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General objective:

Study some null controllability problems for non-scalar parabolic systems.

Non-scalar parabolic systems: arise in chemical reactions, when we model
problems from the Biology and in a wide variety of physical situations.

In this course we will deal with non-scalar systems which in fact are coupled
parabolic scalar equations. We do not present results relating to the
controllability problems of systems which come from fluid mechanics as
Stokes, Navier-Stokes, ...
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GOAL:

1 Show the important differences between scalar and non-scalar problems.

2 Give necessary and sufficient conditions (Kalman conditions) which
characterize the controllability properties of these systems.

We will only deal with

1 Linear systems
2 In general, “simple" Parabolic Systems: Coupling Matrices of

Constant Coefficients.
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1. Introduction
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1. Introduction
Let us fix T > 0 and let H and U be two separable Hilbert spaces. Let us
consider T0 ∈ (0,T) and the autonomous system:

(1)

{
y′ = Ay + Bu on (T0,T),

y(T0) = y0 ∈ H.

A and B are “appropriate” operators, y0 ∈ H is the initial datum at t = T0 and
u ∈ L2(T0,T; U) is the control (exerted by means of the operator B).

Assume the problem is well-posed: ∀(y0, u) there exists a unique weak
solution y ∈ C0([T0,T]; H) to (1) which depends continuously on the data.

Let us denote by y(t; T0, y0, u) ∈ H the solution to the system and by
y(t; y0, u) = y(t; 0, y0, u).
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1. Introduction
Exact Controllability: System (1) is exactly controllable at time T if
∀(y0, y1) ∈ H × H, there exists u ∈ L2(0,T; U) s.t. the solution y of (1)
satisfies y(T; y0, u) = y1.

Controllability to trajectories: System (1) is controllable to
trajectories at time T if ∀(y0, ŷ0) ∈ H × H and û ∈ L2(0,T; U), there
exists u ∈ L2(0,T; U) s.t. the corresponding weak solution to (1)
satisfies y(T; y0, u) = y(T; ŷ0, û).
Null Controllability: System (1) is null controllable at time T if
∀y0 ∈ H there exists u ∈ L2(0,T; U) s.t. y(T; y0, u) = 0.
Linear case: Controllability to trajectories and null controllability are
equivalent.
Approximate Controllability: System (1) is approximately
controllable at time T if ∀(y0, y1) ∈ H × H, and every ε > 0, there
exists u ∈ L2(0,T; U) s.t.

‖y(T; y0, u)− y1‖H ≤ ε.
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1. Introduction

Remark

For the non-autonomous system

(2) y′ = A(t)y + B(t)u in (0,T) ,

it is possible to give stronger definitions of controllability: It will be said that
equation (2) is totally exactly controllable on (0,T) if ∀T0,T1 ∈ (0,T), with
T0 < T1, and ∀(y0, y1) ∈ H × H there exists u ∈ L2(T0,T1; H) such that the
solution to (2) in (T0,T1) satisfies y(T1; T0, y0, u) = y1.

Following the previous definition we can also define the concepts for
equation (2): totally exactly controllable to trajectories on (0,T), totally
null controllable on (0,T) and totally approximately controllable on
(0,T). In the autonomous case the different concepts of controllability at time
T and total controllability on (0,T) coincide.
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2. The parabolic scalar case

Remark

Problems (1) and (2) are linear. Then, System (1) (resp. System (2)) is null
controllable at time T (resp., totally null controllable on (0,T)) if and only
if the system is exactly controllable to the trajectories at time T (totally
exactly controllable to trajectories on (0,T)).

Remark

We will deal with parabolic problems. So, due to the regularizing effect of
these problems, it is well-known that the exact controllability result fails.
Therefore, in this course we will study null or approximate controllability
results for the system under consideration.
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1. Introduction
In this course we are going to deal with time-dependent second order
elliptic operators. Thus, let Ω ⊂ RN be a bounded domain, N ≥ 1, with
boundary ∂Ω of class C2 and let us fix T > 0.
Notation: QT = Ω× (0,T), ΣT = ∂Ω× (0,T) and, for O ⊆ Ω or O ⊆ ∂Ω,
1O denotes the characteristic function of the set O.
Let L(t) be the operator given by:

(3) L(t)y = −
N∑

i,j=1

∂

∂xi

(
αij(x, t)

∂y
∂xj

)
+ D(x, t) · ∇y + c(x, t)y.

The coefficients of L satisfy

(4)

{
αij ∈ W1,∞(QT) (1 ≤ i, j ≤ N), D ∈ L∞(QT ;RN), c ∈ L∞(QT),

αij(x, t) = αji(x, t) ∀(x, t) ∈ QT ,

and the uniform elliptic condition: there exists a0 > 0 such that

(5)
N∑

i,j=1

αij(x, t)ξiξj ≥ a0|ξ|2, ∀ξ ∈ RN , ∀(x, t) ∈ QT .
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2. The parabolic scalar case
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2. The parabolic scalar case
Let ω ⊆ Ω be an open subset, Γ0 ⊆ ∂Ω a relative open subset and let us fix
T > 0.
We consider the linear problems for the operator L(t):

(6)

{
∂ty + L(t)y = v1ω in QT ,

y = 0 on ΣT , y(·, 0) = y0 in Ω,

(7)

{
∂ty + L(t)y = 0 in QT ,

y = h1Γ0 on Σ, y(·, 0) = y0 in Ω.

In (6) and (7), y(x, t) is the state, y0 is the initial datum and v and h are the
control functions (which are localized in ω -distributed control- or on Γ0
-boundary control-).

Question: Functional spaces for y0, v and h?
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2. The parabolic scalar case
CONTROL SPACES:

Distributed control problem: We can take L2(QT) as control space and
L2(Ω) as initial datum space. The problem is well-posed: ∀y0 ∈ L2(Ω)
and v ∈ L2(QT) there exists a unique weak solution to (6)
y ∈ C0([0,T]; L2(Ω)) which depends continuously on the data.

Boundary control problem:
1 If in (3), D ≡ 0 in QT , we can take L2(ΣT) as control space and H−1(Ω)

as initial datum space. Again, the problem is well-posed: ∀y0 ∈ H−1(Ω)
and h ∈ L2(ΣT) there exists a unique weak solution to (7)
y ∈ C0([0,T]; H−1(Ω)) which depends continuously on the data. Solution
defined by transposition.

2 In the general case, we can take L2(Ω) as initial datum space and

X(Γ0) = {h : h = H|ΣT with H ∈ L2(0,T; H1
0(Ω̃)), Ht ∈ L2(0,T; H−1(Ω̃))},

as control space, where Ω̃ is an open set s.t. Ω ⊂ Ω̃, ∂Ω ∩ Ω̃ ⊂⊂ Γ0 and
Ω̃ \ Ω 6= ∅. The problem is well-posed and the solution depends
continuously on the data.
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2. The parabolic scalar case
Theorem

Let us fix T > 0. The following conditions are equivalent

1 For any Ω ⊂ RN , bounded open set with Ω having a C2 boundary, any
ω ⊂ Ω, nonempty open subset, and any coefficients αij (1 ≤ i, j ≤ N), D
and c, satisfying (4) and (5), System (6) is null controllable in L2(Ω) at
time T > 0 with distributed controls v ∈ L2(QT).

2 For any Ω ⊂ RN , bounded open set with Ω having a C2 boundary, any
Γ0 ⊂ ∂Ω, nonempty relative open subset, and any coefficients αij

(1 ≤ i, j ≤ N), D and c, satisfying (4) and (5), System (7) is null
controllable in L2(Ω) at time T > 0 with boundary controls
h ∈ L2(0,T; H1/2(∂Ω)).

Proof: We will use in a fundamental way that the problem under
consideration is scalar (in fact, same number of equations and controls). We
follow some ideas from [BODART,G.-B.,PÉREZ-GARCÍA] Comm. PDE
(2004) and [G.-B.,PÉREZ-GARCÍA] Asymp. Anal. (2006). · · ·
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2. The parabolic scalar case

Remark (Regularizing effect)

The previous proof shows that if the distributed and boundary null
controllability results for Systems (6) and (7) are valid with controls in
L2(QT) and L2(0,T; H1/2(∂Ω)), then the previous systems are null
controllable with controls in L∞(QT) and L∞(ΣT) (and even better for
regular coefficients).

Remark

In the proof of Theorem 1 we have strongly used that the operator ∂t + L(t) is
scalar. We will see that the previous equivalence is not valid for non-scalar
parabolic operators.
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2. The parabolic scalar case
From now on, we will concentrate on the distributed control problem (6).
Let us introduce the adjoint problem

(8)

{
−∂tϕ+ L∗(t)ϕ = 0 in QT ,

ϕ = 0 on ΣT , ϕ(·,T) = ϕT in Ω,

where ϕT ∈ L2(Ω) is given and L∗(t) is the operator given by

L∗(t)ϕ = −
N∑

i,j=1

∂

∂xi

(
αij(x, t)

∂ϕ

∂xj

)
−∇ · (Dϕ) + c(x, t)ϕ a.e. in QT .

This problem is also well-posed and the solution depends continuously on
ϕT : there exists a constant C̃ > 0 such that ∀ϕT ∈ L2(Ω) System (8) has only
one solution ϕ ∈ L2(0,T; H1

0(Ω)) ∩ C0([0,T]; L2(Ω)) and it satisfies

‖ϕ‖L2(0,T;H1
0(Ω)) + ‖ϕ‖C0([0,T];L2(Ω)) ≤ C̃‖ϕT‖L2(Ω).
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2. The parabolic scalar case

Theorem (Observability Inequality)

Under the previous assumptions, System (6) is null controllable at time T > 0
if and only if there exists a constant C > 0 s.t.

(9) ‖ϕ(·, 0)‖2
L2(Ω) ≤ C

∫∫
ω×(0,T)

|ϕ|2dxdt, ∀ϕT ∈ L2(Ω),

where ϕ is the solution of (8) associated to ϕT .

Remark

The Observability Inequality (9) in particular implies a better result: If (9)
holds then, ∀y0 ∈ L2(Ω) there is a distributed control v ∈ L2(QT) s.t.

‖v‖2
L2(QT) ≤ C‖y0‖2

L2(Ω) and y(·,T) = 0,

being y the solution to (6) corresponding to y0 and C > 0 the constant in (9).
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2. The parabolic scalar case
1. The one-dimensional case: The moment method

We follow [FATTORINI,RUSSELL] Arch. Rat. Mech. Anal. (1971).
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2. The parabolic scalar case
1. The one-dimensional case: The moment method

Consider the boundary null controllability problem for the classical
one-dimensional heat equation in (0, π) (for simplicity):

(10)


yt − yxx = 0 in QT = (0, π)× (0,T),

y(0, ·) = v, y(π, ·) = 0 on (0,T),

y(·, 0) = y0 in (0, π),

with y0 ∈ H−1(0, π) and v ∈ L2(0,T). The problem is well-posed and the
solution (defined by transposition) depends continuously on the data y0 and v.
The operator −∂xx on (0, π) with homogenous Dirichlet boundary conditions
admits a sequence of eigenvalues and normalized eigenfunctions given by

λk = k2, φk(x) =

√
2
π

sin kx, k ≥ 1, x ∈ (0, π)

which is a Hilbert basis of L2(0, π). In the sequel, we will use the notation

yk = (y, φk)L2(0,π), ∀y ∈ L2(0, π).
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2. The parabolic scalar case
1. The one-dimensional case: The moment method

The idea of the moment method is simple: Given y0 ∈ H−1(0, π),
ϕT ∈ H1

0(0, π) and v ∈ L2(0,T), then

〈y(·,T), ϕT〉 − 〈y0, ϕ(·, 0)〉 =

∫ T

0
v(t)ϕx(0, t) dt.

where y is the solution to (10) and ϕ is the solution to the adjoint problem{
−ϕt − ϕxx = 0 in QT ,

ϕ = 0 on {0, 1} × (0,T), ϕ(·,T) = ϕT in (0, π).

Property

v ∈ L2(0, π) is a null control for system (10) (i.e., v ∈ L2(0,T) is a control
s.t. the solution y to (10) satisfies y(·,T) = 0 in (0, π)) if and only if

−〈y0, ϕ(·, 0)〉 =

∫ T

0
v(t)ϕx(0, t) dt, ∀ϕT ∈ H1

0(0, π).
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2. The parabolic scalar case
1. The one-dimensional case: The moment method

Given y0 ∈ H−1(0, π), there exists a control v ∈ L2(0,T) such that the
solution y to (10) satisfies y(·,T) = 0 in (0, π) if and only if there exists

v ∈ L2(0,T) satisfying

−〈y0, e−λkTφk〉 =

∫ T

0
v(t)e−λk(T−t)φk,x(0) dt, ∀k ≥ 1,

i.e., if and only if v ∈ L2(0,T) and∫ T

0
e−λk(T−t)v(t) dt = −1

k

√
π

2
e−λkTy0,k ≡ ck ∀k ≥ 1.

This problem is called a moment problem. We have the following result:

Theorem

For any y0 ∈ H−1(0, π) and T > 0, there exists v ∈ L2(0,T) solution to the
previous moment problem. That is, v is a null control for equation (10).
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2. The parabolic scalar case
1. The one-dimensional case: The moment method

Proof: Biorthogonal Families: ([FATTORINI,RUSSELL] Arch. Rat. Mech.
Anal. (1971)). There exists a family {pk}k≥1 ⊂ L2(0,T) satisfying

1

∫ T

0
e−λktpl(t) dt = δkl, ∀k, l ≥ 1.

2 ∀ε > 0, ∃C(ε,T) > 0 s.t. ‖pk‖L2(0,T) ≤ C(ε,T)eελk .
The control is obtained as a linear combination of {pk}k≥1, that is,

v(T − s) =
∑
k≥1

ck pk(s) = −
√
π

2

∑
k≥1

1
k

e−λkTy0,k pk(s)

and the previous bounds are used to prove that this combination converges in
L2(0,T).

Two ingredients:

Existence and bounds of a biorthogonal family to real exponentials.
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2. The parabolic scalar case
1. The one-dimensional case: The moment method

Remark

Theorem 2.2 is a consequence of the existence of a biorthogonal family in
L2(0,T) to the sequence {e−λkt}k≥1 (λk = k2), which satisfies appropriate
bounds. In fact, in ([FATTORINI,RUSSELL] Arch. Rat. Mech. Anal. (1971))
the authors prove a general result on existence of a biorthogonal family in
L2(0,T) to {e−Λkt}k≥1 which satisfies appropriate bounds for sequences
Λ = {Λk}k≥1 ⊂ R+ such that∑

k≥1

1
Λk

<∞ and |Λk − Λl| ≥ ρ|k − l|, ∀k, l ≥ 1.

for a constant ρ > 0.
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2. The parabolic scalar case
1. The one-dimensional case: The moment method

Consequence:

The previous result is valid for any nonempty bounded interval (a, b) and for
any second order operator self-adjoint elliptic operator

Ly = − (α(x)yx)x + c(x)y,

with α ∈ C1([a, b]) and α > 0 in (a, b), and c ∈ C0([a, b]). Then, if we apply
Theorem 1, we also get a distributed controllability result for the problem

yt + Ly = v1ω in QT = (a, b)× (0,T),

y(a, ·) = 0, y(b, ·) = 0 on (0,T),

y(·, 0) = y0 in (a, b),

with y0 ∈ L2(0, π) and ω ⊆ (a, b), a nonempty open subset.
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2. The parabolic scalar case
2. General case: Carleman Inequalities

We follow [FURSIKOV,IMANUVILOV] 1996 and
[IMANUVILOV,YAMAMOTO] 2003.
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2. General case: Carleman Inequalities

We will consider the following parabolic equation:

(11)


−∂tz + L0(t)z = F0 +

N∑
i=1

∂Fi

∂xi
in QT ,

z = 0 on ΣT , z(·,T) = zT in Ω,

with zT ∈ L2(Ω), Fi ∈ L2(QT), i = 0, 1, . . . ,N, and L0(t) the self-adjoint
parabolic operator given by

L0(t)y = −
N∑

i,j=1

∂

∂xi

(
αij(x, t)

∂y
∂xj

)
with coefficients αij satisfying (4) and (5).
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2. General case: Carleman Inequalities

Lemma

Let B ⊂ Ω be a nonempty open subset and d ∈ R. Then, ∃ β0 ∈ C2(Ω)
(positive and only depending on Ω and B) and C̃0, σ̃0 > 0 (only depending on
Ω, B and d) s.t. for every zT ∈ L2(Ω), the solution z to (11) satisfies
(12)

I(d, z) ≤ C̃0

(
sd
∫∫
B×(0,T)

e−2sβγ(t)d|z|2

+ sd−3
∫∫

QT

e−2sβγ(t)d−3|F0|2 + sd−1
N∑

i=1

∫∫
QT

e−2sβγ(t)d−1|Fi|2
)
,

∀s ≥ s̃0 = σ̃0 (T + T2); γ(t) = t−1(T − t)−1 , β(x, t) = β0(x)/t(T − t)

and I(d, z) ≡ sd−2
∫∫

QT

e−2sβγ(t)d−2|∇z|2 + sd
∫∫

QT

e−2sβγ(t)d|z|2 .
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2. General case: Carleman Inequalities

Lemma

When Fi ≡ 0 for 1 ≤ i ≤ N, ∃ C̃1 and σ̃1 (which only depend on Ω, B and d)
s.t., ∀zT ∈ L2(Ω), the solution z to (11) satisfies
(13)

I1(d, z) ≤ C̃1

(
sd
∫∫
B×(0,T)

e−2sβγ(t)d|z|2 + sd−3
∫∫

QT

e−2sβγ(t)d−3|F0|2
)
,

for all s ≥ s̃1 = σ̃1 (T + T2) where

I1(d, z) ≡ sd−4
∫∫

QT

e−2sβγ(t)d−4 (|∂tz|2 + |∆z|2
)

+ I(d, z) .

Proof: See [FURSIKOV,IMANUVILOV] 1996; [IMANUVILOV,YAMAMOTO]
(2003) and [FERNÁNDEZ-CARA,GUERRERO] SICON (2006).
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2. General case: Carleman Inequalities

Corollary
There exists a positive constant C0 = C0(Ω, ω) such that for every
ϕT ∈ L2(Ω) and ϕ the corresponding solution to (8), the observability
inequality (9) holds with

C = exp
(

C0

(
1 +

1
T

+ ‖c‖2/3
∞ + ‖D‖2

∞

))
.

Proof: We follow [FERNÁNDEZ-CARA,ZUAZUA] Ann. IHP (2000) and
[DOUBOVA,FERNÁNDEZ-CARA,MG-B,ZUAZUA] SICON (2002).
The Carleman inequality (12) applied to problem (8) implies (B ≡ ω, d = 3)

s
∫∫

QT

e−2sβγ(t)|∇ϕ|2 + s3
∫∫

QT

e−2sβγ(t)3|ϕ|2

≤ C̃0

(
s3
∫∫

ω×(0,T)
e−2sβγ(t)3|ϕ|2

+ ‖c‖2
∞

∫∫
QT

e−2sβ|ϕ|2 + s2‖D‖2
∞

∫∫
QT

e−2sβγ(t)2|ϕ|2
)
.
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2. General case: Carleman Inequalities

As a consequence we can prove that for
s ≥ C1(T + T2 + T2(‖c‖2/3

∞ + ‖D‖2
∞)) (C1 = C1(Ω, ω)) one has

[sγ(t)]3 − C̃0‖c‖2
∞ − C̃0[sγ(t)]‖D‖2

∞ ≥
1
2

[sγ(t)]3 .

Consequently, for s = C1(T + T2 + T2(‖c‖2/3
∞ + ‖D‖2

∞)) that∫∫
QT

e−2sβt−3(T − t)−3|ϕ|2 ≤ C̃1

∫∫
ω×(0,T)

e−2sβt−3(T − t)−3|ϕ|2

and therefore∫∫
Ω×(T/4,3T/4)

|ϕ|2 ≤ eC(1+1/T+‖c‖2/3
∞ +‖D‖2

∞)

∫∫
ω×(0,T)

|ϕ|2.

This last inequality combined with energy estimates implies (9) and the
proof is complete.
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2. The parabolic scalar case
2. General case: Carleman Inequalities

Corollary

Let us fix T > 0, Ω ⊂ RN , ω ⊆ Ω and Γ0 ⊆ ∂Ω (arbitrary) as before. Then,
there exist positive constants C0 = C0(Ω, ω) and Ĉ0 = Ĉ0(Ω,Γ0) s.t.

1 ∀y0 ∈ L2(Ω) there is a control v ∈ L2(Ω) which satisfies

‖v‖2
L2(QT) ≤ eC0(1+1/T+‖c‖2/3

∞ +‖D‖2
∞)‖y0‖2

L2(Ω),

and y(·,T) = 0 in Ω, (y is the solution to (6) associated to y0 and v).

2 ∀y0 ∈ L2(Ω) there is a control h ∈ L2(0,T; H1/2(Ω)) which satisfies

‖h‖2
L2(0,T;H1/2(Ω))

≤ eĈ0(1+1/T+‖c‖2/3
∞ +‖D‖2

∞)‖y0‖2
L2(Ω),

and y(·,T) = 0 in Ω, (y is the solution to (7) associated to y0 and v and,
in fact, y ∈ L2(0,T; H1(Ω)) ∩ C0([0,T]; L2(Ω))).
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2. General case: Carleman Inequalities

Remark

It is important to point out that the boundary null controllability result for
problem (7), when the coefficient D of L(t) (see (3)) is regular enough, can be
obtained from an appropriate boundary Carleman inequality for problem (11)
with Fi ≡ 0, 1 ≤ i ≤ N. This Carleman inequality is like (13) for an
appropriate weight function β̃0 ∈ C2(Ω) (which depends only on Ω and Γ0)
instead of β0 and with the local term

sd−2
∫∫

Γ0×(0,T)
e−2s β̃0

t(T−t)γ(t)d−2
∣∣∣∣ ∂z
∂n

∣∣∣∣2
instead of the integral over B × (0,T) in the right hand side of (13) (z is the
solution to (11) associated to zT ∈ L2(Ω)).
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2. The parabolic scalar case
3. Final comments in the scalar case

1. The null controllability property for the N-dimensional case was solved
independently by G. Lebeau and L. Robbiano (for the heat equation) and by
A. Fursikov and O. Imanuvilov (for a general parabolic equation). With a
different approach, Lebeau-Robbiano obtained the distributed null
controllability result for System (6){

∂ty + L0y = v1ω in QT ,
y = 0 on ΣT , y(·, 0) = y0 in Ω,

when L0 is a self-adjoint elliptic operator independent of t. For more details,
see [LEBEAU,ROBBIANO] Comm. P.D.E. (1995).

2. Until now, we have only dealt with the null controllability problem for a
scalar parabolic system with distributed and boundary controls. For the
corresponding approximate controllability we can obtain similar results:
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3. Final comments in the scalar case

Approximate controllability

Proposition (Distributed control)

System (6) is approximately controllable at time T > 0 if and only if the
adjoint problem (8) satisfies the unique continuation property: “If ϕ is a
solution to (8) and ϕ = 0 in ω × (0,T), then ϕ ≡ 0 in QT”.

Remark (Boundary control)

In the case of System (7) we can get a similar result. In this case the unique
continuation property for System (8) is: “If ϕ is a solution to (8) and
∂nϕ = 0 on Γ0 × (0,T), then ϕ ≡ 0 in QT”.

Theorem

System (6) (resp. System (7)) is approximately controllable at time T > 0, for
any ω and T > 0 (resp., for any Γ0 and T).
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2. The parabolic scalar case
3. Final comments in the scalar case

Remark

The distributed controllability result for System (6) is equivalent to the
boundary controllability result for System (7).

Summarizing:

System (6) and system (7) are approximately controllable and exactly
controllable to trajectories at time T .

The controllability properties of both systems are equivalent.
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3. Final comments in the scalar case
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3. Finite-dimensional systems
Let us consider the autonomous linear system

(14) y′ = Ay + Bu on [0,T], y(0) = y0,

where A ∈ L(Cn) and B ∈ L(Cm,Cn) are constant matrices, y0 ∈ Cn and
u ∈ L2(0,T;Cm) is the control.

Problem:

Given y0, yd ∈ Cn, is there a control u ∈ L2(0,T;Cm) such that the solution y
to the problem satisfies

y(T) = yd????

Let us define (controllability matrix)

[A |B] = (B , AB , A2B , · · · , An−1B) ∈ L(Cnm;Cn).

On the other hand, let {θl}1≤l≤p̂ ⊂ C be the set of distinct eigenvalues of A∗.
For l : 1 ≤ l ≤ p̂, we denote by ml the geometric multiplicity of θl. The
sequence {wl,j}1≤j≤ml

will denote a basis of the eigenspace associated to θl.
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3. Finite-dimensional systems
The following classical result can be found in

R. KALMAN, Y.-CH. HO, K. NARENDRA, Controllability of linear
dynamical systems, 1963.
and gives a complete answer to the problem of controllability of finite
dimensional autonomous linear systems:

Theorem

Under the previous assumptions, the following conditions are equivalent

1 System (14) is exactly controllable at time T, for every T > 0.

2 There exists T > 0 such that system (14) is exactly controllable at time T.

3 rank [A |B] = n or ker[A |B]∗ = {0} (Kalman rank condition).

4 Hautus test: rank
(

A∗ − θlIn

B∗

)
= n, ∀l : 1 ≤ l ≤ p̂.

5 rank [B∗wl,1 , B∗wl,2 , · · · , B∗wl,ml ] = ml, for every l : 1 ≤ l ≤ p̂.
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3. Finite-dimensional systems
Remark

1 The four controllability concepts (exact, exact to trajectories, null and
approximate controllability) for System (15) are equivalent
(finite-dimensional space).

2 Observe that {B∗wl,1,B∗wl,2, . . . ,B∗wl,ml} ⊂ Cm. Condition 5 in
Theorem 4 says this set is linearly independent for any l : 1 ≤ l ≤ p̂. In
particular, ml ≤ m ∀l : 1 ≤ l ≤ p̂.

3 Given the o.d.s. (adjoint problem)

−ϕ′ = A∗ϕ in [0,T], ϕ(T) = ϕT ∈ Cn,

it is not difficult to prove the following result: “System (14) is exactly
controllable at time T if and only if the following property for the
adjoint problem holds (unique continuation property)

If B∗ϕ(·) = 0 on [0,T], then ϕT ≡ 0."
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3. Finite-dimensional systems
Consider now the case of time dependent matrices:

(15) x′ = A(t)x + B(t)u on [0,T],

where A ∈ Cn−2([0,T];L(Rn)) and B ∈ Cn−1([0,T];L(Rm,Rn)) are given
and u ∈ L2(0,T;Rm) is a control.
Let us define

 B0(t) = B(t),

Bi(t) = A(t)Bi−1(t)− d
dt

Bi−1(t),

(1 ≤ i ≤ n− 1) and, we introduce the Kalman matrix denoted (as in the
autonomous case) by [A |B] ∈ C0([0,T];L(Rnm;Rn)) and given by:

[A |B](t) = (B0(t) , B1(t) , · · · , Bn−1(t)) .

(When A and B are constant matrices, this matrix coincides with the
controllability matrix).
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3. Finite-dimensional systems

(15) x′ = A(t)x + B(t)u on [0,T],

With the previous notation, one has:

Theorem (Silverman-Meadows)

Under the previous assumptions, one has:

1 If there exists t0 ∈ [0,T] such that rank [A |B](t0) = n, then System (15)
is exactly controllable at time T.

2 System (15) is totally exactly controllable on (0,T) if and only if there
exists E, a dense subset of (0,T), such that rank [A |B](t) = n for every
t ∈ E.

In the particular case in which A and B are constant matrices, the exact
controllability of System (15) is equivalent to the Kalman rank condition.
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3. Finite-dimensional systems

Remark

The first item in Theorem 3.1 gives a sufficient condition for the
controllability of System (15) on (0,T) but, in this time-dependent case, this
condition is not necessary (see [CORON], Control and Nonlinearity, 2007).
Nevertheless, when A and B are analytic on (0,T) this condition is also
necessary.
Again, the four controllability concepts for System (15) are equivalent but, in
this case the positive controllability result depends on the final observation
time T > 0.
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3. Finite-dimensional systems

Goal

We have a complete characterization of the controllability results for
finite-dimensional linear ordinary differential systems (a Kalman condition).
Is it possible to obtain similar results for Partial Differentials Systems? We
will focus on coupled linear parabolic systems.

What are the possible generalizations to Systems of
Parabolic Equations?
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4. Two simple examples
1. Distributed null controllability of a linear reaction-diffusion

system
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4. Two simple examples
1. Distributed null controllability of a linear reaction-diffusion system

Let us consider the 2× 2 linear reaction-diffusion system

(16)

 yt − D∆y =

(
a11 a12
a21 a22

)
y +

(
1
0

)
v1ω in QT ,

y = 0 on ΣT , y(·, 0) = y0 in Ω.

Here Ω, ω and T are as before, y0 ∈ L2(Ω;R2), v ∈ L2(QT) is the control, and

D =

(
d1 0
0 d2

)
, d1, d2 > 0 (A =

(
a11 a12
a21 a22

)
, B =

(
1
0

)
).

One has

Theorem

System (16) is exactly controllable to trajectories at time T if and only if

det [A |B] := det [B , AB] 6= 0⇐⇒ a21 6= 0.
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4. Two simple examples
1. Distributed null controllability of a linear reaction-diffusion system

Proof: =⇒ : If a21 = 0, then y2 is independent of v.

⇐= : The controllability result for system (16) is equivalent to the
observability inequality: ∃C > 0 such that

‖ϕ1(·, 0)‖2
L2 + ‖ϕ2(·, 0)‖2

L2 ≤ C
∫∫

ω×(0,T)
|ϕ1(x, t)|2 dx dt,

where ϕ is the solution associated to ϕ0 ∈ L2(Ω;R2) of the adjoint problem:

(17)
{
−ϕt − D∆ϕ = A∗ϕ in Q,
ϕ = 0 on Σ, ϕ(·,T) = ϕ0 in Ω.

It is a consequence of the global Carleman inequality (13) for L0 = −di∆
(i = 1, 2).
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4. Two simple examples
1. Distributed null controllability of a linear reaction-diffusion system

Coming back to the adjoint problem for system (17), if we apply to z = ϕ1
and z = ϕ2 inequality (13) in B = ω0 ⊂⊂ ω with d = 3. After some
computations we get

I1(3, ϕ1) + I1(3, ϕ2) ≤ C̃1s3
∫∫

ω0×(0,T)
e−2sα[t(T − t)]−3 (|ϕ1|2 + |ϕ2|2

)
,

∀s ≥ s̃2 = σ̃2(Ω, ω0)(T + T2).
We now use the first equation in (17), a21ϕ2 = −(ϕ1,t + ∆ϕ1 + a11ϕ1) , to
prove (ε > 0): · · · ([DE TERESA], Comm. PDE, (2000))

s3
∫∫

ω0×(0,T)
e−2sα[t(T − t)]−3|ϕ2|2 ≤ εI1(3, ϕ2)

+
C
ε

s7
∫∫

ω×(0,T)
e−2sα[t(T − t)]−7|ϕ1|2.

∀s ≥ s̃2 = σ̃2(Ω, ω0)(T + T2).
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1. Distributed null controllability of a linear reaction-diffusion system

From the two previous inequalities (global Carleman estimate)

I(ϕ1) + I(ϕ2) ≤ C2s7
∫∫

ω×(0,T)
e−2sα[t(T − t)]−7|ϕ1|2,

∀s ≥ s1 = σ1(Ω, ω0)(T + T2). Combining this inequality and energy
estimates for system (17) we deduce the desired observability inequality.
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4. Two simple examples
1. Distributed null controllability of a linear reaction-diffusion system

Remark

System (16) is always controllable if we exert a control in each equation
(two controls).

The controllability result for system (16) is independent of the diffusion
matrix D. We will see that the situation is more intricate if in the system
a general control vector B ∈ R2 is considered.

The same result can be obtained for the distributed approximate
controllability at time T . Therefore, approximate and null
controllability are equivalent concepts (distributed case).

The proof of the sufficient part of Theorem 4.1 is still valid when
A ∈ L∞(QT ;L(R2)) under the assumption: There exist an open subset
ω0 ⊂⊂ ω and T0,T1 ∈ (0,T), with T0 < T1 s.t.

a21(x, t) ≥ a0 > 0 or −a21(x, t) ≥ a0 > 0 in ω0 × (T0,T1).
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1. Distributed null controllability of a linear reaction-diffusion system
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion

system
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

Let us now consider the boundary controllability problem for the
one-dimensional linear reaction-diffusion system:

(18)


yt − Dyxx = Ay in QT = (0, π)× (0,T),

y|x=0 =

(
1
0

)
v, y|x=π = 0 on (0,T),

y(·, 0) = y0 in (0, π),

with y0 ∈ H−1(0, π;R2), v ∈ L2(0,T) is the control and

D =

(
d1 0
0 d2

)
, d1, d2 > 0 (d1 6= d2) , and A =

(
0 0
1 0

)
.

Question

Are the controllability properties of system (18) independent of d1 and d2???
NO.
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

As before, system (18) is null controllable at time T if and only if the
observability inequality

‖ϕ1(·, 0)‖2
H1

0(0,π)
+ ‖ϕ2(·, 0)‖2

H1
0(0,π)

≤ C
∫ T

0
|ϕ1,x(0, t)|2 dt,

holds. Again ϕ is the solution associated to ϕ0 ∈ H1
0(0, π;R2) of the adjoint

problem:

(19)


−ϕt − Dϕxx = A∗ϕ in QT ,
ϕ|x=0 = ϕ|x=π = 0 on (0,T),
ϕ(·,T) = ϕ0 in (0, π).

Let us see that, in general, this inequality fails (even if a21 = 1 6= 0!!!!!).
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

A necessary condition:

Proposition

Assume that system (18) is null controllable at time T. Then (λk = k2),

d1λk 6= d2λj, ∀k, j ≥ 1 (⇐⇒
√

d1/d2 6∈ Q).

Proof: By contradiction, assume that d1λk = d2λj for some k, j and take
K = max{k, j}. The idea is transforming system (19) into an o.d.s.
Recall that λk and φk are the eigenvalues and normalized eigenfunctions of
−∂xx on (0, π) with homogenous Dirichlet boundary conditions:

λk = k2, φk(x) =

√
2
π

sin kx, k ≥ 1, x ∈ (0, π).

Idea: Take ϕ0 ∈ XK = {ϕ0 =
∑K

`=1 a`φ` : a` ∈ R2} ⊂ H1
0(0, π;R2).
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

Consider also

BK =

 B
...
B

 ∈ R2K , (B =

(
1
0

)
) and

L∗K = diag (−λ1D + A∗,−λ2D + A∗, · · · ,−λKD + A∗) ∈ L(R2K).

Taking in (19) arbitrary initial data ϕ0,K =
∑K

`=1 a`φ` ∈ H1
0(0, π;R2) where

a` ∈ R2, it is not difficult to see that system (19) is equivalent to the
o.d. system

(20) − Z′ = L∗KZ on [0,T], Z(0) = Z0 ∈ R2K .

From the observability inequality for system (19) we deduce the unique
continuation property for the solutions to (20):

B∗KZ(·) = 0 in (0,T) =⇒ Z ≡ 0.
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

In particular system

Y ′ = LKY + BKv on [0,T], Y(0) = Y0 ∈ R2K .

is exactly controllable at time T . Then rank [LK |BK ] = 2K .
We deduce that L∗K cannot have eigenvalues with geometric multiplicity 2 or
greater.
But θ = −d1λk = −d2λj is an eigenvalue of L∗K with two linearly
independent eigenvectors V1,V2 ∈ R2K given by:

V1 = (V1,`)1≤`≤K , V1,k =

(
1
0

)
and V1,` = 0 ∀` 6= k,

V2 = (V2,`)1≤`≤K , V2,j =

(
1

λj(d1−d2)

0

)
and V2,` = 0 ∀` 6= j.

The result has been proved in [FERNÁNDEZ-CARA,G.-B.,DE TERESA],
J. Funct. Anal. (2010).
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

Conclusion: First difference with scalar problems

distributed controllability 6≡ boundary controllability.

Even if System (16) is very close to System (18), their controllability
properties are strongly different:

System (16) (distributed control): We have obtained a complete
characterization of the null controllability property (and even, a
distributed Carleman estimate for the adjoint problem (17)).

System (18) (boundary control): The system is not null controllable if
d1λk = d2λj for some k, j ≥ 1.

The same non-scalar parabolic problem can be controlled to zero with
distributed controls supported on an interval ω and, however, the null
controllability result fails when the control acts on a part of the boundary.
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

(18)


yt − Dyxx = Ay in QT ,
y|x=0 = Bv, y|x=π = 0 on (0,T),
y(·, 0) = y0 in (0, π),

D =

(
d1 0
0 d2

)
, d1, d2 > 0, d1 6= d2, A =

(
0 0
1 0

)
and B =

(
1
0

)
.

Remark

Again, System (18) is always null controllable at time T if we exert two
independent controls at the same point. In this case, equivalence
between distributed and boundary controllability (as in the scalar case;
see Theorem 1).

If d1 6= d2, one has: “System (18) is approximately controllable at time T

⇐⇒
√

d1/d2 6∈ Q ”.
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

(19)
{
−ϕt = Dϕxx + A∗ϕ in QT ,
ϕ = 0 on {0, π} × (0,T), ϕ(·,T) = ϕ0 in (0, π).

D =

(
d1 0
0 d2

)
, d1, d2 > 0, d1 6= d2, and A =

(
0 0
1 0

)
.

Boundary approximate controllability

“System (18) is approximately controllable at time T ⇐⇒
√

d1/d2 6∈ Q ”.
What does this condition mean???: The eigenvalues of the operator
R∗Φ = DΦxx + A∗Φ are{

− k2

d1

}
k≥1
∪
{
− i2

d2

}
i≥1

.

Then,
√

d1/d2 6∈ Q ⇐⇒ the eigenvalues ofR∗ are simple.
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

(18)


yt − Dyxx = Ay in QT ,
y|x=0 = Bv, y|x=π = 0 on (0,T),
y(·, 0) = y0 in (0, π),

A =

(
0 0
1 0

)
B =

(
1
0

)
Second difference with scalar problems

Null controllability: Assume
√

d1/d2 6∈ Q. Is System (18) null controllable
at time T? i.e., are approximate controllability and null controllability
equivalent for System (18)?
The answer is negative. In [LUCA,DE TERESA] (in preparation), the authors
provide an example of matrix D satisfying

√
d1/d2 6∈ Q (and therefore, the

system is approximately controllable at every positive time T) and such that
System (18) is not null controllable at any time T > 0. Then, for System (18),

approximate controllability 6≡ null controllability.

(See also [AMMAR-KHODJA,BENABDALLAH,DUPAIX,KOSTINE],
ESAIM:COCV (2005) for some abstract non-scalar parabolic systems).
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4. Two simple examples
2. Boundary null controllability of a linear reaction-diffusion system

Observe that in this case, the elliptic operator in the adjoint system, −R∗,

(19)
{
−ϕt − Dϕxx − A∗ϕ = 0 in QT ,
ϕ = 0 on {0, π} × (0,T), ϕ(·,T) = ϕ0 in (0, π),

has a sequence of simple positive real eigenvalues{
`2

d1

}
`≥1
∪
{

i2
d2

}
i≥1

= {Λk}k≥1. Then, we could apply the moment method
for obtaining the null controllability result (see Remark 7). One has∑

k≥1

1
Λk

<∞,

and we will see that this condition assures the existence of a biorthogonal
family {pk}k≥1 to the family {e−Λkt}k≥1. However the “separability
condition”

|Λk − Λl| ≥ ρ|k − l|, ∀k, l ≥ 1 (ρ > 0)

fails and this condition is strongly connected with the bounds of the L2-norm
of the biorthogonal family {pk}k≥1 .
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5. Cascade system. Distributed
controls
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5. Cascade system. Distributed controls
We consider the linear parabolic system

∂ty1 + L1
0(t)y1 +

n∑
j=1

C1j · ∇yj +

n∑
j=1

a1jyj = v1ω in QT = Ω× (0,T),

∂ty2 + L2
0(t)y2 +

n∑
j=1

C2j · ∇yj +

n∑
j=1

a2jyj = 0 in QT ,

· · ·

∂tyn + Ln
0(t)yn +

n∑
j=1

Cnj · ∇yj +

n∑
j=1

anjyj = 0 in QT ,

yi = 0 on ΣT = ∂Ω× (0,T), yi(·, 0) = yi
0 in Ω, 1 ≤ i ≤ n,

where aij = aij(x, t) ∈ L∞(QT), Cij = Cij(x, t) ∈ L∞(QT ;RN) (1 ≤ i, j ≤ n),
yi

0 ∈ L2(Ω) (1 ≤ i ≤ n) and Lk
0(t) is, for every 1 ≤ k ≤ n, the second order

operator Lk
0(t)y = −

N∑
i,j=1

∂

∂xi

(
αk

ij(x, t)
∂y
∂xj

)
where αk

ij satisfy (4) and (5) for

every k.
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5. Cascade system. Distributed controls
Objective

Controllability properties of the system: n equations controlled with a unique
distributed control.

Equivalently, the previous system can be written as

(21)

{
∂ty + L̂(t)y + C · ∇y + Ay = Bv1ω in QT ,

y = 0 on ΣT , y(·, 0) = y0 in Ω,

where L̂(t) is the matrix operator given by L̂(t) = diag (L1
0(t), · · · ,Ln

0(t)),
y = (yi)1≤i≤n is the state and∇y = (∇yi)1≤i≤n, and where{

y0 = (yi
0)1≤i≤n ∈ L2(Ω;Rn), A(·, ·) = (aij(·, ·))1≤i,j≤n ∈ L∞(QT ;L(Rn)),

C(·, ·) = (Cij(·, ·))1≤i,j≤n ∈ L∞(QT ;L(Rn;RNn)) and B ≡ e1 = (1, 0, ..., 0)∗

are given. Let us observe that, for each y0 ∈ L2(Ω;Rn) and v ∈ L2(QT),
System (21) admits a unique weak solution

y ∈ L2(0,T; H1
0(Ω;Rn)) ∩ C0([0,T]; L2(Ω;Rn)).
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5. Cascade system. Distributed controls
By cascade system we mean that matrices A and C have the following
structure:

A =


a11 a12 a13 ... a1n

a21 a22 a23 ... a2n

0 a32 a33 ... a3n
...

...
. . . . . .

...
0 0 ... an,n−1 ann

 , C =


C11 C12 ... C1n

0 C22 ... C2n
...

...
. . .

...
0 0 ... Cnn


with aij ∈ L∞(QT) and Cij ∈ L∞(QT ;RN) and the coefficients ai,i−1 satisfy

ai,i−1 ≥ c0 > 0 or −ai,i−1 ≥ c0 > 0 in ω0 × (0,T), ∀i : 2 ≤ i ≤ n,

with ω0 ⊆ ω a new open subset.

Remark

It is natural to assume that ai,i−1 6≡ 0 for any i : 2 ≤ i ≤ n. The previous
assumption is stronger but will provide the controllability result.
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5. Cascade system. Distributed controls
In this case, the corresponding adjoint problem has the form

−∂tϕi + Li
0(t)ϕi −

i∑
j=1

[∇ · (Cjiϕj)− ajiϕj] = −ai+1,iϕi+1 in QT ,

· · · (1 ≤ i ≤ n− 1),

−∂tϕn + Ln
0(t)ϕn −

n∑
j=1

[∇ · (Cjnϕj)− ajnϕj] = 0 in QT ,

ϕi = 0 on ΣT , ϕi(·,T) = ϕi,T in Ω, 1 ≤ i ≤ n,

where ϕi,T ∈ L2(Ω) (1 ≤ i ≤ n). Again, the null controllability of
System (21) (with L2-controls) at time T is equivalent to the existence of a
constant C > 0 such that the so-called observability inequality

‖ϕ(·, 0)‖2
L2(Ω;Rn) ≤ C

∫∫
ω×(0,T)

|ϕ1(x, t)|2

holds for every solution ϕ = (ϕ1, . . . , ϕn)∗ to the adjoint problem.
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5. Cascade system. Distributed controls

Theorem

Under the previous assumptions, let M0 = max2≤i≤n ‖ai,i−1‖∞. Then, there
exist a positive function α0 ∈ C2(Ω) (only depending on Ω and ω0), two
positive constants C0 and σ0 (only depending on Ω, ω0, c0, M0 and d) and
l ≥ 0 (only depending on n) such that, for every ϕT ∈ L2(QT ;Rn), the
solution ϕ to the adjoint problem satisfies

n∑
i=1

I(d + 3(n− i), ϕi) ≤ C0sd+l
∫∫

ω0×(0,T)
e−2sαγ(t)d+l|ϕ1|2,

∀s ≥ s0 = σ0

[
T + T2 + T2 max

i≤j

(
‖aij‖

2
3(j−i)+3
∞ + ‖Cij‖

2
3(j−i)+1
∞

)]
. In the

previous inequality, γ(t) = t−1(T − t)−1 , α(x, t) = α0(x)/t(T − t) and
I(d, z) is given in Lemma 2.3 (with α instead of β).
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5. Cascade system. Distributed controls
Combining the previous result and energy inequalities satisfied by the
solutions of the adjoint system it is possible to prove an observability
inequality for the adjoint system (as in the scalar case). Summarizing, we
get

Corollary

Under assumptions of the previous result, there exists a positive constant C
(only depending on Ω, ω, n, c0 and M0) such that for every y0 ∈ L2(Ω;Rn)
there is a control v ∈ L2(Ω) which satisfies

‖v|‖2
L2(QT) ≤ eCH‖y0‖2

L2(Ω;Rn),

and y(·,T) = 0 in Ω, with y the solution to (21) associated to y0 and v. In the
previous inequality,H is given by

H ≡ 1+T+
1
T

+max
i≤j

(
‖aij‖

2
3(j−i)+3
∞ + ‖Cij‖

2
3(j−i)+1
∞ + T

(
‖aij‖∞ + ‖Cij‖2

∞
))

.
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5. Cascade system. Distributed controls
Sketch of the proof of Theorem 5.1: Given ω0 ⊂ ω, we choose ω1 ⊂⊂ ω0.
Let α0 ∈ C2(Ω) be the function provided by Lemma 2.3 and associated to Ω
and B ≡ ω1. We will do the proof in two steps:
Step 1. Let ϕ be the solution to adjoint system associated to ϕT . Each
component satisfies

−∂tϕi + Li
0(t)ϕi =

i∑
j=1

[∇ · (Cjiϕj)− ajiϕj]− ai+1,iϕi+1 .

We begin applying inequality (12) with B = ω1 to each function ϕi with
L0 ≡ Li

0, d = d + 3(n− i) and the corresponding right-hand side. Now if we
take

s ≥ s0 = σ0

(
T + T2 + T2 max

i≤j

(
‖aij‖

2
3(j−i)+3
∞ + ‖Cij‖

2
3(j−i)+1
∞

))
,

with σ0 = σ0(Ω, ω0, c0,M0) > 0, we obtain the existence of a positive
constants C1 = C1(Ω, ω0, c0,M0) such that if s ≥ s0, then
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5. Cascade system. Distributed controls

n∑
i=1

I(d + 3(n− i), ϕi) ≤ C1

n∑
i=1

ss+3(n−i)
∫∫

ω1×(0,T)
e−2sαγ(t)s+3(n−i)|ϕi|2.

Step 2. Thanks to the assumption

ai,i−1 ≥ c0 > 0 or −ai,i−1 ≥ c0 > 0 in ω0 × (0,T), ∀i : 2 ≤ i ≤ n,

with ω0 ⊆ ω an open subset, and the cascade structure

ai,i−1ϕi = ∂tϕi−1 − Li−1
0 (t)ϕi−1 +

i−1∑
j=1

[∇ · (Cj,i−1ϕj)− aj,i−1ϕi−1] in QT ,

can eliminate the local terms for 2 ≤ i ≤ n. In order to carry this process out,
we will need the following result:
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5. Cascade system. Distributed controls

Lemma

Under assumptions of Theorem 5.1 and given l ∈ N, ε > 0, k ∈ {2, ..., n} and
two open sets O0 and O1 such that ω1 ⊂ O1 ⊂⊂ O0 ⊂ ω0, there exist a
constant Ck (only depending on Ω, O0, O1, c0 and M0) and lkj ∈ N,
1 ≤ j ≤ k − 1 (only depending on l, n, k and j), such that, if s ≥ s0, one has

sl
∫∫
O1×(0,T)

e−2sαγ(t)l|ϕk|2 ≤ ε [I(d + 3(n− k), ϕk) + I(d + 3(n− k − 1), ϕk+1)]

+ Ck

(
1 +

1
ε

) k−1∑
j=1

slkj

∫∫
O0×(0,T)

e−2sαγ(t)lkj |ϕj|2.

(In this inequality we have taken ϕk+1 ≡ 0 when k = n).

The proof of Theorem 5.1 is a consequence of this Lemma 5.3. For the
details, see [DE TERESA], Comm. PDE (2000), [G.-B., PÉREZ-GARCÍA],
Asymp. Anal. (2006) and [G.-B., DE TERESA], Port. Math. (2010).
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5. Cascade system. Distributed controls

Remark

1 Cascade systems appear in the context of existence of insensitizing
controls for a scalar parabolic equation: Equivalent to a null
controllability result for a 2× 2 parabolic system (n = 2) with one
equation forward in time and the other one backward. The coupling
coefficient a21 is 1O with O ⊆ Ω an open set and O ∩ ω 6= ∅ .

2 The previous proof uses the assumption

ai,i−1 ≥ c0 > 0 or −ai,i−1 ≥ c0 > 0 in ω0 × (0,T), ∀i : 2 ≤ i ≤ n,

in a crucial way. When ai,i−1 are constant, this assumption is necessary.
Is this condition necessary in the general case???

3 Is it possible to provide a necessary and sufficient (Kalman condition)
condition for the null controllability of non-scalar systems? YES in
some constant coefficient systems.
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6. The Kalman condition for a class of
parabolic systems. Distributed

controls
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6. The Kalman condition for a class of parabolic systems.
Distributed controls
Let Ω ⊂ RN be a bounded domain, N ≥ 1, with boundary ∂Ω of class C2. Let
ω ⊆ Ω be an open subset and let us fix T > 0.

For n,m ∈ N we consider the following n× n parabolic system

(22)

{
∂ty + DL(t)y = A(t)y + B(t)v1ω in QT ,
y = 0 on ΣT , y(·, 0) = y0(·) in Ω,

where L(t) is the operator given in (3), with coefficients satisfying (4) and (5),
y0 ∈ L2(Ω;Rn) is given and{

A ∈ CM−1([0,T];L(Rn)), B ∈ CM([0,T];L(Rm;Rn)),
D = diag (d1, d2, · · · , dn) ∈ L(Rn), (di > 0, ∀i),

with M ∈ N large enough. Again, v ∈ L2(QT ;Rm) is the control (m
components).
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4. The Kalman condition for a class of parabolic systems.
Distributed controls

(22)

{
∂ty + DL(t)y = A(t)y + B(t)v1ω in QT ,
y = 0 on Σ, y(·, 0) = y0(·) in Ω.

Remark

This problem is well posed: For any y0 ∈ L2(Ω;Rn) and v ∈ L2(QT ;Rm),
problem (22) has a unique solution y ∈ L2(0,T; H1

0(Ω)) ∩ C0([0,T]; L2(Ω)).

Remark

We want to control the whole system (n equations) with m controls. The most
interesting case is m < n or even m = 1.
Difficulties:

1 In general m < n.

2 D is not the identity matrix.

3 L, A and B depend on time.
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4. The Kalman condition for a class of parabolic systems.
Distributed controls
The adjoint problem:

(23)
{
−∂tϕ = (−DL(t) + A∗(t))ϕ in QT ,
ϕ = 0 on ΣT , ϕ(·,T) = ϕ0 in Ω,

where ϕ0 ∈ L2(Ω;Rn). Then, the exact controllability to the trajectories of
system (22) is equivalent to the existence of C > 0 such that, for every
ϕ0 ∈ L2(Ω;Rn), the solution ϕ ∈ C0([0,T]; L2(Ω;Rn)) to the adjoint
system (23) satisfies the observability inequality:

‖ϕ(·, 0)‖2
L2(Ω) ≤ C

∫∫
ω×(0,T)

|B∗(t)ϕ(x, t)|2.
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6. The Kalman condition for a class of
parabolic systems. Distributed

controls
1. Identity diffusion matrix

We follow [AMMAR-KHODJA,BENABDALLAH,DUPAIX,G.-B.], Diff. Eq.
Appl. (2009).
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6. The Kalman condition for a class of parabolic systems.
Distributed controls
1. Identity diffusion matrix

Assume that D = Id:

(22)

{
∂ty + L(t)y = A(t)y + B(t)v1ω in QT ,
y = 0 on Σ, y(·, 0) = y0(·) in Ω.

with A ∈ CM−1([0,T];L(Rn)) and B ∈ CM([0,T];L(Rm;Rn)). This is the
simplest case. It is possible to prove a null controllability result for this
system which is very close to the finite-dimensional case (Theorem 3.1).
Recall

 B0(t) = B(t),

Bi(t) = A(t)Bi−1(t)− d
dt

Bi−1(t), 1 ≤ i ≤ M.
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6. The Kalman condition for a class of parabolic systems.
Distributed controls
1. Identity diffusion matrix

Theorem

Assume that D = Id and M ≥ n. Then, under the regularity assumptions on A
and B, one has:

1 If there exist t0 ∈ [0,T] and p ∈ {1, ...,M} such that

rank (B0 , B1 , · · · , Bp−1) (t0) = n,

then System (22) is null controllable at time T.

2 System (22) is totally null controllable on (0,T) if and only if there
exists E, a dense subset of (0,T), such that rank [A |B](t) = n for every
t ∈ E, (or, equivalently, rank (B0 , B1 , · · · , Bp−1) (t) = n for all
p ∈ {n, ...,M} and t ∈ E).

(See Theorem 3.1).
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6. The Kalman condition for a class of parabolic systems.
Distributed controls
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Proof: The proof uses in an essential way the assumption D = Id. Using that
M ≥ n, it is possible to deduce the existence of an interval (T0,T1) ⊆ (0,T)
such that

rank Kn(t) = n, ∀t ∈ [T0,T1],

with Kn(t) = (B0 , B1 , · · · , Bn−1) (t). This last condition allows to perform
a change of variables on the interval [T0,T1] and rewrite the system

(22)

{
∂ty + L(t)y = A(t)y + B(t)v1ω in QT ,
y = 0 on Σ, y(·, 0) = y0(·) in Ω,

as a cascade system on the interval (T0,T1). In particular, we can apply the
results of the previous section. This implies the null controllability result on
the interval (T0,T1) and then, at time T .
Let us see the proof in the simplest case m = 1 (one control) and
A(t) ≡ A ∈ L(Rn) and B(t) ≡ B ∈ Rn, for all t ∈ (0,T) (autonomous case).
· · ·
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(22)

{
∂ty + L(t)y = A(t)y + B(t)v1ω in QT ,
y = 0 on Σ, y(·, 0) = y0(·) in Ω,

Remark

(a) As in the finite-dimensional case, the existence of t0 ∈ (0,T) and
n ≤ p ≤ M s.t. rank Kp(t0) = n (Kp(t0) := (B0 , B1 , · · · , Bp−1) (t0)) is
not a necessary condition for the null controllability on (0,T).

(b) When A and B are analytic functions on (0,T) it is possible to prove that
rank Kp(t0) = n for t0 ∈ (0,T) and n ≤ p ≤ M is a necessary and
sufficient condition for the null controllability on (0,T) (in particular in
the autonomous case).

(c) It is possible to prove appropriate Carleman inequalities for the
corresponding adjoint problem.
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Distributed controls
1. Identity diffusion matrix

Theorem (Autonomous case)

There exist a positive function α0 ∈ C2(Ω) (only depending on Ω and ω),
positive constants C and σ (only depending on Ω, ω, n, m, A and B) and a
positive integer ` ≥ 3 (only depending on n and m) such that, if
rank [A |B] = n, for every ϕ0 ∈ L2(QT ;Rn), the solution ϕ to (23) satisfies

I1(d, ϕ) ≤ C
(

sd+`

∫∫
ω×(0,T)

e−2sαγ(t)d+`|B∗ϕ|2
)
,

∀s ≥ s0 = σ
(
T + T2

)
. In this inequality, α(x, t), γ(t) and I1(d, z) are as in

Lemma 2.3 and Lemma 2.4.
For details, see [AMMAR-KHODJA,BENABDALLAH,DUPAIX,G.-B.], Diff.
Eq. Appl. (2009).
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parabolic systems. Distributed

controls
2. Diagonal diffusion matrix and autonomous systems

We follow [AMMAR-KHODJA,BENABDALLAH,DUPAIX,G.-B.], J. Evol. Eq.
(2009).

M. González-Burgos Controllability of non-scalar parabolic systems



6. The Kalman condition for a class of parabolic systems.
Distributed controls
2. Diagonal diffusion matrix and autonomous systems

We come back to System (22) in the autonomous case:

(22)

{
∂ty + DL0y = Ay + Bv1ω in QT ,
y = 0 on ΣT , y(·, 0) = y0(·) in Ω,

where A ∈ L(Rn), B ∈ L(Rm;Rn) and D = diag (d1, d2, · · · , dn) ∈ L(Rn)
with di > 0. Now we assume that L0 is the self-adjoint second order elliptic
operator:

L0y = −
N∑

i,j=1

∂

∂xi

(
αij(x)

∂y
∂xj

)
with coefficients satisfying (4) and (5). Finally, y0 ∈ L2(Ω;Rn) is given and
v ∈ L2(QT ;Rm) is the control (m distributed controls).
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Distributed controls
2. Diagonal diffusion matrix and autonomous systems

Let us consider {λk}k≥1 the sequence of eigenvalues for L0 with
homogeneous Dirichlet boundary conditions and {φk}k≥0 the corresponding
normalized eigenfunctions.

Theorem (A Necessary Condition)

If system (22) is null controllable at time T then

(24) rank [−λkD + A |B] = n, ∀k ≥ 1.

where
[−λkD+A |B] = [B , (−λkD+A)B , (−λkD+A)2B , · · · , (−λkD+A)n−1B].

Proof: Reasoning by contradiction: ∃k ≥ 1 such that
rank [−λkD + A |B] < n. Then the o.d.s. −Z′ = (−λkD + A∗)Z in (0,T), is
not B∗-observable at time T .
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There exists Z0 ∈ Rn, Z0 6= 0, such that the solution Z to the previous system
satisfies B∗Z(·) = 0 on (0,T). But ϕ(x, t) = Z(t)φk(x) is the solution to
adjoint problem {

−∂tϕ+ DL0ϕ = A∗ϕ in QT ,
ϕ = 0 on ΣT , ϕ(·,T) = ϕ0 in Ω,

associated to ϕ0(x) = Z0φk 6≡ 0 and B∗ϕ(·, ·) ≡ 0 in QT . Then, the
observability inequality

‖ϕ(·, 0)‖2
L2(Ω) ≤ C

∫∫
ω×(0,T)

|B∗ϕ(x, t)|2,

fails and the system is not null controllable at time T .

Remark

If condition (24) is not satisfied, then system (22) is neither approximately
controllable nor null controllable at time T (for any T > 0) even if ω ≡ Ω.
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Question:

Is condition (24) rank [−λkD + A |B] = n, ∀k ≥ 1, a sufficient condition for
the null controllability of system (22)???

Let us now introduce the unbounded matrix operator

K = [DL0 + A |B] = [B , (−DL0 + A)B , · · · , (−DL0 + A)n−1B],{
K : D(K) ⊂ L2(Ω;Rnm)→ L2(Ω;Rn), with

D(K) := {y ∈ L2(Ω;Rnm) : Ky ∈ L2(Ω;Rn)}.
Then,

Proposition

kerK∗ = {0} if and only if condition (24), rank [−λkD + A |B] = n, ∀k ≥ 1,
holds.
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(22)

{
∂ty + DL0y = Ay + Bv1ω in QT ,
y = 0 on ΣT , y(·, 0) = y0(·) in Ω,

Theorem (Kalman condition)

System (22) is exactly controllable to trajectories at time T if and only if
System (22) is approximately controllable at time T if and only if
kerK∗ = {0} (⇐⇒ rank [−λkD + A |B] = n, ∀k ≥ 1).

Remark

One can prove, either there exists k0 ≥ 1 such that

rank [−λkD + A |B] = n, ∀k ≥ k0

or
rank [−λkD + A |B] < n, ∀k ≥ 1 .
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Controllability (outside a finite dimensional space) if and only if the
algebraic Kalman condition rank [−λkD + A |B] = n is satisfied for one
frequency k ≥ 1.

Remark

System (22) can be exactly controlled to the trajectories with one control
force (m = 1 and B ∈ Rn) even if A ≡ 0 . Indeed, let us assume that
B = (bi)1≤i≤n ∈ Rn. Then,

[(−λkD + A) |B] =


b1 (−λkd1)b1 · · · (−λkd1)n−1b1
b2 (−λkd2)b2 · · · (−λkd2)n−1b2
...

...
. . .

...
bn (−λkdn)bn · · · (−λkdn)n−1bn

 ∈ L(Rn),

and (24) holds if and only if bi 6= 0 for every i and di are distinct.
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Idea of the proof: We have proved the necessary condition. Therefore, let
us prove that rank [−λkD + A |B] = n , for any k, is a sufficient condition
for the null controllability at time T of the system.
Then, the objective is to prove the observability inequality:

‖ϕ(·, 0)‖2
L2(Ω) ≤ C

∫∫
ω×(0,T)

|B∗ϕ(x, t)|2,

for the solutions to the adjoint problem.
To this end we use two arguments:

Prove a global Carleman estimate for a scalar parabolic equation of order
n in time.

Prove a coercivity property for the Kalman operator K.
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Let us fix ϕ0 ∈ D(Li
0), ∀i ≥ 0 and consider ϕ the corresponding solution to

the adjoint system (23){
−∂tϕ+ DL0ϕ = A∗ϕ in QT ,
ϕ = 0 on ΣT , ϕ(·,T) = ϕ0 in Ω.

Let us take Φ =

n∑
i=1

aiϕi , with ai ∈ R (1 ≤ i ≤ n). Then, Φ is a regular

solution (Li
0∂

j
tΦ ∈ L2(QT), ∀i, j) to the linear parabolic scalar equation of

order n in time {
det (Id∂t − DL0 + A∗) Φ = 0 in QT ,
Li

0Φ = 0 on ΣT , ∀i ≥ 0.

The key point is to prove a Carleman inequality for the solutions to the
previous problem. Fix ω0 ⊂⊂ ω a nonempty open subset. Recall Lemmas 2.3
and 2.4:
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Lemma

There exist a α0 ∈ C2(Ω) (positive), and two constants C0, σ0 > 0 (only
depending on Ω, ω0 and d) s.t.

I1(d, φ) ≡
∫∫

QT

e−2sα [sγ(t)]d−4 (|φt|2 + |L0φ|2
)

+

∫∫
QT

e−2sα [sγ(t)]d−2 |∇φ|2 +

∫∫
QT

e−2sα [sγ(t)]d |φ|2

≤ C0

(∫∫
ω0×(0,T)

e−2sα [sγ(t)]d |φ|2 +

∫∫
QT

e−2sα [sγ(t)]d−3 |φt ± L0φ|2
)
,

∀s ≥ s0 = σ0(Ω, ω)(T + T2), ∀φ ∈ L2(0,T; H1
0(Ω)) s.t. φt ± L0φ ∈ L2(QT).

γ(t) = t−1(T − t)−1 , α(x, t) = α0(x)/t(T − t) .
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Theorem

Let n, k1, k2 ∈ N and d ∈ R. There exist two constants C and σ (only
depending on Ω, ω, n, D, A, k1, k2 and d), and r0 = r0(n) ∈ N such that

k1∑
i=0

k2∑
j=0

J (d − 4(i + j),Li
0∂

j
tΦ) ≤ C

∫∫
ω×(0,T)

e−2sα [sγ(t)]3+r0 |Φ|2, ,

∀s ≥ s = σ(Ω, ω)(T + T2), Φ solution to the previous problem and

J (τ, z) := I1(τ + 3(n− 1), z) +

n∑
i=1

I1(τ + 3(n− 2),Piz)

+

n−1∑
p=2

∑
1≤i1<···<ip≤n

I1(τ + 3(n− p− 1),Pip · · ·Pi1z).

(Pi ≡ ∂t − diL0)

M. González-Burgos Controllability of non-scalar parabolic systems



6. The Kalman condition for a class of parabolic systems.
Distributed controls
2. Diagonal diffusion matrix and autonomous systems

Sketch of the proof: We will give the main ideas in the case k1 = k2 = 0 . If
we use the notation Pi ≡ ∂t − diL0 (1 ≤ i ≤ n), one has:

det (Id∂t − DL0 + A∗) ≡ Pn · · ·P1 +

n−1∑
p=2

∑
1≤i1<···<ip≤n

bi1,...,ipPi1 . . .Pip

+

n∑
i=1

biPi + b := Pn · · ·P1 − F,

with bi1,...,ip , bi, b ∈ R only depending on D and A.
We have a function Φ s.t. Li

0∂
j
tΦ ∈ L2(QT), ∀i, j, and it is solution to{

det (Id∂t − DL0 + A∗) Φ = 0 in QT ,
Li

0Φ = 0 on Σ, ∀i ≥ 0.

In particular, Pn · · ·P1Φ = F(Φ) in QT .
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In particular, Pn · · ·P1Φ = F(Φ) in QT . We rewrite the order-n equation as a
system performing the change of variables:{

ψ1 := Φ,
ψi := Pi−1ψi−1 ≡ (∂t − di−1)ψi−1, 2 ≤ i ≤ n.

Then, Ψ = (ψ1, ψ2, . . . , ψn)∗ satisfies the cascade system

(∂t − d1L0)ψ1 = ψ2 in QT ,

(∂t − d2L0)ψ2 = ψ3 in QT ,

...

(∂t − dnL0)ψn = F(Φ) in QT ,

ψi = 0 on ΣT , ∀i : 1 ≤ i ≤ n.

We can apply Theorem 5.1 (cascade systems) and obtain:
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We can apply Theorem 5.1 and obtain (cascade systems) (d ∈ R is given):
n∑

i=1

I1(d + 3(n− i), ψi) ≤ C0

(∫∫
ω×(0,T)

e−2sα[sγ(t)]d+r0 |ψ1|2

+

∫∫
QT

e−2sα[sγ(t)]d|F(Φ)|2
)
,

∀s ≥ s0 = σ0
(
T + T2

)
with r0 = r0(n) and

I1(d, z) ≡
∫∫

QT

e−2sα[sγ(t)]d{[sγ(t)]−4(|∂tz|2+|L0z|2)+[sγ(t)]−2|∇z|2+|z|2}.

Coming to the original variables, one has

I1(d + 3(n− 1),Φ) +

n∑
i=2

I1(d + 3(n− i),Pi−1 · · ·P1Φ)

≤ C0

(∫∫
ω×(0,T)

e−2sα[sγ(t)]d+r0 |Φ|2 +

∫∫
QT

e−2sα[sγ(t)]d|F(Φ)|2
)
.
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We can reproduce the previous argument for a general permutation Π of the
set {1, 2, . . . , n}, taking{

ψ1 := Φ,
ψi := PΠ(i−1)ψi−1 ≡ (∂t − dΠ(i−1))ψΠ(i−1), 2 ≤ i ≤ n.

Thus,

I1(d + 3(n− 1),Φ) +
n∑

i=2

I1(d + 3(n− i),PΠ(i−1) · · ·PΠ(1)Φ)

≤ C0

(∫∫
ω×(0,T)

e−2sα[sγ(t)]d+r0 |Φ|2 +

∫∫
QT

e−2sα[sγ(t)]d|F(Φ)|2
)
,

∀s ≥ s0 = σ0
(
T + T2

)
. Adding all these inequalities (for any permutation Π)

with d = 3, we get
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Adding all these inequalities (for any permutation Π) with d = 3, we get

J (d,Φ) ≤ C
(∫∫

ω×(0,T)
e−2sα[sγ(t)]d+r0 |Φ|2 +

∫∫
QT

e−2sα[sγ(t)]d|F(Φ)|2
)
,

∀s ≥ s0 = σ0
(
T + T2

)
(J (τ, z) given in the statement of Theorem 11 and

F(Φ) =

n−1∑
p=2

∑
1≤i1<···<ip≤n

bi1,...,ipPi1 . . .PipΦ +

n∑
i=1

biPiΦ + bΦ).

From these expressions, it is possible to absorb the last term of the previous
inequality and obtain

J (d,Φ) ≤ C
∫∫

ω×(0,T)
e−2sα[sγ(t)]d+r0 |Φ|2,

for a new constant C, with s ≥ s = σ
(
T + T2

)
. This ends the proof in the

case k1 = k2 = 0.
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Remark

Theorem 11 is, in fact, a Carleman inequality for the regular solutions Φ to
the linear parabolic scalar equation of order n in time{

det (Id∂t − DL0 + A∗) Φ = 0 in QT ,
Li

0Φ = 0 on Σ, ∀i ≥ 0.
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Conclusion

If ϕ is a regular solution to the adjoint problem{
−∂tϕ+ DL0ϕ = A∗ϕ in QT ,
ϕ = 0 on ΣT , ϕ(·,T) = ϕ0 in Ω,

then, any linear combination Φ =
∑n

i=1 aiϕi satisfies Theorem 11. In
particular any component of B∗ϕ.

Recall K = [DL0 + A |B] = [B , (−DL0 + A)B , · · · , (−DL0 + A)n−1B], then

K∗ϕ(·, t) = [B∗ϕ , B∗(−DL0 + A∗)ϕ , · · · , B∗(−DL0 + A∗)n−1ϕ]tr(·, t)
= [B∗ϕ , −∂t(B∗ϕ) , · · · , (−1)n−1∂n−1

t (B∗ϕ)]tr(·, t) ∈ Rnm.

We apply Theorem 11 with k1 = n− 1 and k2 = k ≥ 0. Then, after some
computations, we deduce (d = 3)
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Then, after some computations, we deduce (d = 3)∫ T

0
e
−2sM0
t(T−t) [sγ(t)]3 ‖Lk

0K∗ϕ‖2
L2(Ω)nm ≤ C

∫∫
ω×(0,T)

e−2sα [sγ(t)]3+r0 |B∗ϕ|2

for every s ≥ σ
(
T + T2

)
. In this inequality, M0 = maxΩ α0 and r0 ≥ 0 is an

integer only depending on n.

Remark

The previous inequality is a partial observability estimate. It is valid even if
the Kalman condition does not hold, i.e., even if kerK∗ 6= {0}.
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The coercivity property of K∗:
Theorem

Assume that kerK∗ = {0} and consider k = (n− 1)(2n− 1). Then there
exists C > 0 such that if z ∈ L2(Ω)n satisfies K∗z ∈ D(Lk

0)nm, one has

‖z‖2
L2(Ω)n ≤ C‖Lk

0K∗z‖2
L2(Ω)nm .

So, from the previous inequality we get∫ T

0
e
−2sM0
t(T−t) [sγ(t)]3 ‖ϕ‖2

L2(Ω)nm ≤ C
∫∫

ω×(0,T)
e−2sα [sγ(t)]3+r0 |B∗ϕ|2

and the observability inequality:

‖ϕ(·, 0)‖2
L2(Ω) ≤ C

∫∫
ω×(0,T)

|B∗ϕ(x, t)|2.
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Summarizing

1 We have established a Kalman condition

kerK∗ = {0}

which characterizes the controllability properties of system (22).

2 The Kalman condition for system (22) kerK∗ = {0} generalizes the
algebraic Kalman condition ker[A |B]∗ = {0} for o.d.s.

3 This Kalman condition is also equivalent to the approximate
controllability of system (22) at time T . Again, approximate and null
controllability are equivalent concepts for system (22).
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Open problem

Null controllability properties of

(22)

{
∂ty + DL0y = A(t)y + B(t)v1ω in QT ,
y = 0 on ΣT , y(·, 0) = y0(·) in Ω,

when A(t) and B(t) depend on t (for instance, A ∈ C∞([0,T];L(Rn)) and
B ∈ C∞([0,T];L(Rm,Rn))) and D = diag (d1, d2, · · · , dn) ∈ L(Rn) with
di > 0.
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[AMMAR-KHODJA,BENABDALLAH,G.-B.,DE TERESA], J. Math. Pures
Appl. (2011).
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
Let us consider the boundary controllability problem:

(25)


yt = yxx + Ay in QT = (0, π)× (0,T),

y(0, ·) = Bv, y(π, ·) = 0 on (0,T),

y(·, 0) = y0 in (0, π),

where A ∈ L(Cn) and B ∈ L(Cm;Cn) are two given matrices and
y0 ∈ H−1(0, π;Cn) is the initial datum. In system (25), v ∈ L2(0,T;Cm) is
the control function (to be determined).
Simpler problem: One-dimensional case and D = Id.

This problem has been studied in the case n = 2:

E. FERNÁNDEZ-CARA, M. G.-B., L. DE TERESA, Boundary
controllability of parabolic coupled equations, J. Funct. Anal. 259
(2010), no. 7, 1720–1758.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
We consider again {λk}k≥1 the sequence of eigenvalues for −∂xx in (0, π)
with homogenuous Dirichlet boundary conditions and {φk}k≥0 the
corresponding normalized eigenfunctions:

λk = k2, φk(x) =

√
2
π

sin kx, k ≥ 1, x ∈ (0, π).

Theorem (n = 2, m = 1)

Let A ∈ L(C2) and B ∈ C2 be given and let us denote by µ1 and µ2 the
eigenvalues of A∗. Then (25) is exactly controllable to the trajectories at any
time T > 0 if and only if rank [A |B] = 2 and

λk − λj 6= µ1 − µ2 ∀k, j ∈ N with k 6= j.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls

Remark (n = 2, m = 1)

For the previous boundary controllability problem, one has

1 A complete characterization of the exact controllability to trajectories
at time T: Kalman condition.

2 Boundary controllability and distributed controllability are not
equivalent

3 Approximate controllability⇐⇒ null controllability.

What happens if n > 2??
As in the “simple example" seen in Subsection 2, we will work in the
following finite-dimensional space:

Xk = {ϕ0 =

k∑
`=1

a`φ` : a` ∈ Cn} ⊂ H1
0(0, π;Cn).
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
Adjoint Problem:

(26)


−ϕt = ϕxx + A∗ϕ in QT ,

ϕ(0, ·) = ϕ(π, ·) = 0 on (0,T),

ϕ(·,T) = ϕ0 in (0, π),

with ϕ0 ∈ H1
0(0, π;Cn). Then, system (25) is exactly controllable to

trajectories at time T ⇐⇒ for a constant C > 0 one has (observability
inequality)

‖ϕ(·, 0)‖2
H1

0(0,π;Cn)
≤ C

∫ T

0
|B∗ϕx(0, t)|2 dt.

Taking initial data in Xk, we deduce that an appropriate o.d. system in Cnk

also satisfies an observability inequality. Let us analyze this
finite-dimensional system.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
Notation

For k ≥ 1, we introduce Lk = −λkId + A ∈ L(Cn) and the matrices

Bk =

 B
...
B

 ∈ L(Cm;Cnk), Lk =


L1 0 · · · 0
0 L2 · · · 0
... · · · . . .

...
0 · · · 0 Lk

 ∈ L(Cnk),

and let us write the Kalman matrix associated with the pair (Lk,Bk):

Kk = [Lk |Bk] = [Bk , LkBk , L2
kBk , · · · , Lnk−1

k Bk] ∈ L(Cmnk,Cnk).

With this notation, the o.d. system associated to the adjoint system (26) for
ϕ0 ∈ Xk is −Z′ = L∗k Z on (0,T), Z(T) = Z0 ∈ Cnk , and the solutions must
be B∗k -observable, i.e., rankKk = nk: necessary condition. One has:
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
Theorem

Let us fix A ∈ L(Cn) and B ∈ L(Cm;Cn). Then, system (25) is exactly
controllable to trajectories at time T if and only if
(27) rankKk = nk, ∀k ≥ 1.

Remark

1 This result gives a complete characterization of the exact controllability
to trajectories at time T: Kalman condition.

2 If for k ≥ 1 one has rankKk = nk, then rank [A |B] = n and system{
∂ty−∆y = Ay + Bv1ω in QT ,
y = 0 on Σ, y(·, 0) = y0(·) in Ω,

is exactly controllable to trajectories at time T . But rank [A |B] = n
does not imply condition (27). So boundary controllability and
distributed controllability are not equivalent.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls

Remark

Condition (27) is also a necessary and sufficient condition for the boundary
approximate controllability of system (25). Then

Approximate controllability⇐⇒ null controllability.

Remark (n controls)

If rank B = n (and thus m ≥ n), then the pair (A,B) fulfills condition (27)
and the system is exactly controllable to trajectories at time T .
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
Remark (One control, m = 1)

When m = 1, the Kalman condition (27) is equivalent to rank [A |B] = n

and λk − λl 6= µi − µj for any k, l ∈ N and 1 ≤ i, j ≤ p with (k, i) 6= (l, j),
where {µi}1≤i≤p ⊂ C is the set of distinct eigenvalues of A∗. We generalize
the results of [FERNÁNDEZ-CARA,G.-B.,DE TERESA], J. Funct. Anal.
(2010).

One control, m = 1

We have imposed two conditions:

1 rank [A |B] = n: System (25) is not decoupled.

2 λk − λl 6= µi − µj: The adjoint system can be written (R0 = Id∂xx + A∗)

(26)
{
−ϕt = R0ϕ in QT ,
ϕ = 0 on ΣT , ϕ(·,T) = ϕ0 in (0, π),

and the eigenvalues ofR0 are simple.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
Necessary implication. We reason as before: if rankKk < nk, for some
k ≥ 1, then the o.d.s.

−Z′ = L∗k Z on (0,T), Z(T) = Z0 ∈ Cnk

is not B∗k -observable on (0,T), i.e., there exists Z0 6= 0 s.t. B∗k Z(t) = 0 for
every t ∈ (0,T). From Z0 it is possible to construct ϕ0 ∈ H1

0(0, π;Cn) with
ϕ0 6≡ 0 such that the corresponding solution to the adjoint problem (27)
satisfies

B∗ϕx(0, t) = 0 ∀t ∈ (0,T).

As a consequence: The unique continuation property and the previous
observability inequality for the adjoint problem fail:

Neither approximate nor null controllability at any T for system (25).
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
Sufficient implication. For the proof we follow the ideas from

H.O. FATTORINI, D.L. RUSSELL, Exact controllability theorems for
linear parabolic equations in one space dimension, Arch. Rational
Mech. Anal. 43 (1971), 272–292.

Two “big” steps:

(I) We reformulate the null controllability problem for system (25) as a
vector moment problem.

(II) Existence and bounds of a family biorthogonal to appropriate complex
matrix exponentials.

M. González-Burgos Controllability of non-scalar parabolic systems



7. The Kalman condition for a class of parabolic systems.
Boundary controls
Before describing the first point, let us analyze the Kalman condition (27)
rankKk = nk, ∀k ≥ 1:

Proposition

Let us denote by {µi}1≤i≤p ⊂ C the set of distinct eigenvalues of A∗. Then,

1 There exists an integer k0 = k0(A) ∈ N, only depending on A, such that,

λk − λl 6= µi − µj , ∀k > k0, l ≥ 1, k 6= l, and 1 ≤ i, j ≤ p.

2 The following conditions are equivalent:
(a) rankKk = nk for every k ≥ 1.
(b) rankKk = nk for every k : 1 ≤ k ≤ k0.
(c) rankKk0 = nk0.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(I) The vector moment problem: As in the scalar case, v ∈ L2(0,T;Cm) is a
null control for system

(25)


yt = yxx + Ay in QT ,

y(0, ·) = Bv, y(π, ·) = 0 on (0,T),

y(·, 0) = y0 in (0, π),

(i.e., the solution y to (25) satisfies y(·,T) = 0 in (0, π)) ⇐⇒ v satisfies

−〈y0, ϕ(·, 0)〉 =

∫ T

0
(v(t) , B∗ϕx(0, t))Cm dt, ∀ϕ0 ∈ H1

0(0, π;Cn),

where ϕ is the solution to the adjoint problem

(26)


−ϕt = ϕxx + A∗ϕ in QT ,

ϕ(0, ·) = ϕ(π, ·) = 0 on (0,T),

ϕ(·,T) = ϕ0 in (0, π).
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(I) The vector moment problem:
Thus, the idea is to take firstly ϕ0 ∈ Xk0 ,
(Xk0 = {ϕ0 : ϕ0 =

∑k0
i=1 aiφi with ai ∈ Cn}) and then ϕ0 = aφk, with k > k0

and a ∈ Cn. Therefore, we want v ∈ L2(0,T;Cm) s.t.
∫ T

0
(v(T − t) , B∗k0

eL
∗
k0

t
Φ0)Cm dt = F(Y0,Φ0) , ∀Φ0 ∈ Cnk0 ,∫ T

0
(v(T − t) , B∗e(−λkId+A∗)ta)Cm dt = fk(y0, a) , ∀a ∈ Cn, ∀k > k0,

In some sense, v has to solve an infinite number of null controllability
problems for appropriate o.d. systems: Y ′ = Lk0Y + Bk0v on (0,T), Y(0) = Y0 ;

Z′ = (−λkId + A)Z + Bv on (0,T), Z(0) = y0k := (y0, φk) , ∀k > k0.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(I) The vector moment problem:
Remark

Using the assumptions rankKk0 = [Lk0 |Bk0 ] = nk0 and
rank [−λkId + A |B] = rank [A |B] = n, it is possible to reformulate the
boundary null controllability problem as a vector moment problem.
Remark

Technically, this reformulation of the null controllability problem is complex,
but the difficulties come from the fact of having ordinary differential systems.
We would have the same difficulties if we wanted to solve the null
controllability problem for the o.d. system:

Y ′ = AY + Bv on (0,T); Y(0) = Y0 ∈ CN ,

using the moment method. In the previous system, A ∈ L(CN) and
B ∈ L(CM;CN) are given and v ∈ L2(0,T;CM) is the control.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(II) Biorthogonal families to appropriate complex matrix exponentials.
From the previous step, we have obtained the complex matrix exponentials

eL
∗
k0

t and {e(−λkId+A∗)t}k>k0 .

Let us denote {γ`}1≤`≤p̃ ⊂ C the set of distinct eigenvalues of L∗k0
and recall

that {µi}1≤i≤p ⊂ C is the set of distinct eigenvalues of A∗. Then, the set
Λ = {γ`}1≤`≤p̃ ∪ {−λk + µi}k>k0,1≤i≤p is the set of eigenvalues of the
operator ∂xxId + A∗. Thus, our next purpose is:

Objective

As in the scalar case, construction of a biorthogonal family in L2(0,T;C) to{
tjeγ`t, tje(−λk+µi)t : 1 ≤ ` ≤ p̃, 1 ≤ i ≤ p, 0 ≤ j ≤ η − 1, k > k0

}
,

which satisfies appropriate bounds (see 5). In the previous expression, η is the
maximal dimension of the Jordan blocks associated to γ` and µi.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(II) Biorthogonal families to appropriate complex matrix exponentials.
Let us fix η ≥ 1, an integer, T ∈ (0,∞] and {Λk}k≥1 ⊂ C+ a sequence s.t.

Λk 6= Λj, ∀k, j ≥ with k 6= j.

Let us recall that the family {ϕk,j}k≥1,0≤j≤η−1 ⊂ L2(0,T;C) is biorthogonal
to {tje−Λkt}k≥1,0≤j≤η−1 if one has∫ T

0
tje−Λktϕ∗l,i(t) dt = δklδij, ∀(k, j), (l, i) : k, l ≥ 1, 0 ≤ i, j ≤ η − 1.

In addition, we want the family {ϕk,j}k≥1,0≤j≤η−1 ⊂ L2(0,T;C) to satisfy the
property:

For any ε > 0, there is C(ε,T) > 0 s.t. ‖ϕk,j‖L2(0,T;C) ≤ C(ε,T)eε<Λk ,

∀k ≥ 1 and 0 ≤ j ≤ η − 1.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(II) Biorthogonal families to appropriate complex matrix exponentials.

Theorem

Let us fix T ∈ (0,∞] and assume that for two positive constants δ and ρ one
has 

<Λk ≥ δ|Λk|, |Λk − Λl| ≥ ρ|k − l|, ∀k, l ≥ 1,∑
k≥1

1
|Λk|

<∞.

Then, ∃ {ϕk,j}k≥1,0≤j≤η−1 biorthogonal to
{

tje−Λkt
}

k≥1,0≤j≤η−1 such that,
for every ε > 0, there exists C(ε,T) > 0 satisfying

‖ϕk,j‖L2(0,T;C) ≤ C(ε,T)eε<Λk , ∀(k, j) : k ≥ 1, 0 ≤ j ≤ η − 1.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(II) Biorthogonal families to appropriate complex matrix exponentials.

Proof:

The proof of this result is very technical. It can be found in
[AMMAR-KHODJA,BENABDALLAH,G.-B.,DE TERESA], The Kalman
condition for the boundary controllability of coupled parabolic systems.
Bounds on biorthogonal families to complex matrix exponentials, J. Math.
Pures Appl. (2011).
In fact, the result is proved, first for T =∞ and then the general case is
deduced.

Let us analyze the key points of the proof when T =∞:

1 EXISTENCE
2 BOUNDS
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(II.1) Biorthogonal families: EXISTENCE.
Lemma

Assume that {Λk}k≥1 ⊂ C+, with Λk 6= Λj ∀k, j ≥ with k 6= j, and∑
k≥1

<Λk

(1 + <Λk)
2 + (=Λk)

2 <∞.

Then, there exists a biorthogonal family {ϕk,j}k≥1,0≤j≤η−1 ⊂ L2(0,∞;C) to{
tje−Λkt

}
k≥1,0≤j≤η−1 such that

‖ϕk,j‖L2 ≤ C
[

1+

(
1
<Λk

)(2η−j)(η−j−1)+1]
(<Λk)

η(η−j)|1+Λk|2η(η−j)Pη(η−j)
k ,

with C = C(η) > 0, a constant, and Pk :=
∏
`≥1
6̀=k

∣∣∣ 1+Λk/Λ
∗
`

1−Λk/Λ`

∣∣∣.
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7. The Kalman condition for a class of parabolic systems.
Boundary controls
(II.1) Biorthogonal families: EXISTENCE.

Remark

Observe that the assumptions

<Λk ≥ δ|Λk| and
∑
k≥1

1
|Λk|

<∞,

in Theorem 16 guarantee the hypothesis in the previous lemma. Therefore,
these two assumptions imply the existence of the biorthogonal family
{ϕk,j}k≥1,0≤j≤η−1 to

{
tje−Λkt

}
k≥1,0≤j≤η−1 in L2(0,∞;C). In addition, the

norm ‖ϕk,j‖L2 is bound with respect to the Blaschke product

Pk =
∏
`≥1
6̀=k

∣∣∣∣1 + Λk/Λ
∗
`

1− Λk/Λ`

∣∣∣∣ .
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Boundary controls
(II.2) Biorthogonal families: BOUNDS.
Proposition

Let {Λk}k≥1 ⊂ C+ be a sequence satisfying

<Λk ≥ δ|Λk|, |Λk − Λl| ≥ ρ|k − l| , ∀k, l ≥ 1, and
∑
k≥1

1
|Λk|

<∞,

for δ, ρ > 0. Then, for every ε > 0 there exists a constant C(ε) > 0 such that

Pk :=
∏
`≥1
` 6=k

∣∣∣∣1 + Λk/Λ
∗
`

1− Λk/Λ`

∣∣∣∣ ≤ C(ε)eε<Λk , ∀k ≥ 1.

For a proof of this result: [FATTORINI,RUSSELL] Quart. Appl. Math.
(1974/75) (real case) or [FERNÁNDEZ-CARA,G.-B.,DE TERESA], J. Funct.
Anal. (2010) (general case).
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Boundary controls
Summarizing

For the problem

(25)


yt = yxx + Ay in QT = (0, π)× (0,T),

y(0, ·) = Bv, y(π, ·) = 0 on (0,T),

y(·, 0) = y0 in (0, π),

(A ∈ L(Cn) and B ∈ L(Cm;Cn)) we know:

“System (25) is approximate controllable at time T ⇐⇒ System (25) is null
controllable at time T ⇐⇒ the Kalman condition rankKk = nk, ∀k ≥ 1”.

ESSENTIAL ASSUMPTION: Diffusion matrix D = Id

What happens if D 6= Id???
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Boundary controls
Let us now revisit the boundary controllability problem:

(18)


yt − Dyxx = Ay in QT ,
y|x=0 = Bv, y|x=1 = 0 on (0,T),
y(·, 0) = y0 in (0, π),

D =

(
d1 0
0 d2

)
, d1, d2 > 0, d1 6= d2, A =

(
0 0
1 0

)
and B =

(
1
0

)
.

We know:

1 Approximate controllability: System (18) is approximately

controllable at time T ⇐⇒
√

d1/d2 6∈ Q ⇐⇒ the eigenvalues of
R = D∂xx + A∗ are simple.

2 Null controllability: There are d1, d2 s.t.
√

d1/d2 6∈ Q and System (18)
is not null controllable at any time T > 0.
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Boundary controls
Let us analyze a little more the null controllability problem for System (18)
when ν =

√
d1/d2 6∈ Q. It is possible to apply the moment method to (18)

(now, much simpler) and reduce the null controllability problem to the
existence (with bounds) of a biorthogonal family to appropriate exponentials.

Spectrum of −R∗

The operator −R∗ = −D∂xx − A∗ has a sequence of positive real eigenvalues{
`2

d1

}
`≥1
∪
{

i2

d2

}
i≥1

= {Λk}k≥1,

and these eigenvalues are simple ⇐⇒ ν =
√

d1/d2 6∈ Q.

Question: Is it possible to construct a biorthogonal family to {e−Λkt}k≥1 (in
L2(0,∞)) which satisfies appropriate bounds??
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Boundary controls

1 We can apply Lemma 17 (η ≡ 1): there exists {ϕk}k≥1 ⊂ L2(0,∞)

biorthogonal to
{

e−Λkt
}

k≥1 such that, for C > 0, one has

‖ϕk‖L2 ≤ C|1 + Λk|3
∏

`≥1,` 6=k

∣∣∣∣1 + Λk/Λ
∗
`

1− Λk/Λ`

∣∣∣∣ := C|1 + Λk|3Pk.

2 The separability condition |Λk − Λl| ≥ ρ|k − l| (ρ > 0 a constant) does
not hold. We cannot apply Proposition 18 and, in general, the following
property fails:

“For any ε > 0, there exists C(ε) > 0 s.t. Pk ≤ C(ε)eεΛk , ∀k ≥ 1”.
This property is crucial for proving the null controllability result for
System (18) with boundary controls in L2(0,T) for arbitrary final
times T > 0 (see the scalar case in 5).

Conclusion: This approach does not work when T is small.
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Boundary controls
In a forthcoming paper

AMMAR-KHODJA,BENABDALLAH,G.-B.,DE TERESA, Condensation
index and necessary and sufficient conditions for the null controllability
of abstract systems. Application to the boundary null controllability of
coupled parabolic systems, in preparation,

the authors prove for System (18) the following result:

Theorem

1 Given ν =
√

d1/d2 6∈ Q, there exists T0 = T0(ν) ∈ [0,∞] such that
System (18) is null controllable at time T with controls v ∈ L2(0,T)
⇐⇒ T > T0.

2 Given T0 ∈ [0,∞], there exists a positive ν 6∈ Q such that System (18)
(for d1 = ν2 and d2 = 1) is null controllable at time T with controls
v ∈ L2(0,T) ⇐⇒ T > T0.
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Boundary controls
We had two important differences between the controllability problem for
scalar and non-scalar parabolic problems:

1 First difference, see slide 7, Section 4.2.

2 Second difference, see slide 10, Section 4.2.

Third difference with scalar problems

In general, we can get a null controllability result at time T > 0 for a
non-scalar parabolic problem if T is large enough.
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8. Further results: I. First and second order coupling terms

All previous results concern non-scalar parabolic equations with zero order
coupling terms (a matrix A). For null controllability results for some 2× 2
parabolic systems with first and second order coupling terms see
[GUERRERO] SIAM J. Control Optim (2007). For system

(28)


∂ty−∆y + cy + D · ∇y = ∂x1(wθ1) + v1ω in QT ,
∂tw−∆w + hw + K · ∇w = ∆(yθ2) in QT ,
y = w = 0 on ΣT , y(·, 0) = y0, w(·, 0) = w0 in Ω,

with c, h ∈ R and D,K ∈ RN and θ1, θ2 ∈ C2(Ω), one has:

Theorem

Assume that there exists a nonempty open subset ω2 ⊂ ω and C > 0 such that
|θ2| ≥ C > 0 in ω2. Then System (28) is null controllable at any time T > 0.

Remark

Again the control open set ω have to meet the support of the function |θ2|.
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8. Further results: II. Coupling matrices depending of x and t

In [BENABDALLAH,CRISTOFOL,GAITAN,DE TERESA] CRAS (2010), the
following 3× 3 control problem has been studied:

(29)

{
∂ty = (L+ A)y + Bv1ω in QT ,

y = 0 on ΣT , y(·, 0) = y0 in Ω,

where L = diag (L1,L2,L2) with (Li)i=1,2 operators as in (3) satisfying (4)
and (5), A = (aij)1≤i,j≤3 ∈ C4(QT ;L(R3)), B = (1, 0, 0)∗ ∈ R3, v ∈ L2(QT)
is the control, and y0 ∈ L2(Ω;R3) is the initial condition.
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8. Further results: II. Coupling matrices depending of x and t

Theorem

Suppose that a21 and a31 are time independent and j ∈ {2, 3} such that
|aj1(·)| ≥ C > 0 in ω, C > 0. For j ∈ {2, 3}, we set kj = 6

j and

Bkj ∈ C3(QT ;RN); Bi
kj

:=

N∑
`=1

α
(2)
i`

(
∂lakj1 −

akj1

aj1
∂laj1

)
, 1 ≤ i ≤ N.

Assume that ∂ω ∩ ∂Ω = γ , with |γ| 6= 0, and Bkj · ν 6= 0 on γ, where ν is the
outward unit normal vector. Then, System (29) is null controllable at time T.

Remark

A different sufficient condition has been obtained by K. Mauffrey.
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8. Further results: III. Control domain and coupling terms

Consider the following system

(30)


∂ty1 = ∆y1 + δpy2 + v1ω in QT ,

∂ty2 = py1 + ∆y2 in QT ,

y1 = y2 = 0 on ΣT ,

y1(·, 0) = y0,1, y2(·, 0) = y0,2 in Ω,

with p a smooth function and δ > 0. In [ALABAU-BOUSSOUIRA,
LÉAUTAUD], CRAS (2011). One has:

Theorem

Let p ≥ 0 on Ω. Assume that ∃p0 > 0 and ωp ⊂ Ω satisfying the Geometric
Control Condition (GCC) with p ≥ p0 in ωp . Assume that ω also satisfies

GCC. Then there exists δ0 > 0 such that for all 0 <
√
δ‖p‖L∞(Ω) ≤ δ0

System (30) is null controllable at any positive time T.
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8. Further results: III. Control domain and coupling terms

With the same kind of arguments, in the same paper, a new boundary control
result is proved. For simplicity, consider

(31)


∂ty1 = ∆y1 + δpy2 in QT ,

∂ty2 = py1 + ∆y2 in QT ,

y1 = bv, y2 = 0 on ΣT ,

y1(·, 0) = y0,1, y2(·, 0) = y0,2 in Ω,

where b is a function on ∂Ω, p ∈ L∞(Ω) and δ > 0. One has

Theorem

Let p satisfy assumptions of Theorem 8.1. Suppose that there ∃Γb ⊂ ∂Ω
satisfying GCC and b ≥ b0 > 0 on Γb. Then there exists δ0 > 0 such that for
all 0 <

√
δ‖p‖L∞(Ω) ≤ δ0 System (31) is null controllable at any time T > 0.
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8. Further results: III. Control domain and coupling terms

Even if the geometrical assumptions are too strong, these two theorems give
the first examples on controllability of cascade system with coupling terms
vanishing on the control domain. Moreover it also gives the first result on
boundary control of two coupled parabolic equations for N > 1.
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9. Comments and open problems

Most of the controllability results for parabolic systems are open.
A.- Let us consider the distributed controllability problem

(22)

{
∂ty− D∆y = Ay + Idv1ω in Q,
y = 0 on Σ, y(·, 0) = y0(·) in Ω.

with A ∈ L(Rn) (as before), B = Id and with D ∈ L(Rn) a non-symmetric
matrix such that the Jordan canonical form J is real and positive definite, i.e.,
J ∈ L(Rn) and

ξ J ξ∗ > 0, ∀ξ ∈ Rn, ξ 6= 0.

Some partial results by
E. FERNÁNDEZ-CARA, M. G.-B., L. DE TERESA, in preparation.
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9. Comments and open problems
B.- The null controllability property of non-scalar parabolic problems with
coupling matrices depending on x is open. A first problem:

Consider the distributed null controllability problem
yt − L0y = q(x)A0y + Bv1ω in QT = Ω× (0,T),
y = 0 on ΣT = ∂Ω× (0,T),
y(·, 0) = y0, in Ω,

with A0 ∈ L(Rn), B ∈ L(Rm;Rn), y0 ∈ L2(Ω;Rn), v ∈ L2(QT ;Rm) and q is a
given scalar function.

Simple case:

A0 is a “cascade matrix” and q(x) = 1O with O ⊂ Ω a new open set s.t.

O ∩ ω = ∅.
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9. Comments and open problems

C.- Kalman condition: Only in the cases presented here.

Other situations ?

D.- Boundary controllability for N > 1.
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Reference:
[AMMAR-KHODJA,BENABDALLAH,G.-B.,DE TERESA], Recent results on
the controllability of linear coupled parabolic problems: a survey,
Mathematical Control and Related Fields 1 (2011), no. 3, 267–306.

Very important: See the references therein.
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Thanks for your attention !

¡ Gracias por vuestra atención !
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