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1. Introduction

FOR a viscous fluid in an open set of R3 with a rugous boundary, it is known that if the
normal velocity vanishes on the boundary (Navier condition), then the fluid behaves as

if the whole velocity vector vanishes on the boundary (adherence condition). This gives a
mathematical explanation of why it is usual for a viscous fluid to impose the adherence con-
dition. The equivalence between the Navier and adherence conditions was proved in [2] for a
periodic rough boundary of small period ε and amplitude ε. In [3] it was considered the case
of a weak roughness, namely the boundary was described by a periodic function of small
period ε and amplitude δε, with δε/ε converging to zero.

Our aim in the present work is to study the relation between the Navier and adherence con-
ditions in the case of a domain of small height ε. Namely, for a Lipschitz bounded open set
ω ⊂ R2 and a function Ψ in W

2,∞
loc (R2), periodic of period Z ′ = (−1/2, 1/2)2, we define Ωε by

Ωε =

{
x = (x′, x3) ∈ ω × R : −δεΨ

(
x′

rε

)
< x3 < ε

}
, (1)

where the parameters rε, δε are chosen non-negative and satisfying

lim
ε→0

rε

ε
= 0, lim

ε→0

δε

rε
= 0, i.e. δε � rε � ε.

We consider a fluid satisfying the Stokes system in Ωε, the Navier condition on the rough
boundary

Γε =

{
x = (x′, x3) ∈ ω × R : x3 = −δεΨ

(
x′

rε

)}
(2)

and (to simplify) the adherence condition on the rest of the boundary ∂Ωε \ Γε,
−µ∆uε +∇pε = f in Ωε, div uε = 0 in Ωε,

uε = 0 on ∂Ωε \ Γε,

uε · ν = 0 on Γε, µ
∂uε

∂ν
parallel to ν on Γε.

(3)

Here f = (f ′, f3) ∈ L2(ω)3, ν denotes the unitary outside normal vector to Ωε in Γε and µ > 0
corresponds to the viscosity of the fluid.

It is well known that (3) has a unique solution (uε, pε) ∈ H1(Ωε)
3 × L2

0(Ωε) (L2
0(Ωε) denotes

the space of functions in L2(Ωε) whose integral in Ωε is zero). Moreover, we can show the
following estimates

−
∫

Ωε

|uε|2dx ≤ Cε4, −
∫

Ωε

|Duε|2dx ≤ Cε2, −
∫

Ωε

|pε|2dx ≤ C. (4)

Our purpose is to study the asymptotic behavior of this system when ε tends to zero. We
show that it depends on

λ = lim
ε→0

δε

r
3
2
ε

√
ε ∈ [0, +∞]. (5)

2. Changes of variables

OUR aim is to study the asymptotic behavior of uε and pε when ε tends to zero. For this
purpose, we use a suitable combination of two changes of variables:

(1) Far of the rough boundary Γε we use a dilatation in the variable x3 in order to have the
functions defined in an open set of fixed height. Namely, we take Ω = ω× (0, 1) and we define
ũε ∈ H1(Ω)3, p̃ε ∈ L2

0(Ω) by

ũε(y) = uε(y
′, εy3), p̃ε(y) = pε(y

′, εy3), a.e. y ∈ Ω. (6)

(2) Near Γε we use an original adaptation ([3]) of the Unfolding Method ([1], [5]), which is
very related to the two-scale convergence method.

3. Main Result

Let (uε, pε) ∈ H1(Ωε)
3 × L2

0(Ωε) be the solution of the Stokes system (3) and let ũε, p̃ε be
defined by (6). Then, there exist v′ ∈ H1(0, 1; L2(ω))2, w ∈ H2(0, 1; H−1(ω)) and p ∈ L2

0(ω),
where p does not depend on y3, such that, up to a subsequence,

ũ′ε
ε2

⇀ v′ in H1(0, 1; L2(ω))2,
ũε,3

ε3
⇀ w in H2(0, 1; H−1(ω)),

p̃ε ⇀ p in L2(Ω).

According to the value of λ defined by (5), we obtain the different expressions for v′ and w
depending on p which satisfies a Reynolds equation:

(i) If λ = +∞, then denoting by PW⊥ the orthogonal projection from R2 to the orthogonal of
the space W = {∇z′Ψ(z′) ∈ R2 : z′ ∈ Z ′}, we have that v′ and p are given by

v′(y) =
(y3 − 1)

2µ

(
y3I + PW⊥

) (
∇y′p(y′)− f ′(y′)

)
, a.e. y ∈ Ω,

−divy′

((
1

3
I + PW⊥

)
(∇y′p− f ′)

)
= 0 in ω,

(
1

3
I + PW⊥

)
(∇y′p− f ′) · ν = 0 on ∂ω.

Moreover, the distribution w is given by w(y) = −
∫ y3

0
divy′v(y′, s)ds, in Ω. (7)

(ii) If λ ∈ (0, +∞), then defining (φ̂i, q̂i), i = 1, 2, as solutions of the Stokes systems
−µ∆zφ̂

i +∇zq̂
i = 0 in R2 × (0, +∞), divz φ̂i = 0 in R2 × (0, +∞),

φ̂i
3(z

′, 0) + ∂ziΨ(z′) = 0, ∂z3(φ̂
i)′(z′, 0) = 0, φ̂i(., z3), q̂i(., z3) periodic of period Z ′,

Dzφ̂
i ∈ L2(Z ′ × (0, +∞))3×3, q̂i ∈ L2(Z ′ × (0, +∞)),

and R ∈ R2×2 by Rij = µ

∫
Z ′×(0,+∞)

Dzφ̂
i : Dzφ̂

j dz, ∀ i, j ∈ {1, 2}, we have

v′(y) =
(y3 − 1)

2µ

y3I +

(
I +

λ2

µ
R

)−1
(∇y′p(y′)− f ′(y′)

)
, a.e. y ∈ Ω,

where p satisfies


−divy′

1

3
I +

(
I +

λ2

µ
R

)−1
 (∇y′p− f ′)

 = 0 in ω,1

3
I +

(
I +

λ2

µ
R

)−1
 (∇y′p− f ′) · ν = 0 on ∂ω.

Moreover, the distribution w is given by (7).

(iii) If λ = 0, then v′(y) =
(y2

3 − 1)

2µ
(∇y′p(y′)− f ′(y′)), a.e. y ∈ Ω,

where p satisfies −∆y′p = −divy′f
′ in ω,

∂p

∂ν
= f ′ · ν on ∂ω.

Moreover, the distribution w is zero.

4. Conclusions

• For λ = +∞, the main result shows that uε, pε behave as if in (3) we had assumed that Γε

was the plane boundary {x3 = 0} and that the boundary condition on Γε was

uε ∈ W⊥ × {0} on Γε, ∂3u
′
ε ∈ W. (8)

In particular, if W agrees with R2 we deduce that the Navier condition in (3) is equivalent to
the adherence condition uε = 0 on {x3 = 0}.

• For λ ∈ (0, +∞), the result shows that the asymptotic behavior of uε and pε is the same that
if Γε was the plane boundary {x3 = 0} and the boundary condition on Γε was

uε,3 = 0 on Γε, −µ∂3u
′
ε + λ2Ru′ε = 0 on Γε, (9)

i.e. although the roughness is not strong enough to deduce that the Navier condition on Γε is
equivalent to (8), it is sufficient to provide the friction coefficient λ2Ru′ε in (9).

• For λ = 0, the roughness is so weak that uε and pε behave as if Γε was plane.

The critical size λ ∈ (0, +∞) can be considered as the general one. In fact, the cases λ = 0
and λ = +∞ can be obtained from this one by taking the limit when λ tends to zero and
infinity respectively.
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