
Model-based Design for Selecting Fingerprint
Recognition Algorithms for Embedded Systems

Rosario Arjona and Iluminada Baturone
Electronics and Electromagnetism Department, University of Seville

Microelectronics Institute of Seville (IMSE-CNM-CSIC)
Seville, Spain

{arjona, lumi}@imse-cnm.csic.es

Abstract�—Most of contributions for biometric recognition
solutions (and specifically for fingerprint recognition) are
implemented in software on PC or similar platforms. However,
the wide spread of embedded systems means that fingerprint
embedded systems will be progressively demanded and, hence,
hardware dedicated solutions are needed to satisfy their
constraints. CAD tools from Matlab-Simulink ease hardware
design for embedded systems because automatize the design
process from high-level descriptions to device implementation.
Verification of results is set at different abstraction levels (high-
level description, hardware code simulation, and device
implementation). This paper shows how a design flow based on
models facilitates the selection of algorithms for fingerprint
embedded systems. In particular, the search of a solution for
directional image extraction suitable for its application to
singular point extraction is detailed. Implementation results in
terms of area occupation and timing are presented for different
Xilinx FPGAs.

Embedded Systems; Automated Hardware Design; Fingerprint
Biometrics; Directional Image Extraction; Singular Point
Extraction.

I. INTRODUCTION
Most of biometric solutions are implemented in software

running on PC or similar platforms. However, the wide spread
of embedded systems in current life style is requiring efficient
implementations of biometric techniques in terms of area
occupation, power consumption, and processing speed. There
are several ways to implement biometric algorithms in
embedded systems. The simplest one is to write the C code and
compile it into a general-purpose processor included in the
embedded system. However, biometric processing tasks, such
as those employed for fingerprint recognition, usually require
many operation cycles when they are performed sequentially.
Hence, either the processing speed of the system is low or the
cost is high (if high-speed power-hungry or complex
processors are employed). Another solution is to use
specialized blocks implemented in hardware to accelerate the
tasks of the general-purpose processor. In most cases, these
solutions usually resort to the use of hardware-software co-
design. The solution that features the most reduced figures of
area, power, and processing time is to implement the whole
algorithm in hardware.

The drawback of hardware solutions, which should
consider arithmetic and temporization issues not contemplated
by software, is a higher design time. Generally, neither
software (application) engineers take into account specific
hardware features nor hardware engineers evaluate
repercussion of their decisions on the application. On the one
hand, software engineers develop complex biometric
techniques which provide high accurate systems. On the other
hand, hardware engineers find difficulties to translate these
techniques to a hardware implementation and opt to
approximate the solutions. This is one reason that increases the
design cost of hardware solutions. Both worlds should be
unified so as to obtain more efficient solutions and model-
based techniques can help in this objective while maintaining
the advantages, as will be shown in this work. A way to reduce
the design cost is to employ CAD tools that automate and ease
the hardware design from high-level software-like descriptions.

Nowadays, Mathworks is promoting HDL Coder, a tool
which aims to facilitate hardware designs for any type of
device (ASIC or FPGA) since it is possible to generate
synthesizable HDL code from Matlab or Simulink and this
code is independent on the device. Although the hardware
synthesis is not completely optimized, the HDL code
generated can be modified by hand if it is required. However,
for most works these tools provide a good trade-off between
low-cost hardware design and device implementation results
in terms of area occupation and timing. In addition, HDL
coder includes an interesting function named FPGA-in-the-
loop that allows verifying high-level designs in hardware
platforms. That is, the design at a model level in Simulink can
be verified at a hardware level from the same Simulink
environment. This accelerates the design process because
hardware results are obtained straight off from the high-level
description and it is verified that the design actually
implements what has been simulated. If the results from the
device are not correct for the application which is being
developed, the designer can change easily the algorithms at a
high level and starts again with the FPGA-in-the-loop process.

Model-based techniques are being widely applied in the
field of control domain, and they are also attracting interest in
the field of signal processing. This work shows how they can
be very useful to implement fingerprint-based biometric
applications. The paper is organized as follows. Section II

describes the CAD tools employed for automated hardware
design from high-level descriptions to device implementation
defining a hardware design flow. Two case studies are
analyzed in Section III to illustrate how fingerprint processing
algorithms can be selected taking into account software
accuracy and hardware constraints at the same time. Firstly,
different proposals for directional image extraction are
evaluated from the most accurate solution to a low-cost
approach. Then, a second example shows the influence of the
previous solutions in the extraction of singular points (which in
turn depends on the directional image extraction). The
complete design flow employed is briefly described and it is
illustrated how implementation results in terms of area
occupation and execution time can be easily obtained.
Conclusions and future work lines are given in Section IV.

II. A HARDWARE DESIGN FLOW USING CAD TOOLS
As commented in Introduction, CAD tools facilitate the

hardware design for biometric solutions. We refer to
automated design processes which create top-down design
flows (from high-level descriptions to device
implementations). Basically, the designer only develops the
high-level description and is in charge of checking that the
behavior results coincide for the software and hardware
implementations. Those stages related to hardware functions
(HDL code generation, hardware code simulation, hardware
synthesis, device implementation, and implementation
verification at device level) are performed in an automatic way
by using the corresponding tools.

Biometric applications for fingerprint recognition employ
fingerprint images as individual characteristics and thus they
are based on image processing. In this respect, Matlab is a
very suitable tool for image processing because it is optimized
to work with matrices (images, in our case) and accelerates all
type of operations related. In addition, Simulink, as interactive
graphical environment, is very useful to model, analyze and
simulate systems that work with fingerprint images.

The first step to develop fingerprint recognition embedded
systems starts with high-level descriptions in Matlab-Simulink.
Floating-point software-based implementations can be

compared to fixed-point hardware-based implementations.
Thus, the influence of hardware features in the system
performance can be evaluated.

Once high-level descriptions are completed, it is necessary
to obtain the associated HDL code. In the context of Matlab-
Simulink, this can be performed in an automatic way using
HDL Coder, which lets generate VDHL or Verilog code from
Matlab or Simulink descriptions. The resulting synthesizable
code is independent on the device because it can be mapped
for ASICs or FPGAs. Also, it is possible to generate
testbenches which can be employed to simulate and verify the
circuit at hardware code level. ISE Isim (for FPGAs) and
Mentor Graphics ModelSim (for FPGAs and ASICs) provide
support for simulations. This constitutes another verification
point whose results can be compared to the results from the
high-level descriptions.

The next stage of the design flow is the device
implementation. For implementations based on Xilinx FPGAs,
tools from Xilinx ISE environment complete the process.

Latest versions of Matlab-Simulink include workflows to
carry out the complete design process from the same
environment. That means that high-level descriptions, HDL
code generation, behavior simulation and implementation into
a FPGA device can be performed from the same Matlab-
Simulink environment because the corresponding tools
communicate to Matlab-Simulink. Moreover, FPGA-in-the-
loop functionality allows viewing results directly from the
device. It is another verification level in addition to behavior
simulations from floating-point, fixed-point and testbench
descriptions. This is an important issue in embedded system
design because functional results from the FPGA device
implementation are verified before the final system is
manufactured.

In this work, we perform the complete design process from
high-level descriptions (where the most suitable algorithm for
a hardware implementation is selected) to device
implementation and verification (using the FPGA-in-the-loop
functionality). Fingerprint images from standard and large
databases [1] are considered. Also, a fingerprint sensor is
employed and performance of the system is evaluated by using
fingerprint images captured in live from the individual. Fig. 1
shows an example of FPGA-in-the-loop functionality to
extract singular points, as will be described in Section III.B. In
this case, fingerprints are captured by the FS90 optical sensor

(a) (b) (c)

Fig. 2: (a) Fingerprint image from [1], (b) Directional image associated, and
directional image segmented using four homogeneous direction regions. All
representations have singular points depicted.

Results from the FPGAInput fingerprint image from
the fingerprint sensor

Blocks implemented in hardware

FPGA

Fingerprint sensor

Fig. 1: An example of FPGA-in-the-loop functionality.

from Futronic [2] and results are obtained from a Xilinx
Virtex-6 FPGA ML605 board.

III. CASE STUDIES

A. Evaluation of algorithms for directional image extraction
Ridges in fingerprint images (depicted with dark color in

Fig. 2(a)) are structural characteristics whose local directions
compose a matrix named Directional Image (Orientation
Image, Field or Map, or Directional Field or Map). Fig. 2(b) is
the directional image extracted from fingerprint in Fig. 2(a).
Directional image gives global information of a fingerprint and
plays an important role in fingerprint recognition. It is used in
several authentication stages, from fingerprint acquisition to
matching stage. Direction values offer information for
enhancement and segmentation of fingerprint images [3] before
feature extraction; singular points extraction [4], which are
significant points in fingerprints; alignment process [5]
necessary to correct placement when fingerprint is captured
with different translation and rotation; and matching stage
using directional features such as Fingercodes [6]. Depending
on the application, the algorithm to extract the directional
image has to be more or less accurate.

Most popular approaches for computation of directional
image are gradient-based or mask-based algorithms [7]. Since
gradients are the most natural and accurate technique, let us
take into account gradient-based algorithms. Gradient
operators (Gaussian, Sobel, or Prewitt) are usually employed
to compute gradients. Once convolutions with the operator
windows are applied, horizontal and vertical gradients (Gx and
Gy) are obtained. The ridge edge for the pixel (i, j) is
orthogonal to the gradient values and the direction value D for
a pixel (i, j) is computed as:

)
),(
),(

(tan
2

),(1

jiG
jiG

jiD
x

y−+= π (1)

Drawbacks of this technique are non-linearity,
discontinuities and sensitivity to the noise in fingerprint
images [8]. To overcome these problems, the fingerprint
image is enhanced, and gradient values are combined,
averaged, and smoothed. A software implementation in
Matlab for the complete directional image is available in [9].

The required accuracy in directional image depends on the
final application. To create a suitable hardware
implementation which satisfies constraints in embedded
systems, simplifications have been considered. The first
decision is not to implement enhancement and smoothing
processes because these operations can be performed by
previous or subsequent stages if the recognition application
requires them. In addition, 3x3 Sobel operators are employed
since they are ones of the simplest operators for edge detection
(in this case for ridge detection in fingerprints) carrying out
convolutions with integer values. Another way to reduce the
complexity is to approximate the arctangent function by means
of CORDIC (Coordinate Rotation Digital Computer) method,
which is an efficient method to compute trigonometric
functions in hardware.

This description is performed as a Simulink model in
floating-point data. After the verification of this behavior
model, a hardware model (in fixed-point data) is developed.
Data are computed in a serial way to simulate how pixels are
received from a fingerprint sensor and the convolutions of
Sobel operators are based on buffers and delays to consider
previous values in the sequence of pixels. Conversions of data
types and rates are required by the inputs of a CORDIC block,
whose function is to receive Gx and Gy values and return
direction values. It is a predefined Simulink block which
implements arctangent function using phase output. Results
from both models can be compared and hardware
considerations can be evaluated.

Once simulated at high level, Simulink HDL Coder tool is
used to generate HDL code from the Simulink model. At the
end of this stage, we have a hardware description of the
directional image computation and its associated testbench for
simulations.

The target platform selected is a Spartan-3A FPGA from
Xilinx and the implementation process is completed by ISE
environment. The automatic testbench generated is simulated
by Isim tool which is another verification point for the
hardware description. Implementation results are shown in the
first row of Table I(a).

B. Evaluation of algorithms for singular point extraction
Previous section evaluates an alternative to extract the

directional image. However, selecting a proposal is dependent
on the application. As mentioned, directional image can be
employed for singular point extraction. Singular points are
central features of fingerprint images created by the ridge lines
[8]. There are two types of singular points: core points (located
where ridge lines have maximum curvature), and delta points
(situated where three ridge lines intersect). Core points can be
convex or concave, depending on the orientation of the ridges.
In Fig. 2 convex core points are depicted as semi-circles facing
upwards, concave core points as semi-circles facing
downwards, and delta points as triangles.

TABLE I
(a) Comparison of results for directional image extraction

Proposal Maximum frequency
(MHz)

Slices
(%)

Minimum execution
time (ms)

With CORDIC 81.3 15 1.27
With clustering 264.4 8 0.39

Implementation performed into a Xilinx Spartan-3A FPGA for
a fingerprint image with 374x276 pixels

(b) Comparison of results for smoothing approaches

Proposal Maximum frequency
(MHz)

Slices
(%)

Minimum execution
time (ms)

Complete 582.8 50 0.25
Simplified 582.8 32 0.25

Implementation performed into a Xilinx Virtex-5 FPGA for a
fingerprint image with 374x388 pixels

(c) Complete and simplified smoothing for different image sizes
Proposal

(RxC)
Complete
(96x96)

Simplif.
(96x96)

Complete
(236x192)

Simplif.
(236x192)

Complete
(374x388)

Simplif.
(374x388)

 Slices (%) 17 13 27 19 50 32

Implementation performed into a Xilinx Virtex-5 FPGA
RxC: number of rows x number of columns in image

The techniques reported in the literature to detect singular
points are devoted to search abrupt changes of direction values
in directional images. Let us focus on the contribution in [10],
which proposes an approach for singular point extraction that is
suitable for hardware implementations because it is based on
coarse representations of the directional image. Directional
image is clustered in homogeneous direction regions and
singular points are located where regions intersect. Proposal in
[10] concludes that four direction values (0º, 45º, 90º and 135º)
are necessary to generate an associated representation for all
fingerprint classes for the purpose of singular point extraction.
The representations for directional image discussed in the
previous subsection were composed by continuous values
(from 0º to 180º). Instead of applying arctangent function (or
its approximation with CORDIC function) and subsequently
applying a clustering (replacing each value of the directional
image by the most similar cluster value), the proposed
algorithm simplifies the processing to just evaluating the
relation between the values of Gx and Gy to identify the cluster
which the pixel belongs to. That is, once Gx and Gy are
calculated, several logical conditions are considered to assign a
cluster value. Thus, hardware description for clustering is done
as described in the previous subsection but without considering
CORDIC block. Reduction of complexity in the computation of
arctangent function is translated to a simple hardware, as
shown in the second row of Table I(a).

After clustering, a simple smoothing process is necessary to
group direction values into homogeneous regions. Direction
clusters from the neighboring pixels are considered centering a
window at the analyzed pixel and assigning to it the cluster
value with the highest number of occurrences inside the
window. A 27x27 smoothing window is suitable for the most
of fingerprint images. To ease hardware implementations, a
3x3 smoothing is firstly performed in parallel. It returns the
number of occurrences for each cluster value in a 3x3 window.
Then, a 9x9 smoothing is an extension composed by nine 3x3
windows which sums the number of occurrences for each
cluster value computed from the nine previous results (again,
the current window is processed in parallel). And, finally, a
27x27 smoothing is the sum in parallel of results from an
extension composed by nine 9x9 windows and the selection of
the cluster value with the highest number of occurrences. A
possible simplification to this approach (with the consequent
reduction of complexity) is to consider the winner direction
value and its number of occurrences within each window
(simplified smoothing), instead of computing the number of
occurrences for all the four cluster values (complete
smoothing). Implementation results for each smoothing
approach using the design flow presented and employing a
Xilinx Virtex-5 FPGA are displayed in Table I(b). Since the
models are parameterized, implementation can be evaluated for
different image sizes as illustrated in Table I(c). Area
occupation results demonstrate the complexity of the complete
smoothing with respect to the simplified smoothing.

Finally, the last step of the algorithm consists of locating
where direction regions intersect and determine the type of
singular point. The design methodology using FPGA-in-the-
loop allows evaluating the different solutions in an easy way.
An example of the obtained results is given in Table II. Such

results can be obtained and evaluated automatically for a wide
set of fingerprints to conclude if the accuracy in directional
image extraction or smoothing is enough for singular point
extraction, which allows increasing considerably the hardware
performance (in terms of resource consumption and speed).

IV. CONCLUSIONS
Model-based techniques using Matlab-Simulink CAD tools

allow evaluating different approaches for fingerprint algorithms
in an easy way. Such evaluation is basic to take good design
decisions that result in hardware implementations with better
features of area, power or speed. This has been illustrated with
the implementation of algorithms for directional image
extraction from fingerprint images and its subsequent
application to singular point extraction.

ACKNOWLEDGMENT
This work was partially funded by Spanish Ministerio de

Economía y Competitividad under the Project TEC2011-24319
and Junta de Andalucía under the Project P08-TIC-03674 (both
with support from FEDER), and by the European Community
through the MOBY-DIC Project FP7-INFSO-ICT-248858
(www.mobydic-project.eu).

REFERENCES
[1] FVC fingerprint database, http://bias.csr.unibo.it/fvc2002/
[2] Fingerprint sensor, http://www.futronic-tech.com/product_fs90.html
[3] L. Hong, Y. Wan, A. Jain, �“Fingerprint Image Enhancement: Algorithm

and Performance Evaluation,�” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20, 8, pp. 777-789, 1998.

[4] M. Kawagoe, A. Tojo, �“Fingerprint Pattern Classification,�” Pattern
Recognition, 17, 3, pp. 295-303, 1984.

[5] N. Yager, A. Amin, �“Evaluation of Fingerprint Orientation Field
Registration Algorithms,�” Proceedings of the 17th International
Conference on Pattern Recognition, 4, pp. 641-644, 2004.

[6] S. Prabhakar, �“Fingerprint Classification and Matching using a
Filterbank,�” Thesis, 2000.

[7] D. Chen, X. Ji, F. Fan, J. Zhang, L. Guo, W. Meng, �“Comparative
Analysis of Fingerprint Orientation Field Algorithms,�” Fifth
International Conference on Image and Graphics, pp. 796-801, 2009.

[8] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, �“Handbook of
Fingerprint Recognition,�” 2nd ed., Springer, 2009.

[9] Directional image algorithm,
http://www.csse.uwa.edu.au/~pk/research/matlabfns/

[10] R. Arjona, I. Baturone, �“A Digital Circuit for Extracting Singular Points
from Fingerprint Images,�” Proceedings of the IEEE 18th International
Conference on Electronics, Circuits, and Systems (ICECS�’2011), pp.
627-630, 2011.

TABLE II
Singular points extracted for the fingerprint in Fig. 2(a) using different

approaches
PROPOSAL CVC CCC D1 D2

I 148,142 178,127 283,49 302,221
II 148,140 177,128 284,41 301,221
III 151,141 177,127 285,47 300,220

• Proposal I: [9] with clustering; Proposal II: arctangent approximated with
clustering and smoothing considering number of occurrences for all cluster values;
Proposal III: arctangent approximated with clustering and smoothing considering
number of occurrences for only the winner direction.

• The results named as CVC, CCC, D1, and D2 are the singular point locations in
fingerprint images (expressed in rows and columns) that have been extracted for
convex core, concave core, delta1 and delta2 points, respectively.

