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Abstract

This paper presents an overview of the work carried out by
the Group of Robotics, Vision and Control (GRVC) at the
University of Seville on the cooperation between mobile
robots and sensor networks. The GRVC, led by Professor
Anibal Ollero, has been working over the last ten years on
techniques where robots and sensor networks exploit
synergies and collaborate tightly, developing numerous
research projects on the topic. In this paper, based on our
research, we introduce what we consider some relevant
challenges when combining sensor networks with mobile
robots. Then, we describe our developed techniques and
main results for these challenges. In particular, the paper
focuses on autonomous self-deployment of sensor net‐
works; cooperative localization and tracking; self-localiza‐
tion and mapping; and large-scale scenarios. Extensive
experimental results and lessons learnt are also discussed
in the paper.
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1. Introduction

Nowadays, in most robotics applications, robots need to
live in scenarios that are highly dynamic and quite rich in

terms of information. In order to deal with such a wide
range of different sources of information, homogeneous
systems do not provide the best solution. In most cases, the
use of heterogeneous technologies allows systems to
improve their performance. Thus, the tendency is to deploy
heterogeneous entities that complement each other and
cooperate in order to achieve more complex goals.

The combination of sensor networks (SNs) with mobile
robots is a clear example of this kind of cooperation.
Merging them can be advantageous in several ways. On the
one hand, mobile robots can help SNs to perform their tasks
in a more efficient and robust manner; for instance, by
deploying new sensors, replacing failing ones and acting
as mobile sensors, data collectors or communication relays.
Mobile robots can also help static sensors to recharge. On
the other hand, robots can also benefit from SNs, since they
allow them to widen their sensory capacities, which is
useful for example for mapping, localization and naviga‐
tion in unknown environments.

Integration and cooperation between robots and SNs has
been a trending topic in the last few years. For instance,
there are some studies on algorithms to guide mobile nodes
that react to sensorial stimuli, such as the diffusion-based
technique [20] and the random walk algorithm. The so-
called probabilistic navigation algorithm is used to guide a
mobile robot assuming that neither the map nor GPS
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measurements are available [21]. Other works study how
quality metrics in an SN with mobile nodes are influenced
by the motion strategies of those mobile nodes [22]. An
algorithm based on distributed path planning is proposed
in [23] to navigate a mobile robot in an SN field, and a
potential field method is presented in [24] for planning
paths of several underwater vehicles in an environment
with multiple sensors and obstacles. The NAMOS Project
at USC also integrates marine robots and wireless sensor
networks [25]. Moreover, the deployment of sensor nodes
for coverage and exploration is proposed in [26] by means
of the algorithm LRV (least recently visited). There are also
many works on systems that bring together SNs and
unmanned aerial vehicles (UAV). For instance, UAVs are
used to deploy and repair nodes of a wireless sensor
network in [27, 28]. Besides, the ANSER Project [29] merges
autonomous aerial and ground sensors to perform decen‐
tralized data fusion and simultaneous localization and
mapping (SLAM).

The Robotics, Vision and Control Group (GRVC)1 is a
research group led by Prof. Anibal Ollero at the University
of Seville. The GRVC has been working for more than ten
years on a number of research projects on the cooperation
between sensor networks and mobile robots, focusing
mainly on outdoor scenarios. These projects usually
involve complex environments where the exploitation of
synergies between heterogeneous systems becomes
essential in order to achieve the assigned missions. In
particular, we exploit the collaboration between robots,
camera networks and wireless sensor networks (WSN)
comprised of light and low-cost sensor nodes. We combine
both technologies together for several purposes. First,
robots are used to facilitate the deployment of the light
WSN nodes. Those inexpensive WSN nodes make the
whole system more versatile, while the robots still act as
data collectors and perform complex processing tasks.
Besides, mobile robots with on-board sensors collaborate
with static sensor nodes in order to improve the perception
of the surroundings, for instance in localization, tracking
and mapping.

The GRVC started working on robot-SN cooperation with
the EU-funded project EMBEDDED WISENTS (FP6-2003-
IST-2), where the first requirements for the integration of
both technologies were analysed. The idea of the self-
deployable sensor network was introduced in the EU-
funded project AWARE (FP6-IST-2006-33579) and the
project AEROSENS (DPI2005-02293), funded by the
Spanish government. In those projects, UAVs were used to
deploy a WSN for search and rescue operations. The
information coming from ground camera networks, WSNs
and the aerial robots was fused in order to perform
cooperative tracking and localization. Similar techniques
for cooperative tracking were proposed in the EU-funded
project URUS (FP6-IST-045062), but this time using ground

robots, WSNs and a surveillance camera network for
people guidance in a urban scenario. Currently, a step
forward is being taken in the EU-funded projects ARCAS
(FP7-ICT-2011-287617) and EC-SAFEMOBIL (FP7-
ICT-2011-288082), where SLAM techniques are proposed.
In this case the robots, aerial and ground, use the informa‐
tion from a WSN to localize themselves and the sensor
nodes (mapping) at the same time. Finally, the deployment
of large-scale systems was the focus in the EU-funded
projects CONET (FP7-INFSO-ICT-224053) and PLANET
(FP7-ICT-257649), where we proposed techniques to collect
the data from WSNs whose nodes have been deployed
sparsely in a large-scale environment. In a similar line, the
EU-funded project MUAC-IREN (FP7-PEOPLE-295300)
and the project CLEAR (DPI2011-28937-C02-01), funded by
the Spanish government, are developing techniques to
enhance operation endurance in large-scale systems.

This paper summarizes the main research carried out by
the GRVC in robot-sensor network cooperation. Table 1
shows our main works derived from the aforementioned
projects, which will be explained throughout the paper.
The organization is as follows: Section 2 introduces some
relevant challenges that need to be addressed in order to
combine SNs and mobile robots; Section 3 presents our
works on self-deployable SNs; Section 4 presents our
techniques and results for cooperative localization and
tracking; Section 5 summarizes some techniques and
results in SLAM with SNs; Section 6 briefly presents our
works on the deployment of large-scale systems; Section 7
summarizes the main lessons learnt; and Section 8 con‐
cludes and gives future perspectives.

R&D challenges Projects Publications

Autonomous self-
deployment

AWARE, AEROSENS [1, 2]

Cooperative localization
and tracking

AWARE, URUS [1, 3 - 9]

SLAM ARCAS, EC-
SAFEMOBIL

[10 - 15]

Large-scale applications CONET, PLANET,
MUAC-IREN, CLEAR

[16 - 19]

Table 1. Summary of works by the GRVC on cooperation between mobile
robots and sensor networks. Publications are classified according to topics
and projects.

2. Challenges for cooperative sensor networks and robots

The synergies between mobile robots and SNs, and the
advantages of combining both technologies, seem to be
clear. However, this integration is not straightforward.
Some major issues need to be addressed before robots and
SNs can cooperate in an efficient manner. In this paper, we
analyse some challenges that researchers should face if they
want to exploit the benefits of this combination.

1 http://grvc.us.es
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Sensor networks can benefit from the mobility, sensing and
actuation capabilities of mobile robots. Using mobile
robots, a static SN can be transformed into a mobile
network, which improves the flexibility and adaptability of
the system. Moreover, mobile robots can deploy sensors,
allowing the SN to become self-deployable. However, in
order to exploit all their functionalities, robots should know
the positions of the different sensors in the network. In
general it is necessary to know where the other nodes are
if we want to ensure network connectivity, to collect data
from the sensor nodes, or even to deploy new nodes. This
is even more relevant in outdoor systems, where nodes may
be located sparsely or in unknown areas.

Besides, it is also necessary to have functionalities to
localize new nodes after deployment. It is not always
straightforward to deploy a sensor with a mobile vehicle
and know with high accuracy the deployment position.
Moreover, it is necessary to have a map of the environment
in order to place new nodes at accessible and suitable areas.

Robot localization, and not only nodes localization, is also
important. SNs can be used to help robots to improve
localization and to navigate in unknown or GPS-denied
environments. However, the integration of all the informa‐
tion available is not straightforward. Usually, data from
heterogeneous sources need to be fused, coming from local
sensors on the robots and from nodes of the SN. Moreover,
many sensor nodes provide only range measurements,
which are less informative than others and have additional
constraints.

Finally, many of the above issues become even more
challenging when operating in large-scale spaces. In
applications where the SNs are deployed in large areas,
additional constraints should be considered mainly due to
the sparsity and number of the nodes deployed and the
long-endurance requirements imposed.

In the following sections we analyse the above challenges
and present our works and solutions for each of them. We
discuss our methods and place them in the related work of
the literature. We also summarize some of the most relevant
results.

3. Autonomous self-deployment of SNs with mobile
robots

The development of wireless communication technologies
in the last ten years makes possible the integration of
autonomous vehicles with WSNs in the environment. In
contrast to the traditional static WSNs, the inclusion of these
mobile robots within a WSN provides more flexibility to
the system, which achieves more complex functionalities.
This integration can be beneficial in different manners:

• Mobile robots carry on-board sensors that can comple‐
ment the information collected by the WSN and even
help that WSN with the calibration process.

• Mobile robots can act as mobile data collectors or
communication relays, improving the connectivity of the
network.

• Mobile robots can act as actuators and deployment
devices. This is useful to repair malfunctioning nodes, to
deploy new nodes in the environment, or to recharge the
batteries of existing ones.

The technologies of static ubiquitous sensor networks have
important limitations as far as the required coverage and
the communication range between the nodes are con‐
cerned. The use of mobile sensor nodes brings significant
improvements, however. They can provide the ability to
dynamically adapt the network to environmental events,
and improve the network connectivity in case of static node
failure. Node mobility for ad-hoc sensor networks has been
studied by many researchers [30, 31]. Moreover, mobile
nodes with single-hop communication and the ability to
recharge batteries (or re-fuelling) are proposed in [32] as
data collectors of the network. They can move to be near
the static nodes and collect their data, reducing the energy
consumed by communications. The coordinated motion of
a small number of nodes in the network to achieve efficient
communication between any pair of other mobile nodes is
also proposed.

In many scenarios, such as civil security or disaster, the
motion of the mobile sensor nodes installed on ground
vehicles or carried by persons is very constrained, due to
the characteristics of the terrain or the hazardous condi‐
tions involved. Therefore, the cooperation of aerial vehicles
with ground WSNs offers many potentialities. For instance,
the use of UAVs as data sinks has been proposed by several
authors in the WSN community. They fly over fixed sensor
networks following a predictable pattern in order to gather
data from them. In [33], an algorithm for path computation
and following is proposed and applied to guide the motion
of an autonomous helicopter flying very close to the sensor
nodes deployed on the ground.

Nonetheless, it should be noticed that the flight endurance
and range of the currently available low-cost UAVs are
very constrained [34]. In addition, reliability and fault-
tolerance in terms of communication are major issues for
the operation of UAVs. Therefore, these autonomous
vehicles need an existing communication infrastructure in
order to cooperate or to be tele-operated by humans, e.g.,
in emergency situations. When this infrastructure is not
available, or the required communication range is too large
for the existing technologies, the UAVs could be used to
deploy a WSN that fulfils those requirements. The solution
is to mount devices onto UAVs to carry and deploy nodes.

Sometimes, during deployment in hazardous scenarios or
even during network operation, the network infrastructure
may be partially damaged. In those cases, the UAVs can
also be used to repair the network coverage or connectivity
by deploying new nodes. For instance, in [28], the applica‐
tion of an autonomous helicopter for the deployment and
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repair of a WSN is proposed. We also follow a similar
approach in the AWARE project [1], whose platform has
self-deployment and self-configuration capabilities for
operation in sites without sensing and communication
infrastructure. We deployed wireless sensors with a special
device installed on board the UAVs, as depicted in Fig. 1.
Besides, in AWARE we also accomplished the deployment
and transportation of heavier loads (e.g., a static camera
with a pan & tilt system), which necessarily requires tight
coordination between several UAVs [2].

Robot localization, and not only nodes localization, is
also important. SNs can be used to help robots to
improve localization and to navigate in unknown or
GPS-denied environments. However, the integration of all
the information available is not straightforward. Usually,
data from heterogeneous sources need to be fused, coming
from local sensors on the robots and from nodes of the
SN. Moreover, many sensor nodes provide only range
measurements, which are less informative than others and
have additional constraints.

Finally, many of the above issues become even more
challenging when operating in large-scale spaces. In
applications where the SNs are deployed in large areas,
additional constraints should be considered mainly due to
the sparsity and number of the nodes deployed and the
long-endurance requirements imposed.

In the following sections we analyse the above challenges
and present our works and solutions for each of them. We
discuss our methods and place them in the related work
of the literature. We also summarize some of the most
relevant results.

3. Autonomous self-deployment of SNs with mobile
robots

The development of wireless communication technologies
in the last ten years makes possible the integration of
autonomous vehicles with WSNs in the environment.
In contrast to the traditional static WSNs, the inclusion
of these mobile robots within a WSN provides more
flexibility to the system, which achieves more complex
functionalities. This integration can be beneficial in
different manners:

• Mobile robots carry on-board sensors that can
complement the information collected by the WSN and
even help that WSN with the calibration process.

• Mobile robots can act as mobile data collectors or
communication relays, improving the connectivity of
the network.

• Mobile robots can act as actuators and deployment
devices. This is useful to repair malfunctioning nodes,
to deploy new nodes in the environment, or to recharge
the batteries of existing ones.

The technologies of static ubiquitous sensor networks
have important limitations as far as the required coverage
and the communication range between the nodes are
concerned. The use of mobile sensor nodes brings
significant improvements, however. They can provide the
ability to dynamically adapt the network to environmental
events, and improve the network connectivity in case
of static node failure. Node mobility for ad-hoc sensor
networks has been studied by many researchers [30, 31].
Moreover, mobile nodes with single-hop communication
and the ability to recharge batteries (or re-fuelling) are
proposed in [32] as data collectors of the network. They
can move to be near the static nodes and collect their data,
reducing the energy consumed by communications. The
coordinated motion of a small number of nodes in the
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Figure 1. Sensor deployment from an autonomous helicopter in the
experiments of the AWARE project.

network to achieve efficient communication between any
pair of other mobile nodes is also proposed.

In many scenarios, such as civil security or disaster, the
motion of the mobile sensor nodes installed on ground
vehicles or carried by persons is very constrained, due
to the characteristics of the terrain or the hazardous
conditions involved. Therefore, the cooperation of aerial
vehicles with ground WSNs offers many potentialities. For
instance, the use of UAVs as data sinks has been proposed
by several authors in the WSN community. They fly over
fixed sensor networks following a predictable pattern in
order to gather data from them. In [33], an algorithm for
path computation and following is proposed and applied
to guide the motion of an autonomous helicopter flying
very close to the sensor nodes deployed on the ground.

Nonetheless, it should be noticed that the flight endurance
and range of the currently available low-cost UAVs
are very constrained [34]. In addition, reliability and
fault-tolerance in terms of communication are major issues
for the operation of UAVs. Therefore, these autonomous
vehicles need an existing communication infrastructure in
order to cooperate or to be tele-operated by humans, e.g.,
in emergency situations. When this infrastructure is not
available, or the required communication range is too large
for the existing technologies, the UAVs could be used to
deploy a WSN that fulfils those requirements. The solution
is to mount devices onto UAVs to carry and deploy nodes.

Sometimes, during deployment in hazardous scenarios
or even during network operation, the network
infrastructure may be partially damaged. In those
cases, the UAVs can also be used to repair the network
coverage or connectivity by deploying new nodes. For
instance, in [28], the application of an autonomous
helicopter for the deployment and repair of a WSN is
proposed. We also follow a similar approach in the
AWARE project [1], whose platform has self-deployment
and self-configuration capabilities for operation in sites
without sensing and communication infrastructure. We
deployed wireless sensors with a special device installed
on board the UAVs, as depicted in Fig. 1. Besides, in
AWARE we also accomplished the deployment and
transportation of heavier loads (e.g., a static camera with
a pan & tilt system), which necessarily requires tight
coordination between several UAVs [2].
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Figure 1. Sensor deployment from an autonomous helicopter in the
experiments of the AWARE project

4. Cooperative localization and tracking

In complex and dynamic environments, the localization of
robots is an issue that can still become challenging. This is
mainly due to the limited range of on-board sensors or the
high computational requirements of many visual-based
techniques. It is true that there are methods for accurate
indoor and outdoor localization, such as beacon systems or
differential GPS. The problem is that these methods are
usually expensive, rely on satellite visibility, or require the
pre-installation of costly infrastructures.

Sensor networks embedded in the environment can play an
important role when robots need to localize in unknown
scenarios or need to track any moving target. These sensors
provide ubiquitous and rich information for the robots
working in the area. In many cases, robots can take
advantage of already existing infrastructures, like surveil‐
lance camera networks; in other cases, WSNs made up of
low-cost devices can be easily deployed.

The idea is to allow the mobile robots to use the information
provided by the sensor networks in order to improve
localization and tracking tasks. However, even though this
cooperation can be advantageous, there are some challeng‐
es to solve. First, the robots need to access heterogeneous
devices, which usually provide uncertain information.
Second, issues such as communication delays and decen‐
tralization should be considered to tackle the problem in a
robust and efficient manner. Therefore, in this section we
propose some techniques to fuse information coming from
heterogeneous sources. In particular, we have developed
decentralized data fusion algorithms that can deal with
uncertainties and communication issues. Then, we apply

them to cooperative localization and tracking with SNs and
mobile robots.

Although our approach is more general, we present results
mainly in two relevant scenarios. First is a rescue mission
in a disaster management application, where the SNs are
deployed by autonomous robots (the AWARE project).
Second is an urban scenario where the robots interact with
ubiquitous SNs already embedded in the environment (the
URUS project). In both scenarios the SNs help the robots to
localize themselves, or to localize some person or object to
be tracked.

The fusion of data gathered from a network of heterogene‐
ous sensors is a highly relevant problem in robotics. Most
approaches model the sensors as uncertain sources and use
Bayesian techniques [35, 36], which provide a sound
mathematical framework to deal with uncertain sources of
information. Moreover, Bayesian approaches are easy to
decentralize [37, 38], which is essential to achieve robust
and scalable solutions.

The first option would be to have a central node fusing all
the information received from the heterogeneous sensors.
We propose a centralized extended Kalman filter (EKF) [3]
for fire monitoring and firefighter tracking. Within the
framework of the AWARE project, ground static cameras
and a WSN are used to help UAVs to localize and track fire
sources and firefighters in a rescue mission. The WSN is
deployed by the UAVs and can measure high temperatures
to detect potential fire alarms. The firefighters also carry a
WSN node and the RSSI (received signal strength indicator)
measurements are used by the WSN to track these mobile
nodes, see [4]. Besides, vision-based algorithms are applied
to the images from the static cameras (with known posi‐
tions) in order to provide information about the fires or the
firefighters.

As mentioned above, in real-time systems decentralized
approaches are more adequate, since they alleviate the
bandwidth requirements and improve the reliability of the
system. Therefore, we also propose for the same applica‐
tion in AWARE a decentralized delayed-state extended
information filter [5, 6]. In this version, each entity only
employs local information (data from local sensors, i.e., the
sensors on board the robot), and then shares its estimation
with the others.

We show that the decentralized filter can obtain the same
estimation as the centralized filter as long as the common
information exchanged between the sources is maintained
by a separate filter called the channel filter [39]. This is
achieved by using filters over the full trajectory of the state
instead of just considering distributions over the state at
time t . The main drawback of channel filters is that they
enforce a tree-shaped network topology in order not to
double-count information, which may be a strong con‐
straint for dynamic systems outdoors. We overcome this
issue by using conservative fusion rules such as the
covariance intersection algorithm [40] to avoid information
double-counting regardless the network topology (the
estimation is no longer necessarily equal to the centralized
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version). Another advantage of using delayed states, i.e.,
the full trajectory of the state, is that the systems can receive
and correctly fuse information from the past. This is
especially relevant in applications with communication
delays and failures.

The results included in [6, 5] are for cooperative tracking of
firefighters. Again, a WSN is used together with static
ground cameras. An experiment is depicted in Fig. 2, where
the estimated XY trajectory provided by two ground
cameras and the WSN are plotted together with the
centralized estimation. It can be seen how all estimations
converge to the same solution with errors to the order of
one metre.
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Figure 2. XY estimation provided by two ground cameras and the
WSN, and centralized estimation. A sensor network was deployed
into the experimental area, pink squares denote the position of each
sensor node.

Figure 3. Urban scenario in the URUS project. The dimension
is 100 by 100 metres, approximately. Cameras in green and WSN
nodes as black dots.

In [8], we show how to apply our decentralized
delayed-state extended information filter in the scenarios
of the URUS project for tracking and guiding missions.
In particular, a WSN, a surveillance network of cameras,
and a mobile robot with an on-board camera are used to
perform the experiments. We demonstrate how combining
the information from the robot and the ubiquitous sensors
allows the whole system to overcome tracking failures
due to occlusions, clutter or lighting changes. In this
application the robot needs to find and track a person
that is to be guided. That person also carries a mobile
WSN node. Figure 3 depicts the urban scenario for the
experiments, with the location of the surveillance cameras
and the WSN.

Additional results for person guiding are shown in [9].
We use a Particle Filter for integrating all the RSSI
measurements coming from the WSN in order to track a
mobile node. Then, that estimation of the person position
(who carries the mobile node) can be fused with those
obtained using the cameras in the building or on board
the robot. Figure 4 shows some examples of the tracks

(a)

(b)

Figure 4. (a) Tracks obtained by the camera network. (b) Tracks
obtained by the camera on board a mobile robot.

obtained by a camera on board the mobile robot and
some of the surveillance cameras installed in the building.
As it can be seen, the robot travels aside the person for
guidance.

5. Self-localization and mapping of sensor networks

Localization of sensor nodes (i.e., building a map of the
sensor network) is also a critical problem in robot-SN
cooperation. For instance, it is necessary in applications
that require spatial mapping of the sensed measurements.
It has been pointed out in [41] that, when the number
of sensors is large, the manual deployment and position
recording is error-prone, and in many applications
hand-placing the sensors is not even an option. Thus, for
example, if the sensors are scattered from an aeroplane,
automatic localization methods should be employed. This
is particularly true for networks deployed in emergency
response scenarios without pre-existing infrastructure.

GPS-based systems provide an immediate solution to
the problem of localizing a node in outdoor scenarios.
However, this solution is not always feasible due to its
cost, energy consumption and inapplicability to different
scenarios. In [10], we propose the use of a mobile
node, i.e., a robotic vehicle with GPS, for the localization
of the other nodes of the network by using the RSSI
measurements from incoming messages. Although the
proposed method can be used with any autonomous
vehicle, the implementation with autonomous helicopters
is proposed in the paper. These vehicles have higher
accessibility than ground vehicles, which can be a relevant
constraint in some scenarios [42]. The technique described
in [10] uses particle filters (PF) to process the RSSI
measurements that static nodes receive from a mobile
robot equipped with GPS and a WSN node. The
method computes the mean and standard deviation of the
localization of each static node. The node on board the
robot is used to recover the information from the deployed
static WSN nodes and, at the same time, it is employed
as a beacon node for network localization. The method is
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Figure 2. XY estimation provided by two ground cameras and the WSN, and
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tal area, pink squares denote the position of each sensor node.

Additional results of the same technique are shown in [1],
but mobile cameras on board the UAVs are also considered
to track several firefighters in the scenario. The way-points
of the UAVs are selected with a technique that aims to
reduce uncertainty on the target estimation all the time.
This is achieved by pointing the UAVs' cameras perpen‐
dicularly to the axis of higher uncertainty of the target
estimation. Moreover, the results of our decentralized filter
applied to fire monitoring are included in [7].

Similar techniques for decentralized data fusion were
applied within the framework of the URUS project. In this
case, the scenario consists of a urban environment where
the robots provide services for humans, such as, for
example, person guiding. Thus, ubiquitous SNs are
integrated within the buildings and available for the robots
through 3G or WiFi communication.

In [8], we show how to apply our decentralized delayed-
state extended information filter in the scenarios of the
URUS project for tracking and guiding missions. In
particular, a WSN, a surveillance network of cameras, and
a mobile robot with an on-board camera are used to
perform the experiments. We demonstrate how combining

the information from the robot and the ubiquitous sensors
allows the whole system to overcome tracking failures due
to occlusions, clutter or lighting changes. In this application
the robot needs to find and track a person that is to be
guided. That person also carries a mobile WSN node.
Figure 3 depicts the urban scenario for the experiments,
with the location of the surveillance cameras and the WSN.

Figure 3. Urban scenario in the URUS project. The dimension is 100 by 100
metres, approximately. Cameras in green and WSN nodes as black dots.

Additional results for person guiding are shown in [9]. We
use a Particle Filter for integrating all the RSSI measure‐
ments coming from the WSN in order to track a mobile
node. Then, that estimation of the person position (who
carries the mobile node) can be fused with those obtained
using the cameras in the building or on board the robot.
Figure 4 shows some examples of the tracks obtained by a
camera on board the mobile robot and some of the surveil‐
lance cameras installed in the building. As it can be seen,
the robot travels aside the person for guidance.
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some of the surveillance cameras installed in the building.
As it can be seen, the robot travels aside the person for
guidance.

5. Self-localization and mapping of sensor networks

Localization of sensor nodes (i.e., building a map of the
sensor network) is also a critical problem in robot-SN
cooperation. For instance, it is necessary in applications
that require spatial mapping of the sensed measurements.
It has been pointed out in [41] that, when the number
of sensors is large, the manual deployment and position
recording is error-prone, and in many applications
hand-placing the sensors is not even an option. Thus, for
example, if the sensors are scattered from an aeroplane,
automatic localization methods should be employed. This
is particularly true for networks deployed in emergency
response scenarios without pre-existing infrastructure.

GPS-based systems provide an immediate solution to
the problem of localizing a node in outdoor scenarios.
However, this solution is not always feasible due to its
cost, energy consumption and inapplicability to different
scenarios. In [10], we propose the use of a mobile
node, i.e., a robotic vehicle with GPS, for the localization
of the other nodes of the network by using the RSSI
measurements from incoming messages. Although the
proposed method can be used with any autonomous
vehicle, the implementation with autonomous helicopters
is proposed in the paper. These vehicles have higher
accessibility than ground vehicles, which can be a relevant
constraint in some scenarios [42]. The technique described
in [10] uses particle filters (PF) to process the RSSI
measurements that static nodes receive from a mobile
robot equipped with GPS and a WSN node. The
method computes the mean and standard deviation of the
localization of each static node. The node on board the
robot is used to recover the information from the deployed
static WSN nodes and, at the same time, it is employed
as a beacon node for network localization. The method is
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the camera on board a mobile robot.

5Jesus Capitán Fernández, Jose Ramiro Martinez-de-Dios, Ivan Maza, Felipe Ramon Fabresse and Anibal Ollero:
Ten Years of Cooperation Between Mobile Robots and Sensor Networks



5. Self-localization and mapping of sensor networks

Localization of sensor nodes (i.e., building a map of the
sensor network) is also a critical problem in robot-SN
cooperation. For instance, it is necessary in applications
that require spatial mapping of the sensed measurements.
It has been pointed out in [41] that, when the number of
sensors is large, the manual deployment and position
recording is error-prone, and in many applications hand-
placing the sensors is not even an option. Thus, for example,
if the sensors are scattered from an aeroplane, automatic
localization methods should be employed. This is particu‐
larly true for networks deployed in emergency response
scenarios without pre-existing infrastructure.

GPS-based systems provide an immediate solution to the
problem of localizing a node in outdoor scenarios. How‐
ever, this solution is not always feasible due to its cost,
energy consumption and inapplicability to different
scenarios. In [10], we propose the use of a mobile node, i.e.,
a robotic vehicle with GPS, for the localization of the other
nodes of the network by using the RSSI measurements from
incoming messages. Although the proposed method can be
used with any autonomous vehicle, the implementation
with autonomous helicopters is proposed in the paper.
These vehicles have higher accessibility than ground
vehicles, which can be a relevant constraint in some
scenarios [42]. The technique described in [10] uses particle
filters (PF) to process the RSSI measurements that static
nodes receive from a mobile robot equipped with GPS and
a WSN node. The method computes the mean and standard
deviation of the localization of each static node. The node
on board the robot is used to recover the information from
the deployed static WSN nodes and, at the same time, it is
employed as a beacon node for network localization. The
method is probabilistic and takes into account the uncer‐
tainty in RSSI measurements.

Once an initial estimation of the position of the static nodes
has been obtained, this localization can be refined using
information filters as in [11]. Each sensor node locally
refines its own position by using the information received
from the mobile robot and from its neighbouring nodes
(which also have an initial estimation of their positions).
The messages exchanged among the nodes contain the
estimated position of the emitter. By using measurements
from several neighbours or from the mobile robot, the
position of the node can be further refined.

Although PF-based localization schemes showed good
results with small WSNs, these approaches have two main
disadvantages. First, estimating when the PF has con‐
verged to a single hypothesis is computationally demand‐
ing. Second, it is not possible to integrate the estimation of
the filter into more complex localization architectures such
as SLAM until the PF has converged to a single hypothesis.

The problems related to multiple hypotheses in the early
steps of the estimation in range-only localization ap‐
proaches were addressed in [43]. The paper describes an
algorithm that allows delayed initialization of the node
position by tracking the most probable two hypotheses.
After integrating a number of measurements, the wrong
hypothesis was discarded and the correct one was included
into the SLAM filter. We generalise this approach in [12] by
means of undelayed node position initialization and
extension to n-hypotheses. This work allows integrating
measurements from the very beginning using a weighted
Gaussian Mixture Model (GMM) to represent the non-
Gaussian prior distribution of the node position in a way
similar to the approach presented in [44].

Figure 5 shows an example of the multi-hypothesis
mapping framework. The different stages of the mapping
approach can be seen easily. At the beginning, all the
hypotheses are placed around the vehicle according to the
range information, which is very noisy at such distances.
Later, the localization of the hypotheses in front the vehicle
is improved because the range-RSSI relation is more
accurate as the distance decreases. In the next steps, the
hypotheses behind the robot are removed from the filter
because their weights are too low. Next, only the hypothe‐
ses on the sides of the vehicle remain. This is because the
robot is moving in a straight line with respect to the node,
so both hypotheses are possible if range-only measure‐
ments are considered. Finally, after the robot moves to a
different position, the wrong hypothesis is removed and
the filter converges to the correct node position.

Using GMMs to model the probability distribution of the
sensor node position opens the door to new localization
approaches able to consider robot motion in order to
improve position estimation (see Fig. 6). Thus, we extend
the method to consider active sensing strategies in order to
map the nodes [13]. Entropy variation is used as a meas‐
urement of information gain, prioritizing the control
actions of the robot. However, as there is no analytical

(a) (b) (c) (d) (e)

Figure 5. Evolution of the multiple hypotheses for the localization of one sensor node. The blue circle denotes the beacon position, the red
square represents the robot position and the yellow ellipses are the multiple hypotheses for the localization.

(a) (b)

Figure 6. Two examples of range-only localization. The robot (red
triangle) receives range data from the beacon (green square) at
three di�erent positions. Yellow areas denote possible localizations
of the beacon (the more intense the yellow colour, the more likely
this localization is). (a) Result of the node localization using
a straight robot trajectory (there are two possible solutions for
the localization). (b) Results of the node localization if the
robot trajectory is adapted from active sensing considerations (the
localization converges to a single correct solution)

Figure 7. Example of multi-hypothesis RO-SLAM. The picture
shows the position estimation of two aerial vehicles (blue
quad-rotors) together with their ground-truth position (red
quad-rotors) and the uncertainties associated with the di�erent
position hypotheses for each sensor node whose localization is being
estimated into the RO-SLAM �lter.

deeply embedded in the physical world. Cooperation
between mobile robots and sensor networks open huge
fields for research in unprecedented applications, but of
course imposes significant challenges.

In the general case, the deployment of very large-scale
complex systems consists of a series of heterogeneous
devices such as unmanned vehicles, sensor networks, etc.,
that work together and integrate with the pre-existing
infrastructure in a transparent manner. For this reason, a
solution applicable to a wide variety of scenarios requires
the development of new distributed architectures and
integration platforms with the following characteristics:

• Ability to adapt to the changing conditions of the
network and the application itself in order to always
choose a solution that is as optimal as possible.

• Ability to cope with heterogeneity from the point of
view of devices as well as conditions in the network,
such as different mobility patterns or activities in the
network.

• Ability to cope with static devices integrated in the
infrastructure, as well as mobile devices used for varied
purposes.

• Ability to support the planning, deployment and
maintenance of real-world applications.

We address these challenges in the PLANET project. The
main objective of PLANET is the design, development
and validation of an integrated platform to enable the
deployment, operation and maintenance of large-scale
complex systems of heterogeneous networked devices,
including wireless sensors and mobile robots. The
platform supports adaptive and optimal deployment and
operation by means of mobile cooperating robots, i.e.,
vehicles networked with static nodes. Moreover, we
validated the platform in two complementary scenarios:
the monitoring of the Doñana Biological Reserve, which
has a remarkable ecological value and is highly sensitive
to the impact of pollution; and an automated airfield.

The approach adopted in PLANET can be seen in
Fig. 8. Different stages where mobile robots and
sensor networks exchange information and explicitly
cooperate can be distinguished: sensor node deployment,
sensor network repairing and healing, etc. Of course,
the technological constraints and heterogeneity impose
significant requirements that have to be addressed from
different perspectives. For instance, from an integration
and architectural point of view, one of the main challenges
is to integrate in a seamless fashion all heterogeneous
components and functionalities.

Another relevant technological constraint derives from
the fact that in large-scale systems devices are usually
deployed sparsely in the environment. In this sense,
the higher mobility of UAVs is usually preferred
against unmanned ground vehicles (UGVs). Besides,
most cooperation schemes are based mainly on explicit
communication, so sparsity is a significant issue if we
recall that WSNs are energy limited and have low
communication ranges. From this point of view, tasks
that can be trivial in short-scale deployments, such as data
collection, become tougher when the nodes are deployed
in a larger scenario.

Data collection using UAVs is a very relevant topic
in large-scale deployments of sensor networks. No
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Figure 5. Evolution of the multiple hypotheses for the localization of one sensor node. The blue circle denotes the beacon position, the red square represents
the robot position and the yellow ellipses are the multiple hypotheses for the localization.
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expression for the entropy of a GMM, upper bounds of the
entropy, for which closed-form computation is possible,
are used instead. The paper describes simulations that
show the feasibility of the approach.

(a) (b) (c) (d) (e)

Figure 5. Evolution of the multiple hypotheses for the localization of one sensor node. The blue circle denotes the beacon position, the red
square represents the robot position and the yellow ellipses are the multiple hypotheses for the localization.
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Figure 6. Two examples of range-only localization. The robot (red
triangle) receives range data from the beacon (green square) at
three di�erent positions. Yellow areas denote possible localizations
of the beacon (the more intense the yellow colour, the more likely
this localization is). (a) Result of the node localization using
a straight robot trajectory (there are two possible solutions for
the localization). (b) Results of the node localization if the
robot trajectory is adapted from active sensing considerations (the
localization converges to a single correct solution)

Figure 7. Example of multi-hypothesis RO-SLAM. The picture
shows the position estimation of two aerial vehicles (blue
quad-rotors) together with their ground-truth position (red
quad-rotors) and the uncertainties associated with the di�erent
position hypotheses for each sensor node whose localization is being
estimated into the RO-SLAM �lter.

deeply embedded in the physical world. Cooperation
between mobile robots and sensor networks open huge
fields for research in unprecedented applications, but of
course imposes significant challenges.

In the general case, the deployment of very large-scale
complex systems consists of a series of heterogeneous
devices such as unmanned vehicles, sensor networks, etc.,
that work together and integrate with the pre-existing
infrastructure in a transparent manner. For this reason, a
solution applicable to a wide variety of scenarios requires
the development of new distributed architectures and
integration platforms with the following characteristics:

• Ability to adapt to the changing conditions of the
network and the application itself in order to always
choose a solution that is as optimal as possible.

• Ability to cope with heterogeneity from the point of
view of devices as well as conditions in the network,
such as different mobility patterns or activities in the
network.

• Ability to cope with static devices integrated in the
infrastructure, as well as mobile devices used for varied
purposes.

• Ability to support the planning, deployment and
maintenance of real-world applications.

We address these challenges in the PLANET project. The
main objective of PLANET is the design, development
and validation of an integrated platform to enable the
deployment, operation and maintenance of large-scale
complex systems of heterogeneous networked devices,
including wireless sensors and mobile robots. The
platform supports adaptive and optimal deployment and
operation by means of mobile cooperating robots, i.e.,
vehicles networked with static nodes. Moreover, we
validated the platform in two complementary scenarios:
the monitoring of the Doñana Biological Reserve, which
has a remarkable ecological value and is highly sensitive
to the impact of pollution; and an automated airfield.

The approach adopted in PLANET can be seen in
Fig. 8. Different stages where mobile robots and
sensor networks exchange information and explicitly
cooperate can be distinguished: sensor node deployment,
sensor network repairing and healing, etc. Of course,
the technological constraints and heterogeneity impose
significant requirements that have to be addressed from
different perspectives. For instance, from an integration
and architectural point of view, one of the main challenges
is to integrate in a seamless fashion all heterogeneous
components and functionalities.

Another relevant technological constraint derives from
the fact that in large-scale systems devices are usually
deployed sparsely in the environment. In this sense,
the higher mobility of UAVs is usually preferred
against unmanned ground vehicles (UGVs). Besides,
most cooperation schemes are based mainly on explicit
communication, so sparsity is a significant issue if we
recall that WSNs are energy limited and have low
communication ranges. From this point of view, tasks
that can be trivial in short-scale deployments, such as data
collection, become tougher when the nodes are deployed
in a larger scenario.

Data collection using UAVs is a very relevant topic
in large-scale deployments of sensor networks. No
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Figure 6. Two examples of range-only localization. The robot (red triangle)
receives range data from the beacon (green square) at three different
positions. Yellow areas denote possible localizations of the beacon (the more
intense the yellow colour, the more likely this localization is). (a) Result of
the node localization using a straight robot trajectory (there are two possible
solutions for the localization). (b) Results of the node localization if the robot
trajectory is adapted from active sensing considerations (the localization
converges to a single correct solution).

Range-only SLAM (RO-SLAM) is an emerging approach
that aims to localize a mobile system at the same time that
it maps the position of a set of range sensors using only
range measurements. In contrast with other SLAM ap‐
proaches based on cameras or LIDAR, RO-SLAM has the
advantage of integrating non-line-of-sight measurements
when radio-based range sensing is used. In addition, the
data association problem is intrinsically solved by using
unique identifiers for each range sensor into the system.
However, RO-SLAM poses serious challenges, mainly
related to its low-informative measurements (distance
between two sensing elements), which lead to multiple
localization hypotheses that do not fit well with the usual
linear/Gaussian approximations. The GRVC has been very
active in RO-SLAM in recent years. Two works that
illustrate the research being developed are presented in the
following.

The research work we present in [14] extends the 2D
method in [12] to 3D RO-SLAM. The proposed method is
based on a centralized EKF-SLAM, which includes the
position of the robot and the position of all range sensors
(landmarks), which allows the integration of sensor-to-
sensor measurements and not only robot-to-sensor, a key
issue in RO-SLAM as concluded in [45]. It also uses a state
vector parametrization that allows the reduction of the
required computational load, especially in the correction
stage of the EKF: the multi-modal belief of the azimuth and
elevation angles of a range sensor is integrated efficiently
in a EKF employing two independent Gaussian mixtures
(Fig. 7 shows an example including two aerial vehicles).
The method allows the integration of measurement
information from the very first measurement, and also
initializes the position estimation and parametrization of
the Gaussian mixtures automatically with only one range
measurement.

Figure 7. Example of multi-hypothesis RO-SLAM. The picture shows the
position estimation of two aerial vehicles (blue quad-rotors) together with
their ground-truth position (red quad-rotors) and the uncertainties
associated with the different position hypotheses for each sensor node
whose localization is being estimated into the RO-SLAM filter.

Most existing RO-SLAM techniques consider beacons as
passive devices, disregarding the sensing and computing
capabilities they are actually endowed with. In [15], we
propose a RO-SLAM scheme based on sparse extended
information filters (SEIF) that exploits those capabilities of
sensor nodes. The proposed scheme integrates all robot-
beacon measurements into the SEIF, but also the inter-
beacon measurements that involve at least one beacon
within the robot sensing area, avoiding repeated measure‐
ments. Compared to traditional schemes this method
reduces the uncertainty of the map estimation (>40%) and
also indirectly improves robot localization accuracy
(>20%). Moreover, it inherits from the SEIF its efficiency
and scalability, significantly reducing the robot computa‐
tional burden and enabling its implementation in robots
with lower computer capabilities.

6. Moving to large-scale scenarios

The continuous miniaturization of everyday devices, as
well as the convergence of communication, computing and
control, provide the ability to build large-scale, heteroge‐
neous, pervasive, networked systems that can be deeply
embedded in the physical world. Cooperation between
mobile robots and sensor networks open huge fields for
research in unprecedented applications, but of course
imposes significant challenges.

In the general case, the deployment of very large-scale
complex systems consists of a series of heterogeneous
devices such as unmanned vehicles, sensor networks, etc.,
that work together and integrate with the pre-existing
infrastructure in a transparent manner. For this reason, a
solution applicable to a wide variety of scenarios requires
the development of new distributed architectures and
integration platforms with the following characteristics:

• Ability to adapt to the changing conditions of the
network and the application itself in order to always
choose a solution that is as optimal as possible.

• Ability to cope with heterogeneity from the point of view
of devices as well as conditions in the network, such as
different mobility patterns or activities in the network.
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• Ability to cope with static devices integrated in the
infrastructure, as well as mobile devices used for varied
purposes.

• Ability to support the planning, deployment and
maintenance of real-world applications.

We address these challenges in the PLANET project. The
main objective of PLANET is the design, development and
validation of an integrated platform to enable the deploy‐
ment, operation and maintenance of large-scale complex
systems of heterogeneous networked devices, including
wireless sensors and mobile robots. The platform supports
adaptive and optimal deployment and operation by means
of mobile cooperating robots, i.e., vehicles networked with
static nodes. Moreover, we validated the platform in two
complementary scenarios: the monitoring of the Doñana
Biological Reserve, which has a remarkable ecological
value and is highly sensitive to the impact of pollution; and
an automated airfield.

The approach adopted in PLANET can be seen in Fig. 8.
Different stages where mobile robots and sensor networks
exchange information and explicitly cooperate can be
distinguished: sensor node deployment, sensor network
repairing and healing, etc. Of course, the technological
constraints and heterogeneity impose significant require‐
ments that have to be addressed from different perspec‐
tives. For instance, from an integration and architectural
point of view, one of the main challenges is to integrate in

a seamless fashion all heterogeneous components and
functionalities.

Another relevant technological constraint derives from the
fact that in large-scale systems devices are usually de‐
ployed sparsely in the environment. In this sense, the
higher mobility of UAVs is usually preferred against
unmanned ground vehicles (UGVs). Besides, most cooper‐
ation schemes are based mainly on explicit communication,
so sparsity is a significant issue if we recall that WSNs are
energy limited and have low communication ranges. From
this point of view, tasks that can be trivial in short-scale
deployments, such as data collection, become tougher
when the nodes are deployed in a larger scenario.

Data collection using UAVs is a very relevant topic in large-
scale deployments of sensor networks. No matter how
many nodes are deployed or how many measurements are
generated, they are useless if they cannot be collected and
transmitted to the rest of the modules.

In the baseline data collection approach, the deployed
nodes gather and buffer the readings. When a UAV flies
near the nodes it sends a beacon message, and the nodes
send their readings in reply. This approach has been tested
in works such as [46] and [47].

In [16], we propose a scheme that improves the scalability
of the above basic approach by grouping the deployed
nodes. All of the nodes from one group send messages with
their readings in response to the UAV beacon specific for

Figure 8. The PLANET approach for large-scale cooperation of highly heterogeneous networked systems
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that group. The groups and their collection zones are pre-
computed, taking into account the node locations and radio
coverage, among others. However, in this scheme, as in the
rest of the previous works, the operations of UAVs and
WSN are independent of each other. They essentially
consider WSN and UAVs as independent units that do not
influence each other. Consequently, they often lack
reactivity to unexpected events.

Our work in [17] describes the approach adopted in the
PLANET project for UAV-based data collection. Sensor
nodes are organized into clusters scheduled by the cluster
head. The cluster head is the only one that communicates
with the UAVs, while the others can be in sleep mode
during inactive periods. The UAV plans its trajectory to fly
over the coverage regions of the heads of each cluster. Of
course, the energy consumption of the cluster head nodes
is significantly higher than others, and the cluster head role
should be rotated among the cluster members. The scheme
comprises: (1) a dynamic clustering method that is execut‐
ed by deployed nodes and takes into account the UAV
trajectory for cluster head rotation; (2) a UAV path planning
method that solves the travelling sales problem considering
the current location of cluster heads.

The main novelty of our method is that UAVs and WSN
cooperate to increase data collection performance and
robustness. The proposed method presents two main
cooperative behaviours. First, the results of the WSN
operation are used to update the UAV flight plan. Second,
the UAV trajectory is considered in the operation of the
WSN in order to improve data collection performance. This
method outperforms non-cooperative UAV-based collec‐
tion approaches. In particular, our approach and techni‐
ques were validated in field experiments in an airfield in
Seville (Spain), as can be seen in Fig. 9.

Figure 9. (Left) Estimated flight plan and actual UAV trajectory (black line)
obtained in field experiments. Right) Picture of the embedded PC104 in one
Piper airframe used in the experiments.

Assuring the long endurance and operation of the system
is another challenge in unattended large-scale heterogene‐
ous systems. Traditionally, energy consumption efficiency
has attracted significant research efforts in sensor network
fields. Research is still needed in applications that require
a high node longevity. Another challenge is to extend the
flight operation of mobile robots, and more particularly of
UAVs.

Currently, we are researching two main approaches for
improving UAV flight endurance. The first approach is
mimicking the performance of species like vultures, which
perform extraordinarily long flights with negligible
energetic cost. In the MUAC-IREN project, together with
researchers from the Australian Center for Field Robotics,
UAV planning strategies for benefiting from thermal
currents are being researched. For instance, a glider UAV
that gains altitude and energy when inside a thermal and
uses that energy to fly 'jump' to another thermal. A second
research line followed in the CLEAR project is the use of
UAVs to recharge batteries.

7. Lessons learnt

After all of these years of research on mobile robots and
SNs, as well as field experiments involving real and
heterogeneous devices, we have learnt some practical
lessons that we try to summarize in this section.

One of the first lessons learnt when using information from
heterogeneous networked systems is the relevance of time
synchronization. We solve this issue by using a network
time protocol (NTP), where a server distributes timing
information among the different cooperative systems.

The selection of an adequate communication system also
turns out to be crucial, since many of the communication
problems are caused by interferences in the wireless
channels. Due to the current abundance of WiFi devices,
selecting WiFi channels at 5 GHz proved to be less prob‐
lematic, since those channels are usually less flooded.

In general, fusing information from heterogeneous sensors
has proved to be very advantageous to achieve more
reliable systems. For example, when tracking or localizing
in dynamic scenarios, a single source of information is not
usually enough to deal with occlusions, illumination
changes, clutter and coverage issues. On the contrary, the
combination of complementary sensors is required. Thus,
WSNs can provide coarse initialization for localization
tasks, but camera networks provide more accurate meas‐
urements. Sensors on mobile robots also allow the system
to cover places occluded for the static sensor networks.

However, the above fusion from heterogeneous sources
has also proved to be difficult, mainly due to communica‐
tion latencies, mobility and connectivity issues. In this
sense, decentralized approaches are mandatory, since
centralized approaches do not scale well in this kind of
system. Moreover, the use of filters with delayed states is
very useful to cope with communication delays and drop-
outs. Our techniques using full trajectories of the state
allowed the entities to accumulate information during
communication drop-outs to fuse it later, once the commu‐
nication was recovered.

RO-SLAM techniques allow the integration of robots with
their environment, enabling them to gather information
from the environment at the same time that they refine their
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localization, a critical task in robot autonomy. Robot
localization based on range measurements has proved to
be an excellent method for coarse estimation, simplifying
robot localization methods and improving the reliability of
the whole system. Nevertheless, our experiments showed
that results of RO-SLAM are closely linked to the state of
the art in radio-based range estimation: the better the range
estimation, the more accurate the robot localization. Recent
advances in radio-based range sensing allow an estimating
range with sub-metre accuracy at a reasonable cost (around
200 euros per node), which is a good trade-off between
accuracy and investment.

Integration of multiple-hypotheses in RO-SLAM is also a
key feature identified by the GRVC together with other
state of the art researchers. Approaches based on a single
hypothesis do not scale well with real scenarios due to the
uncertainties induced by the environment and by the
measuring process. Thus, the development of new efficient
multi-hypothesis approaches for RO-SLAM is an interest‐
ing and challenging problem that will probably gain more
attention in the next years.

Although many RO-SLAM techniques have been devel‐
oped, most of them consider sensor nodes as simple
beacons for range measurements disregarding the rest of
their capabilities. We have developed a number of techni‐
ques that exploit sensor network capabilities in order to
significantly improve map and robot localization estima‐
tions, exploiting the computing capability of sensor nodes
and hence reducing the robot's computational effort.

Finally, we have learnt the advantages of using robot-SN
testbeds, which allow testing and evaluation of techniques
in realistic conditions. Using these kinds of facilities is a
current trend. For example, a survey of the growing
number of testbeds for robot-SN cooperation can be found
in [18]. Moreover, the GRVC developed and maintains the
CONET Integrated Testbed2 [19], a public remote tool to
assess and compare methods on the cooperation and
integration of robot and sensor networks.

8. Conclusions and future challenges

This paper presented a summary of the main contributions
of the GRVC to the state of the art in the field of mobile
robots and sensor network cooperation. The document
analysed the main results obtained by the research group
and some of the lessons learnt during these ten years.

Two main conclusions are derived from the research and
experimental results obtained by the GRVC. First, the
merging of two different technologies such as robots and
SNs has proved to be fruitful for many applications.
Therefore, the current tendency of integrating heterogene‐
ous teams where mobile robots cooperate with SNs is
opening unprecedented possibilities in an increasingly
wide field of applications. However, our second conclusion

is that this integration is not straightforward, and several
issues have to be addressed carefully. The connectivity and
communication among the different parts should be
ensured; the localization of the entities is desirable and
necessary in most cases; heterogeneous sources of infor‐
mation should be fused, etc. If we consider outdoor
scenarios and we deploy our systems in larger and larger
scenarios, the previous issues are not trivial at all.

In the paper we have detected some of the above main
issues and have classified our works according to them. We
have also proposed feasible solutions for the different
problems presented. However, there are still other open
issues for cooperative mobile robots and SNs, and those
explained below will guide our future research lines.

One of the strongest trends in robot-SN cooperation is its
gradual application to real problems. This poses additional
issues, some of them related to the robustness required for
the systems to operate in realistic conditions. From this
point of view, the validation of techniques using testbeds
with different degrees of realism is critical. This fact has
been clearly understood by the community, and increasing
efforts are being devoted to develop testbeds that focus on
particular problems and applications. Other critical
problems are related to the integration of these robot-SN
systems in human environments. Co-existence with
humans opens very interesting issues in terms of social
robotics, i.e., how interactions of humans with robots
should be addressed. Finally, in certain applications, such
as inspection and repairing operations in industrial plants,
the robots involved require a very high accuracy that could
be provided by additional sensor networks.
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