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Abstract: - This paper presents the main features of XFL3, a new language for fuzzy system specification, which
has been defined as the starting point for the 3.0 version of our fuzzy system design environment, Xfuzzy [1].
Its main advantages with respect to its precursor, XFL [2], are its capability to admit user-defined membership
functions, parametric operators, and linguistic hedges. Taking this language as the basis, different fuzzy system
development tools are being implementing, which are also summarized briefly.
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1 Introduction
The definition of formal languages for fuzzy system
specification is usual for its several advantages
[3][4]. However, two objectives may conflict. On one
side, a high expressive language, able to apply all the
fuzzy logic-based formalisms, is desired. On the oth-
er side, the final system implementation constraints
have to be considered. In this sense, some languages
focus on expressiveness [5][6], while others are fo-
cused on software or hardware implementations [7].
When our group begun to design a fuzzy system en-
vironment, our aim was to meet both objectives. This
led us to the definition of the formal language XFL
[2], which is the base for several hardware- and soft-
ware-oriented development tools that constitute the
Xfuzzy 2.0 design environment [1].

As a starting point for the 3.0 version of Xfuzzy, a
new language, XFL3, which extends the advantages
of XFL, has been defined. XFL3 allows the user to
define new membership functions and parametric op-
erators, and admits the use of linguistic hedges which
permit to describe more complex relationships
among variables [8]. In order to incorporate these im-
provements, some modifications have been made in
the XFL syntax. In addition, the new language XFL3,
together with the tools based on it, employ Java as
programming language. This means the use of an ad-
vantageous object-oriented methodology and the
flexibility of executing the new version of Xfuzzy in
any platform with JRE (Java Runtime Environment)
installed.

2 The XFL3 language
XFL3 is a fuzzy system specification language which
provides the user with a great flexibility to define the
functions associated with the fuzzy operators and lin-
guistic variables and which allows to express com-
plex rule bases.

An XFL3 specification consists of several objects
defining operator sets, variable types, and rule bases.
The definition format of these elements is described
in the following.

2.1  Operator sets

An operator set in XFL3 is an object containing the
mathematical functions that are assigned to each
fuzzy operator. Fuzzy operators can be binary (like
the T-norms and S-norms employed to represent lin-
guistic variable connections, implication, or rule ag-
gregations), unary (like the C-norms or the operators
related with linguistic hedges), or can be associated
with defuzzification methods [9].

XFL3 defines the operator sets with the following
format (Figure 1):

operatorset identifier {
operator assigned_function(parameter_list);
operator assigned_function(parameter_list);
........... }

It is not required to specify all the operators. When
one of them is not defined, its default function is as-
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sumed. Table 1 shows the operators (and their default
functions) currently used in XFL3.

The assigned functions are defined in external
files which we name as packages. The format to iden-
tify a function is “package.function”. The package
name (xfl in Figure 1) could be removed if the pack-
age has been imported previously (using the com-
mand “import package;”).

2.2  Types of linguistic variables

An XFL3 type is an object which describes a type of
linguistic variable. This means to define its universe
of discourse, to name the linguistic labels covering
that universe, and to specify the membership function
associated to each label. The definition format of a
type is as follows (Figure 2):

type identifier [min, max; card] {
label membership_function(parameter_list);
label membership_function(parameter_list);
............. }

where min and max are the limits of the universe of
discourse and card (cardinality) is the number of its
discrete elements. If cardinality is not specified, its
default value (currently, 256) is assumed. When lim-
its are not explicitly defined, the universe of dis-
course is taken from 0 to 1.

The format of the linguistic label identifier is sim-
ilar to the operator identifier, that is, “package.func-
tion” or simply “function” if the package where the
user has defined the membership functions has been
already imported.

XFL3 supports inheritance mechanisms in the
type definitions (like its precursor, XFL). To express
inheritance, the heading of the definition is as follows
(Figure 2):

type identifier extends identifier {

The types so defined inherit automatically the uni-
verse of discourse and the labels of their parents. The
labels defined in the body of the type are either added
to the parent labels or overwrite them if they have the
same name.

2.3  Rule bases

A rule base in XFL3 is an object containing the rules
which define the logic relationships among the lin-
guistic variables. Its definition format is as follows
(Figure 3):

rulebase identifier (input_list : output_list)
using operatorset {
[factor] if (antecedent) -> consequent_list;
[factor] if (antecedent) -> consequent_list;
............. }

The definition format of the input and output vari-
ables is “type identifier”, where type refers to one of
the linguistic variable types previously defined. The
operator set selection (systemop in Figure 3) is op-
tional, so that when it is not explicitly defined, the de-

Table 1: Operators currently defined in XFL3.

Operator Type Default function

and binary min(a,b)

or binary max(a,b)

implication
imp

binary min(a,b)

also binary max(a,b)

not unary (1-a)

strongly unary (a)2

moreorless unary (a)1/2

slightly unary 4*a*(1-a)

defuzzification
defuz

defuzzification center of area

operatorset systemop {
   and  xfl.min();
   or    xfl.max();
   imp xfl.min();
   strongly xfl.pow(3);
   moreorless xfl.pow(0.4);
  }

Fig. 1: Example of operator set definition.

type input1 [0,100] {
   short xfl.triangle(0,25,50);
   medium xfl.triangle(25,50,75);
   tall xfl.triangle(50,75,100);
  }

type input2 extends input1 {
   very_short xfl.triangle(-10,0,25);
   very_tall xfl.triangle(75,100,110);
  }

Fig. 2: Example of variable type definition.



fault operators are employed. It is also shown in
Figure 3 how confidence weights (with default val-
ues of 1) can be applied to the rules.

A rule antecedent describes the relationships
among the input variables. XFL3 allows to express
complex antecedents by combining basic proposi-
tions with connectives or linguistic hedges (Table 2
and Figure 4). On the other side, each rule conse-
quent describes the assignation of a linguistic vari-
able to an output variable as “variable = label”
(Figure 3).

2.4  System global behavior

The description of the system global behavior means
to define the global input and output variables of the
system as well as the rule base hierarchy. This de-

scription in XFL3 is as follows (Figure 5):

system (input_list : output_list) {
rule_base_identifier(inputs : outputs);
rule_base_identifier(inputs : outputs);
............. }

The definition format of the global input and out-
put variables is the same format employed in the def-
inition of the rule bases. The inner variables which
may appear establish serial or parallel interconnec-
tions among the rule bases. Inner variables must first-
ly appear as output variables of a rule base before
being employed as input variables of other rule bases
(Figure 5).

3 Function packages
Four types of functions can be defined in XFL3: bi-
nary functions, unary functions, membership func-

Table 2: Example of fuzzy propositions

Basic propositions Description

variable == label equal to

variable >= label equal or greater than (Fig. 3a)

variable <= label equal or smaller than (Fig. 3b)

variable > label greater than (Fig. 3c)

variable < label smaller than (Fig. 3d)

variable != label not equal to (Fig. 3e)

variable %= label slightly equal to (Fig. 3f)

variable ~= label moreorless equal to (Fig. 3g)

variable += label strongly equal to (Fig. 3h)

Complex propositions Description

proposition & proposition and operator

proposition | proposition or operator

! proposition not operator

% proposition slightly operator

~ proposition moreorless operator

+ proposition strongly operator

rulebase base1(input1 x, input2 y : output z) using systemop
{
   if( x == medium & y == medium) -> z = tall;
   [0.8] if( x<=short |  y != very_tall ) -> z = short;
   if( +(x>tall) & (y ~= medium) ) -> z = tall;
   ............. }

Fig. 3: Example of rule base definition.

system (input1 x, input2 y : output z) {
    rulebase1(x, y : inner1);
    rulebase2(x, y : inner2);
    rulebase3(inner1, inner2 : z);
  }

Fig. 4: Example of system behavior definition.

(a) (b)

(e)

(g) (h)

(f)

(c) (d)

Fig. 5: Illustrating linguistic hedges.



tions, and functions associated with defuzzification
methods. A great advantage of XFL3 is that these
functions can be defined freely by the user in external
files (named as packages). The definition format is as
follows:

binary identifier { blocks }
unary identifier { blocks }
mf identifier { blocks }
defuz identifier { blocks }

The blocks that define a function include its name
(and possible alias), the parameters which specify its
behavior as well as the constraints on these parame-
ters, the description of its behavior in the different
languages to which it could be compiled (java,
ansi_c and cplusplus, for instance), and even the de-
scription of its differential function (if it is employed
in gradient-based learning mechanisms). This infor-
mation is the basis to generate automatically a Java
class that incorporates all the function capabilities
and can be employed by any XFL3 specification. Re-
garding defuzzification methods, some of them can
be only employed with certain membership func-
tions. To express this dependence, the block defined-
for indicates those allowed membership functions.

The use of packages allows the designer to define
any desired function. The standard package currently
used in XFL3 (and named xfl) contains the most usu-
al functions, as shown in Table 3.

4 Example of an XFL specification
One of the main features of XFL3 is the inclusion of
linguistic hedges and hierarchical structures on the

definition of fuzzy systems. The modular division of
the system description allows the designer to con-
front the development of complex systems. In this
sense, linguistic hedges can be used to decrease the
number of linguistic labels employed and to express
logic rules more compactly [10].

As an example of complex system modelling, we
have considered the classic problem of parking a
truck in a loading dock [11]. In this problem, only the
case of backward driving is generally considered.
However, this makes it very difficult for the truck to
park when starting at a bad-oriented position as
shown in Figure 6. The approximation we have fol-
lowed is to directly emulate how we will act as driv-
ers, which for us is a two step decision problem: to
decide whether moving forwards or backwards and,
depending on the case, to select the proper angle of
the wheels. This knowledge is, hence, represented by
a hierarchical system. In particular, four rule bases
are employed, as shown at the bottom of Figure 7.
The rule base direction emulates our non fuzzy mak-
ing decision about the direction of movement. On the
contrary, the rule bases forward and backward emu-
lates our fuzzy decision about the wheel angle when
driving forward or backward. Finally, the rule base
switch chooses the proper turn as a function of the
movement direction.

This example does not attempt to illustrate an op-
timum way of solving the truck-dock problem but the
efficiency of XFL3 for representing expert linguistic
knowledge. In this sense, the type definitions of the
variables have been reduced by using the greater and
smaller linguistic hedges, and the rule base defini-
tions have been compacted thanks to combinations of
connectives and hedges, as we express linguistically.

Figure 8 shows the results of two simulations. In
the first one, the truck starts at the bottom-left corner,
with a north-east orientation. The system decides to
drive forward approaching the truck to the vertical
and, once at that position, leads it backwards to the

Table 3: The standard package xfl.

Function type Possible assigned functions

Binary min, prod, bounded_prod,
drastic_prod, max, sum,
bounded_sum, drastic_sum,
dienes_resher, mizumoto,
lukasiewicz, dubois_prade, zadeh,
goguen, godel, sharp.

Unary not, sugeno, yager, pow, parabola.

Membership
functions

trapezoid, triangle, isosceles,
slope, bell, sigma, rectangle, sin-
gleton

Defuzzification
methods

CenterOfArea, FirstOfMaxima,
LastOfMaxima, MeanOfMaxima,
FuzzyMean, WeightedFuzz-
yMean, Quality, GammaQuality.

angle

(x,y)

Fig. 6: Example of the truck-dock problem.



dock. The second simulation begins at the bottom-
right corner in a south-west direction. In this case, the
truck is driven backwards till an horizontal orienta-
tion is reached, then is directed forward to the vertical
and finally goes back to the dock.

5  Summary of the XFL3-based tools
The core of any application developed with XFL3 is
based on the use of Java classes which contain the
whole structure and functionality of the specifica-
tions to be worked with. Using these classes and the
Java graphic libraries, several tools have been built

Fig. 7: Summary of the XFL3 specification of a fuzzy control system for the truck-dock problem.

operatorset opset { defuz xfl.FuzzyMean(); and xfl.prod(); }
type TCrispX [-50.0,50.0] { ... }
  ......
type TWheel [-30.0,30.0] { ... }
rulebase backward(TX x, TAngle angle : TWheel wheel) using opset { ... }
rulebase forward(TX x, TAngle angle : TWheel wheel) using opset { ... }
rulebase switch(TWheel bw, TWheel fw, TDir dd : TWheel wheel, TDir dir)
using opset { ... }

rulebase direction(TCrispX x,TCrispY y,TCrispAngle angle,TOldDir olddir : TDir dir)
using opset {
 if(y > far) -> dir = backward;
 if(y == far & olddir <= zero ) -> dir = backward;
 if(y == far & olddir > zero ) -> dir = forward;
 if(y <= near & x != center & angle <= RI & angle >= LE) -> dir = forward;
 if(y <= near & x != center & (angle > RI | angle < LE)) -> dir = backward;
 if(x == center & y == near & angle <= RS & angle >= LS) -> dir = backward;
 if(x == center & y == near & (angle > RI | angle < LE)) -> dir = backward;
 if(x == center & y == near & (angle == LE | angle == RI)) -> dir = forward;
if(x == center & y < near & angle == CE) -> dir = stop;

 if(x == center & y < near & (angle > RI | angle < LE)) -> dir = backward;
 if(x == center & y < near & angle < CE & angle >= LE) -> dir = forward;
 if(x == center & y < near & angle > CE & angle <= RI) -> dir = forward;
}

system (TX x,TCrispY y,TAngle angle,TOldDir olddir : TWheel wheel,TDir direction){
 direction(x, y, angle, olddir : dd);
 backward( x, angle : bw);
 forward( x, angle : fw);
 switch( bw, fw, dd : wheel, direction);
}

NB NB

NB NB

NB NM

PB

PB

PB

PB
PB

rulebase backward

NM

NS

NS

NS
NS

NS

PS

PS
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PS
NM

NMNM

NM
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PM PM
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ZE

<LE
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x

angle

backward

forward switch
wheel

x
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direction

y

olddir

direction
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NM
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PM

PB

NB
NS

PS

NM
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NM
NS
PS PS

PM
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<LE
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LS
CE
RS
RI
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<LE LE CE RI >RI
x

angle

TCrispX

TCrispY

right center left

farnear

TCrispAngle TX

LE LS CE RS RI

TDir

TAngle

TOldDir TWheel

ZE PS PM PBNB NM NSstopbackward forward

CE RILELE LS CE RS RI

zero

<LE >RI <LE >RI <LE >RI

> zero< zero

(a) (b)

Fig. 8: Simulation results on the truck-dock problem.



which allow exploiting the XFL3 features through
the different development stages of a fuzzy system
design.

Currently, there is available a fuzzy system edition
tool, named xfedit. It allows defining the operator
sets, variable types, rule bases, and system structure
through a graphical user interface, as shown in Figure
9. Two graphic representation tools, named xf2dplot
and xf3dplot, have been also developed. They allow
illustrating the fuzzy system behavior by its output/
input surface in a two or three dimensional space.

A tool for automatically adjusting fuzzy systems
described with XFL3 is also available. This tool,
named xfsl, provides the user with several learning
algorithms and allows selecting which system pa-
rameters are going to be tuned and which not. Be-
sides, this tool includes two methods of pre- and post-
processing for eliminating non significant rules and
labels and for clustering the output variables, thus
simplifying their associated types.

The final step of any design process is the synthe-
sis step which can lead to a software or hardware sys-
tem implementation. To ease the software synthesis,
three tools have been developed, xfj, xfc and xfcpp,
which generate, respectively, the system description
in Java, C, and C++ languages.

These and other tools under development attempt
to cover all the different stages of a fuzzy system de-
sign from its linguistic description to its final imple-
mentation (either software or hardware) and will
constitute the 3.0 version of the Xfuzzy environment.

6  Conclusions
This paper has introduced the XFL3 language, which
has been developed after accumulating experience
with the design of the Xfuzzy 2.0 environment. XFL3
eases the description and manipulation of complex

fuzzy systems thanks to the use of quite user-defined
membership functions, fuzzy operators (including
linguistic hedges), and rule bases (admitting hierar-
chical structures). An illustrative example has been
included to show the efficiency of XFL3 to rapidly
translate linguistic knowledge. Based on this lan-
guage, several tools are being developed to constitute
the new version of Xfuzzy, which could be executed
on any platform containing the Java Runtime Envi-
ronment.
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