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This paper addresses a decision problem related to simultaneously scheduling the tasks in a project and assigning the staff to these
tasks, taking into account that a task can be performed only by employees with certain skills, and that the length of each task depends
on the number of employees assigned.This type of problems usually appears in service companies, where both tasks scheduling and
staff assignment are closely related. An integer programming model for the problem is proposed, together with some extensions
to cope with different situations. Additionally, the advantages of the controllable processing times approach are compared with the
fixed processing times. Due to the complexity of the integratedmodel, a simple GRASP algorithm is implemented in order to obtain
good, approximate solutions in short computation times.

1. Introduction

The lead time required to carry out a project—project
makespan—has turned to be one of the main sources of
competitive advantage for companies (see, e.g., [1, 2]). Since,
in many cases, the processing times of the tasks that compose
a project depend on the resources allocated to the task (see,
e.g., [3]), it is clear that the project lead time depends both
on the scheduling of the tasks and on the allocation of staff
to these tasks. Regarding task scheduling, it encompasses
the sequence to be followed by each task over time, and it
is usually regarded as an important aspect of the industrial
organization [4] and production [5]. On the other hand,
staff assignment is essential in a project [6] and it can be
defined as the allocation of company workers to different
tasks. Traditionally, staff assignment is included within the
manpower planning as one of its steps. Thus, several authors
[7–10] have considered the following structure: (1) planning;
(2) scheduling; (3) allocation. In staff assignment, worker’s
satisfaction tends to be maximized whereas makespan and
production costs are often minimized in task scheduling. To
execute a task, it is essential that a particular employee is
available at that time; otherwise the realization of such task

should be postponed until the employee becomes available
and, consequently, staff assignment directly influences task
schedule. Due to the importance of the scheduling and the
assignment in a project environment and since both are
very related, it is critical to address both problems in an
integrated manner. Furthermore, the majority of scheduling
problems in the literature consider fixed processing times [11]
and most of the rest assume that processing times depend
linearly on the amount of resources assigned [12]. As lead
times strongly depend on the processing times of the task, and
since the processing time of a task depends on the number
of employees assigned to this task, in this paper we explicitly
take into account this relationship.

In this paper, an integration of project scheduling and
staff assignment (PSSA) problem with controllable process-
ing times (CPT) is presented using renewable resources and
nonpreemptive tasks. Minimization of the makespan has
been chosen as the objective function since delays can lead
to an increase in costs and even to the loss of customers.
This problem can be placed within the project management
process. According to Demeulemeester and Herroelen [13],
the project life cycle is as follows.
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Table 1: Names for the integrated problem.

Reference Name used for the integrated problem
Bellenguez and Néron [14], Bellenguez-Morineau and N ́eron [15] Multiskill project scheduling problem
Brucker and Knust [16], Drezet and Billaut [17] Project scheduling with labor constraints
Vairaktarakis [18] Resource-constrained job assignment problem
Valls et al. [19] Skilled workforce project scheduling

Corominas et al. [20] Problem of assigning and scheduling a set of tasks to a set of
workers

Drexl [21] Scheduling of project networks by job assignment
Dodin and Elimam [22] Problem of audit staff scheduling
Heimerl and Kolisch [23], Kolisch and Heimerl [24], Gutjahr et al.
[25], and Gutjahr et al. [26] Project scheduling and staffing

Wu and Sun [27] Project scheduling and staff assignment

(i) Concept Phase. There is a need of a customer to
perform a project. This need is transmitted to the
company.

(ii) Definition Phase. First, the goal of the project is
defined. Next, the work content is defined and, finally,
a project strategy is elaborated to achieve the goal.

(iii) Planning Phase. The project is divided into tasks.
Then, their processing times are estimated and both
the resources requirements and the precedence rela-
tionships between tasks are identified.

(iv) Scheduling Phase. Both task scheduling and the
amount of resources in each period of time are
defined in this phase

(v) Control Phase. In this phase it is controlled that the
project is implemented following the aspects defined
in the planning and scheduling phases.

(vi) Termination Phase. This phase corresponds to the
delivery of the results of the project.

Note that between the scheduling phase (where the
amount of resources is known) and the control phase there
must be an assignment of resources to the tasks if the
resources are not identical. For these cases, an additional
phase is therefore needed. This phase—named “resources
assignment phase”—must be placed between the schedul-
ing phase and the control phase. Alternatively, integration
between the scheduling and the resources assignment phases
can be done. The latter is the adopted approach in this
paper, which is organized as follows: a state of the art and
a description of the problem are shown in Section 2. An
extended explanation of the CPT is also presented, while the
problem statement and a formulation of the integer linear
programming model are shown in Section 3. Additionally
this integer linear programming model is compared with
a multimode formulation. In Section 4, we define a simple
GRASP heuristic algorithm for the problem. Section 5 con-
tains computational experiments based on a test bed. Besides,
a comparison between the model with and without CPT is
shown there. Lastly, conclusions are described in Section 6.

2. Literature Review

The model presented in this paper includes two deci-
sion problems: task scheduling and staff assignment. Task
scheduling is traditionally denoted in the literature as project
scheduling problem (PSP). Furthermore, if limitations regard-
ing the number of resources per activity are assumed,
it is named resource-constraint project scheduling problem
(RCPSP). This problem has been extensively studied in the
literature, and recent reviews can be found in Węglarz et
al. [32] and Hartmann and Briskorn [33]. Staff assignment
is a type of assignment decision problem that has also
been extensively addressed [34]. Nevertheless, the integration
between project scheduling and staff assignment has not
been so comprehensively studied, and hence there is still no
consensus about the name of this joint problem (see in Table 1
different names that have been used to denote the problem).
In our work, we consider the name “project scheduling and
staff assignment” as denomination for the problem.

Our problem is related to several contributions in the
literature, which are summarized in Table 2. Bassett [29]
presents a model of project scheduling and staff assignment
considering time windows for the completion times of the
tasks. Vairaktarakis [18] adds precedence relationships to the
integrated problem. However, no time units are used in the
linear programmingmodel (the order of the tasks defines the
schedule of the project). Time units are included in a similar
problem by Bellenguez and Néron [14] and Bellenguez-
Morineau and Néron [15] where some lower bounds are
calculated in the former reference, while in the latter the
authors implement a branch and bound algorithm. External
and internal resources constraints are considered by Kolisch
and Heimerl [24]. Wu and Sun [27] present the integrated
problem proposing a nonlinear model, which is solved by a
genetic algorithm. Although learning effect (i.e., the longer
an employee works on a task, the greater his/her efficiency is)
is considered in the model, neither precedence relationships
nor skill constraints are used in their model. Gutjahr et al.
[26] consider portfolio selection and skills in the integrated
problem with learning effect but with precedence relation-
ship which are included by Gutjahr et al. [25]. Precedence
relationships are also included by Corominas et al. [20] in an
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integrated problem, similar to the problem of Wu and Sun
[27], also with learning effect. Drezet and Billaut [17] propose
a linear programmingmodel for a project scheduling and staff
assignment problem. However, they do not consider learning
effects in the model and include move constraints (i.e., the
number of assignment movements of the employees from
one nonfinished task to another is bounded). Moreover, the
number of employees assigned to each task at each period of
time is set between a minimum and a maximum depending
on the level of skills of the workers. However, the processing
times of the tasks are assumed to be fixed and not depending
on the number of employees assigned. Since no solutions can
be found for medium-sized instances of the problem, a tabu
search algorithm was implemented using a greedy algorithm
as initial solution.

A common feature in all the aforementioned works is
that none of them include variable processing times. Regard-
ing CPT, Hachicha et al. [30] propose a staff assignment
model considering multiskilled employees, preference of the
employees for some tasks, and skill-based processing times
(i.e., the processing times of the tasks depend on the skills
of the employee). Nevertheless, they are preprocessed before
solving the model, which means that the processing times do
not change during the planning horizon. More specifically,
processing times are first calculated depending on the skills
of each employee and then introduced in the model as
data. Heimerl and Kolisch [31] analyze a staff assignment
problem without scheduling considering learning effect on
the employees, so the processing times are now variables
of the problem as they depend on the experience of the
staff. In order to solve this problem, a nonlinear model is
implemented. Hachicha et al. [30] and Heimerl and Kolisch
[31] use CPT in their models, although none of them solve
the integrated problem (only the staff assignment problem).
Variable processing times in a scheduling problem can be
found in Alfares and Bailey [28]. They use a linear program-
mingmodel to schedule the task of a project and to assign the
number of employees to each task; that is, the variables of the
problem are the starting times of each task, the processing
times, and the number of employees per period. Regarding
the processing times, they are chosen to minimize the costs,
but they do not depend on any variable. Moreover, staff
assignment for each employee is not considered there.

CPT in an integrated PSSA problem are considered in
Drexl [21], Dodin and Elimam [22] with the objective of
costs minimization. However, in their models, the processing
times depend on the skills of the employee assigned (and
consequently are introduced in themodel as data), but not on
the amount of resources allocated; that is, processing times
are defined by a matrix of two dimensions where the rows
are the processing times of the tasks and the columns the
employees. In Valls et al. [19], each task has to be performed
by a single employee and its processing time increases or
decreases depending on the efficiency of the employee.
Nonpreemptive tasks with release times and due dates are
taken into account, as well as precedence relations with time

lags. No programming model is implemented, but a hybrid
genetic algorithm is developed to solve the cost minimization
problem. This contribution is the one most related to our
problem, since the authors implement an integrated PSSA
with CPT. However, in our paper, a linear programming
model is considered to minimize the makespan of the project
where the processing times of the tasks depend piecewise
linearly on the number of employees assigned instead of the
efficiency level of the employee and multiple assignments to
each task are also allowed as well, while in Valls et al. [19] each
task must be implemented by a single employee. To the best
of our knowledge, the proposedmodel has not been analyzed
before.

3. Model Proposal for the Integrated
PSSA Problem

3.1. Problem Statement. This paper presents a PSSA problem
in which a company is responsible for the implementation
of a project consisting of 𝐽 tasks (with task 𝑗 = 1, . . . , 𝐽)
with (known) precedence relations between tasks (i.e., some
tasks should be finished before carrying out others). The
order of execution of each task has to be decided to minimize
the corresponding objective function. Each task must be
performed by some workers from total of 𝐸 employees
(employee 𝑒 = 1, . . . , 𝐸) with certain skills in each 𝑡 period
(𝑡 = 1, . . . , 𝑇) of the planning horizon 𝑇.

It is assumed that each task 𝑗 has a release time 𝑟
𝑗
, so

it must always start after this time. Furthermore, once a
task starts, it runs continuously until its end (nonpreemptive
approach). One employee can be assigned to a task if the
employee possesses the required skills for the task.We assume
that there is an optimal number of employees, 𝑅

𝑗
, to be

assigned to each task, although overcoverage and undercov-
erage of employees are allowed by the model. Under- and
overcoverage would lead to different values of the efficiency
of the employees and, consequently, to different processing
times of the tasks.

3.2. Controllable Processing Times (CPT). In this paper, we
assume that processing times depend on the resources (or
employees, as we would use both terms as equivalent in
this paper) assigned. Such type of processing times has
been studied in the literature as a function of the resources
allocated and of the experience of the workers (level of skills).
The relationship between time and amount of resources
has been mainly analysed under two different approaches,
namely, linear and convex (see the review by [12]). In the
linear approach (see, e.g., [35]), a linear relationship between
the processing times of a task and the resources allocated to
this task is assumed. Denoting 𝑝

𝑗
as the processing time of

task 𝑗 and 𝑢
𝑗
as the number of resources allocated to this

task, this relationship can be expressed as 𝑝
𝑗
= 𝑎 − 𝑏 ⋅ 𝑢

𝑗
,

with 𝑎 and 𝑏 constants. However, this approach is not well
suited to many realistic situations, since according to Belbin
[36], there must be 𝑅

𝑗
an optimal number of employees to

be assigned to task 𝑗 in order to achieve maximum workers’
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Figure 1: Piecewise linear relationship and convex relationship with
𝑐 = 1. Subscripts are removed for simplicity in the figure.

efficiency (point [𝑅
𝑗
, 𝑝𝑑
𝑗
]). Therefore, it is easy to see that

the linear approach is not flexible to this concept, at least for
values to each side of the efficiency level since the efficiency
point of worker must always be in an extreme of the line (see,
e.g., Figure 2(a), where the efficiency point is placed for 𝑎/𝑏
resources).

In the convex approach it is assumed that there is an
inverse relationship between processing times and employees
(see, e.g., [37]), where 𝑐 and𝑊

𝑗
(normally denoted workload

of the task 𝑗) are constants:

𝑝
𝑗
= (

𝑊
𝑗

𝑢
𝑗

)

𝑐

. (1)

For 𝑐 = 1, the number of resources and the processing
times are inversely proportional (e.g., doubling the employees
would cut the processing time by half and vice versa; see
the red line of Figure 1). The convex relationship is closer
to real life than the linear and it has been used for many
actual government and industrial projects [38], distributed
communication network, time-sharing computing system,
and chemical plant or commercial construction projects [39].
Nevertheless, its nonlinearity would preclude modeling the
problem using linear programming. Thus, in this paper a
piecewise linear relationship to represent the relationship
between processing times and amount of resources assigned
to the task is proposed. The relationship is shown in (2), 𝑆𝑖

𝑗

being the slope of each section for a task 𝑗 in the piecewise
linear relationship and 𝑢𝑠𝑖

𝑗
the number of employees fulfilled

of that task in each section, where section 𝑖 has a length
(𝐿𝑖
𝑗
). This piecewise linear relationship can be adjusted to the

convex relationship (with 𝑐 = 1) as shown in the blue line
of Figure 1. This relationship is over the convex relationship

representing a safer configuration of processing times and
amount of resources:

𝑝
𝑗
= 𝑝
0

𝑗
+ 𝑆
1

𝑗
⋅ 𝑢𝑠
1

𝑗
+ ⋅ ⋅ ⋅ + 𝑆

𝑘

𝑗
⋅ 𝑢𝑠
𝑘

𝑗
,

with 𝑢𝑠
𝑖

𝑗
= 𝐿
𝑖

𝑗
∀𝑖 <

𝑚

0
< 𝑢𝑠
𝑚

𝑗
< 𝐿
𝑖

𝑗
,

𝑆
𝑖

𝑗
=

𝑝𝑖
𝑗
− 𝑝𝑖−1
𝑗

𝑢𝑖
𝑗
− 𝑢𝑖−1
𝑗

.

(2)

The superscript for processing times, 𝑝𝑖
𝑗
, and for the

amount of resources, 𝑢𝑖
𝑗
, denotes that they correspond to

point 𝑖.
According to Lanigan [40], the convex relationships

between the processing time of a task and the number of
employees assigned do not entirely match the reality, and
there shall be a penalty due to assigning different numbers
of employees. On the one hand, if 𝑢

𝑗
> 𝑅
𝑗
, then a penalty

for communication exists. In contrast (see, e.g., [41, 42]), if
𝑢
𝑗

< 𝑅
𝑗
then there is a penalty for lack of specialization

[43]. Hence, each feasible point different than the optimum
(𝑅
𝑗
, 𝑝𝑑
𝑗
) must be placed over the convex curve; otherwise

many optima would exist and there would be no penalties
for under- and overcoverage. The feasible area formed by
these points is represented by the light red area in Figure 2(a)
(this feasible area is also taken into account by [44, 45]).
Moreover, it shall be considered that the processing time of
a task decreases when the number of employees increases;
otherwise it would make no sense to assign more employees
to the tasks. Thus, the feasible area can be reduced by
considering that the processing time of a task cannot increase
when the number of employees increases (Figure 2(b)). In
this way, the feasible relationships between both aspects must
be in this area.Therefore, we propose using a piecewise linear
relationship with a maximum and minimum possible num-
ber of workers on each task. Depending on the maximum
and minimum possible number of workers, the slopes of the
lines must be different to avoid that both lines are under
the convex curve (i.e., in the infeasible region) in any point.
The directions of the slope of the piecewise relationships are
placed in the feasible region and shown in Figure 2(c). By
doing so, linear programming can be used tomodel and solve
the problem. Furthermore, the piecewise relationship is on
the safe side with respect to the convex relation, since the
piecewise relationship is always over the convex relation.

To define the slopes of the lines, we propose introducing
the parameters 𝑘𝑟 and 𝑘𝑙. The higher these parameters are,
the bigger the penalties for under- and overassignment of
employees with respect to the optimal value, and conse-
quently the closer the problem to the PSSA with fixed
processing times (FPT). In the most extreme case, both
problems are the same. The piecewise linear relation left
and right of the optimum can be written as follows (see
Figure 2(d)):

Left: 𝑝
𝑗
= 𝑝𝑑
𝑗
⋅ (1 + 𝑘𝑙 ⋅

𝑅
𝑗
− 𝑢
𝑗

𝑅
𝑗

)

Right: 𝑝
𝑗
= 𝑝𝑑
𝑗
⋅ (1 −

𝑢
𝑗
− 𝑅
𝑗

𝑘𝑟 ⋅ 𝑅
𝑗

) .

(3)
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Figure 2: Relation between processing times and number of employees (shaded area).

Analogously, let us now consider 𝑅
𝑗
− 𝑢
𝑗
as ℎ+
𝑗
the

undercoverage of task 𝑗 and 𝑢
𝑗
− 𝑅
𝑗
as the overcoverage of

task 𝑗, ℎ−
𝑗
:

Left: 𝑝
𝑗
= 𝑝𝑑
𝑗
⋅ (1 + 𝑘𝑙 ⋅

ℎ+
𝑗

𝑅
𝑗

)

Right: 𝑝
𝑗
= 𝑝𝑑
𝑗
⋅ (1 −

ℎ
−

𝑗

𝑘𝑟 ⋅ 𝑅
𝑗

) .

(4)

3.3. Formulation of the Model
3.3.1. Proposed Integer Linear Programming Model. In the
previous section, we have presented a mechanism for formu-
lating a realistic relationship between the processing times of

the task and the number of employees assigned. Furthermore,
this relationship can be embedded into a piecewise linear
function; therefore a linear programming model can be
formulated for the PSSA. In this section, a formal description
of this model is given.

Data

𝑟
𝑗
: earliest starting time (release time) of task 𝑗.

𝑏
𝑒𝑗
{ 1 if the employee 𝑒 can perform task 𝑗
0 otherwise.

𝑝𝑟
𝑖𝑗
{ 1 if task 𝑖 precedes task 𝑗
0 otherwise.

𝑅
𝑗
: optimal number of employees of task 𝑗.

𝑝𝑑
𝑗
: processing time of task 𝑗 for the optimal number

employees 𝑅
𝑗
.
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𝐿𝑉
𝑗
: maximum allowed undercoverage for task 𝑗.

𝑈𝑉
𝑗
: maximum allowed overcoverage for task 𝑗.

𝑘𝑑, 𝑘𝑛: constants related to the slopes of the lines
defining the processing times.

Variables

𝑥
𝑗𝑡
{ 1 if task 𝑗 starts in period 𝑡
0 otherwise.

𝑦
𝑒𝑗𝑡

{ 1 if employee 𝑒 performs task 𝑗 during period 𝑡
0 otherwise.

ℎ+
𝑗
: undercoverage in task 𝑗.

ℎ−
𝑗
: overcoverage in task 𝑗.

𝑝
𝑗
: processing time of task 𝑗.

Auxiliary Variables

𝑧
𝑗𝑡
{ 1 if task 𝑗 is being processed at the begin of period 𝑡
0 otherwise.

𝑠𝑡
𝑗
: starting time of task 𝑗.

𝑐𝑡
𝑗
: completion time of task 𝑗.

𝐶max: project makespan.
𝑎ℎ
𝑗𝑡
: auxiliary variable. It is used to enforce that

the constraint set (18) is satisfied if 𝑧
𝑗𝑡
is zero since

the auxiliary variable takes the value of the over- or
undercoverage.

Model

Min𝐶max (5)

𝑇

∑
𝑡=1

𝑥
𝑗𝑡
= 1 ∀𝑗 = 1, . . . , 𝐽 (6)

𝑠𝑡
𝑗
=

𝑇

∑
𝑡=1

𝑥
𝑗𝑡
⋅ 𝑡 ∀𝑗 = 1, . . . , 𝐽 (7)

𝑐𝑡
𝑗
= 𝑠𝑡
𝑗
+ 𝑝
𝑗
− 1 ∀𝑗 = 1, . . . , 𝐽 (8)

𝑠𝑡
𝑗
≥ 𝑟
𝑗

∀𝑗 = 1, . . . , 𝐽 (9)

𝐶max ≥ 𝑐𝑡
𝑗

∀𝑗 = 1, . . . , 𝐽 (10)

𝑦
𝑒𝑗𝑡

≤ 𝑏
𝑒𝑗
⋅ 𝑧
𝑗𝑡

∀𝑒 = 1, . . . , 𝐸, ∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇

(11)

𝑠𝑡
𝑗
− 𝑠𝑡
𝑖
≥ 𝑝
𝑖
⋅ 𝑝𝑟
𝑖𝑗
− 𝑁 ⋅ (1 − 𝑝𝑟

𝑖𝑗
) ∀𝑖, 𝑗 (12)

𝐸

∑
𝑒=1

𝑦
𝑒𝑗𝑡

+ 𝑎ℎ
𝑗𝑡
+ (ℎ
+

𝑗
− ℎ
−

𝑗
) = 𝑅
𝑗
⋅ 𝑧
𝑗𝑡

∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇

(13)

𝑎ℎ
𝑗𝑡
≤ (1 − 𝑧

𝑗𝑡
) ⋅ 𝑁 ∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇 (14)

𝑎ℎ
𝑗𝑡
≥ − (1 − 𝑧

𝑗𝑡
) ⋅ 𝑁 ∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇 (15)

ℎ
+

𝑗
≤ 𝐿𝑉
𝑗

∀𝑗 = 1, . . . , 𝐽 (16)

ℎ
−

𝑗
≤ 𝑈𝑉
𝑗

∀𝑗 = 1, . . . , 𝐽 (17)

𝐽

∑
𝑗=1

𝑦
𝑒𝑗𝑡

≤ 1 ∀𝑒 = 1, . . . , 𝐸, ∀𝑡 = 1, . . . , 𝑇 (18)

𝑝
𝑗
≤

1

2
+ 𝑝𝑑
𝑗
⋅ (1 −

ℎ−
𝑗

𝑘𝑟 ⋅ 𝑅
𝑗

+ 𝑘𝑙 ⋅
ℎ+
𝑗

𝑅
𝑗

)

∀𝑗 = 1, . . . , 𝐽

(19)

𝑝
𝑗
> −

1

2
+ 𝑝𝑑
𝑗
⋅ (1 −

ℎ−
𝑗

𝑘𝑟 ⋅ 𝑅
𝑗

+ 𝑘𝑙 ⋅
ℎ+
𝑗

𝑅
𝑗

)

∀𝑗 = 1, . . . , 𝐽

(20)

𝑇

∑
𝑡=1

𝑧
𝑗𝑡
= 𝑝
𝑗

∀𝑗 = 1, . . . , 𝐽 (21)

𝑧
𝑗𝑡
≥ 𝑥
𝑗𝑡

∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇 (22)

1 − 𝑧
𝑗𝑡
≥

𝑡 − 𝑐𝑡
𝑗

𝑇
∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇 (23)

1 − 𝑧
𝑗𝑡
≥

𝑠𝑡
𝑗
− 𝑡

𝑇
∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇 (24)

𝑧
𝑗𝑡
, 𝑥
𝑗𝑡
∈ {0, 1} , 𝑎ℎ

𝑗𝑡
free ∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇

(25)

𝑦
𝑒𝑗𝑡

∈ {0, 1} ∀𝑒 = 1, . . . , 𝐸, ∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇

(26)

𝑐𝑡
𝑗
, 𝑠𝑡
𝑗
, ℎ
+

𝑗
, ℎ
−

𝑗
, 𝑝
𝑗
≥ 0 ∀𝑗 = 1, . . . , 𝐽 (27)

𝐶max ≥ 0. (28)

Objective function (5) minimizes the project makespan.
Constraint set (6) guarantees that each taskmust start exactly
once. Constraint sets (7) and (8) define the starting and
completion times of each task, respectively. Constraint set
(9) assures that a task cannot start before its release time.
Constraint set (10) serves to obtain the makespan. Constraint
set (11) ensures with 𝑏

𝑒𝑗
= 0 that an employee cannot perform

a task if he/she does not possess the skills required.Moreover,
the variable 𝑧

𝑗𝑡
is added to the constraint to preclude work

at a time when the task is not being processed. Constraint
set (12) establishes the precedence relationships. Constraint
set (13) defines over- and undercoverage for each task at each
period. The auxiliary constraint sets (14) and (15) ensure that
constraint set (13) is satisfied for every period. Constraint
sets (16) and (17) limit the maximum possible under- and
overcoverage, respectively. Constraint set (18) enforces that
an employee can work at most in one task at each period.
Constraint sets (19) and (20) are used to determine the CPT.
Constraint set (21) forces 𝑧

𝑗𝑡
to be 1 if and only if task 𝑗

is active. Constraint set (22) ensures that task 𝑗 must be
performed (𝑧

𝑗𝑡
= 1) whenever it starts (𝑥

𝑗𝑡
= 1). Constraint
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sets (23) and (24) model the nonpreemptive assumption: (23)
determines that a task cannot be performed (𝑧

𝑗𝑡
= 0) after its

completion time, and (24) states that it cannot be performed
(𝑧
𝑗𝑡

= 0) before its starting time. Equations (25), (26), (27),
and (28) define the variables employed in the model.

3.3.2. Extension 1: Limitation of Moves. Themodel presented
above allows moving the staff from a task to another. These
moves can be detrimental for the service company since they
may involve setup and learning times as well as instability in
the team composition that performs each task.This limitation
of moves can be easily incorporated in the model adding the
following two constraints:

𝑦
𝑒𝑗𝑡

≥ 𝑤
𝑒𝑗
− (1 − 𝑧

𝑗𝑡
)

∀𝑒 = 1, . . . , 𝐸, ∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇

(29)

𝑦
𝑒𝑗𝑡

≤ 𝑤
𝑒𝑗

∀𝑒 = 1, . . . , 𝐸, ∀𝑗 = 1, . . . , 𝐽, (30)

where𝑤
𝑒𝑗
yields 1 if the employee 𝑒 is assigned to the task 𝑗, 0

otherwise. Constraints (29) and (30) force that an employee
have to be assigned to the task during the whole duration of
the task when 𝑤

𝑒𝑗
is equal to 1.

3.3.3. Extension 2: Generic Piecewise Linear Relationship. In
Section 3.2 a piecewise linear relationship with two sections
was presented to model the relationship between the pro-
cessing time of a task and the amount of resources assigned
to such task. In order to include a generic piecewise linear
relationship with k sections, the constraints (31)–(38) must
replace the constraints (19)-(20):

𝑝
𝑗
= 𝑝
0

𝑗
+

𝑘

∑
𝑖=1

𝑆
𝑖

𝑗
⋅ 𝑢𝑠
𝑖

𝑗
∀𝑗 = 1, . . . , 𝐽 (31)

𝑢𝑠
𝑖

𝑗
≤ 𝑠𝑎
𝑖

𝑗
⋅ 𝐿
𝑖
+ 𝑠𝑙
𝑖

𝑗
⋅ 𝐿
𝑖

∀𝑖 = 1, . . . , 𝑘, ∀𝑗 = 1, . . . , 𝐽 (32)

𝑢𝑠
𝑖

𝑗
> (𝑠𝑎
𝑖

𝑗
− 1) ∀𝑖 = 1, . . . , 𝑘, ∀𝑗 = 1, . . . , 𝐽 (33)

𝑢𝑠
𝑖

𝑗
< (2 − 𝑠𝑎

𝑖

𝑗
) ⋅ 𝐿
𝑖

∀𝑖 = 1, . . . , 𝑘, ∀𝑗 = 1, . . . , 𝐽 (34)

𝑢𝑠
𝑖

𝑗
≥ 𝑠𝑙
𝑖

𝑗
⋅ 𝐿
𝑖

∀𝑖 = 1, . . . , 𝑘, ∀𝑗 = 1, . . . , 𝐽 (35)

𝑘

∑
𝑖=1

𝑠𝑎
𝑖

𝑗
= 1 ∀𝑗 = 1, . . . , 𝐽 (36)

𝑠𝑎
𝑖

𝑗
≤ 𝑠𝑙
𝑚

𝑗
∀𝑗 = 1, . . . , 𝐽, ∀𝑖,

𝑚

𝑚
< 𝑖 (37)

1 − 𝑠𝑎
𝑖

𝑗
≥ 𝑠𝑙
𝑚

𝑗
∀𝑗 = 1, . . . , 𝐽, ∀𝑖,

𝑚

𝑚
≥ 𝑖, (38)

where 𝑠𝑎𝑖
𝑗
is an auxiliary variable yielding 1 only in the section

𝑖, where 𝑢𝑠𝑖
𝑗
is over 0 and lower than 𝐿𝑖 (represented by the

constraints (33)-(34), (36)). Generic piecewise linear relation-
ship is defined in constraint (31). 𝑠𝑙𝑚

𝑗
is introduced to define

with 1 the sections with 𝑢𝑠𝑖
𝑗

= 𝐿𝑖, 0 otherwise (constraint
(35)). Finally, constraint (32) delimits the upper value of the

variable 𝑢𝑠
𝑖

𝑗
and the constraints (37)-(38) establish 𝑠𝑙𝑚

𝑗
= 1 in

each section𝑚 preceding the section, where 𝑠𝑎𝑖
𝑗
= 1, 𝑠𝑙𝑚

𝑗
= 0

otherwise. Thereby, any piecewise linear relationship could
be considered in the model by means of these constraints. To
adjust this relationship to the convex relationship with 𝑐 = 1,
it is necessary only define the parameter 𝑆𝑖 replacing the term
𝑝(𝑢) by 𝑘/𝑢 in (2) (see the slope in (39) assuming that the
length 𝐿𝑖 = 𝐿 = (𝑈𝐿 − 𝐿𝑉)/𝑘 for each section 𝑖):

𝑆
𝑖
=

(𝑘/ (𝐿𝑉 + 𝐿 ⋅ 𝑖)) − (𝑘/ (𝐿𝑉 + 𝐿 ⋅ (𝑖 − 1)))

𝐿
. (39)

3.4. Additional Models

3.4.1. Model with Fixed Processing Times (FPT). In this
section, the PSSA problemwithout CPT is analyzed.The goal
is to compare the PSSA model with CPT (PSSA-CPT in the
following) with the model with FPT (PSSA-FPT model). To
the best of our knowledge, it is the first time that the PSSA
problem is solved with processing times depending on the
number of employees allocated, so it is relevant to assess
the benefits of the assumption. Both models are similar, but
there are two main changes. First, in the PSSA-FPT model,
processing times do not depend on the number of employees
assigned (i.e., this number is fixed and equal to the optimum).
Second, over- and undercoverage are not allowed in this
model; that is, ℎ+

𝑗
-, ℎ−
𝑗
-, and 𝑎ℎ

𝑗𝑡
-related constraints are not

taken into account.The constraint sets (13)–(17), (19)-(20) are
then replaced by

𝐸

∑
𝑒=1

𝑦
𝑒𝑗𝑡

= 𝑅
𝑗
⋅ 𝑧
𝑗𝑡

∀𝑗 = 1, . . . , 𝐽, ∀𝑡 = 1, . . . , 𝑇. (40)

Thus, the PSSA-FPT model consists of the constraint sets
(6)–(12), (18), and (21)–(28), where the above 𝑝

𝑗
variable

is now a data of the problem. Obviously, the PSSA-CPT
problem is harder than the PSSA-FPT since it has more
variables and constraints. It will be analyzed again in the
computational results.

3.4.2. Formulation of the Model Using Discrete Time/Resource
Trade-Off Problem (DTRTP) Approach with Staff Assignment.
The model presented in this paper could be also modeled
using a DTRTP approach adding the staff assignment and the
release times constraints. However, the results found by this
approachwere considerably worse in computational time and
in average relative percentage deviation. When both models
were compared for each instance presented in Section 5.1
(several instances are shown in Table 3), only 363 optimal
solutions were found using the DTRTP approach compared
to the 567 of the proposed model and the computational
time by the DTRTP approach presented a deviation of 287.1%
over our proposedmodel (the deviation runtime is calculated
considering only the instances which were optimal solutions
found for both models; the amount of these instances is
presented in the column of Table 3 denoted by “Both opti-
mum”) as well, justifying the PSSA-CPT model proposed
here.
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Table 3: Comparison of runtimes between models using DTRTP approach and PSSA with CPT approach.

Instances DTRTP and staff assignment PSSA with CPT Both optimum Deviation runtime
#O #F #N Runtime #O #F #N Runtime

30-1.5-0.25-0.2 10 0 0 54.0 10 0 0 13.1 10 380%
30-1.8-0.50-0.5 10 0 0 330.2 9 0 1 177.2 9 266%
30-2.1-1.00-1.0 0 0 10 — 9 0 1 — 0 —
60-1.5-0.25-0.2 8 0 2 708 7 0 3 376.6 7 135%
60-1.8-0.50-0.5 1 0 9 — 6 0 4 — 0 —
60-2.1-1.00-1.0 0 0 10 — 5 1 4 — 0 —
Global 363 14 583 376.08 567 20 373 165.26 345 287.1%

Table 4: Some examples on the number of constraints and variables.

Instances Constraints Variables Integer
variables

Binary
variables

30-1.5-0.25-0.2 93120 65701 60661 60480
30-1.8-0.50-0.5 156330 123031 117181 117000
30-2.1-1.00-1.0 237895 204241 198871 198690
60-1.5-0.25-0.2 433887 325801 305461 305100
60-1.8-0.50-0.5 633915 529561 510661 510300
60-2.1-1.00-1.0 1427967 1286641 1262821 1262460

3.5. Complexity of the Problem. The PSSA can be reduced to
the identical parallel machine problem with two machines
(𝑃2 | prec, 1 ≤ 𝑝

𝑗
≤ 2, 𝐶max according to Graham et al.

[46]), when 𝐸 = 2, 𝑏
𝑖𝑗
= 𝑅
𝑗
= 1, and 𝐿𝑉

𝑗
= 𝑈𝑉
𝑗
= 𝑟
𝑗
= 0 are

considered. As this problem is NP-hard [47] and our problem
is a generalization of it, the PSSA is NP-hard.

On the other hand, the constraint sets (6)–(23) approxi-
mately form a total of 9 ⋅ 𝐽 + 8 ⋅ 𝐽 ⋅ 𝑇 + 𝐸 ⋅ 𝑇 + 𝐸 ⋅ 𝐽 ⋅ 𝑇 + 𝐽 ⋅ 𝐽/2

constraints. Regarding the variables, there are 6 ⋅ 𝐽 + 3 ⋅ 𝐽 ⋅

𝑇 + 𝐸 ⋅ 𝐽 ⋅ 𝑇 in the model, where 2 ⋅ 𝐽 ⋅ 𝑇 + 𝐸 ⋅ 𝐽 ⋅ 𝑇 are
binary (i.e., 𝑥

𝑗𝑡
, 𝑧
𝑗𝑡
, and 𝑦

𝑒𝑗𝑡
). The number of constraints and

variables is calculated in Table 4 for some instances of the
test beds presented in Section 5.1. Since the PSSA with CPT
is an NP-hard problem and since the number of constraints
and variables for medium-large size of the problem is very
high, exact solvers for integer programming problems have
difficulties to find feasible and optimal solutions in such
instances and therefore approximate algorithms have to be
implemented. In the next section, a simple GRASP algorithm
is presented to get feasible solutions in lower computational
times.

4. A Simple GRASP Heuristic Algorithm

Given the complexity of the problem, a greedy randomized
adaptive search procedure (GRASP) is presented in this
section to solve the PSSA problemwith CPT. GRASPwas first
introduced by Feo and Resende [48] and it has been widely
applied to several combinatorial optimization problems. A
review of the application fields of this algorithm is done
in Festa and Resende [49]. The algorithm consists of two
phases: first a constructive phase is implemented, and then

a local search phase is made to find better solutions in the
neighborhood. The constructive phase is usually employed
to find a feasible solution for the problem, while the local
search phase is performed to improve the solution found in
the constructive phase. Both phases are repeated until the
stopping criterion is reached (see Procedure 1).

In our problem, fixed processing times are considered
during the constructive phase. In the local search phase,
the task schedule is fixed and more employees are gradually
assigned to each task in order to decrease the processing
times and thus possibly improving the makespan of the
project. In summary, a project scheduling problem is solved
in the constructive phase, a CPT problem in the local search
phase, while the staff assignment problem is treated in both
phases (see Figure 3). In the next subsections the phases are
explained in detail.

4.1. Constructive Phase. The constructive phase consists in
the successive allocation of employees and starting times to
tasks. The goal is to assign the tasks as early as possible until
all tasks are scheduled. In this phase, both the processing
times and the number of assigned employees are kept fixed.
The number of employees allocated to each task (𝑛𝑒

𝑗
) is

randomly assigned within the upper and lower limits. The
processing times of each task are calculated for the so-
obtained number of employees using the expressions shown
in Section 3.With respect to the task to be chosen at each step,
a restricted candidate list (RCL) is defined based on the tasks’
precedence relations. According to these relations, the tasks
are classified into sets: set 𝑆

1
corresponds to tasks without

predecessors, set 𝑆
2
is tasks which only have predecessors of

set 𝑆
𝑘
, and, in general, set 𝑆

𝑖
contains tasks with predecessors

in sets 𝑆
𝑖−1

, 𝑆
𝑖−2

, . . . , 𝑆
1
.The tasks are iteratively inserted in the

schedule according to the following procedure. First, the RCL
contains all tasks in set 𝑆

1
. A task is randomly chosen from the

RCL to be placed in the schedule.Theprocess is repeated until
the RCL is empty. Then, the tasks of set 𝑆

2
are moved to. The

same procedure is carried out until each task is introduced in
the schedule.

Once a task is chosen from the RCL, it has to be placed
into the schedule. To do this, the earliest possible start time
for the task is calculated. Next, the starting time of the
task is fixed to this earliest time and employees (from those
having the required skills for the task) are assigned until the



10 The Scientific World Journal

Procedure main()
classify the tasks in sets (𝑆

𝑖
) according to the precedence relations

while the stopping criterion is not reached do
constructionPhase()
localSearchPhase()
update the stopping criterion

end
end

Procedure 1: Overall scheme of the GRASP algorithm.

Procedure constructivePhase()
assign a random number of employees (ne

𝑗
) to each task 𝑗 according to uniform

distribution 𝑈[𝑅
𝑗
− 𝐿𝑉
𝑗
,𝑅
𝑗
+ 𝐿𝑉
𝑗
]

calculate the tasks processing times from the number of employees assigned
TO:= tasksOrderRandom()
EO:= employeesOrderRandom()
buildSolution(ne

𝑗
, TO, EO)

end

Procedure 2: Constructive phase.

Constructive 
phase

Local search 
phase

Staff 
assignment

Project 
scheduling

Controllable 
processing 

times

Figure 3: Division of the problem.

number of employees, 𝑛𝑒
𝑗
, is reached. Employees are assigned

one by one at random. At each step, the feasibility of the
problem is checked. If, at some point, the resulting schedule
is not feasible, the starting time of the task is postponed
until feasibility is achieved. This process is repeated until
the task is definitely inserted in a time period (see function
buildSolution() in Procedure 3). It is important to note that
the processing times are fixed at this phase. The steps of the
constructive phase are shown in Procedure 2.

4.2. Local Search Phase. After obtaining a schedule of tasks
and a staff assignment in the constructive phase, the local
search phase aims to improve the solution by reducing the
processing times of each task. To do so, tasks are first ordered
again at random and then, step by step, the number of
employees (𝑛𝑒

𝑗
) allocated to each task (following this order)

is increased. In each step, the processing time of the task is
updated and the makespan is analyzed (using the buildSo-
lution() function, Procedure 3). If the makespan decreases,
then the new solution is kept and the new amount of assigned
employees is updated. Next, another employee is assigned to
the same task and the objective function is analyzed. This

process is repeated until the maximum overcoverage allowed
for the task is reached. Then, we continue with the following
task in the same way. The local search phase finishes when
all tasks have been analyzed. The output of this phase is the
best solution found. The pseudocode of this phase is shown
in Procedure 4.

5. Computational Results

In this section, the problem under consideration is solved
using the PSSA-CPT model introduced in Section 3 and the
GRASP algorithm presented in Section 4. The PSSA-CPT
model is implemented using the software Gurobi Optimizer
4.51 and ILOGCPLEX 12.4 and the GRASP heuristic is coded
in C#.The computational experiments were tested on an Intel
Core i7-930, 2.8 GHz, 16GB RAM under Windows 7.

This section is divided into two parts. An explanation
of the test bed is presented in Section 5.1 and, next, in
Section 5.2, a comparison of the computational results dis-
cussed is made, along the following aspects:

(i) comparison between CPLEX and Gurobi solvers;
(ii) comparison between GRASP algorithm results and

exact results;
(iii) impact of CPT on reducing the makespan of the

project.

5.1. Test Bed. The integer programming problem presented
in this paper was solved by the software Gurobi Optimizer
4.5 for instances based on the sets j30 and j60 of the PSPLIB
classical instances [50], which are a reference test beds
for project scheduling. Each combination of parameters is
replicated ten times and the mean value is taken to represent
it. In order to adapt the test beds to our problem, additional
parameters have to be defined: maximum possible over- and
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Procedure buildSolution(ne
𝑗
, TO, EO)

foreach set 𝑆
𝑖
do

foreach task according to TO do
set the starting time of the task 𝑗 (denoted 𝑥

𝑗
) according to the release time of

this task and the completion times of the predecessors of the task, looking for
the minimum possible starting time

repeat
assign employees, who are able to perform the task, to the task following

the EO until the ne
𝑗
is reached

if the assignment is unfeasible then
𝑥
𝑗
:= 𝑥
𝑗
+ 1

end
until the assignment is feasible;

end
end
check the feasibility of the solution

end

Procedure 3: Function buildSolution().

Procedure localSearchPhase()
set the best local solution as the solution from the constructive phase
foreach task according to localSearchOrder do

aux ne
𝑗
:= ne
𝑗

repeat
aux ne

𝑗
:= aux ne

𝑗
+ 1

buildSolution(aux ne
𝑗
; TO; EO)

if the solution is feasible and better than the best local solution then
save this new solution as the best local solution
ne
𝑗
:= aux ne

𝑗

end
until the maximum overcoverage is reached;

end
check the feasibility of the solution

end

Procedure 4: Local search phase.

undercoverage (𝐿𝑉
𝑗
and 𝑈𝑉

𝑗
) were drawn from uniform

distributions [0, 𝑅
𝑗
/2] and [0, 𝑅

𝑗
], respectively; release times

were chosen following uniform distributions [0, 𝑇/6] and the
number of employees was the average of the capacities of
the 4 employees in the PSPLIB. The test bed used in this
paper is similar to the test bed of Drezet and Billaut [17],
where an employee was assigned a 70% probability to master
a skill. In our paper, it is assigned an 85% probability to
avoid infeasibility in the test beds. The parameters 𝑘𝑙 and
𝑘𝑟 are set to 2.5 according to the slope of the piecewise
relationships explained in Section 3.2. In total, 960 instances
were generated where 10 replicates were obtained for each
combination of the parameters in Table 5 (see [51] for a
detailed description of the parameters NC, RF, and RS).

5.2. Comparison and Analysis of Computational Results. The
integer linear programming model was solved in this paper
using the Gurobi software and ILOG CPLEX. Firstly, time
limit was set to 30min using Gurobi. The average results
out of the 10 replicates for each parameter combination are

Table 5: Test beds.

Parameters Values
Number of tasks, 𝑗 30, 60
Network complexity, NC 1.5, 1.8, 2.1
Resource factor, RF 0.25, 0.50, 0.75, 1.00
Strength of the resource, RS 0.2, 0.5, 0.7, 1.0

shown in the 7th and 8th columns of Tables 6 and 7 (for the
j30 and j60 instances, resp.). Dashed lines are used in some
combination to specify that no solution was found for any
replicate.The 9th, 10th, and 11th columns indicate the number
of optimal, feasible, and nonfound solutions, respectively, for
each combination of parameters found by Gurobi. It can be
seen that optimal solutions were achieved for 567 instances
from the total of 960 instances, feasible solutions were found
for 16 cases, and no solutions before 30 minutes were there-
fore obtained for 377. The latter represents a huge amount
of instances without solution and thus different method of
resolution has to be implemented. More specifically, exact
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Table 6: Experimental results for 30 tasks.

𝑗-NC-RF-RS CPLEX CPT Gurobi CPT Gurobi FPT GRASP
𝐶max 𝑡 #O #F #N 𝐶max 𝑡 #O #F #N 𝐶max 𝑡 dev. 𝐶max ARPD 𝑇

30-1.5-0.25-0.2 52.4 224.8 10 0 0 52.4 13.1 10 0 0 58.1 12.6 9.8% 52.4 0.00% 33.3
30-1.5-0.25-0.5 56.8 322.8 9 1 0 54.3 53.9 10 0 0 62.8 19.6 13.5% 54.4 0.20% 40.5
30-1.5-0.25-0.7 62.6 168.4 10 0 0 62.6 15.9 10 0 0 75.4 18.6 17.0% 62.6 0.00% 43.5
30-1.5-0.25-1.0 60.7 133.6 10 0 0 60.7 15.3 10 0 0 69.6 19.4 12.8% 60.7 0.00% 50.1
30-1.5-0.50-0.2 — 1800.0 0 6 4 — 1696.3 1 2 7 — 480.2 — 66.4 0.43% 40.5
30-1.5-0.50-0.5 — 1674.7 3 5 2 — 465.9 9 0 1 67.1 112.7 — 61.5 1.89% 57.7
30-1.5-0.50-0.7 — 1063.1 5 4 1 52.1 277.2 10 0 0 59.0 69.6 11.7% 52.5 0.76% 64.2
30-1.5-0.50-1.0 60.0 297.7 10 0 0 60.0 56.3 10 0 0 68.3 70.3 12.2% 60.0 0.00% 79.9
30-1.5-0.75-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1489.9 — 72.7 0.00% 44.4
30-1.5-0.75-0.5 — 1800.0 0 8 2 — 1366.1 4 0 6 — 322.1 — 61.6 1.21% 71.5
30-1.5-0.75-0.7 — 1664.6 2 4 4 — 696.8 8 0 2 72.0 104.1 — 64.2 1.95% 76.3
30-1.5-0.75-1.0 83.4 1163.5 6 4 0 — 459.9 9 0 1 64.5 92.2 — 57.2 0.22% 111.7
30-1.5-1.00-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 78.4 0.00% 51.4
30-1.5-1.00-0.5 — 1800.0 0 3 7 — 1800.0 0 0 10 64.1 359.6 — 61.9 0.00% 75.7
30-1.5-1.00-0.7 — 1653.9 1 4 5 — 1045.4 6 1 3 71.9 137.7 — 66.2 1.44% 90.4
30-1.5-1.00-1.0 — 1319.1 6 1 3 53.0 258.9 10 0 0 59.7 62.8 11.2% 53.0 0.00% 126.1
30-1.8-0.25-0.2 69.8 551.0 9 1 0 63.1 45.3 10 0 0 70.5 47.8 10.5% 63.2 0.17% 32.7
30-1.8-0.25-0.5 60.2 444.6 10 0 0 60.2 47.2 10 0 0 69.1 45.8 12.9% 60.4 0.39% 37.5
30-1.8-0.25-0.7 58.3 370.4 10 0 0 58.3 42.5 10 0 0 66.4 49.9 12.2% 58.3 0.00% 43.2
30-1.8-0.25-1.0 62.9 296.1 10 0 0 62.9 41.8 10 0 0 70.4 47.2 10.7% 62.9 0.00% 48.0
30-1.8-0.50-0.2 — 1800.0 0 6 4 — 1800.0 0 2 8 — 546.5 — 67.6 0.00% 37.5
30-1.8-0.50-0.5 — 1503.1 5 3 2 — 339.5 9 0 1 67.2 108.5 — 59.7 0.91% 55.3
30-1.8-0.50-0.7 — 1116.7 6 3 1 — 254.9 9 0 1 73.9 87.6 — 63.7 0.29% 58.9
30-1.8-0.50-1.0 — 978.2 7 2 1 58.7 114.2 10 0 0 68.2 90.8 13.9% 58.9 0.30% 73.0
30-1.8-0.75-0.2 — 1800.0 0 1 9 — 1800.0 0 0 10 — 1638.6 — 76.2 0.00% 42.6
30-1.8-0.75-0.5 — 1765.8 1 2 7 — 929.5 7 0 3 70.9 130.4 — 64.1 2.29% 65.5
30-1.8-0.75-0.7 — 1644.2 2 5 3 — 419.5 9 0 1 73.9 106.0 — 65.1 1.18% 75.1
30-1.8-0.75-1.0 79.6 973.8 8 2 0 65.2 150.5 10 0 0 74.5 115.6 12.5% 65.5 0.52% 89.2
30-1.8-1.00-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 96.4 0.00% 47.4
30-1.8-1.00-0.5 — 1800.0 0 3 7 — 1800.0 0 0 10 — 474.0 — 71.6 0.00% 74.2
30-1.8-1.00-0.7 — 1800.0 0 5 5 — 636.2 8 0 2 70.5 170.3 — 64.6 2.55% 87.1
30-1.8-1.00-1.0 — 1664.3 1 4 5 — 631.2 8 0 2 76.9 115.5 — 66.1 1.18% 107.2
30-2.1-0.25-0.2 63.0 823.0 9 1 0 62.2 232.9 10 0 0 71.0 67.5 12.4% 62.3 0.19% 31.5
30-2.1-0.25-0.5 64.0 680.6 9 1 0 64.0 59.7 10 0 0 72.7 60.3 12.0% 64.0 0.00% 36.9
30-2.1-0.25-0.7 66.1 546.3 10 0 0 66.1 47.0 10 0 0 75.6 61.1 12.6% 66.1 0.00% 41.4
30-2.1-0.25-1.0 61.7 455.6 10 0 0 61.7 41.0 10 0 0 73.4 66.2 15.9% 61.7 0.00% 47.1
30-2.1-0.50-0.2 — 1721.4 1 3 6 — 1470.4 2 0 8 — 434.5 — 71.3 0.77% 36.9
30-2.1-0.50-0.5 — 1613.5 3 5 2 — 667.3 8 0 2 77.1 94.5 — 67.7 1.74% 52.0
30-2.1-0.50-0.7 — 1506.5 3 3 4 63.1 367.4 9 1 0 72.3 103.3 12.7% 63.3 0.32% 58.3
30-2.1-0.50-1.0 — 1236.0 5 4 1 69.5 86.5 10 0 0 78.7 101.3 11.7% 69.7 0.30% 70.0
30-2.1-0.75-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1448.2 — 87.1 0.00% 40.9
30-2.1-0.75-0.5 — 1787.1 1 3 6 — 728.3 7 0 3 76.4 124.9 — 70.9 2.08% 60.4
30-2.1-0.75-0.7 — 1800.0 0 5 5 — 762.1 7 0 3 77.8 113.4 — 67.5 0.97% 67.3
30-2.1-0.75-1.0 — 1196.8 6 1 3 66.9 166.2 10 0 0 75.7 92.2 11.6% 66.9 0.00% 91.3
30-2.1-1.00-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 94.9 0.00% 44.5
30-2.1-1.00-0.5 — 1800.0 0 0 10 — 1800.0 0 1 9 — 1071.9 — 68.2 0.00% 69.1
30-2.1-1.00-0.7 — 1800.0 0 4 6 — 1096.2 6 0 4 75.4 156.1 — 69.6 1.08% 82.0
30-2.1-1.00-1.0 — 1470.8 5 3 2 — 539.7 9 0 1 69.7 111.9 — 61.7 0.28% 106.9
Average 𝑗30 — 1271.5 203 110 167 — 84.8 325 7 148 — 346.9 — 65.9 0.20% 61.8
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Table 7: Experimental results for 60 tasks.

𝑗-NC-RF-RS CPLEX CPT Gurobi CPT Gurobi FPT GRASP
𝐶max 𝑡 #O #F #N 𝐶max 𝑡 #O #F #N 𝐶max 𝑡 dev. 𝐶max ARPD 𝑡

60-1.5-0.25-0.2 — 1800.0 0 1 9 — 803.6 7 0 3 109.9 246.5 — 100.3 0.30% 79.4
60-1.5-0.25-0.5 — 1800.0 0 3 7 96.7 434.0 10 0 0 107.4 198.2 10.0% 96.9 0.23% 112.4
60-1.5-0.25-0.7 — 1690.5 2 0 8 94.4 235.5 10 0 0 107.8 178.8 12.4% 94.9 0.54% 120.8
60-1.5-0.25-1.0 — 1719.7 2 2 6 99.4 101.5 10 0 0 112.8 167.1 11.9% 99.4 0.00% 153.9
60-1.5-0.50-0.2 — 1800.0 0 0 10 — 1670.2 1 0 9 — 1456.3 — 108.3 0.00% 96.8
60-1.5-0.50-0.5 — 1800.0 0 0 10 — 1193.5 7 1 2 109.2 431.5 — 100.6 0.88% 149.7
60-1.5-0.50-0.7 — 1800.0 0 0 10 — 461.2 9 0 1 109.1 220.4 — 97.0 0.10% 193.0
60-1.5-0.50-1.0 — 1800.0 0 0 10 98.5 285.1 10 0 0 108.8 226.2 9.5% 98.7 0.24% 245.3
60-1.5-0.75-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 128.9 0.00% 113.1
60-1.5-0.75-0.5 — 1800.0 0 0 10 — 1666.8 1 0 9 — 679.4 — 107.0 0.00% 189.9
60-1.5-0.75-0.7 — 1800.0 0 0 10 — 1514.0 5 1 4 — 491.7 — 93.6 0.65% 248.9
60-1.5-0.75-1.0 — 1800.0 0 0 10 146.0 1115.5 7 3 0 108.4 280.5 — 98.1 0.14% 355.2
60-1.5-1.00-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 139.1 0.00% 131.6
60-1.5-1.00-0.5 — 1800.0 0 0 10 — 1800.0 0 1 9 — 1259.9 — 99.3 0.00% 223.6
60-1.5-1.00-0.7 — 1800.0 0 0 10 — 1698.8 1 0 9 — 1220.5 — 101.5 0.33% 294.6
60-1.5-1.00-1.0 — 1800.0 0 0 10 — 1633.1 4 0 6 104.1 327.4 — 95.0 0.21% 398.6
60-1.8-0.25-0.2 — 1800.0 0 2 8 — 977.8 7 1 2 111.9 270.9 — 103.5 0.89% 73.9
60-1.8-0.25-0.5 — 1800.0 0 1 9 105.2 253.9 10 0 0 116.0 238.9 9.3% 105.2 0.00% 101.0
60-1.8-0.25-0.7 — 1765.7 1 3 6 103.5 132.0 10 0 0 113.9 186.3 9.1% 103.5 0.00% 113.0
60-1.8-0.25-1.0 — 1699.6 1 6 3 95.9 108.9 10 0 0 108.0 176.7 11.2% 95.9 0.00% 139.4
60-1.8-0.50-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1577.7 — 121.2 0.00% 90.8
60-1.8-0.50-0.5 — 1800.0 0 0 10 — 957.0 6 0 4 — 515.5 — 106.8 0.09% 149.8
60-1.8-0.50-0.7 — 1800.0 0 0 10 — 696.8 8 0 2 116.8 230.8 — 104.7 0.09% 171.4
60-1.8-0.50-1.0 — 1800.0 0 0 10 97.9 316.4 10 0 0 110.1 189.8 11.1% 98.1 0.19% 209.2
60-1.8-0.75-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 135.3 0.00% 105.8
60-1.8-0.75-0.5 — 1800.0 0 0 10 — 1737.1 1 1 8 — 1124.3 — 109.2 0.00% 176.7
60-1.8-0.75-0.7 — 1800.0 0 0 10 — 998.9 6 1 3 116.8 327.8 — 106.5 0.20% 211.0
60-1.8-0.75-1.0 — 1800.0 0 0 10 — 906.5 7 2 1 121.6 242.1 — 109.2 0.77% 282.6
60-1.8-1.00-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 159.7 0.00% 117.2
60-1.8-1.00-0.5 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1539.2 — 124.5 0.00% 207.5
60-1.8-1.00-0.7 — 1800.0 0 0 10 — 1729.2 1 0 9 — 942.2 — 109.7 0.00% 271.1
60-1.8-1.00-1.0 — 1800.0 0 0 10 — 1291.7 8 0 2 120.6 298.3 — 107.3 0.79% 321.6
60-2.1-0.25-0.2 — 1800.0 0 1 9 — 566.9 9 0 1 123.1 215.5 — 111.3 0.31% 73.3
60-2.1-0.25-0.5 — 1534.7 4 1 5 101.6 204.3 10 0 0 112.1 184.5 9.4% 101.7 0.09% 99.2
60-2.1-0.25-0.7 — 1575.9 2 2 6 104.5 151.3 10 0 0 117.1 175.9 10.8% 104.5 0.00% 110.0
60-2.1-0.25-1.0 — 1682.8 1 4 5 103.1 95.8 10 0 0 115.9 157.8 11.0% 103.1 0.00% 130.4
60-2.1-0.50-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1659.2 — 121.9 0.00% 87.2
60-2.1-0.50-0.5 — 1800.0 0 0 10 — 1417.8 4 0 6 — 558.0 — 105.8 0.85% 139.5
60-2.1-0.50-0.7 — 1800.0 0 0 10 — 621.6 8 0 2 116.2 221.2 — 106.5 0.52% 155.1
60-2.1-0.50-1.0 — 1800.0 0 0 10 108.3 233.5 10 0 0 122.0 192.4 11.2% 108.6 0.27% 195.4
60-2.1-0.75-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 146.3 0.00% 101.0
60-2.1-0.75-0.5 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1296.2 — 107.5 0.00% 159.9
60-2.1-0.75-0.7 — 1800.0 0 0 10 — 1741.5 2 0 8 124.7 355.5 — 111.5 0.17% 205.0
60-2.1-0.75-1.0 — 1800.0 0 0 10 — 718.1 8 0 2 114.0 208.5 — 101.9 0.40% 257.3
60-2.1-1.00-0.2 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1800.0 — 157.5 0.00% 113.6
60-2.1-1.00-0.5 — 1800.0 0 0 10 — 1800.0 0 0 10 — 1664.8 — 121.2 0.00% 188.8
60-2.1-1.00-0.7 — 1800.0 0 0 10 — 1800.0 0 1 9 — 1020.6 — 109.0 0.00% 239.2
60-2.1-1.00-1.0 — 1800.0 0 0 10 — 1304.8 5 1 4 120.3 240.8 — 108.3 0.54% 301.7
Average 𝑗60 — 1780.6 13 26 441 — 1112.0 242 13 229 — 712.4 — 110.1 0.53% 175.1
Global — 1526.1 216 136 608 — 913.7 567 20 377 — 529.7 — 88.0 0.38% 118.5



14 The Scientific World Journal

solutionswere achieved for 325 instances considering 30 tasks
in the project, and only in 242 instances with 60 tasks. Using
the same time limit than CPLEX, makespan and runtime are
shown in the second and third columns. Optimal solutions
were found only for 216 from the total of 960 instances (only
13 in the set j60) and feasible solutions for 352 instances
and, hence, no solutions were found in 608 instances. This
represents worse results as compared to that of Gurobi. With
respect to the value of the makespan for the instances where
feasible solutions were found, the ARPD (average relative
percentage deviation) for CPLEX in these 352 instances was
58.4%, calculated using the expression (41), in contrast to the
ARPD of 3.4% found by Gurobi in the 583 feasible solutions:

ARPD
𝐴
=

𝐶𝐴max −min (𝐶Gurobi
max , 𝐶CPLEX

max , 𝐶GRASP
max )

min (𝐶Gurobi
max , 𝐶CPLEX

max , 𝐶GRASP
max )

. (41)

Finally, theGRASPheuristic was comparedwith the exact
solutions. The time limit of the GRASP heuristic was set to
𝐽 ⋅ 𝐸/10 seconds; that is, it increases with the difficulty of
the problem. Results are shown in Tables 6 and 7. Each row
corresponds to a given combination of parameters and the
first column indicates the chosen parameters in the format
(j-NC-RF-RS). The column “𝐶GRASP

max ” represents the average
makespan using the GRASP algorithm for 10 iterations and
the column “𝑡GRASP” is corresponding computation time (𝐽 ⋅

𝐸/10). The mean deviation between the solutions by Gurobi
with time limit of 30min and the solutions by GRASP with
time limit of 𝐽 ⋅ 𝐸/10 are shown in the column “ARPD” using
the expression (41).

The ARPD of the GRASP algorithm for all problems was
0.38%. Comparing the results of the exact solutions found
by Gurobi (567 instances), the deviation of the solutions
obtained by the GRASP algorithm is 0.62%, and optimal
solutions using GRASP were found in 457 of these 567
instances (80.7% of the instances). Furthermore, feasible
solutions were found by GRASP in each instance while
feasible solutions were found in 587 instances using Gurobi.

Even better results are obtained when the GRASP algo-
rithm is compared with Gurobi with the same time limit;
that is, the time limit 𝐽 ⋅ 𝐸/10 is fixed for both GRASP
heuristic and Gurobi. In this case, Gurobi found only optimal
solutions in 201 of the total of 960 instances of the test bed
while our heuristic found feasible solutions for all instances.
Furthermore, the deviation of the heuristic from the optimal
solutions was only 0.05% for these 201 instances and optimal
solutions were found in 195 instances which represents a
97.01%.

In Section 3.4.1, the interest to compare the PSSA prob-
lem with CPT with the PSSA problem with FPT was dis-
cussed. The PSSA problem with FPT was solved by Gurobi
setting also a time limit of 30 minutes. The makespan and
runtime of this problem for each instance are shown in the
11th and 12th columns, respectively. Results of the PSSA-
CPT and PSSA-FPT are compared in the 13th column. The
objective function of PSSA-FPT represents an upper bound

of the function objective of the PSSA-CPT (𝐶PSSACPT
max ≤

𝐶PSSA
max ), since a solution of PSSA-FPT is always a feasible

solution for PSSA-CPT.Thedifference between themakespan
and the runtimes of both models is analyzed. Considering
only the instances with optimal solution (567 instances), the
makespan decreases by 13.4% using CPT. On the other hand,
runtime increased by 160.03%, which may seem an excessive
increase in runtimes. However, since the planning horizon
is always over 75 days, it seems reasonable that such a long
and important decision must be performed carefully, so the
runtime increase must not be so significant in that case.

6. Conclusions

In this paper, a project scheduling and staff assignment
problem has been integrated. As in many real-life cases,
the processing times of the tasks depend on the number
of employees assigned; CPT were analyzed. There exists a
feasible region where the relation of processing times and
number of employees can be placed, so a piecewise linear rela-
tionship was proposed and included in a linear programming
model for the problem in order to better represent the reality
considering the penalty for communication in bigger teams
and the penalty for lack of specialization in small teams. The
consideration of a piecewise linear relationship between the
processing times and the amount of resources in the PSSA-
CPT provided a large reduction in runtime compared to the
adaptation of the DTRTP adding staff assigned.

Different instances of the problem were first solved using
the solver Gurobi Optimizer 4.5 and ILOG CPLEX 12.4, the
former being more computationally efficient. Furthermore,
a comparison between the model with CPT and with FPT
was performed to justify the introduction of such CPT.
The results obtained highlight an important decrease of
the makespan by considering variable processing times.
However, due to the complexity of the problem, extremely
high computational times were needed for medium-large
size instances by Gurobi, justifying the implementation of an
approximate algorithm (GRASP). Computational times were
greatly decreased there maintaining good ARPDs.

Regarding the future research lines of this paper, different
approximate algorithms may be implemented in order to
decrease the computational times comparing the results to
the GRASP algorithm presented here and with other approx-
imate algorithms employed for similar problems. Finally,
a future research line relates to the CPT. In this paper, a
piecewise linear relationship between processing times and
number of employees (renewable discrete resources) has been
introduced in the model. However, different relationships
between both variables may be analyzed, such as a convex
relationship and hyperbola, in order to adapt the model
presented in this paper to continuous renewable and nonre-
newable resources.
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method for solving multi-skill project scheduling problem,”
RAIRO—Operations Research, vol. 41, no. 2, pp. 155–170, 2007.

[16] P. Brucker and S. Knust, Complex Scheduling, GOR-
Publications, 2012.

[17] L.-E. Drezet and J.-C. Billaut, “A project scheduling problem
with labour constraints and time-dependent activities require-
ments,” International Journal of Production Economics, vol. 112,
no. 1, pp. 217–225, 2008.

[18] G. L. Vairaktarakis, “The value of resource flexibility in the
resource-constrained job assignment problem,” Management
Science, vol. 49, no. 6, pp. 718–732, 2003.
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