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Abstract�—Most of contributions for biometric recognition 
solutions (and specifically for fingerprint recognition) are 
implemented in software on PC or similar platforms. However, 
the wide spread of embedded systems means that fingerprint 
embedded systems will be progressively demanded and, hence, 
hardware dedicated solutions are needed to satisfy their 
constraints. CAD tools from Matlab-Simulink ease hardware 
design for embedded systems because automatize the design 
process from high-level descriptions to device implementation. 
Verification of results is set at different abstraction levels (high-
level description, hardware code simulation, and device 
implementation). This paper shows how a design flow based on 
models facilitates the selection of algorithms for fingerprint 
embedded systems. In particular, the search of a solution for 
directional image extraction suitable for its application to 
singular point extraction is detailed. Implementation results in 
terms of area occupation and timing are presented for different 
Xilinx FPGAs. 

Embedded Systems; Automated Hardware Design; Fingerprint 
Biometrics; Directional Image Extraction; Singular Point 
Extraction. 

I.  INTRODUCTION 
Most of biometric solutions are implemented in software 

running on PC or similar platforms. However, the wide spread 
of embedded systems in current life style is requiring efficient 
implementations of biometric techniques in terms of area 
occupation, power consumption, and processing speed. There 
are several ways to implement biometric algorithms in 
embedded systems. The simplest one is to write the C code and 
compile it into a general-purpose processor included in the 
embedded system. However, biometric processing tasks, such 
as those employed for fingerprint recognition, usually require 
many operation cycles when they are performed sequentially. 
Hence, either the processing speed of the system is low or the 
cost is high (if high-speed power-hungry or complex 
processors are employed). Another solution is to use 
specialized blocks implemented in hardware to accelerate the 
tasks of the general-purpose processor. In most cases, these 
solutions usually resort to the use of hardware-software co-
design. The solution that features the most reduced figures of 
area, power, and processing time is to implement the whole 
algorithm in hardware. 

The drawback of hardware solutions, which should 
consider arithmetic and temporization issues not contemplated 
by software, is a higher design time. Generally, neither 
software (application) engineers take into account specific 
hardware features nor hardware engineers evaluate 
repercussion of their decisions on the application. On the one 
hand, software engineers develop complex biometric 
techniques which provide high accurate systems. On the other 
hand, hardware engineers find difficulties to translate these 
techniques to a hardware implementation and opt to 
approximate the solutions. This is one reason that increases the 
design cost of hardware solutions. Both worlds should be 
unified so as to obtain more efficient solutions and model-
based techniques can help in this objective while maintaining 
the advantages, as will be shown in this work. A way to reduce 
the design cost is to employ CAD tools that automate and ease 
the hardware design from high-level software-like descriptions. 

Nowadays, Mathworks is promoting HDL Coder, a tool 
which aims to facilitate hardware designs for any type of 
device (ASIC or FPGA) since it is possible to generate 
synthesizable HDL code from Matlab or Simulink and this 
code is independent on the device. Although the hardware 
synthesis is not completely optimized, the HDL code 
generated can be modified by hand if it is required. However, 
for most works these tools provide a good trade-off between 
low-cost hardware design and device implementation results 
in terms of area occupation and timing. In addition, HDL 
coder includes an interesting function named FPGA-in-the-
loop that allows verifying high-level designs in hardware 
platforms. That is, the design at a model level in Simulink can 
be verified at a hardware level from the same Simulink 
environment. This accelerates the design process because 
hardware results are obtained straight off from the high-level 
description and it is verified that the design actually 
implements what has been simulated. If the results from the 
device are not correct for the application which is being 
developed, the designer can change easily the algorithms at a 
high level and starts again with the FPGA-in-the-loop process. 

Model-based techniques are being widely applied in the 
field of control domain, and they are also attracting interest in 
the field of signal processing. This work shows how they can 
be very useful to implement fingerprint-based biometric 
applications. The paper is organized as follows. Section II 



describes the CAD tools employed for automated hardware 
design from high-level descriptions to device implementation 
defining a hardware design flow. Two case studies are 
analyzed in Section III to illustrate how fingerprint processing 
algorithms can be selected taking into account software 
accuracy and hardware constraints at the same time. Firstly, 
different proposals for directional image extraction are 
evaluated from the most accurate solution to a low-cost 
approach. Then, a second example shows the influence of the 
previous solutions in the extraction of singular points (which in 
turn depends on the directional image extraction). The 
complete design flow employed is briefly described and it is 
illustrated how implementation results in terms of area 
occupation and execution time can be easily obtained. 
Conclusions and future work lines are given in Section IV. 

II. A HARDWARE DESIGN FLOW USING CAD TOOLS 
As commented in Introduction, CAD tools facilitate the 

hardware design for biometric solutions. We refer to 
automated design processes which create top-down design 
flows (from high-level descriptions to device 
implementations). Basically, the designer only develops the 
high-level description and is in charge of checking that the 
behavior results coincide for the software and hardware 
implementations. Those stages related to hardware functions 
(HDL code generation, hardware code simulation, hardware 
synthesis, device implementation, and implementation 
verification at device level) are performed in an automatic way 
by using the corresponding tools. 

Biometric applications for fingerprint recognition employ 
fingerprint images as individual characteristics and thus they 
are based on image processing. In this respect, Matlab is a 
very suitable tool for image processing because it is optimized 
to work with matrices (images, in our case) and accelerates all 
type of operations related. In addition, Simulink, as interactive 
graphical environment, is very useful to model, analyze and 
simulate systems that work with fingerprint images. 

The first step to develop fingerprint recognition embedded 
systems starts with high-level descriptions in Matlab-Simulink. 
Floating-point software-based implementations can be 

compared to fixed-point hardware-based implementations. 
Thus, the influence of hardware features in the system 
performance can be evaluated. 

Once high-level descriptions are completed, it is necessary 
to obtain the associated HDL code. In the context of Matlab-
Simulink, this can be performed in an automatic way using 
HDL Coder, which lets generate VDHL or Verilog code from 
Matlab or Simulink descriptions. The resulting synthesizable 
code is independent on the device because it can be mapped 
for ASICs or FPGAs. Also, it is possible to generate 
testbenches which can be employed to simulate and verify the 
circuit at hardware code level. ISE Isim (for FPGAs) and 
Mentor Graphics ModelSim (for FPGAs and ASICs) provide 
support for simulations. This constitutes another verification 
point whose results can be compared to the results from the 
high-level descriptions. 

The next stage of the design flow is the device 
implementation. For implementations based on Xilinx FPGAs, 
tools from Xilinx ISE environment complete the process. 

Latest versions of Matlab-Simulink include workflows to 
carry out the complete design process from the same 
environment. That means that high-level descriptions, HDL 
code generation, behavior simulation and implementation into 
a FPGA device can be performed from the same Matlab-
Simulink environment because the corresponding tools 
communicate to Matlab-Simulink. Moreover, FPGA-in-the-
loop functionality allows viewing results directly from the 
device. It is another verification level in addition to behavior 
simulations from floating-point, fixed-point and testbench 
descriptions. This is an important issue in embedded system 
design because functional results from the FPGA device 
implementation are verified before the final system is 
manufactured. 

In this work, we perform the complete design process from 
high-level descriptions (where the most suitable algorithm for 
a hardware implementation is selected) to device 
implementation and verification (using the FPGA-in-the-loop 
functionality). Fingerprint images from standard and large 
databases [1] are considered. Also, a fingerprint sensor is 
employed and performance of the system is evaluated by using 
fingerprint images captured in live from the individual. Fig. 1 
shows an example of FPGA-in-the-loop functionality to 
extract singular points, as will be described in Section III.B. In 
this case, fingerprints are captured by the FS90 optical sensor 
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Fig. 2: (a) Fingerprint image from [1], (b) Directional image associated, and 
directional image segmented using four homogeneous direction regions. All 
representations have singular points depicted. 

Results from the FPGAInput fingerprint image from
the fingerprint sensor

Blocks implemented in hardware

FPGA

Fingerprint sensor

Fig. 1: An example of FPGA-in-the-loop functionality. 



from Futronic [2] and results are obtained from a Xilinx 
Virtex-6 FPGA ML605 board. 

III. CASE STUDIES 

A. Evaluation of algorithms for directional image extraction 
Ridges in fingerprint images (depicted with dark color in 

Fig. 2(a)) are structural characteristics whose local directions 
compose a matrix named Directional Image (Orientation 
Image, Field or Map, or Directional Field or Map). Fig. 2(b) is 
the directional image extracted from fingerprint in Fig. 2(a). 
Directional image gives global information of a fingerprint and 
plays an important role in fingerprint recognition. It is used in 
several authentication stages, from fingerprint acquisition to 
matching stage. Direction values offer information for 
enhancement and segmentation of fingerprint images [3] before 
feature extraction; singular points extraction [4], which are 
significant points in fingerprints; alignment process [5] 
necessary to correct placement when fingerprint is captured 
with different translation and rotation; and matching stage 
using directional features such as Fingercodes [6]. Depending 
on the application, the algorithm to extract the directional 
image has to be more or less accurate. 

Most popular approaches for computation of directional 
image are gradient-based or mask-based algorithms [7]. Since 
gradients are the most natural and accurate technique, let us 
take into account gradient-based algorithms. Gradient 
operators (Gaussian, Sobel, or Prewitt) are usually employed 
to compute gradients. Once convolutions with the operator 
windows are applied, horizontal and vertical gradients (Gx and 
Gy) are obtained. The ridge edge for the pixel (i, j) is 
orthogonal to the gradient values and the direction value D for 
a pixel (i, j) is computed as:  
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Drawbacks of this technique are non-linearity, 
discontinuities and sensitivity to the noise in fingerprint 
images [8]. To overcome these problems, the fingerprint 
image is enhanced, and gradient values are combined, 
averaged, and smoothed. A software implementation in 
Matlab for the complete directional image is available in [9]. 

The required accuracy in directional image depends on the 
final application. To create a suitable hardware 
implementation which satisfies constraints in embedded 
systems, simplifications have been considered. The first 
decision is not to implement enhancement and smoothing 
processes because these operations can be performed by 
previous or subsequent stages if the recognition application 
requires them. In addition, 3x3 Sobel operators are employed 
since they are ones of the simplest operators for edge detection 
(in this case for ridge detection in fingerprints) carrying out 
convolutions with integer values. Another way to reduce the 
complexity is to approximate the arctangent function by means 
of CORDIC (Coordinate Rotation Digital Computer) method, 
which is an efficient method to compute trigonometric 
functions in hardware. 

This description is performed as a Simulink model in 
floating-point data. After the verification of this behavior 
model, a hardware model (in fixed-point data) is developed. 
Data are computed in a serial way to simulate how pixels are 
received from a fingerprint sensor and the convolutions of 
Sobel operators are based on buffers and delays to consider 
previous values in the sequence of pixels. Conversions of data 
types and rates are required by the inputs of a CORDIC block, 
whose function is to receive Gx and Gy values and return 
direction values. It is a predefined Simulink block which 
implements arctangent function using phase output. Results 
from both models can be compared and hardware 
considerations can be evaluated. 

Once simulated at high level, Simulink HDL Coder tool is 
used to generate HDL code from the Simulink model. At the 
end of this stage, we have a hardware description of the 
directional image computation and its associated testbench for 
simulations. 

The target platform selected is a Spartan-3A FPGA from 
Xilinx and the implementation process is completed by ISE 
environment. The automatic testbench generated is simulated 
by Isim tool which is another verification point for the 
hardware description. Implementation results are shown in the 
first row of Table I(a). 

B. Evaluation of algorithms for singular point extraction 
Previous section evaluates an alternative to extract the 

directional image. However, selecting a proposal is dependent 
on the application. As mentioned, directional image can be 
employed for singular point extraction. Singular points are 
central features of fingerprint images created by the ridge lines 
[8]. There are two types of singular points: core points (located 
where ridge lines have maximum curvature), and delta points 
(situated where three ridge lines intersect). Core points can be 
convex or concave, depending on the orientation of the ridges. 
In Fig. 2 convex core points are depicted as semi-circles facing 
upwards, concave core points as semi-circles facing 
downwards, and delta points as triangles. 

TABLE I 
(a) Comparison of results for directional image extraction 

Proposal Maximum frequency 
(MHz) 

Slices 
(%) 

Minimum execution 
time (ms) 

With CORDIC 81.3 15 1.27 
With clustering 264.4 8 0.39 

Implementation performed into a Xilinx Spartan-3A FPGA for 
a fingerprint image with 374x276 pixels 

 

(b) Comparison of results for smoothing approaches 

Proposal Maximum frequency 
(MHz) 

Slices    
(%) 

Minimum execution 
time (ms) 

Complete 582.8 50 0.25 
Simplified 582.8 32 0.25 

Implementation performed into a Xilinx Virtex-5 FPGA for a 
fingerprint image with 374x388 pixels 

 

(c) Complete and simplified smoothing for different image sizes 
Proposal    

(RxC) 
Complete
(96x96) 

Simplif. 
(96x96) 

Complete 
(236x192) 

Simplif. 
(236x192)

Complete 
(374x388)

Simplif. 
(374x388)

 Slices (%) 17 13 27 19 50 32 

Implementation performed into a Xilinx Virtex-5 FPGA 
RxC: number of rows x number of columns in image 



The techniques reported in the literature to detect singular 
points are devoted to search abrupt changes of direction values 
in directional images. Let us focus on the contribution in [10], 
which proposes an approach for singular point extraction that is 
suitable for hardware implementations because it is based on 
coarse representations of the directional image. Directional 
image is clustered in homogeneous direction regions and 
singular points are located where regions intersect. Proposal in 
[10] concludes that four direction values (0º, 45º, 90º and 135º) 
are necessary to generate an associated representation for all 
fingerprint classes for the purpose of singular point extraction. 
The representations for directional image discussed in the 
previous subsection were composed by continuous values 
(from 0º to 180º). Instead of applying arctangent function (or 
its approximation with CORDIC function) and subsequently 
applying a clustering (replacing each value of the directional 
image by the most similar cluster value), the proposed 
algorithm simplifies the processing to just evaluating the 
relation between the values of Gx and Gy to identify the cluster 
which the pixel belongs to. That is, once Gx and Gy are 
calculated, several logical conditions are considered to assign a 
cluster value. Thus, hardware description for clustering is done 
as described in the previous subsection but without considering 
CORDIC block. Reduction of complexity in the computation of 
arctangent function is translated to a simple hardware, as 
shown in the second row of Table I(a). 

After clustering, a simple smoothing process is necessary to 
group direction values into homogeneous regions. Direction 
clusters from the neighboring pixels are considered centering a 
window at the analyzed pixel and assigning to it the cluster 
value with the highest number of occurrences inside the 
window. A 27x27 smoothing window is suitable for the most 
of fingerprint images. To ease hardware implementations, a 
3x3 smoothing is firstly performed in parallel. It returns the 
number of occurrences for each cluster value in a 3x3 window. 
Then, a 9x9 smoothing is an extension composed by nine 3x3 
windows which sums the number of occurrences for each 
cluster value computed from the nine previous results (again, 
the current window is processed in parallel). And, finally, a 
27x27 smoothing is the sum in parallel of results from an 
extension composed by nine 9x9 windows and the selection of 
the cluster value with the highest number of occurrences. A 
possible simplification to this approach (with the consequent 
reduction of complexity) is to consider the winner direction 
value and its number of occurrences within each window 
(simplified smoothing), instead of computing the number of 
occurrences for all the four cluster values (complete 
smoothing). Implementation results for each smoothing 
approach using the design flow presented and employing a 
Xilinx Virtex-5 FPGA are displayed in Table I(b). Since the 
models are parameterized, implementation can be evaluated for 
different image sizes as illustrated in Table I(c). Area 
occupation results demonstrate the complexity of the complete 
smoothing with respect to the simplified smoothing. 

Finally, the last step of the algorithm consists of locating 
where direction regions intersect and determine the type of 
singular point. The design methodology using FPGA-in-the-
loop allows evaluating the different solutions in an easy way. 
An example of the obtained results is given in Table II. Such 

results can be obtained and evaluated automatically for a wide 
set of fingerprints to conclude if the accuracy in directional 
image extraction or smoothing is enough for singular point 
extraction, which allows increasing considerably the hardware 
performance (in terms of resource consumption and speed). 

IV. CONCLUSIONS 
Model-based techniques using Matlab-Simulink CAD tools 

allow evaluating different approaches for fingerprint algorithms 
in an easy way. Such evaluation is basic to take good design 
decisions that result in hardware implementations with better 
features of area, power or speed. This has been illustrated with 
the implementation of algorithms for directional image 
extraction from fingerprint images and its subsequent 
application to singular point extraction. 
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TABLE II 
Singular points extracted for the fingerprint in Fig. 2(a) using different 

approaches 
PROPOSAL CVC CCC D1 D2 

I 148,142 178,127 283,49 302,221
II 148,140 177,128 284,41 301,221
III 151,141 177,127 285,47 300,220

• Proposal I: [9] with clustering; Proposal II: arctangent approximated with 
clustering and smoothing considering number of occurrences for all cluster values; 
Proposal III: arctangent approximated with clustering and smoothing considering 
number of occurrences for only the winner direction. 

• The results named as CVC, CCC, D1, and D2 are the singular point locations in 
fingerprint images (expressed in rows and columns) that have been extracted for 
convex core, concave core, delta1 and delta2 points, respectively. 


