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1 INTRODUCTION 
 

 

The linear theory of vibrations is one of the most useful tools in the handbook of a 

mechanical engineer. It furnishes a solid and well-established mathematical 

framework for concepts such us resonance and linear modes of vibration, which are 

central for the modal analysis of structures and mechanical systems.  

A most appealing quality of this linear theory is its relative simplicity. Linear 

models exhibit special attributes which make them particularly useful from a 

practical point of view, such us the principle of superposition –whereby the 

response to a linear combination of excitations can be obtained as the linear 

combination of individual responses– or the fact that several attractors never coexist 

–the stationary motion of a forced, damped, linear system, is independent of the 

initial conditions–. It is thanks to these properties, together with the fact that many 

real structures are well represented by linear models in their ranges of operation, 



 

 

 

 

 

 

 

 

 

 

 

 

2    1 Introduction 

that linear vibration analysis has become a chief tool in the design of mechanical 

systems and structures in industry. 

However, linearity is clearly an idealization. Nature is not linear in general, 

although it can be approximately represented by linear models in some cases. For 

instance, the linear theory of elasticity is known to give good results for structures 

undergoing small displacements and small strains. However, as soon as 

displacements become significant, nonlinear effects need to be considered (Luongo, 

Rega, & Vestroni, 1986). Some other possible sources of nonlinearity in mechanical 

systems are (Thomsen, 2003)   

- Material nonlinearities due to a nonlinear relation between stresses and 

strains in some materials. 

- Nonlinear body forces, such as magnetic or aerodynamic interactions. 

- Nonlinearities due to the physical configuration, such as those associated to 

discontinuous couplings, clearances or stops. 

Nonlinearity plays a key role in the dynamic behaviour of numerous real-world 

applications. Some examples are the motion of large wind turbines, the 

crashworthiness of vehicles or the vibrocompaction of granular materials. The 

aeronautical industry, with great interest in minimizing weight, is increasingly 

producing very light and slender structures, with the subsequent activation of 

geometrical nonlinearities. The use of materials such as carbon-fiber composites in 

aerospace applications can also produce a significant deviation from linearity. It is 

evident that, in all these situations, a linearized model would not be able to capture 

the real system dynamics. Thus, in order to have reliable predictions, nonlinearity 

would need to be included in the model, which in turn implies entering the complex 

field of nonlinear dynamics. 

Nonlinear dynamics is the branch of mathematics which intends to uncover the 

temporal evolution of nonlinear dynamical systems. Unlike its linear counterpart, 

nonlinear dynamics is not a closed subject –not even a mature one–. The main 

reason is that, while all linear systems are essentially the same, each nonlinear 



 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 3 

system is nonlinear in its own way. This means that, in general, conclusions about 

the behaviour of a particular nonlinear system cannot be generalized to any other. 

Besides, the dynamics of nonlinear systems is extremely rich, exhibiting a wide 

range of phenomena which cannot occur in linear systems, such as multistability, 

chaos or limit cycles. All this complexity renders it extremely hard to obtain 

analytical solutions to the nonlinear differential equations governing the system 

dynamics. In general, it is necessary to resort to numerical computations in order to 

get some insight into the system behaviour. 

From the above considerations, it is clear that a significant research effort needs to 

be oriented to a better comprehension of the dynamic behaviour of nonlinear 

mechanical systems. This will hopefully lead to efficient predictions about the 

performance of systems where nonlinearity has a significant effect, and will also 

motivate the design and development of new nonlinear components which are able 

to outperform their linear counterparts. It is the aim of this thesis to contribute to 

this general objective, by analysing in detail a particular class of nonlinear systems, 

namely those excited by unbalanced motors.  

The motion of unbalanced rotors constitutes one of the most common vibration 

sources in mechanical engineering (Boyaci, Lu, & Schweizer, 2015; Yang et al., 

2016). Vibrations due to unbalance may occur in any kind of rotating systems, such 

as turbines, flywheels, blowers or fans (Shabana, 1996). Actually, in practice, rotors 

can never be completely balanced because of manufacturing errors such as porosity 

in casting, non-uniform density of the material, manufacturing tolerances, etc. (Xu 

& Marangoni, 1994). Even a subsequent balancing process will never be perfect 

due to the tolerances of the balancing machines. Moreover, some amount of 

unbalance generally appears during the operation of the machine, as a consequence 

of uneven wear, corrosion or unequal build-up of deposits (dirt, lime, etc.). 

Usually, rotor unbalance has a harmful effect on rotating machinery, since vibration 

may damage critical parts of the machine, such as bearings, seals, gears and 

couplings (Xu & Marangoni, 1994). However, there are applications where 



 

 

 

 

 

 

 

 

 

 

 

 

4    1 Introduction 

unbalanced rotors are used to generate a desired vibration. Some examples are the 

feeding, conveying and screening of bulk materials, or the vibrocompaction of 

quartz agglomerates, which makes use of unbalanced motors to compact a quartz-

resin mixture.  

A simple 2-DOF model to analyse the dynamic response of a structure to the 

excitation produced by an unbalanced motor is sketched in Fig. 1.1. The simplest 

approach to this problem consists in assuming the rotor speed to be either constant 

or a prescribed function of time. In the constant speed case, the centrifugal force of 

the unbalance produces a harmonic excitation on the vibrating system, whose 

amplitude scales with the square of the rotating speed and whose frequency 

coincides with the rotating speed (Shabana, 1996; Thomson, 1996).  

Note that, with this approach, it is implicitly being assumed that the rotational 

motion of the motor is independent of the vibration of the structure. This property is 

what defines an ideal excitation: it remains unaffected by the vibrating system 

response. Thus, the amplitude and frequency of an ideal excitation are known a 

priori, before solving the vibration problem. Obviously, this notion of ideality is 

applicable to any kind of excitation, and not only to the one produced by an 

unbalanced motor. 

 

Fig. 1.1 Simple 2-DOF model of a structure excited by an unbalanced motor
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1.1 State of the Art 5 

1.1 State of the Art 

The ideality assumption is valid, with good approximation, in many real problems. 

However, there are situations where it is not. In 1904, Sommerfeld (Sommerfeld, 

1904), whose pioneering work inspired many subsequent investigations, found 

experimentally kinds of behaviour which could not be explained upon the ideality 

hypothesis. He mounted an unbalanced electric motor on an elastically supported 

table and monitored the input power as well as the frequency and amplitude of the 

response (Nayfeh & Mook, 1995). The experiment consisted in increasing 

continuously the power input in order to make the rotor speed pass through the 

resonance frequency of the table. When the rotor speed was close to resonance, an 

increment of the input power produced only a very slight increase in the rotor 

speed, while the oscillation amplitude increased considerably. This means that, in 

this part of the experiment, the increasing input power was not making the motor 

rotate faster, but was giving rise to larger oscillations. With larger increase of the 

input power, the rotor speed jumped abruptly to a frequency above resonance and, 

at the same time, the vibration amplitude jumped to a much smaller quantity than 

measured in the resonance region. This anomalous behaviour is usually referred to 

as ‘The Sommerfeld Effect’.  

The Sommerfeld effect is closely related to the more general notion of ‘resonant 

capture’ (Quinn, Rand, & Bridge, 1995; Sanders, Verhulst, & Murdock, 2007). 

This phenomenon occurs when a nonlinear system becomes locked in the vicinity 

of a particular surface of the phase space, known as a ‘resonance manifold’, which 

usually corresponds to a critical value of one of the frequencies present in the 

system. The alternative, known as ‘passage through resonance’, occurs when the 

system undergoes a transient motion near the resonance manifold and, after some 

time, it sets out towards the non-resonant region of the phase space. 

In 1969, Kononenko (Kononenko, 1969) published a book entirely devoted to the 

study of nonideal excitations. He considered different configurations of vibrating 

systems excited by nonideal motors and applied the Averaging Method (Sanders et 



 

 

 

 

 

 

 

 

 

 

 

 

6    1 Introduction 

al., 2007) to the equations of motion. By taking into account the two-way 

interaction between the motor and the vibrating structure, he was able to explain the 

Sommerfeld effect. After Kononenko, numerous investigations have been 

conducted in order to get more insight into the effect of nonideal excitations on 

mechanical systems.  

An interesting real case of nonideal excitation was reported by Rand et al (Rand, 

Kinsey., & Mingori, 1992). The system is a dual-spin spacecraft, consisting of two 

bodies (platform and rotor) connected by a bearing assembly which allows relative 

rotation. When the spacecraft is first placed in orbit, platform and rotor rotate 

together with zero relative spin rate. Then, a ‘despin maneuver’ is initiated, where 

an internal motor provides a torque intended to increase the bearing axis component 

of the rotor angular speed, while decreasing the bearing axis component of the 

platform angular speed. Ideally, this continues until the platform is inertially 

nonrotating, yet some failures can interfere with the process, channelling the energy 

provided by the motor into motions other than the intended rotation. When this 

happens, the condition of the spacecraft after the despin maneuver becomes far 

from the desired state.  

Rand et al. (Rand et al., 1992) investigated one of these possible failures, known as 

‘precession phase lock’, which appears when the rotation of the rotor around the 

bearing axis becomes synchronized with the precession of the spacecraft around its 

angular momentum vector. They concluded that the equations describing the 

spacecraft dynamics are similar to those of an unbalanced motor attached to the 

fixed frame by a linear spring and driven by a constant torque.  

Quinn et al. investigated approximate analytical methods to distinguish initial 

conditions leading to capture or passage through resonance (Quinn et al., 1995). 

Dimentberg et al. analysed experimentally how to promote the passage through 

resonance by a sudden shift in the system stiffness (Dimentberg, Mcgovern, Norton, 

Chapdelaine, & Harrison, 1997). They also estimated the decrease in the needed 



 

 

 

 

 

 

 

 

 

 

 

 

1.1 State of the Art 7 

input power needed for a dynamic passage through resonance, with respect to a 

quasistatic passage. 

Although the most usual analytical approach to the problem is based on averaging 

procedures, Blekhman (Blekhman, 2000) proposed an alternative approximation to 

the stationary solutions by using the method of ‘Direct Separation of Motions’, 

which shows some similarities with averaging. The main idea behind this technique 

consists in assuming the motion to be the sum of two terms, one of them evolving 

much faster than the other. Then, the system displacement is decomposed into a 

‘slow motion’ and a ‘fast motion’. By averaging over the fast time, the method 

allows including the effect of the fast motion into the slow dynamics of the system. 

Fidlin (Fidlin, 2006) addressed a weakness of the asymptotic solutions obtained by 

averaging, namely the fact that approximate solutions near resonance are only valid 

for a short time scale. He proposed a hierarchic averaging procedure to enlarge the 

time validity of the approximations. 

It should also be noted that some authors have found chaotic motions in systems 

excited by nonideal power sources (Belato, Weber, Balthazar & Mook, 2001; 

Krasnopolskaya & Shvets, 1993). 

 

1.2 Motivation and Objectives 

The present study of the dynamics of structures excited by unbalanced motors has 

been motivated by our interest in an industrial process where unbalanced motors are 

used to compact a quartz-resin mixture. In this process, manufacturers find some 

unexpected behaviours of the compacting machine, which yield an imperfect 

compaction of the mixture. It is clear that a good understanding and modelling of 

the process, including all relevant physical phenomena, would be extremely helpful 

to explain and avoid these adverse scenarios. Although the models studied and 

developed in this thesis are still far from being a reliable representation of real 



 

 

 

 

 

 

 

 

 

 

 

 

8    1 Introduction 

vibrocompaction machines, some of the intrinsic nonlinearities of the real system 

have been considered, like the nonideal coupling between motor and vibrating 

structure in Chapters 3-7, and also impacts and a nonlinear constitutive law for the 

quartz-resin mixture in Chapter 8. Thus, the present work may be envisaged as a 

first step towards a more complex modelling of vibrocompaction processes. 

The objectives of this doctoral thesis are 

- Progressing further in the knowledge of the response of nonlinear vibrating 

systems to nonideal excitations, with special interest in the different kinds 

of stationary motions that can be found. 

- Giving some first steps in modelling and simulating the vibrocompation of 

quartz agglomerates. Based on the developments of this thesis, some more 

realistic models will hopefully be constructed in the future, for the purpose 

of reliably predicting the effect of different factors (speed of the motors, 

value of the unbalance, granulometry of the mixture…) in the final result of 

the real process. 

 

1.3 Organization of the Document 

Most of this thesis (Chapters 3-7) is aimed at uncovering the behaviour of a 2-DOF 

system, which can be used to model unbalance-induced vibrations. It consists of an 

unbalanced motor attached to the fixed frame by a nonlinear spring and a linear 

damper. The driving torque produced by the motor is assumed to be given by its 

torque-speed curve, or motor characteristic. The relative simplicity of the model 

allows for an analytical treatment, based on searching for asymptotic 

approximations to the exact solutions. These analytical developments furnish much 

significant information about the system dynamics, which is validated through 

numerical simulations. After the analysis of this simplified model, a more complex 

one is considered which intends to be a more accurate representation of the 

vibrocompaction process of quartz agglomerates. 



 

 

 

 

 

 

 

 

 

 

 

 

1.3 Organization of the Document 9 

During the present investigation, it has been realized that the slope of the motor 

characteristic curve is a chief parameter of the problem. Actually, the system 

exhibits different behaviours, and requires different mathematical approaches, 

depending on the order of magnitude of this slope. Thus, two scenarios are analysed 

separately, depending on whether the slope is large (Chapters 3, 4) or small 

(Chapters 5, 6). Hence the document is organized as follows. 

In Chapter 2, the main mathematical methods and techniques that are used 

throughout the thesis are introduced. 

Chapter 3 addresses the equations of motion for the simplified system under study 

and states the assumptions on which the analysis is based, for the case of large slope 

characteristic. A new analytical approach to this problem is proposed, based on the 

application of the Singular Perturbation Theory, besides the Averaging Method. 

With this novel combination of two different perturbation techniques, the original 

4D system is transformed into a reduced 2D system, much easier to analyse. The 

fixed points of this reduced system are obtained, and their stability is studied, 

finding conditions for the existence of Hopf bifurcations, which have not been 

reported before, to the best of the author’s knowledge. The Hopf bifurcations are 

analysed in detail, and a simple criterion is encountered to distinguish whether the 

bifurcation is subcritical or supercritical. The Poincaré-Béndixson theorem is 

applied as well, in order to show that, under appropriate conditions, all system 

trajectories are attracted towards a stable limit cycle.  

In Chapter 4, a number of numerical simulations are carried out, with the aim of 

validating the analytical results of Chapter 3 and investigating the global 

bifurcations which make the limit cycles disappear. 

Chapter 5 presents the analytical treatment of the problem when the slope of the 

motor characteristic is small. Once again, averaging techniques are used to simplify 

the original system. However, the presence of a resonance manifold in the phase 

space enforces the construction of two different approximate systems, valid close 

(inner region) or far (outer region) from the resonance manifold, respectively. The 



 

 

 

 

 

 

 

 

 

 

 

 

10    1 Introduction 

fixed points of both averaged systems are obtained and their stability is analysed. 

Admittedly, some of the developments of this Chapter are not totally new, but a 

reformulation of already published treatments of the problem. However, the 

stability of the stationary motions of the system near resonance was not totally 

solved hitherto. By using attraction arguments, a detailed stability analysis of these 

solutions is conducted. 

Chapter 6 presents numerical results which validate the results and conclusions of 

Chapter 5. 

In Chapter 7, an alternative approximate method is used to obtain the stationary 

solutions of the system studied in previous chapters. This approach is based on the 

Method of Direct Separation of Motions, proposed by Blekhman (Blekhman, 2000) 

and has the advantage of providing a graphical representation of the stationary 

motions which is highly convenient with a view to the vibrocompaction analysis of 

the next chapter. Furthermore, this alternative procedure provides a very clear 

graphical comparison between the cases of large and small slope considered in 

preceding chapters. 

A new model is introduced in Chapter 8, more complex than the one analysed in 

previous chapters. This system is a first attempt to model the vibrocompaction 

process, which has not been done before, to the author’s knowledge. In addition to 

the nonlinearity intrinsically associated to nonideality, the model includes contact 

and impacts between the mixture and the platform supporting the unbalanced 

motor, and also between the mixture and the mould where it is contained. 

Furthermore, a nonlinear constitutive law for the mixture, which allows modelling 

the compaction itself, is proposed. It is shown that, under some conditions, this 

model can be transformed into the simpler system analysed in Chapters 3-7, which 

makes the preceding analytical developments useful for the vibrocompaction 

analysis. Several numerical simulations illustrate how the proposed model can be 

used to investigate the effect of different parameters on the final level of 

compaction achieved. 



 

 

 

 

 

 

 

 

 

 

 

 

1.3 Organization of the Document 11 

Finally, Chapter 9 summarises the conclusions of this work and proposes possible 

further investigations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 MATHEMATICAL 

METHODS 
 

Before the analysis of the problem under study, a brief description of the 

mathematical methods used within the thesis is presented. 

 

2.1 First Order Averaging 

Perturbation methods constitute a broad class of mathematical techniques aimed at 

finding approximate solutions to a problem, based on the solution of a simpler 

related problem. In particular, averaging procedures are among the most widely 

used perturbation methods, presenting two relevant strengths (Sanders et al., 2007): 

- They are supported by rigorously proved theorems. 

- They can be systematically extended to any order of accuracy. 

In order to understand the basic idea behind averaging, consider a system of the 

form  ̇    (   ), where   is a small parameter and   is  -periodic in  . The 



 

 

 

 

 

 

 

 

 

 

 

 

14    2 Mathematical Methods 

dynamics of such systems contains two different time scales: a fast scale, associated 

to the fact that   depends on  , and a slow scale, associated to the fact that   is a 

slow variable ( ̇   ( )). Then, it can be shown that the essential features of the 

system are maintained when it is replaced by its corresponding averaged system 

 ̇   
 

 
∫  (   )  

 

 
   ̅( ). The idea is to take into account the mean effect of 

the fast oscillatory dynamics through averaging, so that the second system retains 

the long term behaviour of the first one. This transformation is useful because the 

averaged system is autonomous and, therefore, considerably easier to analyse than 

the non-autonomous original system. 

Although the above description has been given for averaging over time, it is 

sometimes useful to average over fast rotating angles, which play essentially the 

same role as time. Once the intuitive idea has been explained, some more rigorous 

results are now given, which will be used throughout the thesis. 

Then, consider an initial value problem of the form 

{
 ̇    (   )

 ̇    ( )     (   )
}  

 ( )    

 ( )    
 

      

     (2.1) 

where   is a vector of slow variables,   is a fast rotating phase and   is a 

sufficiently small, positive, dimensionless parameter,      . Note that    

represents the circumference. Hence to say that      merely means that    , 

with functions   and    being   -periodic in  . 

Let   be the solution of 

 ̇    ̅( )        ( )      (2.2) 

where 



 

 

 

 

 

 

 

 

 

 

 

 

2.1 First Order Averaging 15 

 ̅( )  
 

  
∫  (   )  

  

 

   (2.3) 

Then, if  ( ) remains in     , 

 ( )   ( )   ( )        (  ⁄ )  (2.4) 

The proof can be found in (Sanders et al., 2007). 

This is the standard version of the theorem for first order averaging over angles. 

Note that, thanks to this theorem, an asymptotic approximation to the solution  ( ) 

can be obtained by replacing the original system (2.1) with the approximate system 

(2.2). In other words, it is possible to reduce the system dimension, from     to 

 , upon averaging over the fast rotating phase. 

Note also that, as explicitly stated in (2.4), the approximation obtained through 

averaging is only valid during a limited time scale. This is a general feature of 

perturbation approaches, which can be overcome in some situations (e.g. when 

attraction exists, as described later on in this section). The limitation in the time 

scale where the approximation is valid will prove to be crucial in Section 5.2. 

Generalization to multi-frequency systems 

The generalization of this theorem to multi-frequency systems is straightforward 

(Sanders et al., 2007). The only caveat that needs to be taken into account is that 

function   must be written as a sum of functions, each of one depending on only 

one of the fast angles. Thus, consider the multi-frequency system given by 

{
 ̇    (   )

 ̇    ( )     (   )
}         

 ( )    

 ( )    
         

      

      (2.5) 

where    represents the  -torus. Then, assuming that function   can be written as 



 

 

 

 

 

 

 

 

 

 

 

 

16    2 Mathematical Methods 

 (   )  ∑  (    )

 

   

  (2.6) 

the first order averaged system can be obtained as 

 ̇   ∑ ̅ ( )

 

   

        ( )      (2.7) 

with  ̅  defined as in (2.3). Then, the error estimate is given by 

 ( )   ( )   ( )              (  ⁄ )  (2.8) 

This multi-frequency version of the theorem will be used in Section 5.1. 

The concept of ‘Resonance Manifold’ 

A crucial point of this averaging process is that, for the approximation to be valid, 

each frequency   
 ( ) must be bounded away from zero. The reason is that, when 

any   
 ( ) approaches zero, a vanishing denominator appears in the higher order 

terms of eqs. (2.4) and (2.8). (This will be seen clearly in equation (2.12) of Section 

2.2.) 

The sets of   for which one or more functions   
 ( ) vanish are called ‘resonance 

manifolds’. The failure of averaging in the vicinity of resonances can be easily 

understood by noticing that, near a resonance manifold, one or more angles    are 

not fast and, consequently, we cannot average over them. 

The main consequence is the following: away from resonances, it is possible to 

average over all angles. However, in the vicinity of a resonance manifold, we can 

only average over particular angles, namely those whose frequencies remain 

bounded away from zero. This distinction will be necessary in Chapter 5. 



 

 

 

 

 

 

 

 

 

 

 

 

2.1 First Order Averaging 17 

Averaging with Attraction 

Asymptotic approximations obtained by averaging are, in general, valid on a time 

scale   ⁄ . However, this time scale can be enlarged if there exists attraction in the 

averaged system (Sanders et al., 2007).  

Consider again a system of the form (2.1), with averaged system (2.2). 

Suppose     is an asymptotically stable fixed point of system (2.2), with domain 

of attraction     . Then, for all        , it can be shown that 

 ( )   ( )   ( )       ,   ) (2.9) 

Thus, the approximation is uniformly valid –i.e. valid for all time– for solutions of 

the averaged system which are attracted by an asymptotically stable fixed point. 

Two different proofs of this theorem have been given by Sánchez-Palencia 

(Sanchez-Palencia, 1975) and Eckhaus (Wiktor Eckhaus, 1975). 

A similar result holds for trajectories of the averaged system which are attracted by 

an asymptotically stable limit cycle. In this case, the approximate solution is valid 

on   ,   ) for all variables except the angular one, i.e. the variable which 

measures the flow on the closed orbit (Sanders et al., 2007). This is equivalent to 

say that the closeness to the limit cycle can be uniformly approximated, yet not the 

position on it. The reason is that any small deviation on the frequency is 

accumulated over the cycles, giving rise to large errors after a sufficient number of 

periods. 

 

2.2 Second Order Averaging 

In some situations, more accurate approximations than those provided by a first 

order averaging (Section 2.1) are required, as will be the case in Chapter 5 of this 



 

 

 

 

 

 

 

 

 

 

 

 

18    2 Mathematical Methods 

thesis. Fortunately, there exist general results for     order averaging which allow 

increasing the precision of the approximation as much as needed. Here we only 

show some results for order 2, which is enough for the purpose of this thesis. Hence 

consider a system of the form 

8
 ̇     (   )      (   )     , -(     )

 ̇        ( )
9  

 ( )    

 ( )    
 
      

      (2.10) 

where, following the notation in (Sanders et al., 2007), brackets are used in  , - to 

stress that this term is a remainder of an expansion in powers of  . This is also 

noted by the fact that  , - depends on  , while    and    do not. 

Let * ( )  ( )+ be the solution of 

8
 ̇    ̅ ( )     ̅ 

 ( )

 ̇        ( )
9       

 ( )        (     )

 ( )    
  (2.11) 

where  ̅  is defined as in (2.3) and  

  (   )  
 

  
∫[  (   )   ̅ ( )]  

 

  

    (2.12) 

 ̅ 
 ( )  

 

  
∫ [  (   )     (   )    (   )]   

  

 

 (2.13) 

Constant    in (2.12) is chosen in such a way that 

∫   (   )  

  

 

    (2.14) 



 

 

 

 

 

 

 

 

 

 

 

 

2.2 Second Order Averaging 19 

while symbol   in (2.13) represents differentiation with respect to  . Then, the 

error estimate is 

 ( )   ( )     ( ( )  ( ))   (  )         (  ⁄ ) (2.15) 

This result will be used in Chapter 5. The proof can be found in (Sanders et al., 

2007). 

Note the presence of    in the denominator of expression (2.12), in connection with 

the concept of ‘resonance manifold’ explained in Section 2.1. A vanishing 

frequency    would make    unbounded and, according to (2.15), the 

approximation would not be valid anymore. In other words, the averaging 

transformation becomes singular when    approaches zero. 

 

2.3 Singular Perturbation Theory 

The Singular Perturbation Theory (SPT) explains the behaviour of a particular class 

of fast-slow systems (Hunter, 2004; Lesne, 2006; Verhulst & Bakri, 2006). As has 

been done with averaging, an intuitive description of the theory is first given, 

followed by the exposition of some more rigorous results which will be used later 

on in the thesis. 

Systems where the SPT is applicable are those exhibiting a singular limit. This 

means that the system depends on a parameter in such a way that, when the 

parameter approaches some limiting value, the general solution of the problem is 

qualitatively different to the solution of the limiting problem. Typically, systems of 

this type exhibit two separate time scales –or space scales– with very different 

behaviours. A well-known example is the boundary layer theory in fluid mechanics, 

where the effects of viscosity are relevant in a very thin layer of fluid, close to a 

bounding surface, while being negligible for the rest of the domain. 



 

 

 

 

 

 

 

 

 

 

 

 

20    2 Mathematical Methods 

When the independent variable corresponds to time, systems with a singular limit 

usually contain fast and slow variables. The global behaviour is then composed of 

two consecutive stages of time: during a first short stage, the fast variables change 

significantly, with the slow variables remaining almost constant. At the second 

stage, much longer, the fast variables become slaved to the slow ones. In other 

words, the fast variables can be written as functions of the slow ones. This kind of 

composite behaviour can be observed in Fig. 2.1, where   and   represent the slow 

and fast variables, respectively.  

The main usefulness of this theory lies in the fact that, during the second stage, the 

system dimension is actually reduced, since the fast variables are not anymore 

needed to specify the state of the system (they can be directly obtained from the 

slow variables). Thanks to this property, the original system can be replaced by a 

simpler reduced system during the second stage. 

Now, some more rigorous results are shown, which will be used later on in the 

thesis. Consider an autonomous system of the form 

{
 ̇    (   )   (  )

 ̇   (   )   ( )
}  

        
        

 ( )     

 ( )    
 (2.16) 

Suppose the following two conditions are fulfilled: 

1. The equation  (   )    has one only solution, given in the form 

   ( ). This corresponds to a particular surface in the phase space, 

referred to as the Slow Manifold. 

2. For every fixed     , we have that    ( ) is a globally attracting and 

asymptotically stable fixed point of the system  ̇   (   ). 

Then, the behaviour of the system can be shown to be composed of two consecutive 

stages of time. 

First stage. For    ( ), the system can be written as 



 

 

 

 

 

 

 

 

 

 

 

 

2.3 Singular Perturbation Theory 21 

{
      ( )

 ̇   (    )   ( )
}   (2.17) 

During this phase,   remains nearly constant, while   is attracted towards  (  ). 

Thus, the trajectory approaches the Slow Manifold. 

Second stage. For    (  ⁄ ), the system slowly drifts along the Slow Manifold: 

8
 ̇    (   ( ))   (  )

   ( )   ( )
9    (2.18) 

In summary, the system is first rapidly attracted towards the Slow Manifold, with 

the slow variables being almost constant. Next, the trajectory evolves close to the 

Slow Manifold, which allows reducing the system dimension from     to  , as 

can be observed by neglecting the h.o.t in (2.18): 

 ̇    (   ( ))       (2.19) 

An example of the referred behaviour is represented in Fig. 2.1, for      . For 

a more detailed exposition and justification of the theory, see (Hunter, 2004; Lesne, 

2006; Verhulst & Bakri, 2006). 

 



 

 

 

 

 

 

 

 

 

 

 

 

22    2 Mathematical Methods 

 

 

Fig. 2.1 Representative phase portrait for a system of the form (2.16), with    , 

   , when conditions 1 and 2 are satisfied. A single arrow stands for the slow 

motion, while a double arrow represents fast motion. 

 

2.4 Hopf Bifurcations 

Hopf bifurcations constitute a common mechanism whereby a fixed point of a 

dynamical system loses stability. As is well known, the stability of an equilibrium 

point is given by the real parts of the eigenvalues of the system jacobian matrix. A 

Hopf bifurcation occurs –with the exception of some degenerate cases– when two 

complex conjugate eigenvalues cross the imaginary axis. A very interesting feature 

of Hopf bifurcations is the appearance of limit cycles surrounding the bifurcating 

equilibrium point. Extensive analysis of this matter can be found in (Guckenheimer 

& Holmes, 1983; Kuznetsov, 1998). 

In the following, a classical result concerning the classification of Hopf bifurcations 

is explained, which will be useful in Chapter 3. Hence consider a system of the 

form 

x

y

( )y Y x



 

 

 

 

 

 

 

 

 

 

 

 

2.4 Hopf Bifurcations 23 

 ̇   (   )       (2.20) 

where   is a scalar parameter. Suppose that the system exhibits a fixed point   , 

which undergoes a Hopf Bifurcation for      such that, for     , the 

equilibrium is stable, while it becomes unstable for     . 

The Hopf bifurcation generates a limit cycle in the vicinity of the fixed point, and is 

classified as subcritical or supercritical according to the following rule: we call the 

bifurcation subcritical (supercritical) if it creates an unstable (stable) limit cycle for  

     (    ), as depicted in Fig. 2.2. In other words, when the bifurcation is 

subcritical, there is an unstable limit cycle coexisting with a stable fixed point, 

while, when it is supercritical, there is a stable limit cycle coexisting with an 

unstable fixed point. Note that Fig. 2.2 exhibits an additional property of Hopf 

Bifurcations: the amplitude of the created limit cycle grows, for small values of 

|    |, as √|    |. 

 

Fig. 2.2 Classification of Hopf bifurcations 

(a) Supercritical (b) Subcritical 

Thick (thin) lines represent stable (unstable) solutions 

The distinction between these two types of bifurcation is crucial from a practical 

point of view. Subcritical bifurcations are, in general, much more dangerous, since 

they can give rise to abrupt jumps in the system behavior (Kuznetsov, 1998). The 
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24    2 Mathematical Methods 

reason is that, once a fixed point has lost its stability through a subcritical 

bifurcation, there exist no attractors in the vicinity of the equilibrium (see Fig. 

2.2(b)) and, consequently, the system will jump towards an attractor which can be 

considerably far away from the bifurcating fixed point. 

Fortunately, an analytical criterion exists which allows distinguishing supercritical 

and subcritical bifurcations. In order to apply the criterion to a general system, it 

should first be noted that any  -dimensional system can be reduced to a 2D system 

in the vicinity of a Hopf bifurcation, by virtue of the Center Manifold Theorem 

(Kuznetsov, 1998). Then, with some changes of variables, the system can always be 

written, at the bifurcation, in the form  

[
  ̇

  ̇
]  0

   
  

1 0
  

  
1  [

 (     )

 (     )
]  (2.21) 

where functions   and  , containing the nonlinear terms of the system, can be 

expanded as Taylor series: 

 (     )  ∑
 

    
     

   
 

     

 (     )  ∑
 

    
     

   
 

     

 (2.22) 

Once the system of interest is written as (2.21), a number of variable 

transformations are conducted, including transformation in complex form, near-

identity transformation and transformation in polar coordinates (Habib & Kerschen, 

2015). This is a standard procedure whose details can be found in (Guckenheimer & 

Holmes, 1983; Kuznetsov, 1998). After this procedure, system (2.21) can be written 

in its Normal Form 



 

 

 

 

 

 

 

 

 

 

 

 

2.4 Hopf Bifurcations 25 

 ̇       (2.23) 

which governs the radial dynamics at the bifurcation. As shown in (Guckenheimer 

& Holmes, 1983), coefficient   can be computed as 

    {

               

 
 

 
,   (       )     (       )               -

}  (2.24) 

Once parameter   is known, the criterion is simple: if    , the bifurcation is 

supercritical; if    , the bifurcation is subcritical. 

 

2.5 The Poincaré-Béndixson Theorem 

This is a central result in the global theory of nonlinear systems (Perko, 2001). One 

of the main implications of the theorem is that, for 2-dimensional systems, the 

possible kinds of dynamical behaviours are very limited. In particular, it proves that 

chaos cannot occur in 2 dimensions. It is also one of the few results which allow 

establishing the existence of closed orbits in dynamical systems (Strogatz, 1994). 

We present here the simplest version of the theorem. For a more rigorous and 

detailed exposition of its content, see (Perko, 2001). 

Consider a 2D dynamical system and a closed, bounded region   of the phase plane 

which does not contains any fixed points. Then, every trajectory which is confined 

in   –it starts in   and remains in   for all future time– is a closed orbit or spirals 

towards a closed orbit as    .  

In practice, the usual way to guarantee that there exists a trajectory which is 

confined in region   consists in showing that the vector field on the boundary of   



 

 

 

 

 

 

 

 

 

 

 

 

26    2 Mathematical Methods 

is oriented inwards, as depicted in Fig. 2.3. Then, all trajectories which start inside 

  are restricted to remain inside. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.3 Phase portrait showing a closed, bounded region   with the flow directed 

inwards at the boundaries. If   contains no fixed points, then it contains at least one 

stable limit cycle. 
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3 THE CASE OF LARGE 

SLOPE OF THE MOTOR 

CHARACTERISTIC: 

ANALYTICAL 

APPROACH 
 

 

This Chapter investigates the dynamics of a 2-DOF system consisting in an 

unbalanced motor attached to the fixed frame by a nonlinear spring and a linear 

damper. As commented in the introduction, two different scenarios need to be 

considered separately, depending on the order of magnitude of the slope of the 

motor characteristic. The Case of a Large Slope is considered in this Chapter and 

the following, while the alternative situation will be studied in Chapters 5 and 6.



 

 

 

 

 

 

 

 

 

 

 

 

28    3 The Case of Large Slope: Analytical Approach 

3.1 Problem Statement and Assumptions 

Consider the system depicted in Fig. 3.1. It consists in an unbalanced motor 

attached to a fixed frame by a nonlinear spring –whose force has linear and cubic 

components– and a linear damper. The cubic component of the spring gives the 

possibility to model a nonlinear behavior for the structure supporting the motor 

(Mettler, 1962).  The effect of gravity can be shown to have no relevance 

(Dimentberg et al., 1997) and, therefore, it will not be included in the model. 

 

Fig. 3.1 Model 

Variable   stands for the linear motion,   is the angle of the rotor,    is the 

unbalanced mass with eccentricity  ,    is the rest of the vibrating mass,    is the 

rotor inertia (without including the unbalance),   is the viscous damping coefficient 

and   and   are, respectively, the linear and cubic coefficients of the spring. The 

equations of motion for the coupled 2-DOF system are (El-Badawy, 2007) 

  ̈    ̇            ( ̇
       ̈     )

  ̈    ( ̇)      ̈      
 (3.1) 

where        ,         
  and an overdot represents differentiation with 

respect to time,  . 

Function   ( ̇) is the driving torque produced by the motor –given by its torque-

speed curve, also known as static characteristic– minus the losses torque due to 
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3.1 Problem Statement and Assumptions  29 

friction at the bearings, windage, etc. We assume this net torque to be a linear 

function of the rotor speed: 

  ( ̇)      ̇  (3.2) 

Although   ( ̇) includes the damping of rotational motion, we will usually refer to 

it shortly as ‘the motor characteristic’. 

As will be seen later, it is convenient for the purpose of this chapter to write the 

driving torque in an alternative way. Then, denoting by    the linear natural 

frequency of the oscillator, given by    √  ⁄ , the motor torque can be written 

as 

  ( ̇)     ( ̇    )  (3.3) 

where   represents the driving torque at resonance (  (  )   ). From equations 

(3.2) and (3.3), the relation between constants   and   can be directly deduced: 

         (3.4) 

Along the whole thesis, the motor characteristic will be written as (3.2) or (3.3), 

depending on the situation. It should be kept in mind that these two expressions are 

totally equivalent. The important point is that the driving torque is assumed to 

follow a linear relation with the rotor speed. It is further assumed that     –the 

driving torque decreases with the rotor speed–, as is usual for most kinds of motor. 

This assumption will prove to be of major importance. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

30    3 The Case of Large Slope: Analytical Approach 

 

 

 

 

 

 

 

 

Fig. 3.2 Typical static characteristic for an asynchronous motor 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Static characteristic corresponding to equation (3.3) 

 

As an example, the static characteristic of an induction motor is depicted in Fig. 3.2.  

Note that such a motor is usually designed to work on the region  ̇       , where 

the curve could be reasonably approximated by a straight line with negative slope. 

The simplified motor characteristic given at (3.3) is represented in Fig. 3.3. 
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3.1 Problem Statement and Assumptions  31 

In the second of equations (3.1), which imposes the equilibrium of the rotor, the last 

term is of great significance, since it accounts for the torque on the rotor caused by 

linear motion of the system. Its physical interpretation can be readily understood 

with the aid of Fig. 3.4. Due to displacement  ( ), a horizontal inertial force acts on 

the unbalanced mass and generates a torque with respect to the rotor axis. This 

particular term of the equations of motion is what makes the excitation nonideal, for 

it takes into account how vibration influences rotation. If this torque due to 

vibration did not exist –or if it was negligible–, the rotor equilibrium equation 

would reduce to   ̈    ( ̇), and it could be solved for  ( ) regardless of the 

linear motion. Then, this solution  ( ) could be introduced in the first of equations 

(3.1) as a prescribed excitation. 

 

Fig. 3.4 Torque on the rotor due to vibration  

By defining 

      ⁄        
  ⁄    

 

 √  
   

    

  

  
 

   
    

 

   
         

 

 

  

  
   

   

 
(
  

  
)
 

 

 (3.5) 

the equations of motion can be written in a more convenient dimensionless form 

 ̈        ̇        ( ̇       ̈     )

 ̈     ( ̇   )    ̈      
 (3.6) 
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32    3 The Case of Large Slope: Analytical Approach 

where a dot now represents differentiation with respect to dimensionless time,  . 

In order to apply perturbation techniques to system (3.6), some assumptions on the 

order of magnitude of the system parameters have to be made. Thus, we assume the 

damping, the unbalance and the nonlinearity to be small. This is expressed by 

making the corresponding coefficients proportional to a sufficiently small, positive 

and dimensionless parameter  : 

                   (3.7) 

where parameters with subscript     are  -independent. It is also assumed that the 

torque generated by the motor at resonance ( ̇   ) is sufficiently small:  

      (3.8) 

Finally, the slope of the motor characteristic is assumed to be of the order of unity, 

i.e. independent of  : 

     (3.9) 

This assumption corresponds to what we have called ‘large slope characteristic’. 

The case of small slope, with   proportional to  , is treated in Chapters 5 and 6. 

Taking the proposed scaling (3.7)-(3.9) into account and dropping the subscript ‘ ’ 

for convenience, system (3.1) takes the form 

 ̈     [    ̇        ( ̇       ̈     )]

 ̈   ( ̇   )   ,    ̈     - 
 (3.10) 
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3.2 Alternative First Order Averaging 

Before turning to the treatment of system (3.10) through some perturbation 

techniques, an alternative averaging procedure is developed in this section, which 

will be useful in what follows. In order to make the procedure as general as 

possible, consider a system of the form 

{

 ̇   ,    (   )-   (  )

 ̇      (   )   ( )

 ̇     ( )

}     

      

      

     
 (3.11) 

where   and   are matrices of constant coefficients and   is a scalar constant, 

bounded away from zero. It will be shown in the next section that system (3.10) can 

be written in the form (3.11). 

Suppose that we try to perform a first order averaging on system (3.11) over angle 

 . According to the results explained in Section 2.1, such a technique is not 

applicable in this case, because the set of variables   is not slow. In order to use the 

theorem of Section 2.1 we would need to have  ̇   ( ) and  ̇   ( ), which is 

not the case. This justifies the introduction of the modified technique presented 

below. 

First, the averaged variables are defined as 

 ̅( )  
 

 
∫  ( )  

    ⁄

    ⁄

  ̅( )  
 

 
∫  ( )  

    ⁄

    ⁄

 (3.12) 

where      ⁄ . As illustrated in Fig. 3.5, the effect of the operator defined in 

(3.12) is to smooth out the short-term fluctuations of each variable, while retaining 

the long-term behavior. 



 

 

 

 

 

 

 

 

 

 

 

 

34    3 The Case of Large Slope: Analytical Approach 

 

 

Fig. 3.5 Definition of the averaged variables  

 

Suppose we are interested in the evolution of the averaged variables  ̅( ) and  ̅( ). 

Then, we can average the first two equations in (3.11), which yields 

{
  
 

  
 
 ̇̅   [  ̅  

 

 
∫  ( ( )  ( ))  

    ⁄

    ⁄

]   (  )

 ̇̅    ̅  
 

 
∫  ( ( )  ( ))  

    ⁄

    ⁄

  ( )

}
  
 

  
 

  (3.13) 

where it has been used that the average, as defined in (3.12), is a linear operator (the 

average of the sum is the sum of the averages).  

The next step consists in transforming the integrals in (3.13). Since the process is 

exactly the same for both integrals, we only focus on the first of them. 

First, we can write 
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∫  ( ( )  ( ))  

    ⁄

    ⁄

 
 

 
∫  ( ( )  ( ))  

    ⁄

    ⁄

  ( )  (3.14) 

where it has been used the property that, in one period  ,  ( ) can only change by 

 ( ), according to (3.11). Thus, we can write  ( )   ( )   ( ). Changing the 

integration variable from   to   yields 

 

 
∫  ( ( )  ( ))  

    ⁄

    ⁄

  ( )  
 

  
∫  ( ( )  )  

 (    ⁄ )

 (    ⁄ )

  ( )  (3.15) 

where the last of relations (3.11) has been used (        ( )). The 

integration limits can also be transformed by using again   ̇     ( ): 

 

  
∫  ( ( )  )  

 (    ⁄ )

 (    ⁄ )

  ( )  
 

  
∫  ( ( )  )  

 ( )  

 ( )  

  ( )  (3.16) 

Finally, as function   is   -periodic in  , we can write 

 

  
∫  ( ( )  )  

 ( )  

 ( )  

  ( )  
 

  
∫  ( ( )  )  

  

 

  ( )  (3.17) 

By comparing this last expression to definition (2.3), system (3.13) can be rewritten 

as 

8
 ̇̅   ,  ̅   ̅( ̅)-   (  )

 ̇̅    ̅   ̅( ̅)   ( )
9  (3.18) 



 

 

 

 

 

 

 

 

 

 

 

 

36    3 The Case of Large Slope: Analytical Approach 

Then, we have been able to derive an autonomous system for the averaged 

variables, where the fast angle no longer appears –except in the higher order terms 

of (3.18)–. Note that the proposed approach exploits a particular property of system 

(3.11), namely the fact that the vector of fast variables   only appears linearly on 

the r.h.s. of the equations. This feature, together with the linearity of the averaging 

operator, allows applying an averaging technique to system (3.11), despite it 

containing fast variables (in addition to the fast rotating phase  ). 

Finally, it is convenient to remark the difference between the original and averaged 

variables. From equations (3.11), variations of   and   in one period   are  ( ) 

and  ( ), respectively. Therefore, we can write 

 ( )   ̅( )   ( )  ( )   ̅( )   ( )   (3.19) 

 

3.3 Perturbation Approach: Derivation of the Reduced 

System 

Going back to the mechanical system under study, equations (3.10) constitute an 

autonomous dynamical system of dimension 4, with state variables {   ̇    ̇}. A 

perturbation approach is proposed in this section, whereby (3.10) is transformed 

into an approximate 2D system, much easier to analyse. 

First, it is convenient to perform a change of variables, from *   ̇+ to polar 

coordinates (Sanders et al., 2007): 

      (   )

 ̇       (   )  
 (3.20) 

This step does not include any approximation, since it consists in just replacing the 

pair of variables * ( )  ̇( )+ with the pair of amplitude-phase variables 

* ( )  ( )+.  
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By differentiating the first of relations (3.20) we obtain 

 ̇   ̇    (   )   ( ̇   ̇)    (   )  (3.21) 

Comparing (3.21) with the second of relations (3.20) yields 

 ̇    (   )   ( ̇     ̇)    (   )     (3.22) 

On the other hand, if (3.20) is introduced into the first of equations (3.10), we have 

  ̇    (   )   ( ̇     ̇)    (   )  

  [      (   )         (   )    ( ̇       ̈     )]
 (3.23) 

Equations (3.22) and (3.23) together form a linear system for  ̇ and  ̇ that can be 

readily solved: 

 ̇       (   ) [      (   )         (   )    ( ̇       ̈     )]

 ̇     ̇   
   (   )

 
[      (   )         (   )    ( ̇       ̈     )]

 (3.24) 

It is also suitable to define a new variable for the rotor speed: 

   ̇  (3.25) 

Then, the dynamical system, written in terms of the new variables, becomes 

{
 
 

 
 

 ̇       (   )  (       )   (  )

 ̇       
   (   )

 
  (       )   (  )

 ̇   (   )   (           (   ))   (  )

 ̇    }
 
 

 
 

  (3.26) 



 

 

 

 

 

 

 

 

 

 

 

 

38    3 The Case of Large Slope: Analytical Approach 

where 

         (   )         (   )    ,        (   )     -  (3.27) 

A new 4D autonomous dynamical system (3.26) has been derived, with state 

variables *       +, which is fully equivalent to (3.10).  

Consider now a general set of initial conditions *           + and let us 

investigate how the variables evolve with time. In the next subsections, it will be 

shown that the dynamics of (3.26) is composed of three consecutive stages of time, 

with different qualitative behaviours. 

First stage 

For the moment, consider only the evolution equations for variables   and  , which 

can be written as 

8
 ̇       ( )

 ̇   (   )   ( )
9  (3.28) 

It is clear that, to first order of approximation, the evolution of   and   only 

depends on  . This first order approximation corresponds to neglecting the  ( ) 

terms in (3.28):   

8
 ̇     

 ̇   (   )
9  (3.29) 

The relation between exact system (3.28) and (3.29) is established by the Regular 

Perturbation Theory (Sanders et al., 2007), which assures that solutions of (3.29) 

are  ( )–approximations to solutions of (3.28), for    ( ). Thus, we proceed to 

solve system (3.29): 
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{
    

  
    

 
   

    ,    -   
}  (3.30) 

with 

  
     

    

 
  (3.31) 

It is clear from (3.30) that both variables tend exponentially to constant values: 

    
       (3.32) 

This is due to the assumption     (otherwise, the exponentials in (3.30) would be 

divergent). Taking into account the approximation made when transforming (3.28) 

into (3.29), it can be stated that, after a time interval    ( ), we have 

    
   ( )      ( )  (3.33) 

Once   and   are at an  ( )–distance from   
  and  , respectively, the first stage of 

the motion is over. Note that, during this stage, the rotor speed evolves 

monotonically towards the resonance region.  

During this first phase, variable   remains nearly constant. Since  ̇   ( ) –see 

(3.26)–, variable   needs a time length    (  ⁄ ) to evolve significantly. Thus, at 

the end of the first stage, we have  

      ( )  (3.34) 

In summary, the first stage corresponds to a time length    ( ). It starts at     

and it ends when   and   have reached an  ( )–distance to   
  and  , respectively. 
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Second stage 

At the beginning of the second stage, the rotor speed is already in the vicinity of 

resonance. Consequently, it can be naturally expanded as 

        (3.35) 

A new variable   has been introduced in (3.35), which will be very widely used 

throughout the thesis. Notice that   is a detuning coordinate, which measures how 

much the rotor speed deviates from the system natural frequency. 

If system (3.26) is written using variable   instead of  , it becomes 

{
 
 

 
 

 ̇       (   )  (     )   (  )

 ̇       
   (   )

 
  (     )   (  )

 ̇                (   )   ( )

 ̇      }
 
 

 
 

  (3.36) 

where 

         (   )         (   )          (3.37) 

Notice that the closeness between the rotor speed and the natural frequency of the 

system has transformed   into a slow variable. Note also that system (3.36) is of the 

form (3.11), with *   + playing the role of vector   and   that of vector  . 

Therefore, the averaging technique presented in Section 3.2 can be readily applied 

to (3.36), in order to obtain the evolution of the averaged variables.  

The averaged system, which in the general case is given by (3.18), takes in the 

present case the form 
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{
 
 

 
 

 ̇̅     ( ̅      ̅)   (  )

 ̇̅    4 ̅   
    ̅

 ̅
 

 

 
  ̅ 5   (  )

 ̇̅      ̅  
 

 
 ̅     ̅   ( ) }

 
 

 
 

  (3.38) 

where the averaged variables { ̅  ̅  ̅} are defined as in (3.12). System (3.38) has 

dimension 3, since variable   no longer appears.  

It is convenient to highlight the relation between the original and the averaged 

variables. Particularizing the general expression (3.19) to the system under analysis, 

we find 

   ̅   ( )

   ̅   ( )

   ̅   ( ) 

 (3.39) 

Observe that, even with an  ( ) error in  , the rotor speed is still known with  ( ) 

precision, according to (3.35). From now on, the overbars will be omitted, unless 

otherwise stated. 

The task now is to investigate system (3.38). As pointed out before, this is a fast-

slow system, with two slow variables   and   and one fast variable  . This 

difference in the time scales allows exploiting the Singular Perturbation Theory 

(Hunter, 2004; Lesne, 2006; Verhulst & Bakri, 2006). 

In order to apply the SPT to system (3.38), the 2 conditions specified in Section 2.3 

need to be verified: 

1. It is clear that the solution of equation 

     
 

 
        (3.40) 
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can be written as 

    (   )   
 

 
 

 

  
       (3.41) 

which is the expression of the Slow Manifold: a 2D surface in the 3D phase 

space. Thus, the first condition is satisfied. 

2. For fixed values of   and  , it is found that     (   ) is a globally 

asymptotically stable fixed point of the 1D system 

 ̇       
 

 
       (3.42) 

provided that assumption     holds. Therefore, the second condition is 

also fulfilled. 

Once both requirements have been verified, it can be stated that system (3.38) 

displays two qualitatively different behaviors at two sequential time scales –see 

Section 2.3–, which correspond to the second and third stages of the original system 

(3.26). Using the results of Section 2.3, we have that, at the first of these stages –

second stage of (3.26)–, the system can be written as 

      ( )

    
   ( )

 ̇       
 

 
       

   ( ) 

 (3.43) 

where it has been taken into account that, at the beginning of stage 2,      

 ( ) and     
   ( ). Then, at this stage, the system is attracted towards the 

Slow Manifold, with the slow variables remaining nearly constant: 

    (     
 )  (3.44) 
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Summing up, the second stage corresponds to a time length    ( ), just as the 

first one. It ends once variable   has reached an  ( )–distance to   (     
 ). 

During this phase of the motion,   and   do not change significantly. 

Third stage 

The third stage of the original system (3.26) –which is the second stage of the 

averaged system (3.38)– occurs at a time scale    (  ⁄ ). This can be easily 

understood by noticing that, once the system is near the slow manifold, variable   

becomes slow (introducing (3.41) in (3.38) leads to  ̇   ( )). Therefore, near the 

slow manifold, all variables are slow and, as a consequence, the system natural time 

scale is    (  ⁄ ). 

By introducing the expression of the slow manifold in (3.38), the equations 

corresponding to the third phase of the motion are obtained: 

{
 

 
 ̇     (      )   (  )

 ̇    (  (   )   
    

 
 

 

 
   )   (  )

    (   )   ( ) }
 

 
 (3.45) 

As usual, higher order terms in (3.45) can be eliminated, giving rise to an  ( ) 

approximation for a time length    (  ⁄ ): 

{

 ̇     (      )

 ̇    (  (   )   
    

 
 

 

 
   )

    (   ) 

} (3.46) 

It is convenient to observe that, although (3.46) contains three equations, only two 

of them are differential equations. Thus, (3.46) represents a 2D autonomous 

dynamical system. The evolution of   and   no longer depends on  , once   is 

written as a function of   and  . The last equation is written with the only purpose 

of tracking the evolution of variable  . 
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In summary, the third stage corresponds to a time length    (  ⁄ ). At this phase 

of the motion, the averaged system evolves along the slow manifold given by 

(3.41). Variables  ,   and   obey equations (3.46), with  ( ) precision.  

Fig. 3.6 shows a schematic representation of the three different stages of the system 

dynamics, summing up the results obtained in the present section. Note that, in Fig. 

3.6, the use of overbars for the averaged variables is recovered. The most relevant 

result is that, once the initial transient corresponding to the first two stages has 

finished, the evolution of variables   and   is governed by equations (3.46) –within 

an  ( ) error–. 

From Fig. 3.6, it is clear that suitable initial conditions for system (3.46) are 

*     
 +. Recalling definition (3.31), this can be written as *      (    )  ⁄ +, 

where *           + is the set of initial conditions for system (3.26)  

 

 

 

 

 

 

 

 

Fig. 3.6 Overview of the system dynamics, with  *     + being the solution of 

system (3.46) with appropriate initial conditions. 
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However, we may be interested in a particular set of initial conditions for system 

(3.10), given as {    ̇      ̇ }. It is, then, convenient, to express the initial 

conditions for (3.46) as functions of the initial conditions for (3.10): 

   √  
   ̇ 

 

  
       (

  ̇ 

  
)     

 ̇   

 
 

 (3.47) 

as can be readily deduced from relations (3.20), (3.25) and (3.31). 

Recapitulating, we have been able to eliminate from the formulation variable   by 

Averaging, and variable   by applying the Singular Perturbation Theory. 

 

3.4 Analysis of the Reduced System 

This section focuses on the behaviour of system (3.46), once it has been shown to 

capture, with  ( ) precision, the dynamics of the original system (3.10) during the 

third stage of the motion. 

Firstly, it is useful to make a comparison between the system under study and its 

ideal counterpart, where the rotor speed is constant. Clearly, for this ideal case, the 

equation of motion of the system shown in Fig. 3.1 is given by 

  ̈    ̇             ̇
       (3.48) 

with  ̇ fixed. Equation (3.48) describes a Duffing oscillator, subjected to harmonic 

excitation. This is a very well-known problem, which has been widely studied in the 

literature (Brennan, Kovacic, Carrella, & Waters, 2008; Fidlin, 2006; Nayfeh & 

Mook, 1995; Thomsen, 2003). Under the assumptions of small damping, small 
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nonlinearity, small unbalance and near-resonant excitation ( ̇       ), the 

Averaging Method can be applied to system (3.48), leading to 

{

 ̇     (      )

 ̇    (    
    

 
 

 

 
   )

}  (3.49) 

where all the parameters and variables are defined as in Sections 3.1 and 3.3. It is 

easy to verify that system (3.49) is exactly the same as (3.46), with the only 

difference of replacing   (   ) by the constant value   . This is a clear illustration 

of the concept of nonideal excitation. In the ideal case, the rotor speed appears in 

equations (3.49) as a constant value   , externally imposed by the motor. However, 

in the nonideal case, the rotor speed enters equations (3.46) as a function of the 

system vibratory motion,   (   ). 

It is also important to observe that an ideal motor displays a vertical static 

characteristic, corresponding to the limit case     . The motor is, then, able to 

generate any torque for the same rotor speed. This suggests the idea that a real 

motor with a static characteristic of very large slope (in absolute value) is more 

likely to behave in an ideal manner than another one with a smaller slope. 

Fixed points 

Going back to the objective of analyzing system (3.46), it is first convenient to look 

for its fixed points, {           }: 

           

  (       )  
 

 
    

   
      

   

      (       ) 

 (3.50) 

From the first of equations (3.50), we have 



 

 

 

 

 

 

 

 

 

 

 

 

3.4 Analysis of the Reduced System 47 

         √     
        (3.51) 

Combining (3.41), (3.50) and (3.51) yields 

 
 

 
 

 

  
   

  
 

 
    

    
√     

 

   
  

(3.52) 

Solutions of (3.52), for both values of  , give     for all the fixed points of (3.46). 

This can be done analytically, but the expressions become cumbersome and 

difficult to interpret. An alternative procedure is proposed, which leads to the fixed 

points of (3.46) in a graphical way. To this end, the last of equations (3.46) can be 

rewritten as 

      
 

 
       (3.53) 

where definition (3.41) has been used. Now, recall the last of equations (3.38), 

which governs the evolution of the rotor speed for the averaged system: 

 ̇       
 

 
       ( )  (3.54) 

In the light of (3.54), (3.53) can be interpreted as an equilibrium between two 

torques on the rotor. The left hand term in (3.53) represents the driving torque 

produced by the motor, while the right hand term represents the resisting torque due 

to vibration. Thus, the fact that the averaged system is on the slow manifold –which 

is expressed in equation (3.53)– can be understood as a torque equilibrium 

condition. 

Equation (3.53), particularized for the fixed point {           }, takes the form 
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   (3.55) 

where (3.50) has been used. We now define the following functions: 

  ( )      

  ( )  
 

 
   

 (3.56) 

Clearly, according to the comments below equation (3.54),    represents the 

driving torque produced by the motor, while    corresponds to the resisting torque 

due to vibration. Then, (3.55) can be rewritten as 

  (   )    (   )  (3.57) 

which is the torque equilibrium condition, particularized for the fixed point. 

In order to solve (3.57) in a graphical way, it would be desirable to write both 

torques explicitly in terms of    . However, this would in turn need explicitly 

writing     in terms of    , which produces long and complicated expressions. 

Thus, an implicit procedure for the graphical representation is proposed. Combining 

(3.50) and (3.51) results in 

      (     )  (3.58) 

where function   (   ) is defined as 

  (   )  
 

 
      

√    

 
  (3.59) 

The proposed representation can be constructed as follows: first, graph    versus   

according to (3.56). Then, graph on the same plot the parametric curve given by 
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*  (   )   ( )+, for      and   (   -. The fact that   is strictly positive 

comes from the definition of   as the radius of a polar coordinate transformation –

see (3.20)–. On the other hand     cannot be greater than 1, according to the first of 

equations (3.50). 

The above procedure gives rise to a plot like that shown in Fig. 3.7. Considering 

equation (3.57), the fixed points can be found as the intersections of the two torque 

curves. In the particular case displayed in Fig. 3.7, there are three equilibrium 

points, marked with circles. Note that the curve associated to the vibration torque is 

composed of two branches, which collide at the maximum of the curve. They 

correspond to the two possible values of parameter  , as specified in Fig. 3.7. 

 

Fig. 3.7 Fixed points of system (3.46) 

We note that the ‘Sommerfed effect’, which was described in the introduction, can 

be readily explained by using Fig. 3.7. For such an explanation, the interested 

reader can refer to (Blekhman, 2000; Dimentberg et al., 1997; Kononenko, 1969; 

Nayfeh & Mook, 1995). 
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50    3 The Case of Large Slope: Analytical Approach 

Stability Analysis 

Once the fixed points of the reduced system have been obtained, it is convenient to 

investigate their stability. For a 2D system, this reduces to calculating the trace and 

determinant of the jacobian matrix, evaluated at the equilibrium point of interest: 

     [

       

( 
 

  
 

  

 
)    

     

   
  

        

  
  

]  (3.60) 

where     stands for √     
 . 

The conditions for a fixed point to be asymptotically stable are 

         (   )    (3.61) 

          (   )     (3.62) 

After some algebra, these conditions can be expressed as 

       
        

  
     (3.63) 

       

{
 

 
 

 
 

 

 
         

 

 
 

 

 
          

}
 

 

  (3.64) 

where   denotes the slope of the    curve at the considered equilibrium point (see 

Fig. 3.8 and Fig. 3.9), and has the expression 
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  (3.65) 

as can be deduced from (3.56), (3.59). 

Conditions (3.63) and (3.64) are now applied to evaluate stability regions in 

different scenarios. The procedure is as follows. Consider parameters       fixed, 

so that the    curve –see Fig. 3.7– is fixed too. Consider a pair of values (   ) 

which gives a particular curve    ( ). The intersections between the two curves 

represent the equilibrium points of the system. Select one of them –if there are more 

than one– and let parameters (   ) vary in such a way that the selected equilibrium 

point remains an equilibrium point. In other words, let parameters (   ) vary so as 

to make the curve   ( ) rotate around the selected equilibrium point, satisfying 

restriction    . Finally, use conditions (3.63) and (3.64) to analyze how the 

stability of the fixed point is affected by the slope   of the motor characteristic. 

Fig. 3.8 displays the outcome of applying the above procedure for a fixed point 

located at the left branch of the vibration torque curve (    ). Two scenarios are 

considered, depending on the sign of slope  , evaluated at the fixed point under 

consideration. It is observed that a change of stability occurs when both torque 

curves become tangent (   ). This can be shown to correspond to a transcritical 

bifurcation. Note that, in Fig. 3.8, the motor curve corresponding to     has been 

directly labeled as    , instead of   (   ). This shortened notation will be 

widely used in the figures of the document. 

Fig. 3.9 shows analogous results for a fixed point located at the right branch of the 

vibration torque curve (   ). The system behavior is richer in this case, since 

stability may change in two different ways, depending on the comparison      

where    is defined below. 
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We define critical slope    as the value of   which makes   (   )   . Recall that 

the stability condition   (   )    was written as (3.63). Therefore,    takes the 

form 

  (       )   
       

  
  (3.66) 

 

 

 

Fig. 3.8 Stability regions for     . S and U label the stable and unstable 

regions, respectively. (a)    , (b)     
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Fig. 3.9 Stability regions for    . S and U label the stable and unstable regions, 

respectively. 

(a)    , (b.1)       , (b.2)        
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54    3 The Case of Large Slope: Analytical Approach 

Below, the different possibilities for     are considered. 

If     (Fig. 3.9a), condition C2 is never fulfilled, so the fixed point is unstable 

regardless the value of slope  .  

If        (Fig. 3.9b.1), the critical condition –i.e. the one which produces the 

stability change– is C2. In this case, a transcritical bifurcation can be shown to 

occur when both torque curves are tangent (   ). Note that this result is 

analogous to that obtained for the left branch (Fig. 3.8). 

If        (Fig. 3.9b.2), the critical condition is C1. In this case, the stability 

change occurs at      through a Hopf bifurcation, after which parameter    was 

named.  

To better understand the nature of the different bifurcations, notice the following 

correspondence between conditions C1 and C2, and the eigenvalues of    , 

according to (3.61), (3.62): 

- C1 is the critical condition  8
  (   )   

   (   )   
9 both eigenvalues of    , 

being complex conjugates, cross the imaginary axis. 

- C2 is the critical condition  8
  (   )   

   (   )   
9 a single, real eigenvalue of 

    crosses the imaginary axis. 

It is worth stressing that most of the literature on nonideal excitations maintains that 

stability changes when the torque curves become tangent (Blekhman, 2000; 

Dimentberg et al., 1997; Kononenko, 1969; Nayfeh & Mook, 1995). This is 

consistent with our results, with the important exception of case            

(Fig. 3.9b.2). Thus, one of the main contributions of this Chapter consists in having 

found a case where the usual rule of thumb for stability is not valid. In this scenario, 

the stable region is in fact smaller than predicted by usual theories (see Fig. 3.9b.2). 
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Not taking this into account may be dangerous in real applications, since it could 

lead to unexpected instabilities.  

Finally, the conditions for the existence of a Hopf bifurcation in the linear case 

(   ) are investigated in more detail. As stated above, a Hopf bifurcation exists if 

            (3.67) 

By substituting expressions (3.65) and (3.66) in (3.67), for    , we have 

     
       

  
  

    
    

 
    (3.68) 

Simplifying (3.68) yields 

             (3.69) 

Therefore, if the system under study has no structural nonlinearity (   ), it is 

particularly easy to predict the existence of a Hopf bifurcation, by simply checking 

condition (3.69). 

 

3.5 Classification of the Hopf bifurcations 

Clearly, it would be of great interest to characterize the Hopf bifurcation 

encountered in last section as subcritical or supercritical. In the former case, an 

unstable limit cycle coexists with the stable fixed point, while in the latter case there 

is a stable limit cycle coexisting with the unstable fixed point, as represented in Fig. 

3.10.  



 

 

 

 

 

 

 

 

 

 

 

 

56    3 The Case of Large Slope: Analytical Approach 

 

Fig. 3.10 Classification of Hopf bifurcations. 

(a) Supercritical (b) Subcritical 

Thick (thin) lines represent stable (unstable) solutions. 

Characterizing the bifurcations require several transformations of system (3.46), 

that are detailed below. 

Transformation to Cartesian Coordinates 

We assume the system parameters are such that there exists a fixed point on the 

right branch of curve    (   ), satisfying condition (3.67) and, thereby, 

undergoing a Hopf bifurcation. By defining change of variables 

{
 ̃       
 ̃       

}  (3.70) 

system (3.46), particularized for the bifurcation point (    ),  can be rewritten as  

{
 

  ̇̃    [  ̃  
 

  
 ̃  

 

   
 ̃  

 

 
  ̃( ̃   ̃ )]

 ̇̃   [     ̃  
 

  
 ̃  

 

   
 ̃ ̃  

 

 
  ̃( ̃   ̃ )]

}
 

 

  (3.71) 
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a a
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Displacement of the origin 

In order to characterize the bifurcation, it is convenient to locate the origin of the 

coordinate system at the fixed point under investigation. Then, we define change of 

variables 

{
   ̃           

   ̃           
}  (3.72) 

Using the new coordinates, system (3.71) takes the form 

{
 
 

 
  ̇   [ [  

 

 
    ]   [

 

 
     (

  

 
 

 

 
)]   

 

 
      [

  

  
 

 

 
   ]    

 

 
      

 

 
  ,     -]

 ̇   [[
 

 
       

 

 
]   [  

 

 
    ]  

 

 
      

 

 
      [

  

  
 

 

 
   ]    

 

 
  ,     -]

}
 
 

 
 

  (3.73) 

where     and     are shortly written as   and  , respectively, in order to make the 

expression more manageable. This abbreviated notation will also be used in the 

Appendix. Note that system (3.73) is of the form 

[
 ̇
 ̇
]   4 0

 
 1   (   )5 (3.74) 

where matrix   is given by 

  

[
 
 
 
  (  

 

 
    

    )  6
 

 
    

   4
    

   
 

   

   
57

 

 
    

    
   

   

   
  

 

 
    

    
]
 
 
 
 

 (3.75) 

and vector  (   ) contains the nonlinear terms of the system. 
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Transformation to the real eigenbasis of matrix    

A new change of variables, using the real eigenbasis of matrix  , is defined: 

0
 
 1   0

  

  
1  (3.76) 

where the columns of matrix   are the real and imaginary parts of the complex 

conjugate eigenvectors of  , denoted by     : 

     0
  
  

1   0
  

 
1     0

    

   1  (3.77) 

with 

     
 

 
    

    

    
   

   
 

 

 
    

    
 

   √4
      

 

   
 5    

 

 
         

 (3.78) 

System (3.73), written in terms of the new variables, takes the form 

[
  ̇

  ̇
]   ([

    

   
] 0

  

  
1  [

 (     )

 (     )
])  (3.79) 

where functions   and  , containing the nonlinear terms of the system, can be 

written as Taylor series: 
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 (     )  ∑
 

    
     

   
 

 

     

 (     )  ∑
 

    
     

   
 

 

     

 (3.80) 

Coefficients     and     are specified in the Appendix. 

Note that the system is finally written in the form (2.21). Thus, the result explained 

in Section 2.4 can be directly applied. 

Transformation to Normal Form 

System (3.79) can be transformed to its Normal Form by a standard procedure 

(Guckenheimer & Holmes, 1983; Kuznetsov, 1998), as described in Section 2.4: 

 ̇        (3.81) 

where parameter   is obtained as  

    {

               

 
 

  

,   (       )     (       )               -
}  (3.82) 

In summary, it can be said that, after a large number of variable transformations, 

system (3.46) can be written as (3.81), from which it is concluded that the 

bifurcation is supercritical (subcritical) if     (   ).    

Despite the fact that coefficients     and     are of rather complicated form, we find 

–with the aid of software for symbolic computation (Matlab)– that the condition for 

supercriticality or subcriticality can be expressed in a surprisingly simple manner: 
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 (3.83) 

 

Fig. 3.11 Definition of slope    

From (3.83), it is clear that a nonlinearity of the softening type (   ) is needed to 

have a supercritical bifurcation. 

It is also worth noting that conditions (3.83) admit a very clear graphical 

interpretation. Consider a curve    which intersects    at the equilibrium point 

under consideration and also at the peak of curve   . Let    denote the slope of this 

particular motor characteristic, as depicted in Fig. 3.11. 

In order to obtain   , the coordinates of the two points defining the straight line are 

defined below. First, the highest peak of curve    can be shown to correspond to 

   . Substituting this condition in (3.56) and (3.59) yields 

  
 

 
    

 

 
 (3.84) 
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On the other hand, the (   ) coordinates of the equilibrium point under study are 

directly given in (3.56) and (3.59): 

  
 

 
    

   
   

   
   

 

 
   

  (3.85) 

Then, from (3.84) and (3.85), the expression of    can be readily obtained: 

 

  
 

  

  
 

  

       
  (3.86) 

By comparing (3.86) and (3.66), conditions (3.83) can be expressed as 

                   

                  
 (3.87) 

This last manner of characterizing the bifurcation is certainly appealing from a 

graphical point of view, since the basic information about the bifurcation can be 

directly observed from the torque–speed curves, as shown in Fig. 3.12 for two 

particular examples. 
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Fig. 3.12 Examples of (a) subcritical and (b) supercritical bifurcations. 

(a)                      

(b)                       

 

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5



T

-10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5



T

(a) 

(b) 

v
T

P
d

H
d

v
T

P
d

H
d



 

 

 

 

 

 

 

 

 

 

 

 

3.6 Conditions for the System to be Always Attracted by a Limit Cycle 63 

3.6 Conditions under which all System Trajectories are 

Attracted towards a Limit Cycle 

In Section 3.5, a simple condition has been obtained to ascertain whether the Hopf 

bifurcation under study is subcritical or supercritical, which in turn allows 

predicting the kind of limit cycle generated by the bifurcation (see Fig. 3.10). 

Although this distinction is relevant, it is based on a local analysis and, 

consequently, it only gives local information about the system behaviour. This is so 

in two senses: the analysis of Section 3.5 provides insight into the system dynamics  

- for values of   close enough to    (results are local in the parameter space) 

and 

- for trajectories close enough to the investigated fixed point (results are local 

in the phase plane). 

In view of the aforementioned limitations, this section addresses a new global result 

that complements those of Section 3.5. It will be shown that, under certain 

circumstances, the Poincaré-Bendixson (P-B) theorem can be used to prove that all 

trajectories of the system under study are attracted towards a limit cycle. For a brief 

explanation of the theorem, see Section 2.5. 

First, it can be easily deduced from (3.46) that 

     ̇     (3.88) 

Let   and   represent polar coordinates on the phase plane, according to (3.70), and 

let   denote a circle centred at the origin of the phase plane with a radius slightly 

greater than  , say     . From (3.88), it can be said that every trajectory starting 

outside region   will enter   and remain inside for all subsequent time. Obviously, 

trajectories starting inside   will also remain inside forever. This kind of behavior 

would present   as a suitable candidate for the role of region   in the P-B theorem 

–see Section 2.5 –, if it were not for the presence of fixed points inside  . 
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Consider now the following particular situation:  

{
                                   

            
}  (3.89) 

whose torque curves are depicted in Fig. 3.13. We suppose that the only fixed point 

of the system is on the right branch of curve    and undergoes a Hopf bifurcation. It 

is also assumed that the actual slope of the motor characteristic is      and, 

therefore, the equilibrium is unstable. 

First, let us prove that the fixed point is a repeller. Since the equilibrium is already 

known to be unstable, we only need to prove that it is not a saddle. Let     be the 

jacobian matrix of system (3.46), evaluated at the equilibrium point. Taking into 

account that a saddle point has two real eigenvalues       with different signs, we 

can state 

      (   )                                                (3.90) 

With some simple algebra, it can be shown that, for    , condition    (   )    

can be written as    . Then, it is clear that, for a fixed point satisfying (3.89), we 

have    (   )   . Thus, the equilibrium is a repeller.  

A new region   is now defined as   minus a circle of infinitesimal radius around 

the equilibrium point. From the above considerations –all trajectories enter   and 

the fixed point is a repeller–, it is clear that the flow on the boundary of   is 

directed inwards, as depicted in Fig. 3.14. 

In summary, a closed, bounded region   of the phase plane has been obtained, 

which contains no fixed points and such that all trajectories of the system enter   

and remain inside forever. Then, all conditions of the P-B theorem are fulfilled, and 

it can be assured that any trajectory of the system is attracted towards a closed orbit 

as    , if it is not a closed orbit itself. 
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Fig. 3.13 Schematic view of the torque curves corresponding to conditions (3.89) 

Finally, it should be noted that, although the P-B theorem does not guarantee that 

all trajectories tend to the same closed orbit, all the numerical experiments 

conducted within this thesis show the presence of only one stable limit cycle, 

namely that created by the Hopf bifurcation. This suggests that, for a system 

verifying (3.89), all the system dynamics is attracted towards a unique limit cycle. 
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66    3 The Case of Large Slope: Analytical Approach 

 

Fig. 3.14 Flow on the boundary of region   (dashed), under conditions (3.89) 

 

3.7 Discussion 

Time Validity 

A crucial point in any perturbation analysis is the time scale for which the obtained 

approximate solution is valid. It has been shown in Section 3.3 that the solution 

given by the reduced system is valid, at least, for a time scale    (  ⁄ ) –see Fig. 

3.6–. 

However, the situation is even better than that. As described in Section 2.1 

(Averaging with Attraction), the asymptotic approximations attained through 

averaging are valid for all time, whenever they are attracted by a stable fixed point 

or a stable limit cycle. In the latter case, the uniform validity holds for all variables 

except the angular one, i.e. the variable which measures the flow on the limit cycle. 

As will be seen later, all the numerical solutions obtained in Chapter 4 fulfill the 

above condition of attraction. 
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Comparison with other authors’ results 

In this subsection, the presented approach and results are compared to some 

proposed by other authors. 

First of all, as far as the authors know, there has been no attempt in the literature to 

use the SPT for the analysis of nonideally excited systems. Thus, the analytical 

procedure addressed in this Chapter appears to be a novel approach to the problem. 

On the other hand, the possibility of a Hopf bifurcation on the right branch of the 

vibration torque curve (Fig. 3.9b.2) has been addressed. An important implication 

of this result is that the stability of the stationary solutions near resonance does not 

only depends on the comparison between the slopes of the two torque curves 

(   ), as commonly stated in the literature (Blekhman, 2000; Dimentberg et al., 

1997; Kononenko, 1969; Nayfeh & Mook, 1995). Let us try to explain this 

divergence in the results. 

Kononenko’s book (Kononenko, 1969) is one of the most relevant references in the 

subject. He considered several linear and nonlinear systems excited by nonideal 

motors. By using the averaging method, he was able to analytically investigate the 

stationary motions of the motor and their stability. His approach was as follows. 

Considering the rotor speed to be in the vicinity of resonance, he expanded it as 

 ̇            (3.91) 

Thus, he found equations of motion of the form 

{
 
 

 
 

 ̇   ( )

 ̇       ( )

 ̇   ( )

 ̇     
    }

 
 

 
 

  (3.92) 
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which is a system analogous to (3.36). Then, he averaged (3.92) over the fast angle 

 , obtaining an averaged system of the form 

{
 
 

 
  ̇̅   ( )

 ̇̅     ̅   ( )

 ̇̅   ( )

 ̅    ̅ }
 
 

 
 

  (3.93) 

This averaged system is completely analogous to system (3.38), obtained in the 

present chapter. The only difference lies in the fact that Kononenko used the 

evolution equation for  ̅, instead of that for  ̅. This has an important consequence. 

From (3.38), it is clear that  ̅ is a fast variable, while  ̅ and  ̅ are slow. This 

property was exploited in Section 3.3 to obtain a reduced 2D system (3.46), by 

using the SPT. The analysis of the fixed points of this reduced system and their 

stability has revealed the possibility of Hopf bifurcations, and conditions for their 

appearance have been derived in Section 3.4. However, the form of the averaged 

equations (3.93), used by Kononenko, doesn’t evidence so clearly the fact that  ̅ is 

a fast variable. Then, instead of taking advantage of this separation in the time 

scales through the SPT, he directly investigated system (3.93), which did not allow 

him to obtain analytical conditions for the existence of Hopf bifurcations.  

While several authors followed Kononenko’s approach (Dimentberg et al., 1997; 

Nayfeh & Mook, 1995), Blekhman proposed a completely different one, based on 

the ‘method of direct separation of motions’ (Blekhman, 2000). With this 

procedure, he came to the conclusion that the system dynamics is governed by 

equation 

  ̈    ( ̇)   ( ̇) (3.94) 

where dimensional variables have been used. In (3.94),  ( ̇) represents the torque 

on the rotor due to vibration. Based on this equation, Blekhman deduced the same 
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result as Kononenko regarding the stability of stationary solutions, namely, that 

stability changes when the driving torque curve and the vibration torque curve are 

tangent. 

It is worth noting that Blekhman’s approach is not applicable under the assumptions 

of the present chapter. The reason is that, in general, the torque on the rotor due to 

vibration depends on the linear motion of the system, as observed in the second of 

equations (3.1). This feature is maintained in the averaged system (3.38) obtained in 

this Chapter, where the vibration torque appears as a function of    .  

On the contrary, in (Blekhman, 2000), the vibration torque is written as a function 

of the rotor speed –see (3.94)–, which implies neglecting the dynamics associated to 

variables   and  . This would only be valid if the rotor speed was a much slower 

variable than those associated to the linear vibration (   ). To better understand 

this point, suppose that, in system (3.1), the rotor inertia was  (  ⁄ ), with the rest 

of the parameters being  ( ). Then, writing    ̃  ⁄ , system (3.1) would take the 

form 

8
  ̈    ̇             ̇

       ( )

 ̃ ̈   [    ̇      ̈     ]
9  (3.95) 

With this particular scaling of the parameters, Blekhman’s approach would be valid 

because the dynamics of linear motion would be much faster than that of the rotor 

speed. Then, as predicted by the SPT, the variables associated to the linear motion 

would be slaved to the rotor speed, in the same sense that fast variable   becomes 

slaved to slow variable   in Section 2.3 (see Fig. 2.1). This would in turn allow 

writing the vibration torque as a function of the rotor speed, as in (3.94).  

As pointed out above, the assumptions of the present chapter (3.7)-(3.9) are not 

compatible with the results in (Blekhman, 2000), because the required difference in 

the time scales of the different variables is not satisfied. This can be observed in the 

averaged system (3.38), where we find { ̇   ( )  ̇   ( )  ̇   ( )} . 
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More recently, Bolla et al. (Bolla, M. R., Balthazar, J. M., Felix, J. L. P., Mook, 

2007) used the Multiple Scales method to solve the same problem studied in this 

Chapter, under the same assumptions. However, after obtaining system (3.38), they 

conducted the stability analysis considering only the first two equations in (3.38) 

and taking   as a fixed parameter. As explained at the beginning of Section 3.4, this 

corresponds to studying the ideal case, where the rotor speed is externally imposed. 

Consequently, they did not find the Hopf bifurcations that have been identified 

within this work. In fact, Bolla et al. explicitly stated the impossibility of Hopf 

bifurcations: ‘This fact eliminates the possibility of a pair eigenvalue pure 

imaginary, so this eliminates Hopf bifurcation kind’. Thus, the present Chapter can 

be envisaged as an extension of (Bolla, M. R., Balthazar, J. M., Felix, J. L. P., 

Mook, 2007), where new bifurcations are encountered due to the nonideal 

interaction between motor and vibrating system. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 THE CASE OF LARGE 

SLOPE OF THE MOTOR 

CHARACTERISTIC: 

NUMERICAL 

SIMULATIONS 
 

 

This Chapter presents two main purposes. First, a numerical investigation of the 

reduced system (3.46) is conducted in order to analyze the global bifurcations of 

limit cycles. While Section 3.5 analyzes how the Hopf bifurcations give rise to the 

appearance of limit cycles, Section 4.1 gives some insight about the dynamical 

mechanisms whereby the limit cycles are destroyed. A second section is presented 

where, by comparing numerical solutions of the original and reduced systems – 

(3.10) and (3.46), respectively– the proposed approach is validated. The objective is 



 

 

 

 

 

 

 

 

 

 

 

 

72    4 The Case of Large Slope: Numerical Simulations 

to demonstrate that the conclusions attained for the reduced system are also valid 

for the original system. 

4.1 Global Bifurcations of the Limit Cycles 

In Section 3.5, the creation of limit cycle oscillations (LCOs) through Hopf 

bifurcations has been investigated. Now, the opposite question is examined: once a 

limit cycle is born, does it exist for every      in the supercritical case –for 

every      in the subcritical case–, or is it destroyed at any point? In the latter 

case, it would also be interesting to know the dynamical mechanism which makes 

the limit cycle disappear. 

The aim of this Section is to analyse the global dynamics of the system, tracking the 

evolution of the limit cycles in order to find out how they are destroyed –if they are 

destroyed at all–. Since this task is in general too difficult to be carried out 

analytically, we resort to numerical computation. 

The Subcritical Case 

Consider the following set of dimensionless parameters: 

                         (4.1) 

which might be associated to dimensional parameters 

{
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          ⁄
          

      ⁄
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  (4.2) 
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with        . Obviously, (4.2) is only one of the many possible sets of 

dimensional parameters giving rise to (4.1). 

 

Fig. 4.1 Torque curves corresponding to parameters (4.1) 

By using equations (3.66) and (3.86), slopes    and    can be obtained, as depicted 

in Fig. 4.1.  

                      (4.3) 

According to criterion (3.87), the Hopf bifurcation is found to be subcritical. Thus, 

as represented in Fig. 3.10, an unstable limit cycle is known to exist for     , 

within a certain neighborhood of   . We are interested in tracking the evolution of 

this limit cycle as slope   decreases.  By numerically integrating system (3.46), 

using embedded Runge-Kutta formulae of orders 4 and 5, for different values of  , 

the limit cycle is found to disappear at      –see Fig. 4.1–, with 

           (4.4) 
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Fig. 4.2 Phase portraits corresponding to parameters (4.1). The fixed points are 

marked with dots. The dashed loop represents the unstable limit cycle 

(a)         , (b)          

The dynamical mechanism whereby the limit cycle is destroyed, which turns out to 

be a homoclinic bifurcation (Kuznetsov, 1998),  is shown in Fig. 4.2 and Fig. 4.3. 

Let us follow the evolution of the phase portrait. From Fig. 4.2 (a) to Fig. 4.2 (b), 

the Hopf bifurcation takes place: the focus becomes stable, while an unstable limit 

cycle is born around it. In Fig. 4.3(a), the cycle has swelled considerably and passes 

close to saddle point  . The homoclinic bifurcation occurs when the cycle touches 
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the saddle point (    ), becoming a homoclinic orbit. In Fig. 4.3(b), we have 

     and the loop has been destroyed. 

 

 

 

 

Fig. 4.3 Phase portraits corresponding to parameters (4.1). The fixed points are 

marked with dots. The dashed loop represents the unstable limit cycle 

 (a)         , (b)          
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It is worth noting that, when the unstable limit cycle exists –namely, for      

  –, it acts as a frontier between the domains of attraction of the two stable 

equilibrium points of the system –see Fig. 4.2(b) and Fig. 4.3(a)–. 

Many other cases exhibiting a subcritical bifurcation, which are not shown here, 

have also been numerically solved. In all of them, the unstable limit cycle has been 

found to disappear through a homoclinic bifurcation. 

The Supercritical Case 

Consider the following set of dimensionless parameters: 

                           (4.5) 

which might be associated to dimensional parameters 

{
 
 
 

 
 
 

      

     ⁄

          ⁄
          

       ⁄
      

              }
 
 
 

 
 
 

  (4.6) 

with        . Equations (3.66) and (3.86) yield the values of slopes    and   , 

depicted in Fig. 4.4. 

                      (4.7) 

Criterion (3.87) allows characterizing the bifurcation as supercritical. Then, as 

represented in Fig. 3.10, it can be assured that a stable limit cycle encircles the 

unstable equilibrium for     , within a certain neighborhood of   . As a matter 

of fact, the results of Section 3.6 can be used here to investigate the range of slopes 

  for which the limit cycle exists. 
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Consider the curve    which intersects    at the fixed point under study and is 

tangent to curve    at another point. Let    stand for the slope of that particular 

torque curve, as displayed in Fig. 4.4. Then, it is straightforward to show that, for 

       , conditions (3.89) are fulfilled and, consequently, it can be assured 

that all system trajectories tend to a periodic orbit. In the case under analysis, we 

have 

           (4.8) 

 

 

Fig. 4.4 Torque curves corresponding to parameters (4.5) 

 

Note that the Poincaré-Bendixson Theorem gives sufficient, but not necessary, 

conditions for the existence of a stable periodic orbit. Thus, it cannot be deduced 

from the Theorem whether the limit cycle survives or not when     . To the end 

of answering this question, we resort again to a numerical resolution of system 

(3.46), for increasing values of  . The results are displayed in Fig. 4.5 and Fig. 4.6. 
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Fig. 4.5 Phase portraits corresponding to parameters (4.5). The fixed points are 

marked with dots. The solid loop represents the stable limit cycle 

( )        , (b)         

Let us track the evolution of the phase portrait. In Fig. 4.5(a) we have      and 

all system trajectories are attracted towards the only fixed point of the system. It 

may seem from Fig. 4.5(a) that trajectories are actually attracted towards a limit 

cycle surrounding the fixed point. The reason for this false impression is that the 

attraction of the fixed point is very weak, as it is close to becoming unstable (  is 
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close to   ). Hence the required time for trajectories to approach the equilibrium is 

extremely long. 

 

 

Fig. 4.6 Phase portraits corresponding to parameters (4.5), for         . The 

fixed points are marked with dots. The solid loop represents the stable limit cycle 

Fig. 4.5b corresponds to        . The Hopf bifurcation has occurred and, 

therefore, the focus has lost its stability at the same time that a stable limit cycle has 

appeared around it. Note that, in Fig. 4.5(b), conditions (3.89) hold. Consequently, 

all system trajectories are attracted towards a periodic orbit. Actually, Fig. 4.5b can 

be observed as a particular example of the general picture shown in Fig. 3.14.  

The numerical results mentioned above are only useful to confirm the analytical 

developments of previous sections. By contrast, Fig. 4.6 does provide new 

information about the global dynamics of the system. It shows that the stable limit 

cycle is destroyed through a saddle-node homoclinic bifurcation (Kuznetsov, 1998), 

which occurs at     . This means that the cycle disappears exactly when 

conditions (3.89) are not fulfilled anymore. The mechanism is as follows. At 

     a new fixed point, which immediately splits into a saddle and a node, is 

created through a saddle-node bifurcation. This new equilibrium appears precisely 

on the limit cycle, transforming it into a homoclinic orbit. What is found at     , 
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as observed in Fig. 4.6, is that the limit cycle has been replaced by a couple of 

heteroclinic orbits connecting the saddle and the node. 

It has been shown that, for the particular set of parameters (4.5), conditions (3.89) 

are necessary and sufficient for the existence of a stable limit cycle. Thus, the 

periodic orbit never coexists with any other attractor of the system. Nevertheless, it 

should be stressed that this is not always the case. In fact, cases have also been 

found where the stable limit cycle is destroyed through a homoclinic bifurcation, 

just like in the subcritical case. In these situations, the global bifurcation occurs at 

certain slope       and, therefore, the limit cycle coexists with a stable 

equilibrium for        . 

As an example, consider a case with    satisfying         . Clearly, 

according to (3.87), the Hopf bifurcation is supercritical. However, it is not possible 

for the limit cycle to be destroyed through a saddle-node homoclinic bifurcation, 

because the saddle and the node are created before the limit cycle. In fact, in these 

cases, the closed orbit has been found to die in the same way as the unstable limit 

cycle shown in Fig. 4.3, i.e. through a homoclinic bifurcation due to the presence of 

a saddle point. 

In summary, the simulations carried out suggest that, while unstable limit cycles are 

destroyed by homoclinic bifurcations, the stable ones can disappear either through 

homoclinic bifurcations or saddle-node homoclinic bifurcations. 

 

4.2 Numerical Validation of Analytical Results 

A Subcritical Case 

Consider again the set of parameters given at (4.1), which gives rise to a subcritical 

Hopf bifurcation, as depicted in Fig. 4.2 and Fig. 4.3. Two different scenarios are 

studied, corresponding to the following slopes of the motor characteristic: 
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                     (4.9) 

By comparing (4.9) with Fig. 4.2 and Fig. 4.3, it can be verified that, for     , 

the system has a stable focus surrounded by an unstable limit cycle, while, at 

    , the focus has become unstable through a Hopf bifurcation. As pointed out 

in Section 4.1, the unstable limit cycle for      is the boundary which separates 

the basins of attraction of the two attracting fixed points present in the system–see 

Fig. 4.3(a)–. 

For     , two sets of initial conditions, I.C. (1) and I.C. (2), are selected, outside 

and inside the limit cycle, respectively: 

    ( ) {
      

  
      

}      ( ) {
      

  
      

}  (4.10) 

Then, by using relations (3.47), corresponding initial conditions for the original 

system can be computed: 

    ( )

{
 

 
       
  ̇   
      

 ̇   }
 

 
     ( )

{
 

 
       
  ̇   
      

 ̇   }
 

 
  (4.11) 

Note that this step has not a unique solution, because different sets of original initial 

conditions can produce the same reduced initial conditions. 

The obtained numerical solutions are shown in Fig. 4.7, for       . A good 

agreement between solutions of both systems is observed. Clearly, the two 

considered sets of initial conditions lead the system to different attractors. 
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Fig. 4.7 Comparison of numerical solutions of the original (solid line) and reduced 

(dashed line) systems for parameters (4.1),        and             

(a) Displacements 

(b) Rotor Speed 

It is convenient to make here an observation about the size of parameter  . The 

procedure used in Chapter 3 to transform the original system into a simpler reduced 

system is based on perturbation methods. These techniques are useful for dynamical 

systems which contain a small parameter  , and they explain how such systems 

behave for a sufficiently small  . This means that the smaller   is, the more accurate 
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perturbation predictions are. Fig. 4.7 shows that, for the case under consideration, a 

value of        gives a remarkable accordance between solutions of the original 

and reduced system. As an illustrative example, the same numerical computation is 

done, for initial conditions I.C. (2) and       . This larger   gives rise to a less 

accurate prediction, as displayed in Fig. 4.8. The required   to have an accurate 

result depends on the case under study. For instance, in the following simulation 

(Fig. 4.9), it was necessary to take        for a good matching between solutions 

of the exact and approximate systems. However, in the majority of simulations 

conducted within this work,        proved to be small enough. 

Consider now the case      where, according to Fig. 4.2(a), the focus is unstable 

and there is a unique attracting fixed point in the system. Initial conditions 

    ( ) {
       

  
       

} (4.12) 

are selected for the reduced system, from which corresponding initial conditions for 

the original system can be obtained: 

    ( )

{
 

 
        
  ̇   

       

 ̇   }
 

 
  (4.13) 

 

The original and reduced systems are numerically solved with        and initial 

conditions (4.13) and (4.12), respectively. The results are displayed in Fig. 4.9, 

where it is clearly observed how the system moves away from the unstable focus, as 

the oscillation amplitude increases, until it is attracted to the stable node. 
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Fig. 4.8 Comparison of numerical solutions of the original (solid line) and reduced 

(dashed line) systems for parameters (4.1), initial conditions I. C. (2),        and 
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Fig. 4.9 Comparison of numerical solutions of the original (solid line) and reduced 

(dashed line) systems for parameters (4.1),        and             

(a) Displacements 
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A Supercritical Case 

In order to observe limit cycle oscillations in the original system, we need to 

consider a case where a supercritical Hopf bifurcation occurs, giving birth to a 

stable limit cycle. Thus, consider again the set of parameters given at (4.5) and a 

motor characteristic with slope        , which corresponds to the phase portrait 

exhibited in Fig. 4.5(b). With these parameters, the original system of equations 

(3.10) is numerically solved for        and initial conditions 

{
 

 
       
  ̇   
    

 ̇   }
 

 
  (4.14) 

The reduced system (3.46) is numerically integrated as well for comparison. The 

associated initial conditions for the reduced system can be computed with the aid of 

relations (3.47): 

{
      

  
       

}  (4.15) 

With these sets of initial conditions, the obtained results for both systems are 

represented in Fig. 4.10 and Fig. 4.11, exhibiting very good agreement.  

It is worth stressing that, as depicted in Fig. 4.10 and Fig. 4.11, a new kind of 

behaviour has been found for the mechanical system under study, which consists in 

a vibratory motion of the structure with slowly oscillating amplitude, due to the 

nonideal interaction between exciter and vibrating system. The periodic solutions of 

the averaged system correspond to quasiperiodic solutions of the original one. 

This type of motion had not been addressed before, to the author’s knowledge, in 

the literature about nonideal excitations. Note that the LCOs give rise, in this case, 

to very large variations of the amplitude. Thus, the effect of the studied instability 

may be of great importance in real applications. 
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Fig. 4.10 Comparison of displacements obtained by numerical resolution of the 

original (solid line) and reduced (dashed line) systems for parameters (4.5), 

       and         
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Fig. 4.11 Comparison of the rotor speed obtained by numerical resolution of the 

original (solid line) and reduced (dashed line) systems for parameters (4.5), 

       and         

(a) Full view 

(b) Close-up around resonance 
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5 THE CASE OF SMALL 

SLOPE OF THE MOTOR 

CHARACTERISTIC: 

ANALYTICAL 

APPROACH 
 

 

As commented in the Introduction to the thesis, the behaviour of the vibrating 

system under study is different depending on the order of magnitude of the slope of 

the motor characteristic. Then, in this Chapter, the system depicted in Fig. 3.1 and 

governed by equations (3.6) is considered again, maintaining the assumptions (3.7) 

and (3.8) –small damping, small unbalance, small nonlinearity coefficient and small 
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torque at resonance–, and replacing assumption (3.9) –large slope of the motor 

characteristic– with 

       (5.1) 

The assumption     is kept within this chapter. Moreover, we assume    , 

with   defined in (3.5). 

With these new assumptions, the dimensionless equations of motion are 

 ̈     [    ̇        ( ̇       ̈     )]

 ̈   [   ( ̇   )    ̈     ] 
 (5.2) 

where subscript ‘0’ has been dropped for convenience. 

It is useful to transform system (5.2), according to change of variables 

{
      (   )

 ̇       (   )
} (5.3) 

and define a new variable for the rotor speed: 

   ̇  (5.4) 

Notice that the procedure followed in Chapter 3 is being repeated: a change to polar 

coordinates is performed by replacing the pair of variables * ( )  ̇( )+ with the 

pair of amplitude–phase variables * ( )  ( )+. Thus, the intermediate steps can be 

skipped, since they are exactly the same as in Chapter 3. The system, written in the 

new variables, takes the form 
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{
 
 

 
 

 ̇       (   )  (       )   (  )

 ̇   ,   (   )           (   )-   (  )

 ̇       
   (   )

 
  (       )   (  )

 ̇   }
 
 

 
 

  (5.5) 

where 

         (   )         (   )            (5.6) 

Equations (5.5) and (5.6) are analogous to (3.26) and (3.27). 

A direct inspection of system (5.5) reveals that it contains two non-angular real 

variables *   + which are slow –they evolve with rate  ( )– and two angular 

variables *   + which are, in principle, fast –they evolve with rate  ( ) unless 

    or    –. Hence this is a suitable scenario for averaging over the fast 

angles. However, in order to average over several angles, the system needs to be 

written in the form (2.5), (2.6), as explained in Section 2.1. To this end, new 

angular variables are defined: 

                     (5.7) 

Then, by expanding the products of sines and cosines in (5.5), the system can be 

written as 

{
  
 

  
  ̇   [                (   )              (

 

 
   (   )  

 

 
   (   ))]   (  )

 ̇   0   (   )  
 

 
       

 

 
      1   (  )

 ̇       ( )

 ̇     ( )

 ̇       ( ) }
  
 

  
 

  (5.8) 
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Now, assume a positive rotor speed,    . Then, the only resonance manifold 

present in system (5.8) is given by condition 

    (5.9) 

As explained in Section 2.1, it is necessary to distinguish between two scenarios, 

depending on whether or not the system is close to the resonance manifold. 

 

5.1 Outer Region 

Suppose the rotor speed   is away from  . Then, we can average system (5.8) over 

the three fast angles   ,    and   . The resulting averaged system is 

{
 ̇      

 ̇     ( )
}  (5.10) 

where 

  ( )     (   )  (5.11) 

According to the averaging theorem stated in Section 2.1, system (5.10) is valid on 

a time scale    (  ⁄ ), with  ( ) precision. 

A straightforward analysis of system (5.10) yields the conclusion that it has one 

only fixed point, given by 

{
   

  ( )   
}  8

   

   ̃    
 

 
9  (5.12) 

which is globally asymptotically stable as long as    .  
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Note that, according to assumptions        , the equilibrium point (5.12) 

corresponds to a post-resonant regime,    . This solution has a very clear 

physical interpretation. First, note by comparing (5.11) to (3.3) that function   ( ) 

is simply a dimensionless version of the motor characteristic   ( ̇): 

  ( )  
  (   )

    
  (5.13) 

Clearly,  ̃ is the only zero of   ( ), as represented in Fig. 5.1. Then, the outer 

fixed point (5.14) corresponds to a post-resonant motion where the oscillation 

amplitude is zero and the rotor speed takes the value which makes the motor torque 

vanish. Note that this holds for the averaged system (5.10), whose solutions are at 

an  ( ) distance to those of the original system (5.2). Then, regarding the original 

system, it can be said that the outer fixed point (5.14) represents a post-resonant 

motion with small oscillation amplitudes    ( ) and with the rotor speed close to 

the zero of the motor characteristic    ̃   ( ).  

 

 

 

 

 

 

 

Fig. 5.1 Dimensionless motor characteristic   ( ) 

In physical terms, it is consistent that a non-resonant excitation produces a small 

oscillation of the vibrating system. Note that, for such small oscillations, the torque 
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on the rotor due to vibration is very small (   ̈       (  )). Then, during this 

post-resonant motion, the motor does not have to provide any significant torque to 

maintain the system vibration and, consequently, the rotor speed takes such a value 

that the driving torque is virtually zero:    ̃   ( )   ,   (   )-  

 (  ). 

Two different scenarios can be considered: 

- If  ( )   , system (5.10) is exponentially attracted towards equilibrium 

(5.12) without approaching the resonance manifold. Then, according to 

Section 2.1 (Averaging with Attraction), the outer averaged system is valid 

for all    . 

- If  ( )   , system (5.10) is also exponentially attracted by equilibrium 

(5.12). However, in its way towards the equilibrium, the system will 

necessarily reach the vicinity of the resonance manifold, making system 

(5.10) no longer valid. There are, in principle, two options: 

o The system remains close to the resonance manifold for all 

subsequent time (resonant capture). 

o The system stays near the resonance manifold for some finite time, 

after which it continues its evolution towards fixed point (5.12) 

(passage through resonance).  

The next Section investigates the dynamics of (5.5) close to the resonance manifold. 

 

5.2 Inner Region 

In order to study the system behavior in the vicinity of the resonance manifold, the 

rotor speed is expanded as 

    √    (5.14) 
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Note that the definition of the detuning variable   is not the same as in the case of 

large slope –compare (5.14) to (3.35)–. The reason is that, under the assumption of 

small slope made in this chapter, the problem requires a different perturbation 

approach, which in turn requires a different scaling of the rotor speed. It can be 

checked that a scaling such as (3.35) would not yield any relevant result in the 

present case. 

Replacing (5.14) in (5.5), (5.6) yields 

{
 
 

 
 

 ̇       (   )  (     )   ( √ )

 ̇   √    
   (   )

 
  (     )   ( √ )

 ̇  √ ,           (   )-       ( √ )

 ̇    √  }
 
 

 
 

  (5.15) 

with 

         (   )         (   )          (5.16) 

Clearly, system (5.15) contains three slow variables *     + and a fast rotating 

phase  . It is, then, suitable for a second order averaging procedure. Following the 

procedure described in Section 2.2, we arrive at averaged system 

{
  
 

  
 

 ̇̅     ( ̅      ̅)

 ̇̅   √  ̅   4
 

 
  ̅   

    ̅

 ̅
5

 ̇̅  √ 0  
 

 
 ̅     ̅1     ̅

 ̇̅    √  ̅ }
  
 

  
 

  (5.17) 

where, with an appropriate relation between the initial conditions for the original 

and averaged systems, the error estimates are 
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{
 
 

 
 

   ̅   ( )

   ̅   ( )

   ̅  √ 
 

 
 ̅    (  ̅   ̅)   ( )

   ̅   (√ ) }
 
 

 
 

          (
 

√ 
)  (5.18) 

Note that the  (√ ) terms in the first two of relations (5.18) turn out to be zero in 

this particular case. 

Despite the fact that the evolution { ̅  ̅  ̅} is independent of  ̅ –as is evident, since 

this is precisely the purpose of averaging–, system (5.17) includes  ̅ as a state 

variable. The reason is that variable  ̅( ) is necessary to construct the error 

estimates in (5.18). However, in order to investigate the dynamics of the averaged 

system, it is convenient to rewrite it without the fast angle: 

{
 
 

 
 

 ̇̅     ( ̅      ̅)

 ̇̅   √  ̅   4
 

 
  ̅   

    ̅

 ̅
5

 ̇̅  √ 0  
 

 
 ̅     ̅1     ̅ }

 
 

 
 

  (5.19) 

A direct analysis of (5.19) allows deducing that, if     ⁄ , there are no fixed 

points in the inner region. On the other hand, if     ⁄ , system (5.19) exhibits two 

fixed points, given by 

{

       √     ( )

       √     ( )

       √     ( )

}  (5.20) 

with 
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{
 
 
 

 
 
 

   √
  

 
       

        (
   

    
)       

        
    

  
 

 

 
   

   
}
 
 
 

 
 
 

      (5.21) 

where    √    
 . The two possible values of   correspond to the two different 

equilibrium points. 

Note that, unlike in the case of large slope –see (3.52)–, the analytical expressions 

for the fixed points are very simple in the present scenario. However, the torque-

speed plots used in Section 3.4 may also be illustrative here and will provide an 

interesting comparison with the case of large slope.  

Thus, consider the equilibrium condition applied to variable  ̅. From the third of 

equations (5.19) we have, at first order,  

  
 

 
           (5.22) 

On the other hand, condition  ̇̅    yields 

           (5.23) 

which allows writing (5.22) as 

  
 

 
  

   (5.24) 

Equation (5.24) can be clearly interpreted as a torque equilibrium condition: 

     (  )  (5.25) 

with 



 

 

 

 

 

 

 

 

 

 

 

 

98    5 The Case of Small Slope: Analytical Approach 

    

  ( )  
 

 
   

 (5.26) 

   represents the driving torque produced by the motor and    corresponds to the 

resisting torque due to vibration. In order to obtain the usual torque-speed plot, we 

would need to write    and    in terms of    . Nevertheless, this would in turn 

require writing    in terms of        , and then substitute in (5.25). Since this 

yields very long and cumbersome expressions, we resort to an alternative implicit 

procedure for the graphical representation. 

From condition  ̇̅   , we have 

        
 

 
   

  
  √    

 

  
  (5.27) 

Then, we can write 

     (    )  (5.28) 

where function   (   ) is defined as 

  (   )  
 

 
      

√    

 
  (5.29) 

The proposed representation can be constructed as follows. First, graph    versus   

(in this case, as     , a constant function is obtained). Then, represent the 

parametric curve given by *  (   )   ( )+ for      and   (   -. The fact that 

  is strictly positive comes from its definition as the radius of a polar coordinate 

transformation –see (5.3)–, while condition (5.23) forbids    to be greater than  . 

This procedure gives rise to a plot like that shown in Fig. 5.2. 
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Fig. 5.2 Fixed points of system (5.19) 

A direct comparison between Fig. 5.2 and Fig. 3.7 is quite illustrative as for the 

difference between the two scenarios considered in this thesis. In the case of large 

(small) slope, the driving torque curve exhibits a slope which is comparable 

(negligible) with respect to that of the vibration torque curve. 

Fig. 5.2 shows the existence of two fixed points, as long as     ⁄ . The stability 

of these equilibria is now investigated. To this end, the jacobian matrix of system 

(5.19) needs to be obtained and evaluated at the equilibrium point of interest: 

    √         ( √ )  (5.30) 

with  

   [

   
    

 
 

 
   

  

 
     

]     [

       

 
    

  
  

 

 
      

   

]  (5.31) 

The eigenvalues of matrix     are now computed. After some algebra, we find, for 

the right branch of the torque curve (   ), 
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{
 
 
 

 
 
 

         ( √ )

   √ √
     

 
  ( )

    √ √
     

 
  ( )

}
 
 
 

 
 
 

  (5.32) 

which clearly corresponds to an unstable equilibrium of the saddle type. For the left 

branch (    ) we obtain 

     

{
 
 
 

 
 
 

         ( √ )

   √  √
     

 
  

 

 
  ( √ )

    √  √
     

 
  

 

 
  ( √ )

}
 
 
 

 
 
 

  (5.33) 

According to (5.33), the left equilibrium is stable, since all eigenvalues have 

negative real parts, as long as    . 

Here the most challenging part of the Chapter is faced. Note that there is a 

significant difference between the stability of both fixed points. Not only the 

eigenvalues give information about stability, but also about the time needed by 

trajectories to be attracted or repelled by the fixed point.  

For    , we have   (  )   (√ ), where    is the only positive eigenvalue –see 

(5.32)–. Thus, the characteristic time of repulsion is    ( √ ⁄ ). Recall, from 

(5.18), that the time scale in which the inner approximation is valid is precisely 

   ( √ ⁄ ). Then, consider a trajectory of (5.19) which starts in the vicinity of 

the considered fixed point. If the trajectory is tracked for the time length where the 

averaged system (5.19) is valid,    ( √ ⁄ ), we find that it is repelled out of the 
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equilibrium. Therefore, it can be stated that the equilibrium, which is unstable for 

the averaged system (5.19), is also unstable for the original system (5.5). 

On the other hand, for     , we have   (        )   ( ), with all three 

eigenvalues having negative real parts. Thus, the time of attraction is    (  ⁄ ). 

Clearly, we have 

                       (5.34) 

With a similar reasoning as for the unstable case, a trajectory of the averaged 

system starting in a neighborhood of the fixed point can be considered. However, in 

this case, if the trajectory is followed during    ( √ ⁄ ), we find that it is neither 

attracted nor repelled by the equilibrium, because the time scale is not long enough. 

If a longer time scale is considered, solutions of the averaged system may not be 

good approximations to those of the original system anymore. Then, the fact that 

this equilibrium, which is stable for the averaged system (5.19), is also stable for the 

original system (5.5) needs a deeper justification. 

Justification of the equilibrium stability for      

As expounded in Section 2.1, attraction properties can be used to enlarge the time 

of validity of asymptotic approximations. The problem here is that the attraction is 

very weak, which makes necessary a modified version of the standard result given 

in Section 2.1. The analysis shown below is based on an example given in (Sanders 

et al., 2007) –see page 109, ‘The Case    ’ in the mentioned reference–. 

Consider system (5.15), which belongs to the more general class of systems 

8
 ̇     (   )      (   )     , -(     )

 ̇        ( )
9  

 ( )    

 ( )    
 
      

     (5.35) 
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Note the change in notation: √  is now written as   for simplicity. This can be 

understood as a simple correspondence between two small parameters: √     . 

A second order averaging procedure –see Section 2.2– yields the averaged system  

8
 ̇    ̅ ( )     ̅ 

 ( )

 ̇        ( )
9  

 ( )        (     )

 ( )    
  (5.36) 

where the error estimate is given by 

 ( )   ( )     ( ( )  ( ))   (  )         (  ⁄ )   (5.37) 

and function    is defined as 

  (   )  
 

  
∫[  (   )   ̅ ( )]  

 

  

    (5.38) 

with constant    chosen in such a way that  

∫   (   )  

  

 

    (5.39) 

Functions  ̅  and  ̅ 
  are defined in (2.3) and (2.13). 

As a particularity of the case under study, note from (5.18), that there is only one 

component of vector    which does not vanish. Thus, in our case, vector   (   ) 

is of the form 
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  (   )  

{
  
 

  
 

 
 
 

  
 (   )

 
 
 }

  
 

  
 

 (5.40) 

Before proceeding to the stability analysis, it is convenient to draw a relevant 

conclusion from (5.39). Defining period   as 

  
  

  
   (5.41) 

function    can be integrated over one period: 

 

 
∫   ( ( )  ( ))  

    ⁄

    ⁄

 
 

  
∫   ( ( )  )  

  

 

  ( )  (5.42) 

as can be deduced by a reasoning analogous to that in equations (3.14)-(3.17). 

Introducing (5.38) into (5.42) yields 

 

 
∫   ( ( )  ( ))  

    ⁄

    ⁄

  ( )  
 

 
∫   

 ( ( )  ( ))  

    ⁄

    ⁄

  ( ) (5.43) 

Thus,   
  is an  ( ) function whose integral over a period is  ( ). This implies that 

  
  necessarily vanishes at least once per period, which can be written as  

         ,     -    ( (  )  (  ))⁄      (5.44) 
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since all other components of vector    are always zero. This will prove to be an 

important point because, at these particular instants, we have ‖   ‖   (  ), in 

accordance with (5.37). 

Suppose that the averaged system, written without the fast angle as 

 ̇    ̅ ( )     ̅ 
 ( )   (5.45) 

has a fixed point      . Suppose further that the fixed point is asymptotically 

stable, with  

  (  )    ( 
 )  (5.46) 

where    is the eigenvalue with the smallest real part in absolute value and symbol 

   represents a sharp estimate (Sanders et al., 2007). Assume that  ( ) and  ( ) 

belong to the Poincaré-Lyapunov domain of    , i.e. to the region of the phase 

space where the attraction of the equilibrium is exponential. 

According to (5.46) the characteristic time of attraction of the equilibrium is   

             (
 

  
)  (5.47) 

much longer than the time of validity of the asymptotic approximation, according to 

(5.37): 

           (
 

 
)  (5.48) 

The scenario found when studying the unbalanced motor with small slope 

characteristic has been sketched here in more general terms.  
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In order to extend the time of validity of the averaged system by using attraction 

arguments, the attraction properties of system (5.45) are now investigated. Consider 

two solutions,   ( ) and   ( ), of (5.45) starting in the Poincaré-Lyapunov domain 

of the fixed point. According to the Poincaré-Lyapunov Theorem (Sanders et al., 

2007), we have that the difference between these two solutions decreases 

exponentially: 

‖  ( )    ( )‖   ‖  ( )    ( )‖                  (5.49) 

Moreover, it is known from (5.46) that the contraction coefficient   is   ( 
 ): 

       (5.50) 

In order to apply a contraction argument, we would need to guarantee that, after a 

time interval of  (  ⁄ ), the difference between    and    has decreased. 

Introducing     ⁄ , together with (5.50), into (5.49), we have 

‖     ‖   ‖  ( )    ( )‖      

  ‖  ( )    ( )‖(        (  ))  (5.51) 

Equation (5.51) shows that, for the considered time interval, we cannot state 

‖     ‖  ‖  ( )    ( )‖ because, in general, we have    . This difficulty 

would be overcome if we were able to put    . Actually, it can be shown that, 

when the eigenvectors of the jacobian are orthogonal, (5.49) is satisfied with 

   . Then, a change of variables is performed in order to have orthogonal 

eigenvectors: 

          (5.52) 
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where   is a real matrix whose columns contain the real eigenvectors of the 

jacobian of (5.45), evaluated at      . In the case of complex conjugate 

eigenvectors, the real and imaginary parts are stored in different columns of  .  

Clearly, change of variables     is composed of two transformations. First, the 

coordinate system is translated so that the origin coincides with the fixed point. 

Then, a transformation to the real eigenbasis of the jacobian is performed, by means 

of matrix  .  

Vector   contains the state variables of the system, expressed with respect to the 

basis formed by the eigenvectors of the jacobian. Then, it is clear that these 

eigenvectors are necessarily orthogonal in the space of coordinates  . 

Consequently, for two solutions starting in the Poincaré-Lyapunov domain, we have 

‖  ( )    ( )‖  ‖  ( )    ( )‖                     (5.53) 

By considering a time increment     ⁄  in (5.53), we have 

‖     ‖   ‖  ( )    ( )‖              (5.54) 

where 

                 (  )  (5.55) 

Thus, it has been shown that  ( ) exhibits exponential contraction on the time scale 

  ⁄ , even though this contraction is weak. 

Now, variable  ( ) –solution of the original system (5.35)– can also be transformed 

according to (5.52): 

          (5.56) 
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Consider the following partition of time in intervals of  (  ⁄ ): 

[  
  

 
]  [

  

 
 
  

 
]  [

  

 
 
  

 
]                   ( )  (5.57) 

where constants    are chosen such that 

  4 (
  

 
)   (

  

 
)5         (5.58) 

Note that this choice of constants    is always possible, because    vanishes at least 

once per period, according to (5.44). 

We define  

    (
  

 
)         ( )     ( ( )     )  (5.59) 

    (
  

 
)         ( )     ( ( )     )  (5.60) 

 ( )   (
  

 
)         (

    

 
)        (5.61) 

Thus,  ( ) represents the value of   at the end of an interval when, as an initial 

condition,   is imposed to be equal to   at the beginning of the interval. 

First, we have that 

‖    ( )‖       (5.62) 

as is clear from (5.37),(5.49) and (5.56), using that      at the considered 

instants. 
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On the other hand, by virtue of relation (5.54), we can write 

‖    ( )‖   ‖         ‖                   (5.63) 

Combining (5.62) and (5.63), we have 

‖     ‖       ‖         ‖  (5.64) 

By using (5.64) recursively, we arrive at 

‖     ‖     (          )      ‖     ‖  (5.65) 

Note that, according to (5.37), (5.49) and (5.56), we can write 

‖     ‖       (5.66) 

thanks to the fact that   ( (   ⁄ )  (   ⁄ ))   . 

Finally, introducing (5.66) into (5.65) and taking the limit for     yields 

   
   

‖     ‖  
 

   
   

 

 
   (5.67) 

where (5.55) has been used. 

Although (5.67) only holds, in principle, for the particular instants    ⁄ , it can be 

readily generalized for any  . Note that, as stated in (5.44), any     is at  ( )–

distance from an instant    where     . Clearly,    could be taken as    ⁄  and, 

therefore, (5.67) holds at   . On the other hand,   and   can only undergo  ( ) 

variations in an  ( ) time increment, which justifies the generalization of (5.67) to 

any  . Then, for    , we can write 
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‖ ( )   ( )‖  
 

 
  (5.68) 

Recovering the original variables, we have 

‖ ( )   ( )‖  ‖ ‖‖( ( )   ( ))‖   ,   )  (5.69) 

Finally, introducing (5.68) into (5.69) yields 

‖ ( )   ( )‖        ,   )  (5.70) 

where 

   
‖ ‖ 

 
 (5.71) 

The conclusion is that, for initial conditions close enough to the considered 

equilibrium, the solution of the averaged system is at an  ( ) distance from the 

solution of the original system, for all    . Then, if the equilibrium is 

asymptotically stable in the averaged system, it is asymptotically stable as well for 

the original system. 

Now, the obtained result is particularized for the case of the motor with small slope 

characteristic. Equation (5.70) takes the form 

{

   ̅   (√ )

   ̅   (√ )

   ̅   (√ )

}          ,   )  (5.72) 
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for solutions starting close enough to the fixed point (5.20), (5.21), with     . 

By comparing (5.70) with (5.18), it is clear that the time validity of the 

approximation has been extended, paying the price of a less accurate solution. 

Final Remarks 

In summary, the system has been found to exhibit two equilibrium points in the 

resonance region as long as     ⁄ . Fig. 5.2 represents both equilibria on a 

torque-speed plot, where the fixed point on the right branch is unstable and the one 

on the left branch is stable. Note that the existence of a stable fixed point in the 

inner region justifies the possibility of ‘resonance capture’. 

Recall that the system reaches the resonance manifold whenever  ( )   . For 

some sets of initial conditions, the trajectory will enter the Poincaré-Lyapunov 

domain of the stable fixed point and, therefore, it will remain near resonance for all 

subsequent time –resonant capture–. Clearly, there may also be sets of initial 

conditions such that the trajectory does not reach the Poincaré-Lyapunov domain of 

the stable fixed point. In these cases, the system will probably leave the inner region 

and evolve towards fixed point (5.12) in the outer region –passing through 

resonance–.  

In principle, it would also be possible that the system was attracted by a different 

object in the inner region, such as a stable limit cycle or a chaotic attractor. This 

would represent another kind of resonance capture, not due to the presence of the 

stable fixed point analysed in this section. However, the numerical simulations 

carried out have not revealed the existence in the inner region of any attractor other 

than the analysed fixed point. 

Note also that this chapter has coped with the inner and outer approximations 

separately. We have not tried to construct a ‘composite expansion’ by matching the 

inner and outer solutions, which is a rather intricate and complex subject, treated, 

for example, in (W. Eckhaus, 1979; Sanders et al., 2007). 
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Before showing numerical results to confirm the analytical developments of this 

Chapter, it is convenient to comment some other works on the subject.  

Sanders, Verhulst and Murdock considered the system studied in this Section as an 

illustrative example in Chapters 7 and 8 of their book (Sanders et al., 2007). 

Regarding the outer region of the phase space, they conducted the same analysis as 

in this Chapter, averaging over the three fast angles in (5.8) and obtaining 

equilibrium (5.12). However, in the inner region they only carried out a first order 

averaging in contrast to the second order averaging addressed in this Chapter. This 

procedure did not allow them to analyse the stability of the fixed points near 

resonance, since a first order averaging is not accurate enough for this purpose. 

In addition, Alexander Fidlin devoted Chapter 5 of his book (Fidlin, 2006) to the 

study of nonideal excitations, taking system (5.2) as a relevant example. He focused 

only on the resonance region, arriving at a system analogous to (5.19) after a second 

order averaging. However, there are two main differences between his results and 

those presented in the present Chapter: 

- According to the analysis proposed in this thesis, the equilibrium point for 

     is stable as long as    . However, Fidlin came to the conclusion 

that the condition for stability is      . The reason for this difference is 

a small erratum in the eigenvalues computation in (Fidlin, 2006), namely in 

the step from equation (5.21) to (5.22) of the mentioned reference: where it 

reads 
 

 
               , it should read  

 

 
               . 

- Fidlin addressed the short time scale where the inner averaged system is 

valid,    ( √ ⁄ ), as an important limitation of the analysis. He 

proposed a hierarchic averaging procedure as a way to enlarge the time of 

validity of the approximation (Pechenev, 1992). However, this method fails 

precisely in the vicinity of the equilibrium point of interest, because the 

required variable transformation becomes singular at that point. Therefore, 

the hierarchic averaging scheme cannot be used to justify the asymptotic 

stability of the fixed point. 
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In conclusion, the chief contribution of this Chapter with respect to previous 

published works is the rigorous justification of the asymptotic stability of one of the 

stationary motions of the system near resonance, which in turn gives a solid 

explanation of the possibility of resonant capture, or ‘locking into resonance’. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 THE CASE OF SMALL 

SLOPE OF THE MOTOR 

CHARACTERISTIC: 

NUMERICAL 

SIMULATIONS 
 

 

This Chapter is intended to verify the results of Chapter 5 by means of numerical 

simulation. Following an analogous scheme to that in Chapter 4, particular values 

are assigned to the system parameters and both the original and approximate 

systems are numerically solved in order to compare the obtained solutions. 

Thus, consider the following parameters 
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       (6.1) 

which might be associated to dimensional parameters 

{
 
 
 
 

 
 
 
 

        

       ⁄
        ⁄
        

       ⁄
      
       

          
            }

 
 
 
 

 
 
 
 

  (6.2) 

with        . This set of parameters gives rise to the torque-speed curves 

depicted in Fig. 6.1. Note that condition     ⁄  is fulfilled, which implies that 

there exist two fixed points in the inner region of the phase space, corresponding to 

the two intersections between    and    in Fig. 6.1.  

 

Fig. 6.1 Torque-speed curves corresponding to parameters (6.1). 

S and U label the stable and unstable fixed points, respectively. 
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6 The Case of Small Slope: Numerical Simulations 115 

As discussed in Chapter 5, the equilibrium on the left branch of curve    is stable, 

while the one on the right branch is unstable. The fixed points can be readily 

computed by introducing (6.1) into (5.21): 

{
                  
              

}          (6.3) 

{
                  
                

}            (6.4) 

The third equilibrium, in the outer region of the phase space, can be obtained by 

introducing (6.1) into (5.12): 

2
   

     
3  (6.5) 

The simulations have been carried out as follows. A set of initial conditions for the 

original system (5.2) is chosen with  ( )   , i.e. in the pre-resonant region of the 

phase space. Then, the original system of equations is numerically solved for a time 

interval [    ] which is long enough to ascertain whether the system is captured or 

passes through resonance.  

Suppose the system passes through resonance. Looking at the numerical solution of 

the original equations, two particular instants,    and    are defined, at which the 

system enters and leaves the resonance region, respectively. Although the choice of 

these two values is somewhat arbitrary, they give an approximation to the limits 

between the inner and outer solutions. Then, the outer approximate system (5.10) is 

solved for   ,    - and   [     ], with the initial conditions obtained as the 

solution of the original system evaluated at     and     , respectively. The 

inner approximate system (5.17) is solved for   ,     -, with the initial conditions 

corresponding to the solution of the original equations particularized at     . 

Finally, the solutions of the original, outer and inner systems are represented 
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together, in order to confirm the accordance between the outer (inner) 

approximation and the original solution far away from (close to) resonance.  

In the event of resonance capture, instant    does not exist. Then, the outer and 

inner averaged systems are solved for   ,    - and   [     ], respectively. 

It is worth noting that, regarding the inner approximation, we do not represent the 

solution { ̅  ̅  ̅  ̅} of system (5.17), but the more accurate solution given by 

2 ̅  ̅  ̅  √ 
 

 
 ̅    (  ̅   ̅)   ̅3, according to (5.18). 

For the first simulation, consider the following set of initial conditions for the 

original system: 

{
 

 
       
  ̇   
    

 ̇     }
 

 
  (6.6) 

The obtained numerical solution, together with the corresponding solutions of the 

outer and inner approximate systems, is represented in Fig. 6.2. In this particular 

case, the outer solution has been depicted for the whole time range, in order to 

clearly see how this approximation actually captures the original system behaviour 

until reaching the resonance region. From this point on, the outer approximation 

loses all accuracy. 
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Fig. 6.2 Numerical solutions for parameters (6.1), initial conditions (6.6) and 

      . Solid, dashed and dotted lines correspond to the original, inner and outer 

systems, respectively 

a) Displacements 

b) Rotor speed 

Fig. 6.2 shows a clear scenario of resonance capture, with a remarkably good 

accordance between solutions of the original and approximate systems. In fact, it 
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may not be easy to distinguish the different curves because they are virtually 

coincident.  

The oscillation observed in the resonance region resembles the limit cycles 

encountered in the case of large slope (see Fig. 4.10 and Fig. 4.11), which may lead 

us to consider it a sustained oscillation. However, a closer look at the curves reveals 

that the amplitude of this variation decreases with time, as trajectories approaches 

the stable equilibrium given at (6.3). The mentioned oscillation is just the typical 

spiralling of an orbit which approaches a stable focus. This can be clearly observed 

Fig. 6.3(a). With an even closer look at the rotor speed near resonance in Fig. 

6.3(b), we can also see the small, fast oscillation given by the  (√ )-term in the 

third of equations (5.18). 

We note here the relation between the above comments and some experimental 

results published in (Dimentberg et al., 1997). Dimentberg et al. used an 

experimental setup, similar to the model studied within this thesis, to look for the 

threshold between passage and locking into resonance. Fig. 6.4 displays the results 

of one of their experiments, which clearly corresponds to resonance capture. It is 

interesting to observe the similarity between Fig. 6.2 and Fig. 6.4. Dimentberg et al. 

were inclined to think that the oscillations in the vibrating amplitude and rotor 

speed may represent a chaotic motion of the system. However, in the light of the 

last paragraph, we can put forth the possibility that these variations actually 

correspond to the same phenomenon as in Fig. 6.2. This could be ascertained by 

simply recording experimental data for a longer time interval, in order to see 

whether or not the rotor speed stabilizes on a constant value (apart from the small 

and fast oscillation displayed in Fig. 6.2(d)). 
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Fig. 6.3 Numerical evolution of the rotor speed for parameters (6.1), initial 

conditions (6.6) and       . Solid and dashed lines correspond to the original 

and inner systems, respectively 

a) Close-up around resonance 

b) Narrower close-up to show the fast oscillation 
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{
 

 
       
  ̇   
    

 ̇     }
 

 
  (6.7) 

 

Fig. 6.4 Experimental results for resonance capture found by Dimentberg, taken 

from (Dimentberg et al., 1997) 
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which yields the numerical results displayed in Fig. 6.5.  

 

 

Fig. 6.5 Numerical solutions for parameters (6.1), initial conditions (6.7) and 

      . Solid, dashed and dotted lines correspond to the original, inner and outer 

systems, respectively 

a) Displacement 

b) Rotor speed 

Unlike in the previous case, the system is now found to pass through resonance, 

with an acceptably good accordance between the solutions of the original and 
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approximate equations. Once the system has overcome the resonance region, it 

evolves towards the outer stable equilibrium given by (6.5). 

It is also illustrative to consider a different situation. Suppose parameter   is 

increased until there are no fixed points in the averaged system near resonance. The 

condition to meet is     ⁄   . Then, consider the following set of parameter 

values: 

                        (6.8) 

which is exactly the same as (6.1) except for a larger driving torque at resonance. 

The torque-speed graph for this scenario, obtained through relations (5.26) and 

(5.29), is depicted in Fig. 6.6, exhibiting no intersections between the curves. 

 

Fig. 6.6 Torque-speed curves corresponding to parameters (6.8) 

Clearly, resonance capture cannot occur in this situation, unless an attractor other 

than a fixed point existed in the inner region. As stated before, no numerical 

evidence of such an attractor has been found. The conclusion is that the system will 

pass through resonance for any pre-resonant initial condition and will lead towards 

the outer stable equilibrium, which is now given by 
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2
   

     
3  (6.9) 

as can be obtained by introducing (6.8) into (5.12): 

Despite the resonance being not active –i.e. there are no attractors in the resonance 

region–, it can be expected that trajectories are somehow distorted when passing 

through the resonance manifold. To the end of observing this effect, two different 

simulations have been conducted with different initial conditions: 

{
 

 
        
  ̇   
    

 ̇     }
 

 
  (6.10) 

{
 

 
     
  ̇   
    

 ̇     }
 

 
  (6.11) 

The results are displayed in Fig. 6.7-Fig. 6.9. Note that, for initial conditions (6.10), 

the evolution of the rotor speed is nearly unaffected by resonance, while there is a 

significant effect on the vibration amplitude. It is interesting that exactly the 

opposite case is encountered for initial conditions (6.11): whereas the structure 

vibration is almost unaltered by resonance, the rotor speed undergoes significant 

oscillations when the system passes through the resonance manifold. Thus, it is 

clear that the influence of resonance on the system behaviour depends on the initial 

conditions. In general, we can state that some transient resonant effects can be 

expected in the system, even when there are no attractors in the resonance region. 
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Fig. 6.7 Numerical solutions for parameters (6.1), initial conditions (6.10) and 

      . Solid, dashed and dotted lines correspond to the original, inner and outer 

systems, respectively 

a) Displacement 

b) Rotor speed 
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Fig. 6.8 Numerical solutions for parameters (6.1), initial conditions (6.11) and 

      . Solid, dashed and dotted lines correspond to the original, inner and outer 

systems, respectively 

a) Displacement 

b) Rotor speed 
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Fig. 6.9 Close-up around resonance of numerical solutions for parameters (6.1), 

initial conditions (6.11) and       . Solid, dashed and dotted lines correspond to 

the original, inner and outer systems, respectively 

a) Displacement 

b) Rotor speed 
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7 TORQUE-SPEED CURVES 

FOR THE WHOLE 

FREQUENCY RANGE 
 

 

 

This Chapter serves as a connector between the analyses presented in Chapters 3-6 

and the study of the vibrocompaction process expounded in Chapter 8. Recall that 

torque-speed curves have already been successfully used to obtain the stationary 

motions of the vibrating unbalanced motor in Chapters 3-6. However, in these 

previous approaches, the torque-speed plot is only represented for the resonance 

region, like in Fig. 3.7 and Fig. 5.2, or for the non-resonant region, like in Fig. 5.1. 

This necessary distinction between resonant and non-resonant regions of the phase 
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space is a direct consequence of the perturbation approaches that have been utilized 

in previous chapters. 

The objective is now to generalize the use of these curves, so that the vibration 

torque and the motor torque can be plotted together in a single graph for the whole 

frequency range, thereby representing the resonant and non-resonant stationary 

motions of the motor. This will turn out to be very useful in the next chapter, as will 

be seen, and will also provide a clear global perspective of the problem studied in 

Chapters 3-6. 

 

7.1 Computation of the Torque-Speed Curves 

Consider again the mechanical system shown in Fig. 3.1, whose equations of 

motion (3.1) are rewritten below. 

  ̈    ̇        ( ̇
       ̈     )

  ̈    ( ̇)      ̈      
 (7.1) 

Note that the cubic nonlinearity is now assumed to be zero for simplicity. As usual, 

the motor characteristic is assumed to be a linear function of the rotor speed: 

  ( ̇)      ̇  (7.2) 

with    .  

We note that the analysis shown in what follows is based on Blekhman’s approach 

of direct separation of motions (Blekhman, 2000).  In order to approximately obtain 

the stationary motions of the system, it is reasonable to look for solutions where the 

rotor speed has the form  
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 ̇( )       ( )    (7.3) 

with    constant and   ( ) a periodic function of time with zero average. It is also 

assumed that the solution satisfies 

{
  ( )    

 ̇ ( )    
 }     (7.4) 

Conditions (7.4) will be verified afterwards. Introducing (7.3) into the first of 

equations (7.1) yields 

  ̈    ̇        [(     )
       ̇     ]  (7.5) 

By taking (7.4) into account, equation (7.5) can be approximated as   

  ̈    ̇          
    (   )  (7.6) 

where  ( )    has been assumed for simplicity. Note that, to first approximation, 

the small oscillation of the rotor speed   ( ) does not affect the system vibration. 

It may seem from (7.6) that the problem has been rendered linear with the proposed 

approximation. In fact, equation (7.6) represents a harmonically forced linear 

oscillator. However, the system as a whole is still nonlinear, due to the nonideal 

interaction with the exciter. This can be seen by noticing that constant    in (7.6) is 

not known a priori. Hence the linear motion  ( ) needs to be solved as a function of 

  . Then, the torque produced by this vibration will be introduced in the rotor 

equilibrium equation –second of equations (7.1)–, which will allow obtaining   . 

Therefore, there is still a two-way coupling between vibration and rotation. 

The stationary solution of (7.6) is very well-known from linear vibration theory: 
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 ( )         (      )  (7.7) 

with 
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(7.8) 

where    √  ⁄ ,    (    )⁄ . The vibration amplitude      is represented 

against the average rotor speed    in Fig. 7.1, according to (7.8). 

 

Fig. 7.1 Amplitude of the stationary vibration versus averaged rotor speed, 

corresponding to equation (7.8) 

Once the linear motion has been obtained, it can be introduced in the rotor 

equilibrium equation in order to compute the stationary rotor speed. First, the 

proposed solution for the rotor speed (7.3) is replaced in the second of equations 

(7.1): 
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  ̇    (  )          ̈    (   )  (7.9) 

where assumption (7.4) has been used. Then, introducing solution (7.7) into (7.9) 

yields 

  ̇    (  )        
     

      (      )    (   )  (7.10) 

It is convenient to rewrite the last term in (7.10) as the sum of its mean value and an 

oscillating component:  

  ̇    (  )      
 

 
  

             

 
 

 
  

           (       )  
(7.11) 

Note that (7.11) contains constant and oscillating terms with zero average. Clearly, 

if equation (7.11) is averaged, only the constant terms remain: 

    (  )  
 

 
  

               (7.12) 

Substracting (7.12) to (7.11) yields 

  ̇      
 

 
  

           (       )  (7.13) 

Equation (7.12) can be interpreted as an equilibrium conditions between the average 

torques acting on the rotor during the stationary motion. Actually, by inserting (7.8) 

into (7.12), the following relation is obtained: 

  (  )    (  )  (7.14) 
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where function    is defined as 

  ( ̇)    .
   

 
/
 (

 ̇
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6(
 ̇
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  7

 

 [  
 ̇
  

]

 
  (7.15) 

Equation (7.14) is the most important outcome of this chapter. It allows obtaining 

the average stationary rotor speed as the intersection between two curves, which 

represent the driving torque produced by the motor (  ) and the resisting torque 

due to vibration (  ). This graphical representation, which had been already 

obtained in (Blekhman, 2000), is given in Fig. 7.2.  

 

 

Fig. 7.2 Graphical representation of the torque-speed curves, corresponding to 

equation (7.14). The three intersections, marked with circles, give the three possible 

values of the average rotor speed,   , at the stationary motion of the system. 

Surely, the described way of obtaining the stationary motions of the unbalanced 

motor will remind the reader similar results obtained in previous chapters. Actually, 
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in Chapter 3 (large slope), the stationary motions near resonance were graphically 

obtained from the equality between the motor torque and the vibration torque,  

      (see equation (3.57) and Fig. 3.7). The philosophy was exactly the same in 

Chapter 5 (small slope), both for the stationary motions away from resonance (see 

equation (5.12) and Fig. 5.1) and in the resonance region (see equation (5.25) and 

Fig. 5.2). It is recalled here that, in Fig. 5.1, the stationary solution is obtained as the 

speed which makes the motor torque zero because the vibration torque is negligible 

outside the resonance region, under the assumptions of Chapter 5. 

Two aspects are important regarding the relation between the approach presented in 

this chapter and those in Chapters 3 and 5: 

- Functions    and    in Fig. 3.7 and Fig. 5.2 represent, respectively, 

dimensionless versions of the torques    and    used within the present 

chapter. In the same way, curve    in Fig. 5.1 is also a dimensionless 

version of   . Actually,    in Chapter 5 is obtained by particularizing    

for the resonance region of the phase space. Dimensional variables have 

been preferred for this chapter because the results they provide are more 

convenient with a view to the vibrocompaction model presented in Chapter 

8. 

- The torque-speed curves used in previous chapters of the thesis are only 

valid in the resonance region (like in Fig. 3.7 and Fig. 5.2) or far away from 

resonance (like in Fig. 5.1). Conversely, the curves given at (7.2), (7.15), 

and represented in Fig. 7.2, are valid for the whole frequency range. In fact, 

it can be checked that expression (7.15), particularized for  ̇ close to   , 

after neglecting the higher order terms and transforming to dimensionless 

variables, gives the vibration torque curve used in previous chapters and 

defined by equations (3.56), (3.59). In view of this, it is reasonable to 

wonder why the approaches presented in Chapters 3 and 5 have been used 

at all, instead of directly applying the scheme of the present chapter. The 

reason is twofold. First, the approach of this chapter assumes that the spring 

which connects the motor to the fixed frame is linear. The extension of this 
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analytical scheme to the case of a nonlinear spring is not straightforward. 

Second, and more importantly, the method described in this chapter does 

not provide the stability of the stationary solutions. In fact, the stability 

analysis requires the use of a rigorous perturbation technique, such as those 

presented in Chapters 3 and 5. 

Finally, the time-varying part of the rotor speed can be obtained from (7.13). This is 

a first order linear differential equation in   ( ). Since the forcing term in (7.13) is 

harmonic with frequency    , so must the stationary response be. Then, we look 

for a solution of the form 

  ( )    
      (       ) (7.16) 

Introducing (7.16) in (7.13), the amplitude   
    is readily obtained: 

  
    

 
 

  
        

√   (    )
 
 (7.17) 

The value of constant    is not given because it is of no special interest. It should 

be noticed that expressions (7.16), (7.17) are in complete accordance with the result 

obtained in Chapter 5 for the small oscillation of the rotor speed in the case of small 

slope, as can be checked by carefully comparing (7.16), (7.17) with the third of 

equations (5.18). 

In order to verify whether or not assumptions (7.4) are fulfilled by solution (7.16), 

expression (7.17) is divided by    and       is substituted by using (7.8), which 

gives 
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where dimensionless parameters   ,    and  , defined in (3.5), have been used. It 

is easy to see that, for small values of the damping coefficient  , the curve 

  
     ⁄  –as a function of (  )– exhibits a global maximum at      . The 

value of this maximum can be approximately obtained by inserting       in 

(7.18): 

  
   

  
7
     

 

 
 

    

  √    
 

    

  
  (7.19) 

Taking into account that (7.19) represents the maximum possible value of the 

amplitude of oscillation of   ( ), it gives an upper bound for   ( ): 

  ( )

  
 

    

  
 

 

 
  (7.20) 

where         ⁄ , as defined in (3.5). On the other hand, the expression for 

 ̇ ( ) can be readily obtained by differentiating (7.16) with respect to time: 

 ̇ ( )       
      (       ) (7.21) 

By combining (7.21) and (7.19), an upper bound is also found for  ̇ ( ): 

 ̇ ( )

  
  

 

 
 (7.22) 
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Assuming that   is a small parameter, as was done in all previous chapters –see 

(3.7)–, it is clear that assumption (7.4) is satisfied by the obtained solution, in the 

light of (7.20) and (7.22). 

 

7.2 A Global Perspective for the Cases of Large and 

Small Slope 

As was commented in the introduction to the chapter, the presentation of this 

alternative way of obtaining the torque-speed curves for the system under study has 

two main purposes. One is directly related to next chapter, where these curves will 

provide very illustrative and useful information about the vibrocompaction process. 

The second reason is that the torque-speed curves represented for the whole 

frequency range give a very clear graphical comparison between the cases of large 

and small slope treated in previous chapters. 

The curves given by (7.2), (7.15) are represented in Fig. 7.3 and Fig. 7.4 for 

different motor characteristics, keeping the rest of the system parameters constant. 

Fig. 7.3 represents a case where the assumptions of Chapters 3 and 4 (large slope) 

are satisfied, whereas Fig. 7.4 corresponds the assumptions of Chapters 5 and 6 

(small slope).  

Note that the axes have been represented with the same scale in Fig. 7.3 and Fig. 

7.4, in order to facilitate the visual comparison. 

The plot with a large slope clearly evidences that all the stationary motions of the 

system –three in the particular case depicted– are in the resonance region, as had 

already been concluded in Chapter 3. These motions correspond to the fixed points 

shown in Fig. 3.7, and their stability was investigated in detail in Section 3.4. 

Applying these stability results, summed up in Fig. 3.8 and Fig. 3.9, to the plot 

under consideration, it can be stated that the first of the stationary motions (the one 
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with the lowest frequency) is stable and the second one is unstable. The stability of 

the third point cannot be deduced with just the information of Fig. 7.3, because of 

the possibility of a Hopf Bifurcation. 

 

 

Fig. 7.3 Torque-speed curves corresponding to a case of large slope of the motor 

characteristic 

In the case of small slope depicted in Fig. 7.4(a), three stationary motions are 

encountered as well: two of them in the resonance region and the third far away 

from resonance, in accordance with the results of Chapter 5. Fig. 7.4(b) represents a 

different scenario, also with small slope, where there exist no stationary motions 

near resonance. This occurs when the motor torque at  ̇     is greater than the 

resonance peak of the vibration torque curve, which implies that there are no 

intersections between   ( ̇) and   ( ̇) close to resonance. 
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Fig. 7.4 Torque-speed curves corresponding to a case of small slope of the motor 

characteristic 

(a) Resonant capture can occur 

(b) Resonant capture does not occur 
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7. 2 A Global Perspective for the Cases of Large and Small Slope  139 

The near-resonant stationary motions in Fig. 7.4(a) correspond to the fixed points 

shown in Fig. 5.2. As was widely discussed in Section 5.2, the first of these two 

fixed points is asymptotically stable, whereas the second one is unstable. The third 

stationary motion represented in Fig. 7.4(a), which is outside the resonance region, 

corresponds to the fixed point of the outer averaged system, depicted in Fig. 5.1. 

This solution was shown to be stable in Section 5.1.  

Then, for the case of small slope –assuming the motor torque at resonance to be 

smaller than the resonance peak of the vibration torque curve–, two stable stationary 

behaviours exist, one of them in the resonance region, and the other being far away 

from resonance. For any pre-resonant initial state, the system can be attracted by 

either the near-resonant or the post-resonant stable stationary motions. These two 

scenarios are referred to as resonant capture and passage through resonance, 

respectively. In the simpler case represented in Fig. 7.4(b), where no stationary 

motions close to resonance exist, the system always passes through resonance, and 

evolves towards its only attractor, away from the resonance region.  

Hopefully, it has been shown that most of the conclusions about the system 

behaviour obtained in previous chapters can be summed up and easily retained by 

using the torque-speed curves described in this chapter. However, the rigorous 

perturbation approaches of Chapters 3 and 5 are necessary to assess the stability of 

the stationary motions. 





 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 MODELLING AND 

SIMULATION OF THE 

VIBROCOMPACTION 

PROCESS 
 

 

This Chapter focuses on the vibrocompaction process which has motivated the 

whole thesis. After describing the real industrial procedure, a 4-DOF numerical 

model of the vibrocompaction system is presented. Although this model is suitable 

for numerical investigation of the process, it is still too complex for an analytical 

treatment which may reveal more general information about the system dynamics. 

Then, a second model with 2 DOFs is derived, through some reasonable 

simplifications, which turns out to be very useful in order to analyse the process and 

even tune the parameters of the compacting machine. Finally, numerical 

simulations on the first model (full model) and comparison with the predictions of 



 

 

 

 

 

 

 

 

 

 

 

 

142    8 Modelling and Simulation of the Vibrocompaction Process 

the second (simplified model) illustrate their ability to predict the effect of different 

parameters on the final level of compaction achieved. 

 

8.1 Some Notes on the Real Process 

Quartz agglomerates, made of granulated quartz mixed with a polyester resin, are 

widely used as an artificial stone for countertops in kitchens or bathrooms. The 

manufacturing process of a slab of this material starts with the filling of a mould 

with the mixture of quartz and resin. Once the mould is full, a conveyor belt carries 

it to the vibrocompaction zone, where the thickness of the slab is reduced to nearly 

half of its initial value, by eliminating the air out of the material. Then, the mixture 

is cured in a kiln, during a specified time interval, at a suitable temperature for the 

polymerization of the resin. After the resin is polymerized, an air stream is used to 

cool the slab before it enters the mechanical finishing stage. During this process the 

edges are cut, producing a slab of prescribed dimensions, and the surfaces are 

polished. Then, the product is ready for the quality control stage. 

It is worth giving some more insight into the vibrocompaction stage of the process, 

which is the one of interest for the purpose of this study. Before the mixture has 

been compacted, it is composed of three different phases: solid (the quartz grains), 

liquid (the resin) and gas (air). The air is present in the material in two different 

ways: as bubbles within the resin or as gaps between grains of quartz that the resin 

has not been able to fill. The aim of the compaction process is to eliminate the air 

out of the mixture, since the presence of pores at the surface of the final countertop 

is clearly detrimental from a practical point of view: the pores tend to accumulate 

dirt and are rather difficult to clean.  

The compaction is conducted by means of several unbalanced electric motors, 

mounted on a piston with the dimensions of the slab surface. At the beginning of 

the vibrocompaction process, the piston descends onto the mixture and exerts a 

static pressure, due to its weight and to an air pressure applied on it. Then, the air 
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pressure inside the mould is reduced by using a vacuum system, after which the 

motors are switched on. The vibration produced by the unbalanced motors is the 

main responsible for the compaction. During the motion of the system, there can be 

separations and impacts between the piston and the slab, which are generally 

beneficial for the compaction, as they produce very high peaks of compression 

forces. In order to reduce vibrations in the vicinity of the compaction machine, 

elastic elements are placed between the foundation of the machine and the ground, 

acting as a vibration absorber and thus protecting nearby equipment. Fig. 8.1 shows 

a pilot plant used for testing purposes, which preserves the main features of the 

actual industrial machine. It is interesting to note that there are two motors mounted 

on the piston, which rotate in opposite directions in order to cancel the horizontal 

components of the centrifugal forces on the unbalanced masses. Hence the net 

effect of the rotation of both motors is an oscillating vertical force. 

 

Fig. 8.1 Pilot plant for the analysis of the vibrocompaction process 



 

 

 

 

 

 

 

 

 

 

 

 

144    8 Modelling and Simulation of the Vibrocompaction Process 

From the above comments, it is clear that the vibrocompaction process is extremely 

complex from a physical point of view. A large number of factors –some of them 

being intrinsically nonlinear– influence the final result of the compaction: 

- The quartz granulometry, the rheological properties of the resin and the 

mass ratio between quartz and resin affect the mechanical behaviour of the 

compacting mixture. This behaviour is necessarily nonlinear, since the 

mixture suffers irreversible deformation during compaction. Moreover, an 

accurate description of this constitutive law would require modelling the 

motion of the bubbles through the mixture, the friction between quartz 

particles, the interaction between quartz and resin, etc. Some investigations 

about the behaviour these types of three-phase mixtures can be found in 

(Alonso, Gens, & Josa, 1990; Pietruszczak & Pande, 1996; Stickel & 

Powell, 2005). 

- The dynamic properties of the different elements of the machine –the 

piston, the conveyor belt supporting the mould, the elastomer between the 

foundation and the ground, etc. – may influence the vibrocompaction as 

well. 

- The speed of the motors, their available power and the amount of unbalance 

are key parameters of the process. 

- The final result of the compaction may also depend on the duration of the 

process. 

- The spatial distribution of the vacuum channels influences the extraction of 

the air out of the mixture, thereby affecting the compaction. 

 

8.2 Full Model 

Building a reliable model of such a complex manufacturing process, able to 

accurately predict the result of the compaction depending on the system parameters, 

is an extremely hard task, which clearly exceeds the scope of this thesis. It should 

be noted that, as far as the author know, such a model is not available yet. 



 

 

 

 

 

 

 

 

 

 

 

 

8.2 Full Model  145 

The aim of this Section is to present an approximate model which, without 

intending to give accurate quantitative predictions, provides useful qualitative 

results regarding the vibrocompaction process. This may be seen as a first step 

towards the ambitious goal of achieving a more complex model which reliably 

captures the dynamics of the real system. Note that the name full model is used here 

only for distinction from the simplified model presented in the next section. 

The simplification carried out can be observed in Fig. 8.2 and Fig. 8.3. The former 

shows a schematic picture of the real machine, while the later displays the 

approximate 4-DOF model. 

The quartz-resin mixture is represented in the model by a couple of masses attached 

to each other by a linear damper and a nonlinear spring, which models the 

compaction itself by allowing for permanent deformation when the spring is 

compressed. Then, the distance between both masses would represent the thickness 

of the compacting mixture. The mould is modelled as a rigid base, while the piston 

with the unbalanced motors is represented by a mass with a single unbalanced 

motor. The mixture is in contact –with separations and impacts allowed– with the 

mould at the bottom and with the piston at the top. The vacuum system is not 

included in the model. 

It should be noted that the model assumes the horizontal motion of the piston to be 

completely restrained, which makes unnecessary to include a couple of motors 

rotating in opposite directions. 

As represented in Fig. 8.3, the model has 4 DOFs:   ,   ,    and  , which 

correspond, respectively, to position of the bottom of the mixture, position of the 

top of the mixture, position of the piston and rotation of the motor. 

The parameters represented in Fig. 8.3 are as follows:    stands for the mass of 

the mixture,    is the unbalanced mass,    is the mass of the piston and the motor, 

  is the eccentricity of the unbalance,    is the rotor inertia,   is the damping 
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coefficient,    is the force produced by the nonlinear spring and   is the gravity 

constant. 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 8.2 Simplified representation of the compacting machine 

 

 

 

 

 

 

 

 
 
 

 

Fig. 8.3 - 4 DOF model of the vibrocompaction process 
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8.2 Full Model  147 

Notice that the total mass of the mixture is distributed in the proposed model in a 

particular way: one third corresponds to the upper mass and two thirds to the 

bottom mass. In order to understand this feature of the model, suppose that, in the 

real system, the bottom of the mixture is in continuous contact with the mould and, 

therefore, remains at rest during the system vibration. Assume also that the mass of 

the mixture is uniformly distributed over the slab thickness. Then, if the 

deformation is uniform over the slab thickness as well, the effective mass of the 

mixture during the oscillations can be shown to be one third of its total mass. Note 

that the assumption of uniform deformation is suitable because the mass of the 

piston is much greater than that of the mixture and, consequently, it is reasonable to 

approximate the deformed shape by that corresponding to a concentrated load on 

the top surface of the slab.  

Obviously, if the top mass contains one third of the total mass of the mixture, there 

have to be two thirds at the bottom mass: when there are separations between 

mixture and mould and between mixture and piston, it must be the total mass of the 

slab which moves freely. 

As in the models presented in previous chapters, the driving torque provided by the 

motor minus the losses torque due to friction at the bearings and windage is 

assumed to be a linear function of the rotor speed: 

  ( ̇)      ̇  (8.1) 

The equations of motion of the system can be obtained by either equilibrium 

considerations or any other analytical mechanics approach like Lagrange’s method 

or Hamilton’s principle: 
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  (8.2) 

where         
  and    ,     represent the normal contact force between 

mixture and mould and between mixture and piston, respectively. Clearly, the most 

challenging features of this model are the behaviour of the nonlinear spring and the 

computation of the contact forces. System (8.2), together with the definition of the 

spring force and the contact forces given in the following, constitutes what we have 

called full model for the vibrocompaction process. 

Proposed Nonlinear Spring to Model Compaction 

It is rather intuitive that the compaction of a granular material can be described by 

two main features: 

- When a compressive force is applied on the material, it deforms in a 

nonlinear hardening way. This means that the deforming body stiffens 

when it becomes more compacted, as a consequence of the increasing 

packing density of the grains. 

- If the compressive load is released, some of the deformation remains –

irreversible deformation due to compaction–, while the rest is recovered –

elastic deformation–.  

Here, a simple model for the nonlinear spring is proposed, following the two rules 

above. Fig. 8.4 represents force    produced by the spring against the spring 

displacement 

             (8.3) 
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where    is the undeformed length of the spring.  

The behaviour is as follows. Starting from the undeformed position  , a 

compressive force makes the spring follow a parabolic path of the hardening type, 

with an initial tangent stiffness   . Suppose that, at an intermediate state of 

compaction  , the force is reversed until reaching an unloaded state. The spring 

follows the straight line   , which is tangent to the parabolic curve at point  . Note 

that, already at this stage, the spring stiffness has increased with respect to the 

initial value   . Note also that, at point  , some plastic deformation remains, 

corresponding to the level of compaction achieved, while the elastic part of the 

deformation has been recovered.  

If a compressive load is applied again, the material deforms along the elastic path 

  , followed by the hardening parabolic line. The complete compaction is defined 

by point  , where the tangent nonlinear stiffness is   . Whenever point   is 

reached, the mixture becomes totally compacted, and any subsequent loading would 

only produce elastic deformations with stiffness   . Parameter    in Fig. 8.4 

represents the irreversible deformation of the mixture when it is unloaded and 

totally compacted.  

If, at any point of the process, the spring was subjected to a tension load, it would 

respond linearly and elastically, with the stiffness exhibited by the spring 

immediately before the tension load was applied. This means that all the linear 

paths in Fig. 8.4 –each one with its particular slope– can be extended into the region 

of positive values of   . It should be noted that this scenario is not usual, because 

the large weight of the piston will make the spring work mainly in compression. 

However, if separations between mixture and piston occur, some tension forces in 

the spring can be expected.  
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Fig. 8.4 Force-displacement curve of the nonlinear spring 

More generally, note that the force between the two masses which model the 

mixture is given by     ( ̇   ̇ ). The fact of this force becoming positive 

during a particular simulation would imply an internal tension force in the mixture. 

Observe that this situation –typical during periods of separation at the top and 

bottom of the mixture– can be physically sound, since the resin provides some 

adhesion to the mixture, thereby giving it some resistance to tension forces.  

The behaviour of the spring is completely defined by specifying   ,    and 

       ⁄ . Below it is shown how to obtain the expression of the parabolic path 

from these three parameters. 

The parabola is given by 

  (  )                 (8.4) 

where the three coefficients can be obtained by imposing the following conditions: 

  ( )         (8.5) 

  (  )            
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8
  

 (  )                

  
 ( )          
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 (8.7) 

By combining (8.6) and (8.7),    and    can be calculated: 

2
  
  

3  [

  
   

    

    

  

]

  

{
  

 
} (8.8) 

Once   ,    and    are known, the initial and final stiffnesses are obtained as  

             ⁄    (8.9) 

Finally, it is useful to characterize the quality of the process for a particular 

simulation by the level of compaction achieved, defined as 

  
     

     
    (8.10) 

where    is the stiffness of the spring once the dynamic compaction process has 

finished. Thus,     corresponds to a totally uncompacted mixture and     

represents a case of complete compaction. It is also practical to define a static level 

of compaction, in order to distinguish how much of the total compaction is due to 

the weight of the piston and how much is consequence of the vibration process: 

    
      

     
   (8.11) 

In equation (8.11),     represents the system stiffness after the mixture has been 

statically compacted by the weight of the masses located above the spring –mainly 

the weight of the piston–. This initial stiffness can be obtained as 
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 (  )
]
      

            (8.12) 

where, as shown in Fig. 8.5,     stands for the lenght variation of the spring due to 

the weight of the masses above it: 

    
    √  

       

   
  (8.13) 

 

 

 

 

 

 

Fig. 8.5 Graphical definition of parameters     and      

Finally, note that the proposed spring model, while being very simple, is able to 

capture the essential features of compaction, thereby representing a reasonable 

choice for a first attempt to model the vibrocompaction process. 

Contact Modelling 

Consider now the contact between the mixture and the piston. There are several 

different ways to model impact/contact, which can be broadly divided into discrete 

and continuous approaches, according to the classification given in (Gilardi & 

Sharf, 2002). Discrete models, which were first introduced by Isaac Newton 

(Newton, 1686), consider impact as an instantaneous process, where contact forces 
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8.2 Full Model  153 

are impulsive and kinetic variables suffer discontinuous changes. The effect of local 

deformation due to contact is implicitly taken into account through coefficients such 

as the impulse ratio and the coefficient of restitution. Despite being very useful in 

some scenarios, these models lead to several problems. For example, cases have 

been found where, in the presence of Coulomb’s friction, no solution or multiple 

solutions exist (Mason & Wang, 1988). Moreover, energy conservation principles 

may be violated during frictional impacts (Stronge, 1991).  

Continuous models are able to overcome these obstacles, by considering that 

interaction forces act in a continuous manner during impact (Gilardi & Sharf, 

2002). Then, the problem can be approached in the usual way, by simply adding the 

contact forces to the equations of motion during their action periods. Two different 

continuous approaches are possible. Implicit models take into account the 

deformation due to contact directly via the flexibility of the contacting bodies, 

imposing an impenetrability condition. The contact forces can be obtained through 

the Lagrange multiplier method, or other mathematical techniques (Farahani, 

Mofid, & Vafai, 2000). Conversely, explicit models assume the normal contact 

force    to be a known function of the indentation  , which represents the local 

deformation due to contact, and its rate: 

     (   ̇) (8.14) 

One of the simplest possibilities consists in modelling contact as a spring-dashpot 

connection: 

          ̇ (8.15) 

However, this model gives rise to several drawbacks, the most obvious being the 

discontinuity of the contact force at the instants of impact and separation. As a 

consequence, more complex nonlinear models have been developed, such as the 
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model of Hertz and the model of Hunt and Crossley, which is the one chosen for the 

present study. 

Hunt and Crossley (Hunt & Crossley, 1975) proposed a nonlinear model of the 

form   

      
     

  ̇   (8.16) 

where it is standard to set    ,     (Gilardi & Sharf, 2002). Note that the 

damping term depends on indentation, which is physically sound, since plastic 

regions are more likely to develop for larger contact deformations. Moreover, the 

contact force does not exhibit discontinuous changes at the impact and separation 

instants, thereby overcoming one of the main problems of the spring-dashpot 

model. The model of Hunt and Crossley has been successfully used in the analysis 

of a wide variety of contact/impact problems (Bhasin, Dupree, Patre, & Dixon, 

2008; Haddadi & Hashtrudi-Zaad, 2008; Ma, 1995; Vukobratović & Potkonjak, 

1999). 

For simplicity, the exponents in (8.16) are taken as         for the present 

analysis, and the contact parameters    and    are assumed to be the same for both 

contacts in the model. Then, the expression of the contact forces is given by 

8
      (     )    (     )( ̇   ̇ )         

             
9  (8.17) 
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Flow of Energy in the Model 

It is illustrative to consider with some detail how energy enters and leaves the 

system. Clearly, the only energy input is given by the driving torque of the electric 

motor. This energy leaves the system in three different ways: 

- The damping term of the contact forces (8.17), (8.18) accounts for the 

energy lost due to contact and impacts between the piston and the mixture 

and between the mixture and the mould. 

- The nonlinear spring is also responsible for some dissipation of energy, 

which can be obtained as the area enclosed by the path (     ) followed 

by the spring during the process. This energy is directly related to the 

compaction of the mixture. Its physical interpretation may be given in terms 

of the viscosity associated to the flow of the resin around the grains and 

also the friction between quartz particles. Fig. 8.6 represents the whole 

energy dissipated by the spring during a complete compaction.  

 

 

 

 

 

 

 

Fig. 8.6 Force-displacement curve of the nonlinear spring. The dashed area is the 

energy consumed by the nonlinear spring during a complete compaction. 

- Damper   in Fig. 8.3 accounts for the energy needed to make the mixture 

vibrate, but not associated to the compaction itself. To understand this 

distinction, suppose that the slab has already been totally compacted, but 

the motor is still working. Then, the mixture would keep oscillating without 
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156    8 Modelling and Simulation of the Vibrocompaction Process 

any further compaction. Clearly, this motion has some internal damping 

associated, which is modelled by the linear dashpot  . 

 

8.3 Simplified Model and Torque-Speed Curves 

Despite all the simplifying assumptions made, the presented model seems still too 

complex for an analytical treatment. However, it would be desirable to apply the 

analytical developments of previous chapters in some approximate way to this 

model, in order to have an interpretation of numerical results. In particular, it would 

be extremely useful to plot torque-speed curves for the vibrocompaction problem, 

so as to find all the possible stationary motions of the system. 

Derivation of the Simplified Model 

With the aim described above, some approximations are proposed here which allow 

for a simplification of the equations of motion. 

- First, suppose that the motion of interest occurs without separations 

between mixture and piston nor between mixture and mould. Then, it is 

reasonable to write      ,     , thus reducing the number of DOFs to 

2. 

- Since this simplified model is built to the end of obtaining the stationary 

motions of the machine, it is reasonable to assume also that the nonlinear 

spring is only subjected to elastic deformation. The reason is that, once the 

system has reached a stationary state of motion, there is no further 

compaction and the spring follows a straight line in the       graph, 

such as segment    in Fig. 8.4, with a stiffness    [     ]. 

With these two assumptions system (8.2) can be written as 
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8
  ̈        ̇     ( ̇

       ̈     )

  ̈    ( ̇)         ( ̈   )
9  (8.19) 

where         ⁄     –i.e. the total mass above the spring– and   

represents the displacement of the piston with respect to its static equilibrium 

position. The gravity term in (8.19) can be neglected for the purposes of this 

chapter, since it becomes zero when averaged over  : 

8
  ̈        ̇     ( ̇

       ̈     )

  ̈    ( ̇)      ̈     
9  (8.20) 

Note that (8.20) is exactly the same as system (3.1), which has been analysed in 

Chapters 3-7, with    . Thus, with the assumptions made above, the full model 

for vibrocompaction (8.2) is transformed into a simplified model (8.20), already 

studied in detail in previous chapters.  

Torque-Speed Curves for Variable Stiffness 

An important outcome of this simplification is the fact that the torque-speed curves 

obtained in Chapter 7 can be used to represent the stationary motions of the 

compacting machine. As a relevant particularity of this system, note that the 

stiffness    is not a fixed parameter, but can take different values between    and 

  , depending on the degree of compaction achieved. Then, instead of a single 

curve for the vibration torque, there will be a family of curves, one of them for each 

possible value of the spring stiffness.  

Although, in principle, the system can exhibit any stiffness between    and   , the 

range of possible values for this parameter is actually narrower during the 

vibrocompaction. The reason lies in the fact that there is already some static 

compaction before motor is switched on. Hence the system stiffness at the 

beginning of the dynamic process is    , defined in (8.12) 



 

 

 

 

 

 

 

 

 

 

 

 

158    8 Modelling and Simulation of the Vibrocompaction Process 

It is clear that, along the dynamic compaction process, the stiffness of the spring 

can take values    [      ]. Then, it is pertinent to wonder how the vibration 

torque curve change when the stiffnes is varied, with all the rest of the dimensional 

parameters kept constant. A careful analysis of equation (7.15) reveals that the 

resonance peak of the curve –which approximately corresponds to  ̇    – and the 

resonance frequency    grow in proportion to    ⁄  and    ⁄ , respectively. This 

fact is reflected in Fig. 8.7, where several vibration torque curves are plotted for 

growing values of the spring stiffness. 

Assume that the lowest and highest stiffnesses in Fig. 8.7 correspond to     and   , 

respectively. Then, the collection of curves in the graph is a representative set of the 

whole family of curves for    [      ]. If the torque-speed curve of the motor is 

depicted on the same plot, the possible stationary motions of the machine are 

graphically obtained as the intersection between the motor curve and each one of 

the vibration curves. 

 

Fig. 8.7 Torque-speed curves for the vibrocompaction process. The stationary 

motions are marked with circles 

As shown in Fig. 8.7 there are many feasible stationary motions for the system. In 

fact, the amount of possibilities is infinite if all the curves for continuously 
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8.3 Simplified Model and Torque-Speed Curves  159 

increasing stiffness are considered. Clearly, predicting which of these motions will 

actually attract the machine dynamics would be of great practical interest.  

Stability Analysis of the Simplified Model 

With the purpose of predicting the final steady motion of  the machine, the first 

obvious step consists in neglecting the unstable solutions, since they do not 

represent operating conditions which can actually be reached by the vibrating 

system. This stability analysis requires using the results of Chapters 3 or 5, 

depending on whether the slope of the motor charateristic is assumed to be large or 

small. The practical way of making this distinction is as follows: in the torque-

speed plot (such as that in Fig. 8.7), if the slope of the motor curve is much smaller 

(in absolute value) than that of the vibration torque curves, then the scenario 

corresponds to the case of small slope. If, conversely, the slopes are comparable, we 

are in a case of large slope.  

In the simulations of this chapter, the parameters have been chosen in such a way 

that the slope of the characteristic can be considered as large. The reason is that the 

stability properties of the system are richer in the case of large slope, due to the 

possibility of Hopf bifurctions, as was shown in Section 3.4.  

In order to apply the results of Chapter 3 to the system under study, dimensionless 

variables and parameters should be used: 

      ⁄        
  ⁄     

 

 √   
    

    

   

    √   ⁄     
 

    
     

 

    

            
 

 

   

  

     

 (8.21) 

These are the same parameters and variables already defined in (3.5). Subscript   

has been used to emphasize the dependence of some parameters and variables on 

the variable stiffnes   . Then, for instance, the same vibrocompaction system will 



 

 

 

 

 

 

 

 

 

 

 

 

160    8 Modelling and Simulation of the Vibrocompaction Process 

exhibit different damping ratios    depending on the particular value taken by the 

stiffness. 

Together with the assumption of large slope of the motor characteristic, it is 

assumed here –like in Chapter 3– that the system has small damping, small 

unbalance and small motor torque at resonance: 

                                  (8.22) 

Recall that, in Chapters 3-6, subscript ‘ ’ was ommited for brevity in the analytical 

developments. However, within this chapter, subscript ‘ ’ will be kept for the sake 

of clarity. Once these four dimensionless parameters (8.22) are obtained, for some 

particular stiffness   , all the conclusions of Chapter 3 are directly applicable.  

Suppose that one particular vibration torque curve from Fig. 8.7 is selected, and the 

corresponding dimensionless parameters (8.22) are computed. Then, following the 

steps of Section 3.4, the stability of the stationary solutions would be investigated 

by plotting the       curves (see Fig. 3.8 and Fig. 3.9), which are just a 

dimensionless version of the corresponding    ̇ curves in Fig. 8.7. In a typical 

case with three stationary solutions, such as that represented in Fig. 8.8, the 

conclusions about stability of Section 3.4 –summed up in  Fig. 3.8 and Fig. 3.9–

allow stating that the first point is stable, while the second is unstable. However, the 

stability of the third point is not so direct to obtain, because of the possibility of a 

Hopf bifurcation. For the stability of this point, two steps would be needed: 

1. Check whether or not a Hopf bifurcation exists for that point. 

2. If the bifurcation exists, verify the condition        to ascertain whether 

the solution of interest is stable or not, where     is the critical slope 

defined in (3.66). 
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Fig. 8.8 Dimensionless torque-speed curves for a particular stiffness of the spring 

 

Following the procedure explained above, the results of Chapter 3 can be used to 

evaluate the stability of any of the stationary motions shown in Fig. 8.7. 

Nevertheless, even if all the unstable solutions are discarded as possible candidates 

to attract the system dynamics, there are still many feasible stationary motions of 

the machine. In the following, it will be shown that, under certain circumstances, it 

is possible to predict what particular stationary motion will actually attract the 

dynamics of the vibrocompacting system.  

 

8.4 Analytical Investigation of a Quasistatic 

Vibrocompaction Process 

This section is intended to analyse a particular type of vibrocompaction process, 

where the control settings of the motor are very slowly varied. Then, it is first 

convenient to say a word about the motor control. An electric motor of any kind is 

controlled by means of one or more input magnitudes (current, voltage, frequency 

…). For example, the speed of a 3-phase induction motor is usually controlled by 
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162    8 Modelling and Simulation of the Vibrocompaction Process 

modifying the amplitude and frequency of the stator voltage, through a variable 

frequency drive. For each setting of the motor control, the motor characteristic is 

fixed. In other words, the motor characteristic can be modified by changing the 

control parameters. In the presented model, where the motor curve is assumed to be 

given by a straight line, the motor control would allow changing parameters *   +.   

Suppose that the effect of the chosen control method consists in displacing the 

motor characteristic, parallel to itself, when the control settings are changed. This is 

actually the case, for instance, in simplest control approach for an induction motor, 

known as the     control (Holtz, Paper, & Holtz, 2002). Thus, with such a 

procedure, the system operating condition would be modified by changing 

parameter  , while keeping the same slope  . 

Now, consider a situation where the motor characteristic is not at its final position 

from the beginning of the process –as has been the case in all the simulations 

conducted in previous chapters–. Conversely, the torque-speed curve of the motor is 

initially set to    , as shown in Fig. 8.9, and then it is very slowly displaced 

upwards. This change in the motor control is assumed to occur quasistatically, in 

the sense that it does not produce any transient effect in the machine, but only a 

succession of stationary states. Three particular instants of the process are 

considered, and the corresponding system oscillation is depicted in two 

representative graphs: the torque-speed plot (Fig. 8.10) and the force-displacement 

curve of the nonlinear spring (Fig. 8.11). 

In the considered process, the vibrocompacting system is initially at rest, under the 

static load produced by the weight of all its elements. In the       graph of Fig. 

8.11, this initial point is marked with a triangle. At the instant in which the motor 

curve is    , the system oscillates with some stiffness    (      ), as shown in 

Fig. 8.11. The motion is depicted as a straight segment with slope   , delimited by 

the maximum and minimum displacements reached during the system vibration. 

Note the important feature that, according to Fig. 8.11, the minimum displacement 
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reached by the spring during the vibration coincides with the tangency point 

between the parabola and the elastic line. This requires some detailed explanation. 

 

 

 

 

 

 

 

 

Fig. 8.9 Evolution of the motor characteristic during the quasistatic compaction 

process  

The stationary vibration necessarily takes place around the position of static 

equilibrium of the system, which is different for each particular stiffness, as 

highlighted in Fig. 8.11 with squares. The static equilibrium position can always be 

obtained as the intersection between the elastic line of interest and the horizontal 

line given by       . Then, parameter     
 (  ) is defined as the distance in 

   between the static equilibrium position and the tangent point of the elastic line 

with the parabola for stiffness    (see Fig. 8.11): 

    
 (  )  

       

  
  (8.23) 

where     represents the value of    at which the parabolic curve of the spring 

exhibits a slope   . 
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164    8 Modelling and Simulation of the Vibrocompaction Process 

It is clear that the system cannot oscillate, for stiffness   , with a greater amplitude 

than     
 (  ), because that would imply following some length of the parabolic 

path, with the subsequent increase in the spring stiffness.  

On the other hand, oscillations with stiffness    and amplitude smaller than 

    
 (  ) are possible in principle. Nonetheless, such a regime of motion would 

require a process such as that described below: 

1. First, the vibration amplitude reaches     
 (  ). This is necessary if the 

spring stiffness is to take value   . 

2. Then, the amplitude of the oscillation is reduced and the system attains a 

stationary vibration with amplitude      
 (  ). 

 

 

 

Fig. 8.10 Torque-speed curves at different instants of the quasistatic compaction 

process 
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Fig. 8.11 Oscillation of the system at three instants of the quasistatic compaction 

process 

Note that the evolution described above cannot occur in the quasistatic process 

under consideration, where the motion of the system changes from one stationary 

state to another, with no transient effects. The progressive upwards displacement of 

the motor characteristic actually gives rise to a monotonous growing of the 

vibration amplitude, which makes impossible to reach a state where the system 

vibrates with stiffness    and amplitude      
 (  ).  

It needs to be noted that there is a relevant exception to the statements of the above 

paragraph, as will be clearly seen in the numerical simulations of the next section. 

Under the considered motor control, the vibration amplitude grows monotonically 

until the point where a jump phenomenon takes place, making the amplitude fall 

drastically, with the rotor speed rapidly evolving up to a post-resonant value. This is 

precisely a manifestation of the Sommerfeld effect, which was described in the 

introduction of the thesis (see the first paragraph of Section 1.1). The jump 

phenomenon at resonance is one of the most classical effects of the nonideal 

interaction between exciter and vibrating system. An explanation for this effect will 

be given afterwards in this section. 
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166    8 Modelling and Simulation of the Vibrocompaction Process 

Then, if the attention is restricted to the fraction of the process before the jump 

phenomenon, we have that the spring stiffness grows continuously, with the 

amplitude of the oscillation being given, for each instantaneous   , by     
 (  ). 

Since the oscillation amplitude for each    is known, the rotor speed can also be 

computed by using the first of relations (7.8): 

    
 (  )    

 (  ) (8.24) 

Notice that there may be two possible rotor speeds for the same vibration 

amplitude, as observed in Fig. 7.1. Then, care should be taken to choose the pre-

resonant solution, which is the one of interest for the process under consideration 

(see Fig. 8.10). This can be done, if equation (7.8) is to be solved numerically, by 

appropriately selecting the initial guess for the numerical algorithm. 

The conclusion is that, when the system reaches stiffness    through the quasistatic 

procedure being described, it will do so with rotor speed   
 (  ), which can be 

computed a priori with no need of numerical resolution of the equations of motion. 

Then, for each vibration torque curve, the corresponding operating point can be 

directly plotted, as shown in Fig. 8.10.  

Giving one more step, a new curve  ( ̇) can be constructed with the collection of 

stationary solutions, forgetting about the vibration torque curves. This new curve, 

depicted in Fig. 8.12, represents the complete sequence of motions followed by the 

machine during the quasistatic compaction. Clearly, plotting the exact curve would 

require computing the operating points for all values of the stiffness   , which is not 

practical. Then, an approximation to the curve is obtained by plotting the operating 

points for a number of values of the stiffness and then connecting them with straight 

lines (see Fig. 8.12). 

Note that curve  ( ̇) gives very relevant information from a practical perspective. 

Each point of the curve corresponds to a particular stiffness and, therefore, to a 

particular degree of compaction  . Then, the curve reveals the required driving 
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torque to achieve a particular degree of compaction through a quasistatic process. 

For instance, reaching stiffness    in Fig. 8.12 would require a motor characteristic 

such as    ( ̇). 

It is interesting to investigate the end points of curve  ( ̇) because, as will be seen, 

they provide very meaningful information about the possibilities of compaction. 

First, it is clear that, for stiffness    , the stationary solution is given by  ̇  

      , corresponding to the initial state of the machine, with the motor at rest. 

Then, curve  ( ̇) starts at (   ). More significant is the final point. In principle, the 

curve ends at the point associated to the stiffness of the totally compacted mixture, 

  , as shown in Fig. 8.13(a). However, another possibility also exists. Consider the 

case shown in Fig. 8.13(b), where 10 values of the stiffness have been considered. 

(As a shortened notation, which will be widely used throughout the rest of the 

document, the vibration torque curves are directly labelled with the corresponding 

stiffness   , instead of writing   (  )). It is observed that the operating point 

corresponding to the eighth curve is already close to the maximum of the vibration 

torque curve. For the ninth and tenth curves, no stationary solution is marked 

because its corresponding vibration amplitude,     
 (  ), turns out to be greater 

than that of the resonance peak. Then, when   
 (  ) is tried to be computed through 

relation (7.8), no solution is found. In physical terms, it can be said that, for 

stiffness    or    to be reached through a quasistatic process, the system would 

need to oscillate with greater amplitude than that of the resonance peak, which is 

not possible.  
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Fig. 8.12 Curve  ( ̇), representing the complete sequence of motions along the 

quasistatic compaction 

It is clear that, for certain stiffness      between    and    in Fig. 8.13(b), the 

operating point coincides with the maximum of the vibration torque curve, 

constituting the end point of curve  ( ̇). This critical value      has a very 

meaningful interpretation: it is the maximum stiffness that can be achieved through 

a quasistatic compaction process. Note that      is totally independent of the motor 

characteristic: it is a property if the system itself, not related to the motor control. 

Hence it can be stated that a system with torque-speed curves such as those shown 

in Fig. 8.13(b) cannot be completely compacted through a quasistatic compaction 

process. If this total compaction was to be achieved, some properties of the system 

would need to be changed. For example, an increment in the unbalanced mass 

would be beneficial in this regard. 

Now, consider again the scenario shown in Fig. 8.13(b), and suppose that, once 

stiffness      has been reached, the motor characteristic is further displaced 

upwards. This situation is represented in Fig. 8.14. The initial effect of this 

translation of the motor curve will be a slight decrease in the vibration amplitude, as 

the operating point falls through the right branch of the vibration torque curve. This 
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will occur until reaching the tangency point between both torque curves. If the 

motor characteristic is further displaced, it is found that there are no more stationary 

motions near the resonance peak. Actually, at the tangency point, two stationary 

motions –one stable and one unstable– disappear through a saddle-node bifurcation. 

Hence the system necessarily evolves towards the only remaining steady solution, 

which corresponds to a post-resonant motion with small oscillation amplitudes, as 

evidenced in Fig. 8.14. This is precisely the jump phenomenon observed by 

Sommerfeld in 1904, and one of the most well-known effects of nonideal 

excitations. 

Summing up the above considerations, and defining parameter      as the 

maximum stiffness that can be reached through a quasistatic compaction process, 

two different scenarios are possible: if        , then a complete compaction can 

be quasistatically achieved. Conversely, if        , the mixture cannot be totally 

compacted through a quasistatic procedure. This definition of      can be directly 

extended to the level of compaction achieved,     , defined as 

     
       

     
    (8.25) 

After the above detailed analysis of the quasistatic compaction, it is reasonable to 

wonder what the differences are when the process is not quasistatic. This would be 

the case, for instance, if the motor was switched on with the torque-speed curve 

being directly in its final position, or if the control settings of the motor were 

abruptly modified. In these situations, there can be significant transient effects 

which influence the final stationary motion reached by the machine and, therefore, 

affect the level of compaction achieved. Some of these transient effects will be 

discussed in the next section.  
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Fig. 8.13 Vibration torque curves for different values of the stiffness. The stationary 

motion for each stiffness is marked with a dot. 
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Fig. 8.14 Torque-speed curves for stiffness      and jump phenomenon 

 

8.5  Numerical Results and Discussion 

General Description of the Simulations 

In this section, system (8.2) –associated to the full model– is numerically solved for 

different scenarios. The chosen initial conditions for all the simulations correspond 

to the static equilibrium position of the system (see Fig. 8.15): 
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{
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  (8.26) 

where    and    are the indentations at the top and bottom contacts, respectively, 

due to the weight of the elements above the contact:  

   
 (     ) 

  
    

 (        ) 

  
  (8.27) 

With this initial configuration, system (8.2) is solved, using embedded Runge-Kutta 

formulae of orders 4 and 5, for a simulation time    which varies between     and 

   . This total time includes three different stages in the simulation, of respective 

lengths   ,    and    (           ): 

- During the first stage (      ) parameter   is linearly increased from 

   to   , with    and    being defined for each particular simulation. The 

slope   is kept constant along the process, which implies that the motor 

characteristics is displaced parallel to itself. Then, for a sufficiently long   , 

this stage would represent the quasistatic variation described in Section 8.4. 

- At the second stage (          ), parameter   is kept constant at its 

final value   . During this stage, the machine is expected to reach a 

stationary operating point. 

- At time        , the motor is switched off in order to let the system 

reach a compacted equilibrium position. Clearly, once the motor is 

switched off, there is no driving torque on the rotor, and function   ( ̇) 

must only account for the resisting torque due to windage and friction at the 



 

 

 

 

 

 

 

 

 

 

 

 

8.5 Numerical Results and Discussion  173 

bearings. This is modelled by replacing the motor characteristic with the 

following curve: 

  ( ̇)        ̇                  (8.28) 

Hence it is being assumed that the slope of the resisting torque curve is 

    of the slope of the motor characteristic. 

 

 

 

 

 

 

 
 
 

 

Fig. 8.15 – Initial configuration of the system, with the contact indentations 

exaggerated for clarity. 

 

Parameters    and    have been chosen as     for all the simulations, while    will 

take different values depending on the case under study. 

Case 1 

The proposed full model (8.2) is defined by 11 dimensional parameters 

{                              }  (8.29) 
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besides the two parameters associated to the motor control 

*   +  (8.30) 

For this first simulation, the set of parameters (8.29) is chosen as 

{
 
 

 
                               

                             ⁄

                           

          ⁄               ⁄
 

}
 
 

 
 

  (8.31) 

Before the numerical resolution of the equations of motion, it is useful to obtain 

some previous information about the system by plotting the vibration torque curves. 

First, from the knowledge of parameters {        }, stiffnesses    and    can be 

computed through relations (8.8), (8.9): 

             ⁄               ⁄  (8.32) 

Using (8.12), (8.13) the initial stiffness for the dynamic process can also be 

obtained, together with the static compaction: 

              ⁄             (8.33) 

Now, the vibration torque curves can be plotted for    [      ], as shown in Fig. 

8.16. From this plot, it is clear that this system belongs to the scenario where 

       , since the highest stiffnesses cannot be reached quasistatically. This will 

also be the case of the rest of the simulations.  

The maximum achievable compaction –under quasistatic conditions– can be 

computed through relation (8.25): 



 

 

 

 

 

 

 

 

 

 

 

 

8.5 Numerical Results and Discussion  175 

               ⁄             (8.34) 

 

 

Fig. 8.16 Torque-speed curves for Case 1. The dots represent the stationary motions 

for a quasistatic compaction process. 

A numerical experiment is carried out now, where the motor control parameters are 

chosen as 

                                 (8.35) 

The corresponding torque-speed curves are represented in Fig. 8.16, where notation 

         ̇          ̇ (8.36) 

has been used. Note that the final motor characteristic,    , is located ahead of the 

final point of curve  ( ̇). Although this curve has not been explicitly represented 

for clarity, it can be obtained by simply connecting the dots in Fig. 8.16. Then, the 

proposed simulation can be envisaged –if the chosen    is long enough– as a 
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particular case of the general process described in Section 8.4, where a quasistatic 

frequency sweep is conducted until reaching the maximum compaction, followed 

by a jump towards a post-resonant regime of motion (see ). The numerical results 

for this simulation are shown in Fig. 8.17 and Fig. 8.18. 

 

Fig. 8.17 Piston displacement for Case 1 

The phenomenon expounded in Section 8.4 is clearly observed here. As the motor 

curve is displaced upwards between   and    , the oscillation amplitude grows 

monotonically, until a point where the jump phenomenon is encountered. During 

the second stage of the simulation, for          , the motor characteristic is 

fixed at    , and the system stabilizes at a post-resonant stationary motion. This is 

evidenced in Fig. 8.18, where     represents the natural frequency of the system 

during the stationary motion of stage 2. Note also the difference between the initial 

and final position of the piston in Fig. 8.17, which reveals the compaction due to 

vibration.  
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Fig. 8.18 Rotor speed for Case 1 

Regarding the top and bottom contacts, no separations or impacts were found in this 

case. Hence the displacements of the mixture, which do not give much significant 

information, have not been represented. 

The most important outcome of the simulation is the final level of compaction 

achieved, which turns out to be  

          (8.37) 

A subscript     is used to emphasize that this result is the outcome of a numerical 

simulation, in contrast to those obtained analytically. 

By comparing (8.37) with (8.34), some difference is encountered between the 

theoretical and numerical levels of compaction, which can lead to the suspicion that 

the process may not have been slow enough to consider it as quasistatic. Hence a 

new simulation is conducted in order to validate this hypothesis. 
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Case 2 

For this second scenario, the same set of parameters is chosen as in Case 1. The 

only difference is in the time associated to the first stage of the simulation, which is 

now set to  

        (8.38) 

The numerical results are shown in Fig. 8.19 and Fig. 8.20. 

 

Fig. 8.19 Piston displacement for Case 2 

Clearly, the same qualitative behavior than in Case 1 is found here. However, the 

final level of compaction reached in this case is  

          (8.39) 

which is closer to the theoretical value (8.34) than the compaction achieved in Case 

1. This supports the idea that, the slower the displacement of the motor 

characteristic, the more similar the process is to the ideal quasistatic case.  
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Fig. 8.20 Rotor speed for Case 2 

Case 3 

In this scenario the set of parameters (8.31) is maintained, which implies that the 

vibration torque curves and also curve  ( ̇) are the same as in the two previous 

cases. On the contrary, the control parameters are now set to 

                                  (8.40) 

The motor characteristics for the present case can be observed in Fig. 8.21. As can 

be seen, the motor curve does not overtake the final point of  ( ̇). Hence 

compaction      will not be reached in this case.  

In fact, the expected behaviour of the machine is as follows: as the motor 

characteristic is displaced from     to     the operating point of the system will 

follow curve  ( ̇) (dots in Fig. 8.21). At each instant, the motion of the system will 

be given by the intersection between  ( ̇) and the instantaneous motor curve –

assuming the process is quasistatic–. Finally, when    is fixed at its final position, 

i.e. during the second stage of the simulation, the machine will keep oscillating at 
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the operating point given by the intersection between     and  ( ̇), marked with a 

square in Fig. 8.21. This point is characterized by 

            ⁄  (8.41) 

             ⁄            (8.42) 

where a subscript a has been used to stress that these are analytical results, which 

will be later compared to those obtained numerically. Following the notation of 

Chapter 7,    represents the average rotor speed during the stationary motion of the 

system. 

 

 

 

Fig. 8.21 Torque-speed curves for Cases 3 and 4. The dots represent the stationary 

motions for a quasistatic compaction process. The vibration torque curve in dashed 

(dotted) line is the one exhibited by the system in Case 4 at        (during the 

stationary motion attained). 
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Fig. 8.22 Piston displacement for Case 3 

The simulation results are depicted in Fig. 8.22 and Fig. 8.23. No separations or 

impacts were observed.  

From Fig. 8.23, the average value of the rotor speed during the stationary motion of 

stage 2 is obtained: 

            ⁄  (8.43) 

Besides, the final compaction obtained in the simulation is 

          (8.44) 

The remarkable agreement between (8.43), (8.44) and (8.41), (8.42) reveals that, in 

this case, the analytical approach based on the torque-speed curves is actually able 

to predict the behaviour of the full model (8.2). 
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Fig. 8.23 Rotor speed for Case 3 

Case 4 

This case is intended to investigate the effects of transient motions in the dynamics 

of compaction. Thus, in the present scenario, the motor is not controlled in such a 

way that its torque curve is slowly displaced, as in previous cases. Instead, the 

motor characteristic is now set to its final position from the beginning of the 

process. 

All the parameters in the simulation are like in Case 3, except for the time 

associated to the first stage, which is now set to  

       (8.45) 

This is equivalent to say that there is no motor control. The results of this 

simulation are shown in Fig. 8.24 and Fig. 8.25, where an utterly different behavior 

to that of Case 3 is found.  
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Fig. 8.24 Piston displacement for Case 4 

 

Fig. 8.25 Rotor speed for Case 4 

The evolution of the rotor speed evidences that the resonance peak has been 

overtaken, since the final average speed is above    . In fact, the displacement and 

rotor speed plots are rather typical of a passage through the resonance peak: the 

displacement undergoes a transient increase when the rotor speed is close to the 

resonance frequency, followed by a fall to a smaller final value. On the other hand, 

the increase in the rotor speed is slowed down when passing through the resonance 
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184    8 Modelling and Simulation of the Vibrocompaction Process 

frequency, since the resisting torque due to vibration is larger in this region. 

Observe also that an increase in the vibration amplitude exists around      , once 

the motor has been shut down. This is due to a reversed passage through the 

resonance peak, which occurs when the rotor speed decreases to zero. 

The level of compaction achieved in this case turns out to be smaller than in Case 3: 

          (8.46) 

Thus, in the present case, the transient motion has a detrimental effect on the result 

of the process. In what follows, an explanation for this lower compaction is 

proposed. 

Since the motor is not externally controlled, it is the system dynamics itself which 

determines which of all possible operating points –see Fig. 8.7– is actually reached 

by the machine. In particular, a relevant feature of the system dynamics is the time 

needed by the rotor speed and the vibration amplitude to vary significantly. Recall 

that the increase in the vibration amplitude is directly related to the increase in the 

system stiffness and, therefore, to the mixture compaction. 

Suppose that the rotor speed increases considerably –reaching the resonance 

region– in a very short time. Then, the vibration amplitude may not have enough 

time to grow as much as in Case 3 and, consequently, the system stiffness may not 

be able to reach value   , given in (8.42). This may explain the fact that a less 

effective compaction is obtained here with respect to the previous case. 

In order to validate the above hypothesis, consider the particular time instant 

      . The results of the simulation reveal that, at this point of the process, the 

rotor speed and the instantaneous stiffness of the spring are 

       8
 ̇          ⁄  

             ⁄
9  (8.47) 
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Clearly, this particular value of the stiffness has a vibration torque curve associated. 

Then, the torque speed curves for the instant considered are plotted in Fig. 8.26. 

These curves are also represented in Fig. 8.21 (dashed line for the vibration torque 

curve), in order to put them in relation with the global behavior of the system. It can 

be observed that, already at       , the rotor speed has passed through the 

resonance peak, while the stiffness of the spring is still relatively far from the 

quasistatic value (compare (8.47) with (8.42)). From Fig. 8.26, it can be expected 

that the system is attracted towards a post-resonant motion, as is actually the case in 

the simulation (see Fig. 8.25). 

 

 

Fig. 8.26 Torque-speed curves of the system at       . The vertical dashed line 

corresponds to the actual rotor speed at the considered instant. 

In summary, it is observed that the lower compaction achieved in this case, with 

respect to the quasistatic process, is due to the fast variation of the rotor speed. It is 

interesting to note that the rate at which the rotor speed evolves is directly related to 

the rotor inertia. Very large rotor inertia would produce a much slower increment in 

the speed of rotation, making the process analogous to the quasistatic compaction 

described in Section 8.4. In other words, with sufficiently large rotor inertia, the 
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system would evolve following a succession of stationary states, as if the average 

rotor speed was constant at each instant.  

It should also be noted that, although the effect of the transient motion turns out to 

be detrimental for the compaction in this case, it may be beneficial in other 

scenarios. For example, an abrupt change in the motor control may entail some 

overshoot in the evolution of the vibration amplitude, which may in turn provide a 

better compaction than the quasistatic process.  

In general, it can be said that, although transient effects may have beneficial results 

for the compaction in some cases, letting the process depend on these transients 

leads to the possibility of an undesired and premature passage through the 

resonance peak, with the subsequent reduction in the compaction quality. 

Finally, with an illustrative purpose, the stability of the stationary motion reached 

by the machine in the present case is analysed. Clearly, this solution is stable 

according to the numerical results (otherwise, it could not be attained by the 

system). The objective now is to verify if the analytical predictions about stability 

(Section 3.4) are consistent with this result. 

Hence the stability analysis of the simplified model, described in Section 8.3, is 

conducted here. The first step is to obtain the stiffness exhibited by the system 

during the motion of interest. The numerical results reveal that, during the steady 

motion of the machine (roughly corresponding to         ), the spring 

stiffness is              ⁄ . Then, dimensionless parameters (8.22) 

corresponding to this stiffness can be obtained by using relations (8.21) and taking 
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{

          
        
        

         

} (8.48) 

Once dimensionless parameters (8.48) have been obtained, the dimensionless 

torque-speed curves are depicted in Fig. 8.27. These are a dimensionless version of 

the curves shown in Fig. 8.21 (dotted line for the vibration torque curve). Note that 

only one fixed point is found in this case. 

 

Fig. 8.27 Dimensionless torque-speed curves Case 4, with              ⁄  

(the stiffness exhibited by the system during the stationary motion) 

Following the results of Section 3.4, the stability of the equilibrium depends on the 

value of the critical slope    , which is obtained through definition (3.66): 

            (8.49) 

As depicted in Fig. 8.27, slope     turns out to be greater (in absolute value) than 

the slope of the vibration torque curve at the considered point, which implies that a 

Hopf bifurcation exists, according to criterion (3.67). Then, the present case belongs 
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to the general scenario depicted in Fig. 3.9(b.2). Note also that the actual slope of 

the motor characteristic is greater (in absolute value) than    , as highlighted in Fig. 

8.27. Therefore, according to the stability regions of Fig. 3.9(b.2), the considered 

fixed point turns out to be stable, which is consistent with the result of the 

numerical simulation. 

Case 5 

The fifth case under study maintains all parameters (8.31) of Cases 1-4, except for 

the unbalanced mass, which is now doubled:  

         (8.50) 

This is a clear example of how the presented model can be used to analyze the 

influence of certain system parameters on the final result of the process. In this 

case, it is rather intuitive that a larger unbalanced mass will enhance the 

vibrocompaction process, since larger centrifugal forces in the motor will be 

generated.  

While parameters    and    are the same as in Case 1, there is some variation in the 

initial stiffness and compaction, due to the increased weight of the system: 

              ⁄             (8.51) 

The vibration torque curves, for    [      ] are plotted in Fig. 8.28. First of all, 

note, by comparing the scale of the vertical axis in Fig. 8.28 and Fig. 8.16, that 

considerably larger torque is needed in this case to make the system oscillate. This 

is physically sound, since the motor needs to overcome greater inertia forces on the 

unbalance.  
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Moreover, observe that the amount of compaction that can be quasistatically 

attained is also greater in this case. This is evidenced by the fact that the end point 

of curve  ( ̇) is now closer to the curve of total compaction,   (  ).   

 

 

Fig. 8.28 Torque-speed curves for Case 5. The dots represent the stationary motions 

for a quasistatic compaction process. 

 

Using relation (8.25), the maximum compaction can be calculated: 

               ⁄             (8.52) 

After these analytical computations, the equations of motion (8.2) are numerically 

solved for the following motor control: 

                                  (8.53) 

The corresponding motor characteristics are represented in Fig. 8.28. As can be 

seen, the motor curve does not overtake the final point of  ( ̇). Hence compaction 
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     will not be reached in this case. As a matter of fact, the expected behaviour of 

the machine is qualitatively the same as in Case 3, with the final operating point 

given by 

            ⁄  (8.54) 

             ⁄          (8.55) 

The results of the simulations are depicted in Fig. 8.29-Fig. 8.32. The first apparent 

difference between this case and the preceding ones is that separations are observed 

here between piston and mixture, and also between mixture and mould. This is 

evidenced by the displacements in Fig. 8.29 and Fig. 8.30 –recall that a positive 

value for    represents separation between the mixture and the mould–and also by 

the contact forces in Fig. 8.32. During a time interval which roughly corresponds to 

the second stage of the simulation (         ), the contact forces become zero 

for certain periods, followed by an abrupt increase in the force associated to the 

impact between the contacting bodies. In particular, note that the impacts between 

the piston and the mixture produce peaks in the contact force which are around ten 

times the weight of the piston. Note also the complex time evolution of the forces in 

the close-up of Fig. 8.32(b). 

From the evolution of the rotor speed in Fig. 8.31, the numerical average rotor 

speed during the second stage of the simulation is obtained: 

            ⁄   (8.56) 

On the other hand, the numerical result for the final compaction achieved is  

         (8.57) 
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Fig. 8.29 Displacements of the piston and the top of the mixture for Case 5 

(a) Full view 

(b) Close-up 

A comparison between (8.56), (8.57) and (8.54), (8.55) reveals a very good 

accordance between numerical and analytical results. Recall that the analytical 

results of Section 8.4 are based on the simplified model, which in turn is 

constructed upon the assumption of no separations between the contacting surfaces. 

0 10 20 30 40

0.1

0.11

0.12

0.13

t (s)

D
is

p
la

ce
m

en
t 

(m
)

22.2 22.4 22.6 22.8 23

0.1

0.11

0.12

0.13

t (s)

D
is

p
la

ce
m

en
t 

(m
)

p
y

t
y

(a) 

(b) 
p

y

t
y



 

 

 

 

 

 

 

 

 

 

 

 

192    8 Modelling and Simulation of the Vibrocompaction Process 

Hence the remarkable agreement between analytical and numerical results in this 

case is particularly significant, since it demonstrates that the results of 8.4 –the use 

of the torque-speed curves and curve  ( ̇) to predict the final operating point of the 

machine– can be useful even for conditions where separations and impacts are 

present in the system. 

 

Fig. 8.30 Displacement of the bottom of the mixture for Case 5 

 

 

Fig. 8.31 Rotor speed for Case 5 
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Fig. 8.32 Contact forces for Case 5 

(a) Full view 

(b) Close-up 

Case 6 

In order to further investigate the effect of impacts in the system behavior, a new 

scenario is considered where all parameters are exactly the same as in Case 5, with 

the only exception of   , which is now set to 
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         (8.58) 

Therefore, the torque-speed curves do not change with respect to the previous case, 

except for the final the motor characteristic, which is now located further upwards 

(see Fig. 8.28 and Fig. 8.33). Clearly, the theoretical operating condition predicted 

by the intersection between    ( ̇) and  ( ̇) –marked with a square in Fig. 8.33– 

is associated, in this case, with larger vibration amplitude and a greater level of 

compaction. Hence it is intuitive to expect that this increase in the driving torque 

will produce larger separations and stronger impacts between the contacting 

surfaces, due to the greater amplitude of oscillation. 

The final stationary motion of the system predicted analytically in Fig. 8.33 is 

characterized by  

            ⁄  (8.59) 

             ⁄            (8.60) 

On the other hand, the results of the numerical simulation are shown in Fig. 8.34-

Fig. 8.37. As expected, larger separations between the slab and the piston, and also 

between the slab and the mould, can be observed in Fig. 8.34, Fig. 8.35, compared 

to Case 5. Accordingly, Fig. 8.37 exhibits larger peaks of the contact force during 

the period of impacts. 

With the aim of comparing analytical and numerical results, the average rotor speed 

during the second stage of the motion is obtained from Fig. 8.36: 

            ⁄   (8.61) 
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The level of compaction of the system during its stationary motion is also extracted 

from the numerical results, based on the stiffness exhibited by the nonlinear spring 

during the second stage of the simulation: 

 

 

Fig. 8.33 Torque-speed curves for Case 6. The dots represent the stationary motions 

for a quasistatic compaction process. 

          (8.62) 

By comparing (8.61), (8.62) with (8.59), (8.60), a less precise accordance than in 

Case 5 is found. This suggests that the proposed analytical approach, while being 

valid when small separations exist between the contacting surfaces (Case 5), loses 

accuracy when the separations and impacts become more significant (Case 6). In 

spite of this, note that the analytical results are still reasonably close to the 

numerical ones in the present case. Thus, the torque-speed curves may still be 

useful for scenarios where severe impacts are produced, keeping in mind that the 

analytical predictions will not be as accurate as in a case of continuous contact.  
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Fig. 8.34 Displacements of the piston and the top of the mixture for Case 6 

(c) Full view 

(d) Close-up 
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Fig. 8.35 Displacement of the bottom of the mixture for Case 6 

 

 

Fig. 8.36 Rotor speed for Case 6 

It is also interesting to note that the numerical level of compaction (     ) turns 

out to be greater than the analytical (     ). This appears to be consistent, because 

the analytical procedure does not take into account the effect of impacts. Resorting 

again to physical intuition, it seems reasonable that the impacts between the piston 
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and the mixture are favourable to the compaction process, due to the high peaks of 

compressive forces generated.   

 

 

 

Fig. 8.37 Contact forces for Case 6 

(c) Full view 

(d) Close-up 
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Case 7 

Finally, it is also illustrative to analyse the effect of the piston mass on the result of 

the process. To this end, the set of parameters (8.31) is maintained, except for the 

mass of the piston, which is doubled: 

            (8.63) 

Note that, since the constitutive law of the nonlinear spring has not been modified, 

stiffnesses    and    are the same as in Case 1. On the contrary, it is clear that the 

proposed modification will increase the static compaction due to the weight of the 

piston. Relations (8.12) and (8.13) yield 

              ⁄             (8.64) 

The torque-speed curves for the present scenario are depicted in Fig. 8.38 where, 

once again, it is observed that a complete compaction cannot be quasistatically 

achieved. These curves reveal the maximum compaction which can be obtained 

through a quasistatic process:  

               ⁄             (8.65) 

After obtaining these analytical predictions a numerical simulation is conducted 

with the following parameters: 

                                  (8.66) 

with the corresponding motor curves depicted in Fig. 8.38. Observe that the final 

position of the motor curve is beyond the end point of curve  ( ̇). This means that, 

if the chosen    is long enough, the expected level of compaction after the dynamic 



 

 

 

 

 

 

 

 

 

 

 

 

200    8 Modelling and Simulation of the Vibrocompaction Process 

process is     , given in (8.65). The numerical results of the simulation are 

represented in Fig. 8.39 and Fig. 8.40. 

 

 

Fig. 8.38 Torque-speed curves for Case 7. The dots represent the stationary motions 

for a quasistatic compaction process. 

It can be observed how the system follows the evolution described in Section 8.4: 

the vibration amplitude increases monotonically while the motor characteristic is 

slowly displaced upwards, until a jump phenomenon occurs, making the system 

reach a post-resonant state. No separations at any of the contacts were found in this 

case. 

The final level of compaction achieved in the simulation is 

          (8.67) 

which is in good accordance with the analytical prediction (8.65). 
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Fig. 8.39 Piston displacement for Case 7 

 

 

Fig. 8.40 Rotor speed for Case 7 

In conclusion, the increase in the piston mass has produced a higher quality 

compaction. Note, however, that most of this compaction is due to the large 

weight of the piston, and not to the dynamic process. The results of all the 

conducted simulations are summarized in Table 1.  
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Table 1 Summary of results for the conducted simulations 

Considered Scenario Static Compaction     Total Compaction    

Case 1 34.1% 46.5% 

Case 2 34.1% 47.5% 

Case 3 34.1% 47.4% 

Case 4 34.1% 44.6% 

Case 5 34.3% 54.1% 

Case 6 34.3% 60.3% 

Case 7 50.9% 61.2% 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 SUMMARY AND 

CONCLUSIONS 
 

 

9.1 Summary 

The present thesis is concerned with the nonlinear dynamics of vibrating systems 

excited by unbalanced motors. The main focus is the reciprocal (nonideal) 

interaction which in general exists between the dynamics of the exciter –the 

unbalanced motor– and that of the vibrating system. Two models were analytically 

and numerically studied. First, a 2DOF model of a general structure with a cubic 

nonlinearity, excited by a nonideal motor, was analysed in detail. The second model 

is a 4DOF simplified representation of the process of vibrocompaction of quartz 

agglomerates. 



 

 

 

 

 

 

 

 

 

 

 

 

204    9 Summary and Conclusions 

The first model was studied under two different assumptions: large and small slope 

of the motor characteristic. For the first scenario, a new analytical approach was 

developed, which combines two well-known perturbation techniques: the 

Averaging Method and the Singular Perturbation Theory. This scheme allows 

uncovering the system dynamics as composed of three consecutive stages of time. 

The first two ones occur in a short time scale and can be considered as a fast 

transient regime. During the third stage, the system dynamics was shown to be well 

represented by a reduced 2D system. A detailed analysis of this reduced system 

allowed obtaining its fixed points and their stability. An important outcome of this 

study was the existence of Hopf bifurcations making the stability region smaller 

than predicted by other approaches in the literature.  

The Hopf bifurcations were analytically investigated and very simple conditions 

were derived to characterize them as subcritical and supercritical. Moreover, by 

using the Poincaré-Béndixson theorem, conditions were found under which all 

trajectories of the reduced system are attracted towards a limit cycle. This kind of 

motion in the reduced system corresponds to a quasiperiodic oscillation in the 

original one. The global bifurcations whereby the found limit cycles disappear were 

numerically analysed, finding homoclinic and saddle-node homoclinic bifurcations. 

All these results were validated by comparing numerical solutions of the original 

and reduced systems, which exhibited a remarkable accordance. 

The case of small slope was also analytically studied in detail. Having found the 

existence of a resonance manifold in the phase space, the regions far (outer) and 

close (inner) to the resonance manifold were separately investigated through 

averaging techniques. Under certain conditions, the inner region contains two fixed 

points, whose stability was analysed. As an apparent limitation of the procedure, it 

was addressed that the time of attraction of one of the fixed points was much longer 

than the time of validity of the averaged system. Consequently, it is not obvious 

whether or not the stability of that fixed point in the averaged system is necessarily 

the same as in the original system. The main contribution of this part of the thesis 

consists in having solved the above difficulty: by using attraction arguments it was 
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shown that the stability properties of the inner averaged system also hold for the 

original system.  

As in the case of large slope, numerical simulations were conducted in order to 

compare solutions of the original and averaged systems. A good agreement was also 

found in all the considered scenarios. 

After the analyses of the cases of large and small slope, an alternative procedure 

was used to obtain the stationary motions of the system. The main advantage of this 

method lies in the fact that it allows representing the steady motions in a unique 

torque-speed plot for the whole frequency range, in contrast to previous approaches, 

where different graphs where needed for the near-resonant and non-resonant 

solutions. The use of a unique plot was especially useful for the analysis of the 

vibrocompaction process in the subsequent chapter. 

The final part of the thesis considered a real industrial process, where a mixture of 

granulated quartz and polyester resin is compacted by using a piston with 

unbalanced electric motors. A 4-DOF model of the process was built (full model), 

including the nonideal coupling between the motor and the vibrating system, 

impacts and separation at two contacts (piston-mixture and mixture-mould) and a 

nonlinear constitutive law for the mixture which models the compaction itself. 

Although the model is not complex enough to give reliable quantitative results, it is 

a first step towards the construction of more sophisticated models which are able to 

predict the behaviour of actual compacting machines.  

Based on the full model, a simpler 2-DOF model was built upon reasonable 

assumptions (simplified model), which turned out to be equal to the system studied 

in previous chapters. An analytical study of this simplified model revealed relevant 

information about the machine dynamics, thanks to the use of the torque-speed 

curves.  

Several numerical simulations were conducted on the full model, with the aim of 

illustrating how the proposed model can be used to analyse the influence of 
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different parameters on the outcome of the vibrocompaction process. These 

simulations also provided a very significant accordance between numerical and 

analytical results. 

 

9.2 Conclusions 

The case of Large Slope 

- The system exhibits three different behaviours at three consecutive stages 

of time. The first two stages occur on a short time interval and can be 

considered as a fast transient, followed by a much longer third stage.  

- During the third stage of the motion, the original 4D system can be replaced 

by an approximate 2D system, much easier to analyse. This was validated 

by comparing numerical solutions of both systems.  

- Conditions for the existence of a Hopf bifurcation on the right branch of the 

resonance curve have been found. This result is particularly significant, for 

it shows that the stability region of a stationary motion of the system can be 

smaller than predicted by usual theories. Thus, not taking the Hopf 

bifurcation into account may lead to unexpected instabilities in real 

applications. 

- A very simple condition, with clear graphical interpretation, has been 

obtained to distinguish whether the Hopf bifurcation is subcritical or 

supercritical. 

- Under certain known conditions, all system trajectories are attracted 

towards a limit cycle in the reduced system, corresponding to a quasistatic 

motion of the original system. This means that, irrespective of the initial 

conditions, the system tends to a quasiperiodic oscillation. 

- The conducted numerical simulations suggest that the limit cycles, 

generated by Hopf bifurcations, are destroyed through homoclinic or 

saddle-node homoclinic bifurcations. 
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The case of Small Slope 

- The time of validity for solutions of the inner averaged system close its 

stable fixed point has been analytically investigated, by using attraction 

arguments. It was found that these solutions are actually valid for all time, 

which implies that the stability properties of the equilibrium for the inner 

averaged system are also valid for the original system. 

The vibrocompaction model 

- The proposed model can be used to investigate how different parameters of 

the industrial process influence the final result of the compaction. 

- Under a quasistatic control of the motor, the final level of compaction 

achieved can be analytically predicted by using the torque-speed curves, 

with no need of numerically solving the differential equations of the full 

model. 

 

9.3 Original Contributions 

The case of Large Slope 

- A novel analytical approach to the problem, which combines an averaging 

procedure with the SPT, has been proposed. It is worth stressing that, 

although both the SPT and the Averaging Method are actually classical in 

nonlinear dynamics, they had not been used together before in the context 

of nonideal excitations. Thanks to this novel combination of perturbation 

techniques, the original 4D system is transformed into a reduced 2D 

system, much easier to analyse. 

- The conditions for stability of equilibria of the reduced system have been 

analytically derived. Transcritical and Hopf bifurcations have been found. 

The Hopf bifurcation is particularly relevant, for it gives rise to a smaller 

stable region than predicted by conventional theories. Consequently, not 
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taking it into account may be perilous for real applications, since 

unexpected instabilities could occur. 

- The Hopf bifurcations have been analytically investigated, in order to 

characterize them as subcritical or supercritical. A very simple criterion, 

with clear graphical interpretation, was obtained to distinguish both types of 

bifurcations. 

- The Poincaré-Bendixson Theorem has been used to find conditions under 

which all trajectories in the averaged system are attracted towards a 

periodic orbit, corresponding to a quasiperiodic solution of the original 

system. 

- The global bifurcations destroying the stable and unstable limit cycles have 

been numerically investigated. These simulations suggest that unstable 

LCOs are destroyed through homoclinic bifurcations, while stable LCOs 

can be destroyed either through homoclinic bifurcations or through saddle-

node homoclinic bifurcations. 

 

The case of Small Slope 

- By using attraction arguments, it has been shown that solutions of the inner 

averaged system, near its stable fixed point, are actually valid for all time. 

This implies that the referred equilibrium is also asymptotically stable in 

the original system, which in turn gives a solid base for the possibility of 

resonant capture in the mechanical system of interest. 

The Vibrocompaction Model 

- As far as the author knows, there are not available mathematical models for 

the vibrocompaction of quartz agglomerates. Then, the proposed model can 

be considered as an original contribution which will hopefully serve as a 

base on which more complex models can be developed. 

- An analytical procedure has been developed which allows predicting the 

operating point and the level of compaction achieved when the motor is 

quasistatically controlled. 
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9.4 Directions for Future Work 

Since all the investigations presented in this thesis are analytical and numerical, it is 

clear that some experimental validation is needed. In particular, it would be 

especially relevant to find experimentally the quasiperiodic oscillations found in the 

case of large slope (see Fig. 4.10 and Fig. 4.11). This kind of behaviour had not 

been reported before in the context of nonideal systems and, therefore, it would be 

significant to find experimental evidence of its existence. 

As is clear from Section 3.5, a softening nonlinearity in the structure is needed to 

have a supercritical Hopf bifurcation and, therefore, a stable limit cycle –see 

equation (3.83)–. Some experiments are already in course in the Department of 

Mechanical Engineering of Seville, where an unbalanced motor is mounted on a 

simply supported beam, one of whose ends is free to move in the axial direction. It 

is known that such a configuration of a beam gives rise to a cubic nonlinearity of 

the softening type for moderately large vibration amplitudes (Luongo et al., 1986), 

thereby constituting an appropriate setup to find the desired quasiperiodic motions. 

Clearly, there is large space for future work concerning the vibrocompaction model. 

First, it would be desirable to verify, with the aid of experimental tests, whether or 

not the proposed nonlinear constitutive law for the mixture is able to capture the 

behaviour of the actual material. Besides other phenomenological models which 

may be developed and tested, some more fundamental research on the behaviour of 

three-phase mixtures would be worthwhile, in order to mathematically describe how 

bubbles move through the mixture during compaction. 

In order to have a reliable model of the process, some aspects of the real process 

which were not modelled within this thesis may need to be considered, such as the 

vacuum system, the flexibility of the elastomer between the machine foundation 

and the ground or the flexibility of the piston itself. 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 
 

 

This section provides the expressions of parameters     and     in equation (3.80). 

These are simply the coefficients of the nonlinear terms of system (3.79), which 

result when system (3.73) is transformed according to change of variables (3.76). 
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where     and     have been shortly written as   and  , respectively. 
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