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Abstract— Since 1992, Xfuzzy environment has been
improving to ease the design of fuzzy systems. The current
version, Xfuzzy 3, which is entirely programmed in Java,
includes a wide set of new featured tools that allow automating
the whole design process of a fuzzy logic based system: from its
description (in the XFL3 language) to its synthesis in C, C++
or Java (to be included in software projects) or in VHDL (for
hardware projects). The new features of the current version
have been exploited in different application areas such as
autonomous robot navigation and image processing.

I. INTRODUCTION

The research in fuzzy systems is so active that theoretical
and practical advances are numerous. The first fuzzy
systems were controllers with one or two rule bases with
simple “if-then’ rules obtained from heuristic knowledge.
Nowadays, fuzzy logic-based systems may contain fuzzy
decision-making modules, fuzzy classifiers, and/or fuzzy
controllers, which can be combined with non-fuzzy modules
and mterchange fuzzy or on-fuzzy values among them. The
rules emploved may be weighted by different values and
may use different membership functions and operators
(including linguistic hedges) to relate antecedents and
consequents and to obtain the global conclusion. Besides,
rule bases are usually obtained not only from heuristic
knowledge but also from numerical data (the last method is
particularly addressing a lot of attention for its relevance in
the area of knowledge discovering), and the application of
simplification as well as tuning methods to the obtained
rules are also becoming usual practices.

This increase in complexity has motivated the evolution
of the Xfuzzy environment. While Xfuzzy 1 focused on
describing and simulating simple fuzzy controllers, the
current Xfuzzy 3 uses a formal specification language,
named XFL3, which facilitates the translation of complex
rules expressed linguistically by allowing the use of rule
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weights, any kind of connective function to relate the
antecedents, and linguistic hedges that may be applied to
single or connected antecedents. In addition, this language
allows the inclusion of new operators defined by the user as
well as defining hierarchical modular systems [1].

The different versions of Xfuzzy have been distributed
freely under the GNU General Public License. The last
stable version, Xfuzzy 3.0, can be downloaded from its
website:  http/www.imse.cnm.es/Xfuzzy. This release
contains a set of CAD tools which share the XFL3 language
and offer Graphical User Interfaces to ease the design flow
at the stages of description, tuning, verification, and
synthesis. They are the following:

(a) xfedit, which eases describing the logical structure of a
fuzzy system, that is, its inputs, outputs, groups of
membership functions for each variable, sets of operators for
each rule base, rule bases, and the system architecture (how
rule bases are interconnected).

(b) xfpkg, which eases defining the function packages,
that is, the code blocks describing the parameters,
mathematical expressions and other features of membership
functions, defuzzification methods, and unity and binary
functions (related, respectively, to linguistic hedges and
fuzzy connectives).

(c) xf2dplot and xf3dplot. to visualize graphically one of
the outputs of the system against 2 or 3 of its inputs.

(d) xfimt, to monitor how the output values are obtained by
inferring from the input ones.

(e) xfsim, to simulate how the fuzzy system behaves
within the application domain.

(D) xf5l, which allows applying a wide set of supervised
learning algorithms (gradient-descent, second-order, Gauss-
Newton, and statistical algorithms).

(2) xfc, xfee, and xfi, which, respectively, translate the
description of the system in XFL3 to C, C++, and Java code.

The reader 1s referred to [2]-[3] to find a wider
description of these tools.

This paper focuses on describing the new release, Xfuzzy
3.1, which is currently being tested and, hence, is not
available yet at the website. The new features added to
XFL3 and to some of the above mentioned tools are
described in Section II. Section III summarizes the new tools
incorporated to automate the process of extracting fuzzy rule
bases from numerical data, to simplify the description of a
fuzzy system, and to synthesize a VHDL.-based description.
All these capabilities are currently being exploited by our
research group to design fuzzy controllers for autonomous
robots and fuzzy processors for still image and video signal




processing, as described in Section IV. Finally, conclusions
are given in Section V.

II. NEW FEATURES OF EXISTING TOOLS

A. Defining families of membership functions

A linguistic variable is defined in Xfuzzy 3 by using a
type object. This definition includes the name of the type,
the description of the universe of discourse (its limits and
discretization), the list of associated linguistic labels, and
their related membership functions. Until now, membership
functions had to be “free” functions selected from a
package, that is, they were defined independently and could
not be explicitly related among them. For example, the
variable “x” shown in Figure 1 had to be defined by XFL3 as
follows:

type Tx [0,100] {
very small xfl.triangle(-25,0,25);
small xfl.triangle(0,25,50) ;

medium xfl.triangle(25,50,75);
large xfl.triangle(50,75,100) ;
very large xfl.triangle(75,100,125);}

A new feature added to XFL3 is that membership
functions can be defined now as members of a family, that
is, as functions explicitly related among them because share
certain parameters. For example, the variable “x” in Figure 1
could be also defined now as follows:

type Tx [0,100] {

family[] =xfl.triangular(25,50,75);
very small family[0];

small family[1];

medium family[2];

large family [3];

very large familyl[4];}

Several reasons have motivated the inclusion of this new
feature. Firstly, the number of parameters to define a family
of membership functions is smaller, which facilitates the
tuning of the fuzzy system and permits the use of some au-
tomatic learning algorithms (such as simulated annealing)
that are not appropriate with a large number of parameters.
Secondly, it is easier to guarantee the linguistic meaning of
the membership functions after applying an automatic
modification process because, by construction, they cannot
evolve to a state with highly overlapped or disordered
functions. Finally, the use of certain families simplifies very
much the hardware synthesis. As a disadvantage, systems
that use families of membership functions cannot reach the
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Figure 1. A linguistic variable and its membership functions.

Type Edition

Mame fiy

Universe of discourse |

Minimum (0.0

Maximum 1.0
Cardinality 256

M.F. Families |

Membership Functions |

ok | Appiy | Reload | Cancel

Figure 2. A family of membership functions.

optimization degree obtained with free functions, due to the
imposed constraints. In general, free membership functions
are more appropriate to describe output variables, while
families of membership functions are specially indicated to
describe input variables. A good practice is to use free
membership functions for variables for which no much
information is available, then perform an automatic tuning
or identification process to acquire some knowledge about
it, and, finally, use this information to employ a suitable
family if possible.

The tools xfedit and xfpkg (in particular) have been
reprogrammed to admit this new feature. As example,
Figure 2 shows the way how a family of membership

functions based on second-order B-splines is shown by
xfedit.

B. Defining crisp modules

The structure of a system is defined in Xfuzzy 3 by using
a system object. This definition includes the name of the
global inputs and outputs and the list of interconnected
modules. Until now, all the modules had to be rule bases
containing ‘if-then’ rules. A new feature added to XFL3 is
that now modules can be crisp, that is, they can implement
any function on its inputs that is described mathematically
by the Java code of its corresponding package. This allows
designing complex systems in which crisp functions such as
arithmetic operations or (de)multiplexers should be
performed as intermediate steps between fuzzy inferences.
As example, Figure 3 shows the main window of xfedit
illustrating a system with fuzzy and crisp modules. The
definition of this structure in XFL3 is as follows:
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Figure 3. A system with fuzzy and crisp modules.
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Figure 4. Using xfpkg to define a crisp module.
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Figure 4 shows how the crisp function “diff2’ associated
with the module ‘substraction’ is included in the package

xfl”.
C. Merging xf2dplot and xf3dplot into xfplot

The previous tools xf2dplof and xf3dplot have been
merged into a unique tool, named xfplot, in the new release
of Xfuzzy. Figure 5 shows the main window of this new tool
visualizing the output of a fuzzy classifier system.
Advantages of this new tool are the inclusion of a ‘File’
menu (which allows saving data into a file) and a
‘Configuration” menu (which allows selecting 2-D or 3-D
graphic mode, a color palette to represent the output values,
and loading or saving a configuration).

III. NEW TOOLS

A, Extracting fuzzy rule bases from numerical data

Xfuzzy 3.0 does not allow obtaining rule bases from
numerical data. They should be translated from linguistic
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Figure 5. Graphical user interface of the tool xfplot.
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Figure 6. Main window of the new tool xfdm.

knowledge, and numerical data were used only to tune the
fine structure of the rule bases (the parameters of the
membership functions). The new release, Xftuzzy 3.1
includes a new tool, named xfdm, developed to also employ
these numerical data to obtain the coarse structure of the rule
base (number of membership functions, number of rules,
etc.). Hence, a new sub-menu ‘data mining’ has been
included within the menu ‘tuning’ in the main window of
Xtuzzy 3.1.

Figure 6 shows the main window of the tool xfdm. It
allows selecting: the grid- or clustering-based algorithm
employed to extract the fuzzy rule base, the file with the
numerical data, the number of inputs and outputs of the rule
base to extract, and the input and system style of that rule
base. The input style means the number and type of
membership functions used to cover the input universes of
discourse (free triangles or Gaussian functions as well as
families of triangles and B-splines can be selected, as shown
in Figure 7). The system style means to specify the name of
the rule base to extract, the prefix used to name the output
variables, the kind of conjunction operator used in the
antecedents, and the type of inference-defuzzification
method applied. The tool permits to identify different rule
bases that could then be connected adequately with the tool
xfedit, so as to describe the whole fuzzy system.

Following the same methodology adopted for the tuning
tool xfsl, this tool xfdm includes a wide set of algorithms
reported in the literature (one of them developed by our
research group [4]) so as to cover as much as possible
different application domains. Among the grid-based
techniques (those which generate a grid partition of the input
spaces prior to generate the rule base), three algorithms can
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be selected which employ a fixed user-defined partition for
the input variables (equal or different): Wang&Mendel,
Nauck, and Senhadji. All of them evaluate which possible
combination of input fuzzy sets is the most activated by each
data (if there is any). In the Wang&Mendel algorithm no rule
selection 1s implemented, so that the extracted rule base can
be very large due to the curse of the dimensionality. Nauck
and Senhadji algorithms avoid this problem since they allow
selecting the maximum number of rules generated according
to an efficiency measure [4]-[5].

The other grid-based algorithm that can be employed with
xfdm 1s named Incremental Grid, which is based on the
proposal in [6]. The tool allows obtaining the rules’
consequents by applying or not learning. This method
usually finds a better covering of the input variables than the
other grid-based algorithms.

Cluster-based techniques generate simultaneously the
rules and the membership functions of the variables from the
clusters found. They usually generate simpler systems than
those obtained by grid-based techniques but with less
linguistic meaning. The tool xfdm includes four algorithms
that employ a fixed user-defined number of clusters and are
based on the Hard C-means, Fuzzy C-means 7], Gustafson-
Kessel [8], and Gath-Geva [9] algorithms. They finish when
reaching a maximum number of iterations or a minimum
variation in the obtained clusters. The tool also includes an
algorithm based on the proposal in [10], named Incremental
Clustering, which finds the adequate number of clusters
iteratively. This algorithm is configured by specifying the
radius of influence of the obtained clusters and the
maximum number of clusters to obtain.

B. Simplifying fuzzy rule bases

Rule bases obtained from heuristic knowledge and/or
numerical data and possibly adjusted by supervised learning
algorithms can often be translated into simpler systems by
applying simplification algorithms. The new tool xfsp of
Xfuzzy 3.1 allows applying simplification algorithms to
either the variable membership functions or the rule bases.

Figure 8 shows the main window of xfsp when
membership functions (‘types’) are selected to be simplified.
It shows the three simplification processes which can be
applied to them: purge mechanism, clustering and similarity-
based merging method.

The purge mechanism looks for those membership
functions which are not used in any rule base and eliminates
them. This kind of membership functions may appear as a
consequence of previous simplification processes or a non
careful process of heuristic knowledge translation.

The clustering method looks for a reduced number of
clusters (membership function prototypes) within the
original functions. It applies the Hard C-Means algorithm,
(the clusters found are crisp) on the space formed by the
parameters that define the membership functions. The
optimal number of membership function prototypes can be
found automatically by applying validity indexes (Dunn
Separation Index, Davies-Bouldin Index, and Generalized
Dunn Indexes) [11] or can be fixed by the user after the
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Figure 8. Window of xfsp for membership functions simplification.

visual inspection of the original functions. Figure 9a shows
how the membership functions in Figure 8 are reduced from
11 to 5 (the user has selected 5 clusters).

The similarity-based merging process is an iterative
process which looks for the pair of most similar functions
and replaces them by a unique function if the similarity
degree is over a threshold defined by the user. It finishes
when no more functions can be merged. The similarity
measure employed is the one defined by Dubois and Prade
in [12]. Figure 9b shows how the functions in Figure 8 are
reduced from 11 to 7 by applying a threshold of 0.7.

The results of applying clustering and similarity-based
simplifications are similar. Advantages of using similarity-
based method are that functions of different types (a triangle
with a Gaussian, for instance) can be merged (which is not
possible with clustering) and that the use of a threshold
value can be more intuitive for the user. As a drawback, its
computational cost is higher, although this cost is significant
only for very complex systems.

The tool xfsp offers four methods to process the rules of a
module: pruning, compression and expansion methods, and
tabular simplification.

The compression method simply merges all the rules
sharing the same consequent by connecting their antecedents
disjunctively. In the other side, the expansion method
implements the complementary process. They do not really
perform simplification but only help the user to better
understand the rule base. Simplification can be truly carried
out by the pruning method and/or the tabular simplification.

EER

Figure 9. Results with (a) clustering and (b) similarity methods.



The pruning process allows reducing the number of rules
by selecting the most significant ones to the application
problem. Given a set of representative data, this process
evaluates the activation degree of the rules and can
eliminate: (a) the » worst rules, or (b) all the rules except for
the # best rules, or (c) all the rules whose activation degree
is below a threshold, where the parameter # or the threshold
are established by the user.

The best rule simplification method available at xfsp is a
tabular algorithm developed by some of the authors, which
is based on an extension of the Quine-McCluskey algorithm
of Boolean design. Tabular simplification is applied to each
set of rules with the same consequent (although, for the case
of r consequents, r-1 simplifications could be done by using
the condition else for the r-th consequent). It selects the best
‘prime implicants’ to cover a consequent, which is
equivalent to find the simplest rule associated with the
considered consequent [13]. The linguistic hedges available
at XFL3 are exploited to better express the resulting rule. In
particular, the linguistic hedges ‘not equal to” (=), ‘greater
or equal to” (>=), and ‘smaller or equal to’ (<=) are used.

For example, the rule base expressed by XFL3 as follows:

if(iQ0 == 8 & il == V8) ->» out = low;
if(iQ S & il == S} —->» out = low;
if(i0 == 8 & il == M) -» out = low;
if(i0 == 8§ & il == B) ->» out = low;
LA == B &8 dkoEe VB w3 b = Lo
1f(i0 == M & il == VS) -> ocut = high;
1f(i0 == M & il == S) -» out = high;
1f(1i0 == M & il == M) -> out = high;
1f(i0 == M & il == B} -> out = high;
if(i0 = M & il == VB) -> out = low;
1if (10 == B & i1l == V3) -> out = high;
1if (10 == B & i1l == 5) -> out = high;
1if(i0 == B & i1l == M) -> out = high;
if(iQ B & i1l == B) -> out = high;
if(i0 == B & il == VB) -» out = low;

is simplified by xfsp to the following rule base:

1if(i0 I=
1f (10 ==

C. Generating VHDL code

One of the advantages of Xfuzzy 2.0 was its capability of
generating the VHDI, description of a fuzzy system
described by XFL. The new release of Xfuzzy 3, Xfuzzy
3.1, has already the tool xfvhad! to automate the FPGA (Field
Programmable Gate Array) implementation of a fuzzy
system described by XFL3. The implementation follows a
configurable active-rule driven architecture whose modules
are defined and included into a library of parametric cells
which meet the constraints of the employed synthesis tools
(from Xilinx or Synopsys). The tool, whose main window is
shown in Figure 10, allows the user to choose the bit sizes of
the variables, and to select between: (a) memory-based or
arithmetic circuits to implement the membership functions
of the input variables, (b) knowledge base fixed (in a ROM)
or programmable (in a RAM), (¢) ROM implemented as
combinational logic or distributed memory and RAM
implemented as distributed or block memory.

-> out = high;

S & il !'= VB)
S | -> out = low;

il == VB)

FEX
Build izable VHOL i ion for
VHDL generation options
Files and directories information Bitsize i
Input XFL file INVESTIGACIONROMES Al _Bits for LO 6
Prefix for Output files FLC Bits for membership degree 3
Qutput directory CAD_INVESTIGACIONMIROMED4RIFLC Bits: it s
Components library directory | A/HDLID i hip 1 pe |
ion i | s tool i i
Memnwlﬂlﬂ!ﬁéh{ﬁ\u}:k |~| Tool Kilinx XST "
| Map effort used in synthesis
|~ Effort JHgn |-
FPGA family infol | FPGA device information
FPGA Family |sPaRTANZE Device [ 252008-ng 208-6
Extra parameters information | G
| Extra parameters || [v] Generate complementary files
Generate VHOL code | Generate and Synthetize | Close

Figure 10. Main window of the tool xfvhdi.

IV. APPLICATION EXAMPLES

Xfuzzy environment is currently being used by our
research group in the application areas of image processing
and autonomous robotics.

Figure 11 shows several captions of the Xfuzzy tools
(xfedit and xfsim) for designing a fuzzy system that de-
interlaces video sequences. Description, learning, and
verification tools have been specially employed to design
this hierarchical system, which contains two fuzzy modules
connected in cascade. More details about this application
can be found in [14].

Figure 12 shows several captions of the Xfuzzy tools
(xfedit and xfsim) for designing a fuzzy system that controls
the traction and direction motors of a car-like robot so as to
navigate towards a goal configuration with quasi-optimum
paths and avoiding obstacles. Description, identification,
simplification, and synthesis tools have been specially
employed in this system that contains ten fuzzy modules and
three crisp ones. The reader is referred to [15] to find more
details on this application.

V. CONCLUSIONS

The new release of the Xfuzzy environment incorporates
new useful features to define fuzzy systems (such as the
capability of using families of membership functions and
crisp modules) and to verify them (with the improvements to
the tool xfplot). In addition, it includes new tools to generate
fuzzy rule bases from numerical data (the tool xfdm), to
simplify them (the tool xf3p), and to generate VHDL code
(the tool xfvhdl). All these capabilities have allowed our
research group to design efficient fuzzy systems for image
processing and robotic applications.
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