiments with (6), and observed that the differences with
those shown here were insignificant.

The theoretical (“exact”) solution u was computed with cubic elements and
h =

√
2/96, using values of the tolerance ranging from 10−9 to 10−12, so that the

computed solution taken as exact is reasonably more accurate than those shown in
the experiments.

All experiments were carried out on a SUN Ultra-1, Mod. 140 workstation with
64 MB RAM, under Solaris 2.5.1. All programs were written in FORTRAN, used
double precision arithmetic, and were compiled with the SparcWorks 4.0 compiler
with the -fast option.

4. L∞analysis.

4.1. Preliminaries and main result. In comparison to section 2, we further
restrict ourselves here in the following sense.

1. The results here apply only to reaction-diffusion equations with nonlinear
terms as in (3).

2. We consider only problems in Rd, with d = 2, 3.
(As with the L2 analysis, the case d = 1 is particular and easier to study).

The error estimates in this section depend on

K∞(u, t) = ‖u(·, t)‖W r,∞(Ω) +‖ut(·, t)‖W r,∞(Ω) , K∞(u) = max
0≤t≤T

K∞(u, t).(67)
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492 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

Under these conditions, the error bounds of the postprocessed Galerkin method
are stated in the following theorem whose proof is given in section 4.3.

Theorem 3. There exist constants C = C(K∞(u)) > 0 and h0 > 0 such that for
every h ∈ (0, h0] the solution ũ of (7) satisfies the following bound:

‖u− ũ‖L∞(Ω) ≤ Chr+2−d/2 |log(h)|4−d/2 if r = 3.(68)

‖u− ũ‖L∞(Ω) ≤ Chr+2 |log(h)|3 if r ≥ 4.(69)

We now state the equivalent to (17)–(18) in the L∞ norm. Instead of (17) we
have

‖u− rh‖L∞(Ω) + h ‖u− rh‖W 1,∞(Ω∩Ωh) ≤ Chl ‖u‖W l,∞(Ω) , 1 ≤ l ≤ r.(70)

This estimate follows from Theorem 5.1 in [39], (15), and (13). We are unaware of an
estimate like (18) in L∞, although similar results in Lp can be found in the literature.
Thus, we prove the following result.

Lemma 7. Assume that d ≥ 2, r ≥ 3, and δ(h) = O(hmin(r+2,2(r−1))). Then there
exists a constant C > 0 such that for v ∈W r,∞(Ω) the following bound holds:∥∥A−1(v −Rhv)

∥∥
L∞(Ω)

≤ C ‖v‖W r,∞(Ω) h
min(r+2,2(r−1)) |log(h)| .(71)

Proof. Following [39], we take χh = Ih
(
A−1(I−Rh)v) the interpolant of A−1(I−

Rh)v. Then∥∥A−1(I −Rh)v
∥∥
L∞(Ω)

≤ ∥∥A−1(I −Rh)v − χh
∥∥
L∞(Ω)

+ ‖χh‖L∞(Ω) .

Let us take p with 2 ≤ p ≤ ∞. For the first term on the right-hand side above we
have that (cf. [6, Thm. 3.1.6])∥∥A−1(I −Rh)v − χh

∥∥
L∞(Ω)

≤ Ch2−d/p∥∥A−1(I −Rh)v
∥∥
W 2,p(Ω)

.

Let us recall the following inequality (see, e.g., [39] and [49]) which, for linear elliptic
equations, illustrates the rate at which the Agmon–Douglis–Nirenberg regularity and
well-posedness estimate [2] deteriorates as p → ∞. Namely, there exists a constant
C > 0, which is independent of p, such that∥∥A−1w

∥∥
W 2,p(Ω)

≤ Cp ‖w‖Lp(Ω) , 2 ≤ p <∞.(72)

Thus, it follows that∥∥A−1(I −Rh)v − χh
∥∥
L∞(Ω)

≤ Cph2−d/p ‖(I −Rh)v‖Lp(Ω)

≤ Cphr+2−d/p ‖v‖W r,p(Ω) .

Using (13) we have that ‖χh‖L∞(Ω) ≤ Ch−d/p‖χh‖Lp(Ω), and thus

‖χh‖L∞(Ω) ≤ Ch−d/p
(∥∥χh −A−1(I −Rh)v

∥∥
Lp(Ω)

+
∥∥A−1(I −Rh)v

∥∥
Lp(Ω)

)
.(73)

In view of the interpolation error bound (15), (70) and (72) we obtain the following
estimate for the first term on the right-hand side of (73):

Ch−d/p
∥∥χh −A−1(I −Rh)v

∥∥
Lp(Ω)

≤ Cphr+2−d/p ‖v‖W r,p(Ω) .

Also, it is well known (see, e.g., [40, Example 3.2]) that

Ch−d/p
∥∥A−1(I −Rh)v

∥∥
Lp(Ω)

≤ Cphmin(r+2,2(r−1))−d/p ‖v‖W r,p(Ω) ,(74)

with C independent of p and h. Taking p = |log(h)|, (71) follows easily.
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POSTPROCESSING FINITE-ELEMENT METHODS 493

4.2. L∞analysis of the Galerkin method. The following resolvent estimate,
which is due to Palencia [38], will be needed later for our L∞ error estimates.

Lemma 8. Fix α ∈ (0, π/2) and h0 ∈ (0, e−1]. Let β(h) denote β(h) = ‖(Ph −
Rh)A−1‖∞ (= O(h2| log(h)|)). Then there exist positive constants C∞ and σ < 1)
such that the bounds∥∥(zI −Ah)−1

∥∥
∞ ≤

{
C∞ |z|−1

if |z| ≤ σβ(h)−1,

C∞h−d/2 |z|−1
if |z| ≥ 0

hold for z ∈ C with π ≥ | arg(z)| ≥ α and for 0 < h ≤ h0.
Taking for example a = (d + 3)/(2σ cos(α)), it easily follows that there exists a

constant C0 > 0 such that for h sufficiently small∥∥e−tAhχh∥∥L∞(Ωh)
≤ C0 ‖χh‖L∞(Ωh) , χh ∈ Sh, t ≥ r0 = aβ(h) |log(h)| .(75)

We will also use the following bound from Nitsche and Wheeler [36],∥∥e−tAhχh∥∥L∞(Ωh)
≤ C1 ‖χh‖L∞(Ωh) , χh ∈ Sh, t ≥ 0, r ≥ 4.(76)

The lack of a bound like (76) ∀t ≥ 0, if r = 3, is the reason that the convergence rate
depends also on the dimension d. This will be seen in Lemma 11 below.

Lemma 9. Fix cth > 0 and T > 0. Then there exists a constant S > 0 such that
for vh : [0, T ]→ Sh,r satisfying vh(0) = rh(0) and the threshold condition

‖rh(t)− vh(t)‖L∞(Ωh) ≤ cth,(77)

for t ∈ [0, t1] where t1 ≤ T , the following bound holds for h sufficiently small:

max
0≤t≤t1

‖vh(t)− rh(t)‖L∞(Ωh) ≤ S max
0≤t≤t1

∥∥∥∥∫ t

0

e−ν(t−s)Ah(T̂h(s)− Th(s)) ds.

∥∥∥∥
L∞(Ωh)

,

(78)
where T̂ is as in (35).

Proof. We notice that the threshold condition (77) and the fact thatRh is bounded
ensures that both ‖vh‖L∞(Ω) and ‖rh‖L∞(Ω) are bounded by some constant C =
C(cth,max0≤t≤T ‖u(t)‖L∞(Ω)). Since F is smooth, it follows that

‖F (vh)− F (rh)‖L∞(Ωh) ≤ C ‖vh − rh‖L∞(Ωh) .(79)

Now take norms in (36). For r ≥ 4, thanks to (76), the fact that Ph is bounded in
L∞ (recall (20)) and (79) above, standard arguments with the Gronwall lemma lead
to (78).

For r = 3, similar arguments (with a generalized Gronwall lemma as in Lemma
2) will also lead to (78) as long as we prove∥∥∥∥∫ t

0

e−ν(t−s)AhPh(F (vh)− F (rh)) ds

∥∥∥∥
L∞(Ωh)

≤ C
∫ t

0

‖vh(s)− rh(s)‖L∞(Ωh)

(t− s)γ ds,

(80)
for some C > 0 and γ < 1. To do this, we consider the value r0 in (75) and let us call
t = max(0, t− r0/ν), so that for s ∈ [0, t], ν(t− s) ≥ r0. Then, thanks to (75), (79),
and the fact that Ph is bounded, we have that∥∥∥∥∫ t

t

e−ν(t−s)AhPh(F (vh)− F (rh)) ds

∥∥∥∥
L∞(Ωh)

≤ C
∫ t

t

‖vh(s)− rh(s)‖L∞(Ωh) ds.

(81)
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494 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

On the other hand, take p = d and κ = d/2 − 1 so that 1/p = 1/2 − κ/d. Then, for
s ∈ [t, t] and wh ∈ Sh,r, thanks to the inverse estimate (13) and Sobolev’s lemma, we
have that∥∥∥e−ν(t−s)Ahwh

∥∥∥
L∞(Ωh)

≤ C

h

∥∥∥e−ν(t−s)Ahwh
∥∥∥
Lp(Ωh)

≤ C

h

∥∥∥e−ν(t−s)Ahwh
∥∥∥
Hκ(Ωh)

≤ C

h

∥∥∥e−ν(t−s)Ahwh
∥∥∥1−κ

L2(Ωh)

∥∥∥A1/2
h e−ν(t−s)Ahwh

∥∥∥κ
L2(Ωh)

≤ C

h
(
ν(t− s))κ/2 ‖wh‖L2(Ωh) .(82)

Now observe that for s ∈ [t, t], since ν(t − s) ≤ r0 ≤ Ch3/2, it follows that h−1 ≤
C(ν(t− s)−2/3). Thus, taking into account that

κ

2
+

2

3
=

(
d

4
− 1

2

)
+

2

3
=
d

4
+

1

6
≤ 3

4
+

1

6
=

11

12
= γ < 1,

we have that∥∥∥e−ν(t−s)Ahwh
∥∥∥
L∞(Ωh)

≤ C(
ν(t− s)) 11

12

‖wh‖L2(Ωh) ≤
C|Ωh|1/2(
ν(t− s)) 11

12

‖wh‖L∞(Ωh) .

This (replacing wh by Ph(F (vh)−F (rh))) together with (79) and (81) leads to (80)with
γ = 11/12.

Having established stability in the previous lemma, we now face the task of esti-
mating the right-hand side of (78) when vh = uh. Recall that in the L2 case, this was
straightforward thanks to the very favorable L2-bounds of Ahe

−µ(t−s)Ah , which can
be obtained by means of the spectrum of Ah. In the present case, i.e., the L∞ case,
the lack of such bounds for e−µ(t−s)Ah (let alone Ahe

−µ(t−s)Ah) makes the task much
harder. Since the difficulty lies when t− s is small (recall for example the restriction
in (75)), we will decompose the integrals in (78) into two parts corresponding to t− s
large (Lemma 10 below) and small (Lemma 11 below).

Lemma 10. Fix α ∈ (0, π/2), let σ and β(h) be as in Lemma 8, and set τ1 =
dβ(h)| log(h)|/(2νσ cos(α)). Then there exists a constant C > 0 such that for t ≥ τ1
the following bound holds for h sufficiently small:∥∥∥∥∫ t−τ1

0

eν(t−s)AhTh(s) ds

∥∥∥∥
L∞(Ωh)

≤ C

ν

∣∣∣∣log

(
t

h

)∣∣∣∣ max
0≤s≤t−τ1

∥∥A−1
h Th(s)

∥∥
L∞(Ωh)

.(83)

Proof. By writing eν(t−s)AhTh(s) = Ahe
ν(t−s)AhA−1

h Th(s), we only need to bound
Ahe

ν(t−s)Ah . Let Γ be the boundary of the sector {z | | arg(z)| ≤ α}, endowed with
the positive orientation. Then

Ahe
−ν(t−s)Ah =

1

2πi

∫
Γ

ze−ν(t−s)z(zI −Ah)−1 dz.

We take ρ1 = σβ(h)−1, and divide Γ in the two parts Γ ∩ {|z| ≤ ρ1} and the two
half-lines Γ ∩ {|z| ≥ ρ1}. Taking into account the resolvent estimate in Lemma 8, we
can write∥∥Ahe−ν(t−s)Ah∥∥

∞ ≤ 2C∞
∫ ρ1

0

e−ν(t−s) cos(α)ρ dρ+ 2
C∞
hd/2

∫ ∞
ρ1

e−ν(t−s) cos(α)ρ dρ,
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POSTPROCESSING FINITE-ELEMENT METHODS 495

so that

∥∥Ahe−ν(t−s)Ah∥∥
∞ ≤

2C∞
ν(t− s) cos(α)

(
1 +

e−ν(t−s) cos(α)ρ1

hd/2

)
.

We now notice that for s ≤ t−τ1, we have that t−s ≥ τ1, and then−ν(t−s) cos(α)ρ1 ≤
−ντ1 cos(α)ρ1 = −d log(h)/2 = d| log(h)|/2. Thus,

∥∥Ahe−ν(t−s)Ah∥∥
∞ ≤

4C∞
ν(t− s) cos(α)

.(84)

By integrating the right-hand side above with respect to s on the interval [0, t− τ1],
(83) follows easily.

Lemma 11. Let α, σ, β(h), and τ1 be as in Lemma 10. Then, there exists a
constant C > 0 such that for t ≥ τ1 the following bound holds: for r = 3,∥∥∥∥∫ t

t−τ1
eν(t−s)AhTh(s) ds

∥∥∥∥
L∞(Ωh)

≤ C log(h)3−d/2h2−d/2 max
t−τ1≤s≤t

‖Th(s)‖L∞(Ωh) ,

and for r ≥ 4,∥∥∥∥∫ t

t−τ1
eν(t−s)AhTh(s) ds

∥∥∥∥
L∞(Ωh)

≤ C log(h)2h2 max
t−τ1≤s≤t

‖Th(s)‖L∞(Ωh) .

Proof. The case r ≥ 4 is a consequence of (76) and the fact that

τ1 =≤ Ch2 log(h)2.(85)

For r = 3, let us take p = d and κ = d/2− 1, and recall (82). Then∥∥∥∥∫ t

t−τ1
eν(t−s)AhTh(s) ds

∥∥∥∥
L∞(Ωh)

≤ Cτ
1−κ/2
1

νκ/2h
‖Th‖L∞(Ωh) ,

which, since 1− κ/2 = 3/2− d/4 and in view of (85), finishes the proof.
Lemma 12. Let v ∈W 2,∞(Ω) and fix c > 0. Then there exists a constant C that

depends on ‖v‖W 2,∞(Ω) and c, such that ∀χ ∈ L∞(Ω) satisfying ‖v − χ‖L∞(Ω) ≤ c,
the following bound holds:∥∥A−1(F (v)− F (χ))

∥∥
L∞(Ω)

≤ C
(∥∥A−1(v − χ)

∥∥
L∞(Ω)

+ ‖v − χ‖2L∞(Ω)

)
.(86)

Proof . Since F is smooth, F ′′ is bounded in {x | |x| ≤ ‖v‖L∞(Ω) + c}. Then,
using the mean-value theorem, it follows that

‖F (v)− F (χ)‖L∞(Ω) ≤ ‖F ′(v)(v − χ)‖L∞(Ω) + C ‖v − χ‖2L∞(Ω) .

Since ‖A−1‖∞ < +∞, we need only to bound the ‖A−1F ′(v)(v − χ)‖L∞(Ω). Let us
denote ε = v−χ and E = A−1ε. Since ∆(F ′(v)E) = E∆F ′(v)+2∇F (v) ·∇E+F ′(v)ε,
we have that

A−1F ′(v)ε = F ′(v)E −A−1(E∆F ′(v))− 2A−1(∇F ′(v) · ∇E).
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496 BOSCO GARCÍA-ARCHILLA AND EDRISS S. TITI

It is clear that the first two terms on the right-hand side above are bounded by the
right-hand side of (86), so we need only to bound the third term. Take p = d + 1;
then ∥∥A−1(∇F ′(v) · ∇E)

∥∥
L∞(Ω)

≤ C∥∥∇A−1(∇F ′(v) · ∇E)
∥∥
Lp(Ω)

.

We estimate the right-hand side above by duality. Take φ ∈ C∞0 (Ω)2. Then∣∣(∇A−1(∇F ′(v) · ∇E), φ
)∣∣ =

∣∣(A−1(∇F ′(v) · ∇E),div(φ)
)∣∣

=
∣∣(∇F ′(v) · ∇E), A−1div(φ)

)∣∣
=
∣∣(E ,div(A−1div(φ)∇F ′(v)

)∣∣
≤ ‖E‖Lp(Ω)

∥∥div(A−1div(φ)∇F ′(v)
∥∥
Lq(Ω)

≤ C ‖E‖L∞(Ω) ‖v‖W 2,∞(Ω)

∥∥A−1div(φ)
∥∥
W 1,q(Ω)

≤ C ‖E‖L∞(Ω) ‖v‖W 2,∞(Ω) ‖div(φ)‖W−1,q(Ω)

≤ C ‖E‖L∞(Ω) ‖v‖W 2,∞(Ω) ‖φ‖Lq(Ω) .

Lemma 13. There exists a constant C that depends on K∞(u), which is given in
(67), such that for t ∈ [0, T ] the following bounds hold:

‖Th(t)‖L∞(Ωh) ≤ Chr,(87) ∥∥A−1
h Th(t)

∥∥
L∞(Ωh)

≤ Chr+µ |log(h)| ,(88) ∥∥A−1Th(t)
∥∥
L∞(Ωh)

≤ Chr+µ |log(h)| ,(89)

where µ = 2 if r ≥ 4 and µ = 1 otherwise.
Proof. The bound (87) is a direct consequence of the mean-value theorem, (70)

and the fact that ‖Ph‖∞ is finite. To prove (88) we notice that A−1
h Ph = RhA

−1.
Since ‖Rh‖∞ is finite (recall (21)) we have that∥∥A−1

h Th
∥∥
L∞(Ω)

≤ C
(∥∥A−1(F (rh)− F (u)

∥∥
L∞(Ω)

+
∥∥A−1(rh − u)t

∥∥
L∞(Ω)

)
.

Then (88) follows from Lemma 12 and (71). Finally, for (89), we write A−1 = (A−1−
A−1
h Ph) +A−1

h Ph. Since from (70) and (74) we have that
∥∥A−1 −A−1

h Ph
∥∥
∞ =

∥∥(I −
Rh)A−1

∥∥
∞ = O(h2 |log(h)|), then (89) follows from (87) and (88).

Theorem 4. There exist a constant C that depends on K∞(u), which is given
in (67), and a constant h0 > 0 such that for 0 < h ≤ h0 the following bound holds:

max
0≤t≤T

‖rh(t)− uh(t)‖L∞(Ω) ≤ Chr+µ̃ |log(h)|r̃ ,(90)

where µ̃ = 2 when r ≥ 4 (otherwise µ̃ = 2 − d/2) and r̃ = 2 when r ≥ 4 (otherwise
r̃ = 3− d/2).

Proof. The proof is a direct consequence of Lemmas 9, 10, 11, and 13. One has
only to check that the threshold condition (77) holds, but this, as in Theorem 2, is
easily proven by standard continuity arguments.

4.3. Analysis of the postprocessing step in L∞. In this section, as in sec-
tion 2.3, we first prove Theorem 3. Then we provide an approximation ũh, in an
appropriate finite-element space, to ũ such that ‖ũ − ũh‖L∞(Ω) is of the same order
as ‖ũ− u‖L∞(Ω).

D
ow

nl
oa

de
d 

04
/1

7/
17

 to
 1

50
.2

14
.1

82
.2

08
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



POSTPROCESSING FINITE-ELEMENT METHODS 497

Proof of Theorem 3. One has only to follow the reasoning of section 2.3, replacing
L2(Ω) by L∞(Ω), and concentrating on the case µ = 2. Taking the L∞ norms in (59)
and applying Lemma 12 we obtain that

‖u− ũ‖L∞(Ω)≤C
(∥∥A−1(u− uh)

∥∥
L∞(Ω)

+ ‖u− uh‖2L∞(Ω)

)
+
∥∥A−1(u− uh)t

∥∥
L∞(Ω)

.

We write u− uh = (u− rh) + (rh − uh). Then, in view of (70) and the estimation of
‖rh − uh‖L∞(Ω) in Theorem 4 we have that

‖u− ũ‖L∞(Ω) ≤ C
∥∥A−1(u− rh)

∥∥
L∞(Ω)

+
∥∥A−1(u− rh)t

∥∥
L∞(Ω)

+
∥∥A−1(rh − uh)t

∥∥
L∞(Ω)

+

{
Chr+2−r/d |log(h)|3−d/2 , r = 3,

Chr+2 |log(h)|2 , r ≥ 4.

Lemma 7 shows that the first two terms on the right-hand side above are bounded
by the right-hand sides of (68)–(69). In order to estimate ‖A−1(rh − uh)t‖L∞(Ω), we
follow the proof in Lemma 6. Thus we return to (57). We have already estimated
‖A−1Th‖L∞(Ω) in Lemma 13. The term A−1Ah(uh−rh) is treated as in Lemma 6, but

now notice that ‖(A−1 − A−1
h )Ph‖∞ = O(h2| log(h)|), which accounts for the extra

| log(h)| term in (68)–(69) with respect to the bound (90) of u − rh in Theorem 4.
The second term on the right-hand side of (57) can be bounded as follows. Notice
that ‖A−1Ph‖∞ < +∞, so that in view of (79) and Theorem 4.2, we have that∥∥A−1Ph(F (uh)− F (rh))

∥∥
L∞(Ω)

≤ C ‖F (uh)− F (rh)‖L∞(Ω)

≤ C ‖uh − rh‖L∞(Ω) ≤ Chr+µ̃ |log(h)|r̃ .

Let us now consider the solution ũh = R̃hũ of (56), where the finite-element
space S̃h is as in section 2.3, but adequately modified to account for the difference in
convergence rates in L2 and L∞. Since R̃h is bounded in L∞ we have that ∀χ̃h ∈ S̃h

‖ũ− ũh‖L∞(Ω) =
∥∥(I − R̃h)ũ

∥∥
L∞(Ω)

=
∥∥(I − R̃h)(ũ− χ̃h)

∥∥
L∞(Ω)

≤ C ‖ũ− χ̃h‖L∞(Ω) .

As in section 2.3, replacing χ̃h by the interpolant Ĩh(u) of u in S̃h and writing ũ −
Ĩh(u) = (ũ− u) + (u− Ĩh(u)), then with Theorem 3 and the interpolation error (15)
we conclude that ‖ũ− ũh‖L∞(Ω) is of the same order as ‖ũ− u‖L∞(Ω).
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