
Testing web applications in practice

Javier Jesús Gutiérrez, Maria José Escalona, Manuel Mejías, Jesús Torres

Department of Computer Languages and Systems.
University of Seville.

{javierj, escalona, risoto, jtorres}@lsi.us.es

ABSTRACT

Software testing process is gaining importance at same time that size and complexity of software are

growing. The specifics characteristics of web applications, like client-server architecture, heterogeneous
languages and technologies or massive concurrent access, makes hard adapting classic software testing
practices and strategies to web applications. This work exposes an overview of testing processes and
techniques applied to web development. This work also describes a practical example testing a simple
web application using only open-source tools.

1. INTRODUCTION

Internet gives to developers a new and innovative way to build software. Internet also allows the

access of millions of user to a web application [4]. Thus, problems in a web application can affect to
millions of users, cause many costs to business [2] and destroy a commercial image.

The Business Internet Group of San Francisco undertook a study to capture, assess and quantify the
integrity of web applications on 41 specific web sites. According to the report, of those 41 sites, 28 sites
contained web application failures [14]. Thus, software testing acquires a vital importance in web
application development.

First web applications had a simple design based on static HTML pages. Nowadays, web
applications are much more complex and interactive with dynamic information and customized user
interfaces. Design, support and test modern web applications have many challenges to developers and
software engineers.
 This work is organized as follow. Section 1 defines some basic concepts used in this work, shows the
basic aspects of a client-server web application and introduces software testing process. Section 2
describes a simple web application used as example in this work. Section 3 describes how to make unit
testing over a web application. Section 4 describes how to make integration testing over a web
application. Section 5 resumes conclusions and future work.

1.1. Definitions

A web page is all kind of information that can be displayed into a browser window [2]. A web page
uses to be composed by HTML code, generated statically or dynamically, or by client-side executable
components, like Macromedia Flash modules or Java Applets.

A web site is a group of web pages, where the information of every page is semantically related and
syntactically related by links among them. User access to a web site is made by HTTP requests. Client-
side user interface uses to be a browser program running over a personal computer (PC, Mac, etc.).

A web application is built applying heterogeneous technologies like client-side scripting languages
included into HTML, client-side components like Java applets, server-side scripting languages like PHP
or PERL, server-side components like Java Servlets, web services, databases servers, etc. All these
heterogeneous technologies have to work together, obtaining a multi-user, multiplatform application.

65

1.2. Client-Server Architecture in web applications

Functioning of a web application is similar to classic client-server application with thin client, as
showed in Figure 1. When a user writes a web address in a browser, this one acts like a client, requesting
a file to a server accessible by Internet. Server processes the request and sends the file. Client, at the time
to receive the file, process its content and shows them.

Client Server

Request

Answer

Figure 1. Static web application

First web applications were composed only by static web pages. They have not the possibility to
modify their content depending by date, user, or number of requests. The user always received the same
file with the same information into it. Actually, as showed in Figure 2, it is possible to build web pages
dynamically, changing their information depending of many factors.

Client Server

Request

Answer

Server-side code

Database
server

Figure 2. Dynamic web application..

Client-Server architecture in Figure 2 is the same that Client-Server architecture in Figure 1. Main
different is that the server in figure 2 has two elements, one dedicated to receive requests and answer to
them, and other dedicated to execute web application and generate HTML dynamically.

1.3 An overview of software testing process

Nowadays, test process has became in a vital task in development process of all kind of software
systems [3]. It is needed to make a classification [1] of testing, the moment to apply them and their
objectives before expose how to apply test process to web applications. Table 1 shows this classification.

66

Kinds of
tests

Moment to apply Description

Unit testing. During building of
software system.

Unit testing verifies design and functionality of every component of
the system.

Integration
testing.

During building of
software system.

Integration testing verifies the union among system components
through their interfaces and their functionality.

System
testing.

After building of software
system.

System testing verifies in depth the functionality of the system, as a
black box, checking that all requirements have been implemented in
the correctly.

Implantation
testing.

During production
environment implantation.

Implantation testing verifies the correct function of the system in the
real production environment.

Acceptance
testing.

After software system
implantation.

Acceptance testing verifies that system has all requirements expected
and satisfies the needs of the user.

Regression
testing.

During modify Software
system.

Regression testing verifies that changes in code do not generate
unexpected errors.

Table 1. Testing classification.
Unit and integration testing verifies components of the system. System, implantation and acceptance

testing verifies the entire system as a black box, from different points of view. This word is focused in
unit and integration test only.

1.4. Related work

There are several works describing how to test a web application. For example, Liu [16] considers
each web application component as an object and generates test cases based on data flow between those
objects. Ricca [15] proposes a model based on the Unified Modeling Language (UML), to enable web
application evolution analysis and test case generation. Wu [17] defines a generic analysis model that
characterizes both static and dynamic aspects of web based applications. This technique is based on
identifying atomic elements of dynamic web pages that have static structure and dynamic contents.
Elbaum [18] explores the notion that user session data gathered as users operate web applications can be
successfully employed in the testing of those applications.

This paper does not proposal a new web test model but a set of techniques to test web component.
These techniques can be used in any web test model proposal to implemented test cases. These techniques
can be applied to test both client-side and server-side components and they are useful to put test model in
practice.

2. PRACTICAL CASE

This section describes a simple web application to insert customers in a database. In client-side,

application is composed of three web pages: a form to insert customers, a web page with a message if
insertion was possible and another web page with a message if insertion was not possible. In server-side,
application is composed of a MySQL [8] database server and a PHP [9] insertion script. Figure 3 shows
these components .

67

Client Server

Customers
form MySQL

Insert
customer

Error - Customer
does not stored

Customer
successfully stored

Validation

Figure 3. Insert customer web application components.

Figure 4 shows captures of HTML web pages of the application.

Figure 4. Insert customer form.

Validation code, written in JavaScript and included into HTML form, will verify that none obligatory
field will be empty.

This application stores customers in a MySQL table. SQL code to create customers table are showed
in Figure 5.

CREATE TABLE Customers(Id BIGINT(20)
 UNSIGNED NOT NULL AUTO_INCREMENT
 PRIMARY KEY,
Entity VARCHAR(50) NOT NUL L,
Activity VARCHAR(250) NOT NULL,
Address VARCHAR(50) NOT NULL,
City VARCHAR(50) NOT NULL,
ZIP_Code VARCHAR(10) NOT NULL,
Telephone VARCHAR(50) NOT NULL,
Contact_person VARCHAR(50),
Contact_phone VARCHAR(10),
Observations VARCHAR(250));

Figure 5. Customer SQL code.

68

To test this application, we will write, at first time, a set of unit tests to verify client-side components
and server-side components. At second time, we will write an integration test to verify the correct
working of customer form and insertion script together.

3. UNIT TESTING

Objective of unit testing is to verify the functionality of every component in isolation. To do this, we
are going to divide components in two sets: client-side components (web pages, JavaScript code, etc.) and
server-side components (server-scripts, databases, etc.) [1]. Each component set will have its own testing
strategy and tools. Division in our example web application is showed in Figure 6.

Client Server

Error - Customer
does not stored

Customer
successfully stored

Validation

Customers
form MySQL

Insert
customer

Figure 6. Client side and server side components.

Client-side components are downloaded and executed in client web browser. Server-side
components are executed in server and their results are sent to client. Section 3.1 describes techniques and
tools to test server-side components. Section 3.2 describes techniques and tools to test client-side
components.

3.1. Server-side testing

 The strategy to test server code is similar to strategy to develop unit testing in not-web applications.
Main idea is to write a code fragment to execute the code under test with a set of test values and compares
it result with expected results. In our sample web application we are going to write a test script in PHP.
 There are many open-source tools to make easy and automatist this process. In general, all tools
implements JUnit architecture [11]. A list of xUnit tools can be found in [7]. We have selected PEAR
PHPUnit [13], among all PHP xUnit available.
 The example web application has a function to insert a customer with one expected parameter with a
table with all information about customer. This function returns a value that indicates if the client was or
was not inserted. The prototype of this function is shown in Figure 7. Test case will invoke function in
figure 7 with a test customer and will check result returned.

// $result is TRUE if customer was added into database
// and FALSE if does not.
function insertCustomer($customer)
{
 //...
 return $result;
}

Figure 7. InsertCustomer function prototype.
 The unit test is divided in two actions. These actions are described in Table 4.

69

Step Action Verification
1 To call function “insertCustomer” with a test

customer.
To verify that function result is TRUE.

2 To search test customer inserted in step 1 in
customer database.

To verify that customer exists in database and its values are
equals those values of test customer.

Table 4. Test steps.
 The PHP scripts which implements this unit test is showed in Figure 8. First line includes PHPUnit
libraries which offer functions similar to JUnit.

<?
 include_once('./PHPUnit/PHPUnit.php');
 include_once('./ InsertCustomerFunction .php');

 class InsertCustomerTest extends PHPUnit_TestCase {

 var $ test_cust omer ;
 function testInsert Customer () {
 $this ->PHPUnit_TestCase("testInsertarUnCliente");
 }
 function setUp() {
 $this ->test_customer ['customer'] = " test_customer ";
 $this ->test_customer ['activity'] = " test_activity ";
 $this ->test_customer ['address'] = " test_address ";
 $this ->test_customer [' city '] = " test_city ";
 $this ->test_customer [' ZIP_Code '] = "00000";
 $this ->test_customer [' telephone '] = "000 -00 -00 -00";
 }
 function testInsert ACustomer () {
 $ result = insert Customer ($this ->test_customer);
 $this ->assertTrue($result);
 }
 function test CustomerInserted (){
 $conn = mysql_connect("localhost", "", "")
 mysql_select_db("C ustomer ")
 $sql = "SELECT * FROM Customer WHERE 'custome r' ='".
 $this ->test_customer ['customer']."'";
 $result = mysql_query($sql)
 $ Customer = mysql_fetch_array($resul) ;
 $this ->assertEquals($this ->test_customer ['customer'],
 $ Customer ['customer'], " Different customers .");
 // ...

 mysql_free_result($result);
 }
}
 echo "<HTML> <BODY> <HR>
 Insert Customer Test .
";
 $suite = new PHPUnit_TestSuite("InsertCustomerTest ");
 $result = PHPUnit::run($suite);
 echo $result -> toStrin g();
 echo "<HR>";
?>

Figure 8. InsertCustomer function unit test.
 If “insertCustomer” function has no error, test script will write an output like figure 9. That output
indicates that test was success.

70

Figure 9. Successfully test.

3.2. Client-side testing

 Objectives of client-side components testing are to verify that HTML is correct and compliments
standards [10] and to verify dynamic components into web pages. For example, we will verify that
HTML satisfied HTML 4.01 Transitional standard and the JavaScript validation code in our example web
application. It is important to fulfil HTML standards to guarantee that a web page is correctly visualized
in different browsers.
 Other unit test that can apply to client-side components are to verify that web pages are correctly
visualized in different browsers, verify user interface usability, etc.

3.2.1. HTML web pages testing

 A HTML web page contains the information that will be displayed and a set of tags that indicates
how that information has to be displayed. Thus, we have to test that every web page in our web
application example satisfied HTML standards proposed by W3C consortium. A HTML validation tools
is available at W3C consortium web site [6]. We have used that tool to verify our pages. Results are
resumed in Figure 10.

Validation form has an option to upload a web page to validate. In our example web application, when customer

form is validated, some errors appeared:

Line 107, column 38 : document type does not allow element "BODY" here
<body bgcolor="#FFFFFF" text="#000000" >
Line 108, column 75 : there is no attribute "BORDERCOLOR"
... cellpadding="0" align="left" bordercolor= "#0066FF">

First error is because of before <body> tag must be </head> tag.
 “Bordercolor” attrib is obsolete and does not complaint version 4.0 of HTML specification [10]. Style sheets must

be used to define color.
Once corrected two errors, validation tool shows next message: “This Page Is Valid HTML 4.01 Transitional!”
The other two web pages have no errors.

Figure 10. Insert customers HTML form test.
 To avoid testing of each web page in isolation and uploading pages one by one, we can use an option
to write and URL and let application to verify all HTML pages in that URL. There are also, applications
that connect with W3C web site.

3.2.2. Testing JavaScript code

 The form to insert customers includes JavaScript code to avoid blank fields. It is necessary to test this
code to verify that its functionality is the expected one and it is able to detect all invalid combinations
possible.

71

 Originally, JavaScript code was included into HTML web form. This one makes hard to test it. So,
JavaScript code was refactorized and moved into its own script file called “validate.js”. Illustration 11
shows a fragment of validation code.

function Validador(CustomerForm) {

if (CustomerForm .customer .value == "") {
alert(" Field \"Customer \" is obligatory .");

 CustomerForm .customer .focus();
 return (false);
 }

 //

 return (true);
}

Ilustración 11.Validate.js fragment code.
 Code showed in Illustration 11 notices if an obligatory field is empty. Code displays a message
window, showed in Figure 12 and Figure 13, and sets form focus in empty field.

Figure 12. An error in customers form.

Figure 13. Alert window detail.

 The first strategy to validate JavaScript code is to apply manual testing. Manual testing can be
performed by a worker who will write all combinations possible and who will verifies that JavaScript
code results are the expected results. This is the simplest solution, but worse too. Manual testing requires
dedication in exclusive of one programmer, allows many errors because it is a very repetitive and bored
task, and it is needed to make again all test every time customers form or JavaScript code changes.
 Another strategy is to write a unit test case to test JavaScript code. Unit test case has to verify that
functionality of “validate.js” is the expected functionality when applying a set of values, in the same way

72

that test written in section 3.1. To test “validate.js” in isolation, it is needed to write an object that
represents form. A fragment of that code is showed in Figure 14.

function customer (value) {
 this.value= value ;
 return(this);
}

function CustomerForm (e, a, d, l, c, t) {
 this. customer =new customer (e);
 this. activity =new activity (a);
 this. address =new address (d);
 this. city =new city (l);
 this.postal _code =new postal _code (c);
 this. telephone =new telephone (t);
 return (this);
}

Figure 14. JavaScript object representing customer form.
 A test to verify validation code using the representation of the form is showed in Figure 15.

<SCRIPT LANGUAGE="JavaScript" SRC="validar.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC=" customerForm .js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript">
 var form= new Cus tomerForm ("","a", ”d", "l", "c", "t");
 if (Validador(form) == false) {
 alert(" Test failed .");
 } else {
 alert(" Test valid .");
 }
</SCRIPT>

Figure 15. Test of form customer JavaScript code.
 It will be possible to write similar tests based on test described in Figure 15, changing the
position of blank field in customer form creation. Test in Figure 15 verifies that function return expected
value. However, this strategy is not good because. Test does not verify that alert message has expected
text or the form focus will be in the empty field. Even more, test stops after executing “alert” instruction,
so manual verification is still needed. Another problem is that test has to be loaded into the browser to be
executed. This strategy has no advantages from manual test strategy. We still need a programmer who
changes the code, execute the test and verifies that alert message is expected message.
 Other strategies to improve JavaScript testing are to use a JavaScript interpreter instead executing test
in a web browser or to use a mouse-record tool. Improvement of JavaScript testability is a future work.
 This same process can also be done to verify other client-side scripts, like VBScript.

4. INTEGRATION TESTING

 Once verified each components of the system with unit tests, it is time to verify that those
components are able to work right among them. This one is the goal of integration tests.
 In a web application, components in client-side communicate with components in server-side using
HTTP protocol, instead of classic messages to methods or functions. This allows a very low coupling but
makes useless classic xUnit tools to develop integration tests.
 There are two main techniques to develop integration testing in a web application to develop tests
that operates application through it HTML web interface. One technique is using stored macros, and
replaying them to make a test. Macros have to be record again when interface or application changes, so
they are not the best option. Another technique is using an API to analyze HTTP communication. This
API allows to write a program that sends HTTP requests and receives and analyzes their answers. This
second technique is more flexible, and allow to test in depth web pages, but they spend more development
time. We are going to write test based on API to test our web example application.

73

 There are many open-source tools that offer APIs to write integration tools. We have chosen
HttpUnit [6] to write an example. HttpUnit it is written in Java, but we will show that it is possible to use
it to test a PHP web application with a HTML user interface.

4.1. Writing an integration test

 HttpUnit can request a web page in the same way than a web client. HttpUnit offers an interface to
ask if received page includes certain elements and to interact with the elements of the page, by example
navigating through a link. This tool offers almost all functionality of a web browser, like cookies control,
header analysis, GET and POSTS, etc.
 In this point, we are going to write a test with HttpUnit. This test will be a Java class that request
customer form and, later, verifies that the web page received has expected elements.
 Test goes to verify:

 1. Connection with server and customer form requesting.
 2. Verify title of received page to test if it is the expected web page.
 3. Verify if web received page contains customer form.
 4. Verify if form includes all expected fields and assign them test values.
 5. Verify if, when pressing add button, web server answers with expected page.

 Figure 16 shows java code of this test.

import net.sourceforge.jwebunit.WebTestCase;
import com.meterware.httpunit.*;
import com.meterware.servletunit.*;
import java.util.*;
import junit.framework.*;

public class Test CustomerForm extends TestCase {
 public Test CustomerForm () {
 super(" Test CustomerForm ");
 }
 public void testInsert Customer ()
 throws Exception
 {
 WebConversation wc = new WebConversation();
 WebResponse resp = wc.getR esponse("http://localhost/CustomForm.htm");
 Assert.assertEquals(resp.getTitle().compareTo(" Customer Form "), 0);
 WebForm form = resp.getFormWithName(" CustomerForm ");
 Assert.assertNotNull(form);
 form.setParameter(" customer ", " test_cus tomer ");
 form.setParameter(" activity ", " test_activity ");
 form.setParameter(" address ", " test_address ");
 form.setParameter(" city ", " test_city ");
 form.setParameter("postal _code ", "00000");
 form.setParameter("tele phone ", "00 -00 -00");
 WebRequest req = form.getRequest("Submit");
 resp = wc.getResponse(req);
 String output = resp.getText();
 Assert.assertEquals(output.indexOf("Error"), -1);
 }
}

Figure 16. Customer form integration test.
 It will be possible to add an additional validation to verify that testing customer inserted is really
stored into database. This validation can check that insertion script works right when it is called from
HTML form, not only when it is directly called.

74

5. CONCLUSIONS

This work shows how it is possible to build a web application and apply it different testing process

with open-source tools only. All techniques exposed in this work can be easily applied to other web
development platforms like ASP.NET or JSP and Servlets. Some of tests showed in this work are
development with Java over a PHP web application, which demonstrates the interoperability among
technologies and languages that web engineering offers.
 All tools used in this work are free for use and download through Internet and, also, their source code
is accessible, even in commercials tools like MySQL (although free for use depends of license of
application).
 We have seen with our examp le web application, that it is very important to separate different
components of a web application, presentation components like HTML and code components like PHP
scripts, to facility testing process. A good separation among components improves development process,
testing process and maintainability.
 Future lines of investigation from this work are to investigate new tools and strategies to test web
user interfaces built with HTML and JavaScript, study with examples the application of this techniques
and practices in other development platforms like .NET and other components, like Flash user interfaces,
and study strategies to test HTML dynamically generated.

REFERENCES

[1] Ash, L. 2003. The Web Testing Companion: The Insider’s Guide to Efficient and Effective Tests. John

Wiley & Sons, Hoboken, USA.
[2] Ye Wu, Jeff Offutt, Xiaochen Du. 2004. Modeling and Testing of Dynamic Aspects of Web

Applicationsy. Submitted for journal publication
[3] M.J. Escalona, M. Mejías, J.J. Gutiérrez, J. Torres. 2004. Métodos de Testing Sobre La Ingeniería De

Requisitos Web de NDT. IADIS WWW/Internet 2.004. 353-360.
[4] Jeff Offutt et-al. 2004. Web Application Bypass Testing. ISSRE '04
[5] Métrica v3. http://www.csi.map.es/csi/metrica3/
[6] HttpUnit. http://httpunit.sourceforge.net/
[7] Herramientas xUnit. http://www.xprogramming.com/software.htm
[8] MySQL. http://www.mysql.com
[9] PHP. http://www.php.net/
[10] HTML 4.01 Specification. http://www.w3.org/TR/html4/
[11] Junit. http://junit.org/
[12]W3C HTML Validator. http://validator.w3.org/
[13] PEAR PHPUnit. http://pear.php.net/package/PHPUnit/
[14] BIGSF. Government Web Application Integrity. The Business Internet Group of San Francisco,

2003.
[15] F. Ricca, P. Tonella. Analysis and testing of web applications. In Proceedings of the 23rd

international conference on Software Engineering. IEEE Computer Society Press, 2001.
[16] S. Chun, J. Outt. Generating test cases for XML-based web application. In Proceedings of the 12th

International Symposium on Software Reliability Engineering, pages 200–209, Hong Kong,
November 2001.

[17] Y. Wu, D. Pan, M.H. Chen. Techniques for testing component-based software. In Proceedings of the
7th IEEE International Conference on Engineering of Complex Computer Systems, pages 15–23,
Skövde, Sweden, June 2001.

[18] M. J. Harrold, M. L. Soa. Selecting data flow integration testing. IEEE Software, 8(2):58–65, March
1991.

75

	What is a Web Site?
	Web Interactions
	Web Verification
	A Driving Application
	Temporal Behavior
	Information Safety and Visibility

	The Structure of Web Programs
	Some Research Problems
	References
	Features as Modelling Entities
	Application: The Online Conference Service (OCS)
	Feature Description
	Property Description

	Designing the OCS as a Feature Based System
	Feature-based Design
	Hierarchy of Features
	Organizing the User/Role Management
	Model Checking-Based High-Level Validation

	Conclusions
	References
	Hierarchical Feature Structure
	Introduction
	Defining Requirements with CREATIV
	Generating and Verifying the Application with Perfect Developer
	Case Study
	Related Work
	Conclusions and Further Work
	References
	Navigation modeling with the SWC notation
	Strategies for model-based evaluation of navigation
	Discussion and future work
	References
	Introduction
	News Pages --- A Challenge for Up-to-dateness
	Freshness of a Single Document
	Approaching Freshness
	Freshness of a News Page

	An Up-to-dateness Aware WCMS
	XML-centric WCMS
	A Simple Syntactic Document Metric based on XMLDiff
	Measuring Editing Effort by a Syntactic Document Metric

	Determining Up-to-dateness of Multiple Documents
	Semantic Relations
	Propagating Up-to-dateness Changes
	Propagating Up-to-dateness of our Example Web Site

	Conclusions and Outlook
	References
	Introduction
	Embedded Scripting
	Validation against a DTD
	Informal Validation of Scripted Web-Pages
	Generalised Output and Augmenting the DTD
	The Augmented DTD
	The Script Processor
	Current implementation
	Summary
	References
	Introduction
	Distance Based Decision Trees
	An illustrative example
	Conclusions
	References
	References
	Introduction
	Anatomy of the Evaluation and Report Language
	Core Classes
	Extensions

	Current State of Web Accessibility Evaluation Tools
	Use cases for the Evaluation and Report Language
	Combine Reports
	Verify Test Results
	Prioritize Results
	Provide Data Views
	Integrate Authoring Tools
	Annotate Web Content

	Summary
	References
	Introduction
	Preliminaries
	Matching Algorithm
	Regular Expressions
	Context Sequence Matching and XML
	Conclusions
	References
	Introduction
	XML
	The Slicing Technique
	Implementation
	References
	Introduction
	The Pattern Logical Framework
	PLF's Terms
	Matching and Operational Semantics
	PLF's Type System

	Examples
	Call-by-value Lambda Calculus
	Untyped Rewriting Calculus

	References
	Genuine XML-examples in à la Rewriting Calculus
	Introduction
	Motivating example
	The Modular HTML language
	Semantics, anchoring and compilation
	Related Work about HTML
	Conclusion
	References
	Introduction
	Web site denotation
	Web specification language
	The verification system
	References
	Introduction
	From ARSs to TRSs
	Further improvements and applications
	References
	Introduction
	The Multiple Levels of Integrity policy
	Formal Validation Methodology
	Validation of the Multiple Levels of Integrity policy

	A concept of interface
	Case Study: the Travel Agency
	Case Study: Peer to Peer Validation Service
	The inverted Turing Test
	Conclusion
	References
	Introduction
	Case Study: Travel Reservation System
	The WSCI - WSCDL Description
	WSCI
	Example. Travel Reservation System

	Modeling, Simulation and Verification
	Conclusions and Future Work
	References
	Introduction
	Background
	Design by Contract (DBC)
	Extended Static Checking (ESC)
	ESC/Java2
	Java Web-based Enterprise Application (WEA)

	Case study
	Goals and approach
	General results
	Specifying javax, java.sql and the SoenEA core

	Specific design and implementation faults
	Incompletely propagated design changes
	Possible violation of behavioral subtyping
	Unchecked dispatcher
	Missed exceptional condition
	Other faults

	Conclusion
	Future work
	Acknowledgement
	References

