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1. Introduction. Statement of the problem
Let Ω ⊂ RN be a domain (bounded or unbounded), N ≥ 1, with
boundary ∂Ω regular enough (Ω ∈ C0,1 uniformly). Let ω ⊆ Ω be an
open subset and let us fix T > 0.
We consider the linear and nonlinear problems for the heat equation:

(1)


∂ty −∆y + ay = v1ω in Q = Ω× (0,T ),

y = 0 on Σ = ∂Ω× (0,T ),
y(·,0) = y0 in Ω,

(2)

{
∂ty −∆y + F (y) = v1ω in Q,
y = 0 on Σ, y(·,0) = y0 in Ω.

In (1) and (2), 1ω is the characteristic function of the set ω, y(x , t) is
the state, y0 is the initial datum (given in an appropriate space), and v
is the control function (which is localized in ω -distributed control-).
In (1), a ∈ L∞(Q) is given. We will assume that F : R→ R is a given
function.
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1. Introduction. Statement of the problem
Remark
In this talk we are interested in studying the controllability properties of
systems (1) and (2) (controllability to trajectories) when Ω is an unbounded
domain.
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1. Introduction. Statement of the problem
BOUNDED DOMAINS
Linear Problem: For every ω and T system (1) is null controllable
(equivalently exactly controllable to trajectories): For every y0 ∈ L2(Ω)
there is v ∈ L2(Q) s.t. the solution y to (1) satisfies y(T ) ≡ 0 in Ω.

H.O. FATTORINI, D.L. RUSSELL, Exact controllability theorems for
linear parabolic equations in one space dimension, Arch. Rational
Mech. Anal. 43 (1971), 272–292.
G. LEBEAU, L. ROBBIANO, Contrôle exact de l’équation de la
chaleur, Comm. P.D.E. 20 (1995), no. 1-2, 335–356.
a ≡ 0: v ∈ C∞0 (ω × (0,T )).
O. YU. IMANUVILOV, Controllability of parabolic equations,
(Russian) Mat. Sb. 186 (1995), no. 6, 109–132; translation in Sb.
Math. 186 (1995), no. 6, 879–900.
a ∈ L∞(Q): v ∈ L2(Q).
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1. Introduction. Statement of the problem
Nonlinear Problem (bounded domains): Under appropriate
assumptions on the function F (which has a superlinear growth at
infinity) system (2) is exactly controllable to trajectories at time T :

E. FERNÁNDEZ-CARA, Null controllability of the semilinear heat
equation, ESAIM Control Optim. Calc. Var. 2 (1997), 87–103.

F (s) ∼ |s| log(1 + |s|).

E. FERNÁNDEZ-CARA, E. ZUAZUA, Null and approximate
controllability for weakly blowing up semilinear heat equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 5,
583–616.

F (s) ∼ |s| logp(1 + |s|), p ∈ [0,3/2).

V. BARBU, Exact controllability of the superlinear heat equation,
Appl. Math. Optim. 42 (2000), no. 1, 73–89.
F (s) ∼ |s| logp(1 + |s|) (p ∈ [0,3/2)), 1 ≤ N < 6 and a dissipativity

condition on the nonlinearity: sF (s) ≥ −µo|s|2 (µ0 ≥ 0).

M. González-Burgos Controllability of nonlinear heat equations in unbounded domains



1. Introduction. Statement of the problem
Nonlinear Problem (bounded domains): Under appropriate
assumptions on the function F (which has a superlinear growth at
infinity) system (2) is exactly controllable to trajectories at time T :

E. FERNÁNDEZ-CARA, Null controllability of the semilinear heat
equation, ESAIM Control Optim. Calc. Var. 2 (1997), 87–103.

F (s) ∼ |s| log(1 + |s|).

E. FERNÁNDEZ-CARA, E. ZUAZUA, Null and approximate
controllability for weakly blowing up semilinear heat equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 5,
583–616.

F (s) ∼ |s| logp(1 + |s|), p ∈ [0,3/2).

V. BARBU, Exact controllability of the superlinear heat equation,
Appl. Math. Optim. 42 (2000), no. 1, 73–89.
F (s) ∼ |s| logp(1 + |s|) (p ∈ [0,3/2)), 1 ≤ N < 6 and a dissipativity

condition on the nonlinearity: sF (s) ≥ −µo|s|2 (µ0 ≥ 0).
M. González-Burgos Controllability of nonlinear heat equations in unbounded domains



1. Introduction. Statement of the problem
Nonlinear Problem (bounded domains):

A. DOUBOVA, E. FERNÁNDEZ-CARA, M. G.-B., E. ZUAZUA, On
the controllability of parabolic systems with a nonlinear term
involving the state and the gradient, SIAM J. Control Optim. 41
(2002), no. 3, 798–819.
Nonlinearities F (y ,∇y) with

F (s,w) ∼ |s| logp(1 + |s|+ |w |) + |w | logq(1 + |s|+ |w |),
p ∈ [0,3/2), q ∈ [0,1/2).
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1. Introduction. Statement of the problem
UNBOUNDED DOMAINS
Linear Problem:

S. MICU, E. ZUAZUA, On the lack of null-controllability of the heat
equation on the half-line, Trans. AMS 353 (2001), no. 4,
1635–1659.

Ω = (0,∞), a ≡ 0, ω ⊂ (0,∞) a bounded domain
(in fact, boundary control on x = 0) :

“Problem (1) is not null-controllable in finite time if y0 belongs to a
negative Sobolev space"

(For a similar result for Ω = RN
+, also see

S. MICU, E. ZUAZUA, On the lack of null-controllability of the heat
equation on the half-space, Port. Math. 58 (2001), no. 4, 1–24).
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1. Introduction. Statement of the problem
Linear Problem (unbounded domains):

V. CABANILLAS, S. DE MENEZES,E. ZUAZUA, Null controllability in
unbounded domains for the semilinear heat equations with
nonlinearities involving gradient terms, J. Optim. Theory Appl. 110
(2001), no. 2, 245–264.

a ∈ L∞(Q) and even first order terms BUT
Ω ⊂ RN , an unbounded domain s.t. Ω \ ω is BOUNDED.

CLOSE TO THE BOUNDED CASE !!
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1. Introduction. Statement of the problem
Linear Problem (unbounded domains):

P. CANNARSA, P. MARTINEZ, J. VANCOSTENABLE, Null
controllability of the heat equation in unbounded domains by finite
measure control region, ESAIM:COCV 10 (2004), 381–408.

Ω = (0,∞), a ≡ 0, ω = ∪n≥1(an,bn) an unbounded open set
BUT,Ω \ ω is also an unbounded open set.

Under technical assumptions on {an}n≥0 and {bn}n≥0 the authors
prove a null controllability result

y0 ∈ L2(Ω; ρ1) ( L2(Ω) and v ∈ L2(Q), or
y0 ∈ L2(Ω) and v ∈ L2(Q; ρ2) ) L2(Q),

with ρ1, ρ2 : (0,∞)→ (0,∞) depending on the sequences. If
bn − an ≥ m > 0 and an+1 − bn ≤ M, then ρ1 ≡ ρ2 ≡ 1.

M. González-Burgos Controllability of nonlinear heat equations in unbounded domains



1. Introduction. Statement of the problem
Linear Problem (unbounded domains):

L. MILLER, On the null controllability of the heat equation in
unbounded domains, Bull. Sci. Math. 129 (2005), no. 2, 175–185.

Positive and negative results for the null controllability of the heat
equations (a ≡ 0) in domains Ω̃ = Ω×O:

“If the heat in Ω is null-controllable at time T with distributed controls
supported in ω, then it is also null-controllable in Ω×O at time T with
distributed controls supported in ω ×O. In addition,

CT (Ω×O, ω ×O) ≤ CT (Ω, ω).”
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1. Introduction. Statement of the problem
Linear Problem (unbounded domains):

M. G.-B., L. DE TERESA, Some results on controllability for linear
and nonlinear heat equations in unbounded domains, Adv.
Diff. Eq. 12 (2007), no. 11, 1201–1240.

Global Carleman inequalities for the adjoint system under some
geometrical assumptions on (Ω, ω) (more details later).
Consequence: Null controllability result for system (1) for every
a ∈ L∞(Q).
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1. Introduction. Statement of the problem
UNBOUNDED DOMAINS
Nonlinear Problem:

1 V. CABANILLAS, S. DE MENEZES,E. ZUAZUA, Null controllability in
unbounded domains for the semilinear heat equations with
nonlinearities involving gradient terms, J. Optim. Theory Appl. 110
(2001), no. 2, 245–264.

2 M. G.-B., L. DE TERESA, Some results on controllability for linear
and nonlinear heat equations in unbounded domains, Adv.
Diff. Eq. 12 (2007), no. 11, 1201–1240.

(Ω, ω) such that Ω \ ω is bounded

1 In [1]: Globally Lipschitz-continuous nonlinearities F = F (y ,∇y)
and distributed controls v ∈ L2(Q).

2 In [2]: Nonlinearities F = F (y ,∇y) with superlinear growth at
infinity and distributed controls v ∈ L∞(Q) (and more regular).
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1. Introduction. Statement of the problem

Some questions:
1 Given (Ω, ω), is system (1) null controllable at time T for any

a ∈ L∞(Q) and y0 ∈ L2(Ω) with controls v in L2(Q)?
2 Is it possible to solve the null controllability problem for the linear

system (1) with “more regular controls", for example,
v ∈ L2(Q)∩ L∞(Q) or even v ∈ L2(Q)∩Cα,α/2(Q) with α ∈ (0,1)?
(Important for dealing with null controllability of the nonlinear
problem (2)).

3 Is it possible to extend the null controllability result to the nonlinear
case (system (2))? (F sub-linear or super-linear nonlinearity).
(Difficulty: The Sobolev compact embeddings fail when Ω is an
unbounded open set).
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2. Linear null controllability result with regular controls

ASSUMPTION (H1)

Given Ω, ω, T , a ∈ L∞(Q) and y0 ∈ L2(Ω), there exists a control
ṽ ∈ L2(Q) and ω0 ⊂ ω s. t. d0 = dist (ω0,Ω \ ω) > 0,
Supp ṽ ⊆ ω0 × [0,T ] and the solution ỹ to (1) satisfies ỹ(·,T ) ≡ 0 in Ω.

Theorem

Assume (H1) and ∂ω ∩ ∂Ω is of class C2 uniformly (if ∂ω ∩ ∂Ω 6= ∅).
Then, for any α ∈ (0,1), there exist Cα = Cα(Ω, ω, d0) > 0 and
v ∈ L2(Q) ∩ Cα,α/2(Q) such that Supp v ⊆ ω × [0,T ],

‖v‖L2∩Cα,α/2 ≤ eCα(1+T +T‖a‖∞)
(
‖ṽ‖L2(Q) + ‖y0‖L2(Ω)

)
,

and the solution y to (1) associated to v and y0 satisfies

y(·,T ) = 0 in Ω.
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2. Linear null controllability result with regular controls
Proof: Let us introduce two cut-off functions η ∈ C∞([0,T ]) and
θ ∈ C∞(Ω) such that{
η ≡ 1 in [0, T

4 ], η ≡ 0 in [3T
4 ,T ], 0 ≤ η ≤ 1 in [0,T ], |η′(t)| ≤ C/T , ∀t ;

θ ≡ 1 in ω0, 0 ≤ θ ≤ 1 in Ω and dist (Supp θ,Ω \ ω) > 0.

Let Y be the solution to system (1) corresponding to v ≡ 0:

(3)

{
∂tY −∆Y + aY = 0 in Q,
Y = 0 on Σ, Y (·,0) = y0(·) in Ω,

We now take y = (1− θ)ỹ + ηθY in Q and

v = (∂t −∆ + a)y = 2∇θ · ∇ỹ + (∆θ)ỹ + (∂t −∆ + a) (ηθY ) .

It is clear that Supp v(·, t) ⊆ Supp θ (and Supp v(·, t) ∩ (Ω \ ω) = ∅), y is
the solution to (1) corresponding to the control v and, taking into
account that ỹ(T ) ≡ 0 in Ω, we get y(·,T ) ≡ 0 in Ω.
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2. Linear null controllability result with regular controls
In fact v is a regular control and its regularity properties are
independent of y0 and ṽ . Indeed, we can express y and v as

y ≡ (1− θ)q + η(t)Y , v ≡ θη′Y + 2∇θ · ∇q + (∆θ)q,

where q is given by q = ỹ − ηY and, therefore, satisfies{
∂tq −∆q + aq = ṽ1ω − η′Y in Q,
q = 0 on Σ, q(·,0) = 0 in Ω.

Let us fix δ ∈ (0,T/4), p ∈ [2,∞) and O0,O1 ⊂ ω such that
dist (Oi ,Ω \ ω) > 0 (i = 0,1) and dist (ω0,O1) > 0 (and, in particular,
O1 ∩ Supp ṽ = ∅). If we denote by{

X p
0 = {y ∈ Lp(δ,T ; W 2,p(O0)) : ∂ty ∈ Lp(O0 × (δ,T ))},

X p
1 = {y ∈ Lp(0,T ; W 2,p(O1)) : ∂ty ∈ Lp(O1 × (0,T ))}

then, Y ∈ X p
0 (see (3)), q ∈ X p

1 and v ∈ Lp(0,T ; W 1,p(Ω)).
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2. Linear null controllability result with regular controls
In fact, we can obtain something better: if p > N + 2, one has
X p

0 ↪→ C1+α,(1+α)/2(O0 × [δ,T ]) and X p
1 ↪→ C1+α,(1+α)/2(O1 × [0,T ])

with α = 1− (N + 2)/p. Thus, v ∈ Cα,α/2(Q) and

‖v‖Cα,α/2 ≤ eCα(1+T +T‖a‖∞)‖ỹ‖W (0,T )

with Cα = Cα(Ω,T ) > 0 and

W (0,T ) = {y ∈ L2(0,T ; H1
0 (Ω)) : ∂ty ∈ L2(0,T ; H−1(Ω))}.

M. González-Burgos Controllability of nonlinear heat equations in unbounded domains



2. Linear null controllability result with regular controls
1 The previous regularity result for v is independent of the regularity

of the initial datum y0, the control ṽ and the boundary ∂Ω \ ∂ω.
We have only used local regularity properties of the operator
L ≡ ∂t −∆ + a. In the case in which a ≡ 0, we obtain v ∈ C∞(Q)
(as in the bounded case; see paper of Lebeau-Robbiano).

2 This technique can be applied if we consider a linear parabolic
problem with a first order term B · ∇y (B ∈ L∞(Q)N ) obtaining the
same regularity result.

3 This approach also works in the case of systems of two coupled
parabolic equations.
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2. Linear null controllability result with regular controls
The previous result has been proved in
L. DE TERESA, M. G.-B., Some results on controllability for linear and
nonlinear heat equations in unbounded domains, Adv. Diff. Eq. 12
(2007), no. 11, 1201–1240.
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3. Controllability of the nonlinear problem
Now, let us see a null controllability result for the nonlinear problem

(2)

{
∂ty −∆y + F (y) = v1ω in Q,
y = 0 on Σ, y(·,0) = y0 in Ω,

where y0 ∈ L2(Ω) and F : R→ R is a given function.

ASSUMPTION (H2)

Asume that (Ω, ω) and T > 0 satisfy: for any a ∈ L∞(Q) and
y0 ∈ L2(Ω), there exists a control ṽ ∈ L2(Q) s.t. the solution ỹ to (1)
satisfies ỹ(·,T ) ≡ 0 in Ω and

‖ṽ‖L2(Q) ≤ C(Ω, ω,T , ‖a‖∞)‖y0‖L2(Ω),

with C(Ω, ω,T , ·) an increasing function with respect to its last
argument.
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3. Controllability of the nonlinear problem
Theorem

Let us assume (H2). Let F ∈ C1(R) be a globally Lipschitz-continuous
function such that F (0) = 0. Then, system (2) is null controllable at
time T .

Proof: As usual, we are going to perform a fixed point argument: Let
us fix y0 ∈ L2(Ω). We introduce a set-valued mapping as follows:

We take G(s) = F (s)/s if s 6= 0 and G(0) = F ′(0). Then
G ∈ C0(R) and G ∈ L∞(R) (M = ‖G‖∞).
If z ∈ L2(Q), we consider the linear null controllability problem

(4)

{
∂ty −∆y + G(z)y = v1ω in Q,
y = 0 on Σ, y(·,0) = y0 in Ω.

U(z) = {v ∈ L2(Q) : yv (T ) = 0 and ‖v‖L2(Q) ≤ C(Ω, ω,T ,M)‖y0‖L2(Ω)}.

(Assumption (H2) implies U(z) 6= ∅ for any z ∈ L2(Q)).
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3. Controllability of the nonlinear problem
Thus, we introduce the set-valued mapping

Λ : z ∈ L2(Q) 7→ Λ(z) ⊂ L2(Q),

where

Λ(z) = {yv ∈ L2(Q) : yv is the solution to (4) associated to v ∈ U(z)}.

Does the mapping Λ admit a fixed point ??? Λ must be upper
semicontinuous and compact in L2(Q).

Difficulty

The open set Ω and the uncontrolled open set Ω \ ω could be
unbounded: Lack of compactness in the Sobolev embeddings.

Compactness of Λ??
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3. Controllability of the nonlinear problem
We apply the Kakutani Fixed Point Theorem:

Theorem
Let K be a compact convex set of a locally convex space X and
Λ : K → K an upper semicontinuous set-valued map such that Λ(x) is
a nonempty, compact and convex set for every x ∈ K . Then Λ has a
fixed point x∗ ∈ K , i.e., there exists x∗ ∈ K such that x∗ ∈ Λ(x∗).

We can apply this result to X = L2(Q) with the weak topology, and
K = conv

[
Λ(L2(Q))

]
(which is a bounded set and then, a compact set

with respect to the weak topology of L2(Q)).

Technical difficulty: Λ is upper semicontinuous in K with respect to
the weak topology of L2(Q).
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3. Controllability of the nonlinear problem

ASSUMPTION (H3)

Assume that (Ω, ω) and T > 0 satisfy the property: There is ω0 ⊂ ω
with d0 = dist (ω0,Ω \ ω) > 0 such that for any a ∈ L∞(Q) and
y0 ∈ L2(Ω), there exists a control ṽ ∈ L2(Q) satisfying:

1 Supp ṽ ⊆ ω0 × [0,T ] and

‖ṽ‖L2(Q) ≤ C(Ω, ω,T , ‖a‖∞)‖y0‖L2(Ω),

with C(Ω, ω,T , ·) an increasing function with respect to its last
argument.

2 the solution ỹ to (1) satisfies ỹ(·,T ) ≡ 0 in Ω

Of course, (H3) implies (H1) and (H2).
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3. Controllability of the nonlinear problem
As a consequence we get a local null controllability result for
system (2) for general nonlinearities F :

Corollary

Let us assume (H3) and ∂ω ∩ ∂Ω is of class C2 uniformly (if
∂ω ∩ ∂Ω 6= ∅). Let F ∈ C1(R) be a function s. t. F (0) = 0. Then, there
exists ε > 0 s.t. for any y0 ∈ L2(Ω) ∩ L∞(Ω) satisfying

‖y0‖L2∩L∞ ≤ ε,

there is v ∈ L2(Q) ∩ L∞(Q) such that the solution y to (2) satisfies
y(·,T ) = 0 in Ω.

M. G.-B., Some remarks on the exact controllability to trajectories for
the nonlinear heat equations in unbounded domains, In preparation.
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4. Global Carleman Inequalities. Some Examples
Goal: Carleman Inequalities in unbounded domains for the adjoint
problem:

(5)

{
−∂tϕ−∆ϕ+ aϕ = 0 in Q,
ϕ = 0 on Σ, ϕ(x ,T ) = ϕ0(x) in Ω.

ASSUMPTION (H4)

Assume (Ω, ω) s.t. DΩ(−∆) = H2(Ω) ∩ H1
0 (Ω), ∃ω1 ⊂ ω with

d1 = dist (ω1,Ω \ ω) > 0, and there exist η0 and C0, C1 > 0 such that

η0 ∈ C2(RN), η0 ≥ 0 in Ω,

|∇η0| ≥ C0 > 0 in Ω \ ω0,

∂η0

∂n ≤ 0 on ∂Ω,

|η0|+ |∇η0|+
∑

i,j |
∂2η0

∂xi∂xj
| ≤ C1 in Ω.
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α(x , t) =
e2λm||η0||∞ − eλ(m||η0||∞+η0(x))

t(T − t)
, ξ(x , t) =

eλ(m||η0||∞+η0(x))

t(T − t)
,

s, λ > 0, (m > 4 is fixed).
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4. Global Carleman Inequalities. Some Examples
Theorem

Assume (H4). Then, there exist positive constants σ1, λ1 and C1, only
depending on C0, C1 and d1, such that

I(ϕ) ≤ C1s3λ4
∫∫

ω0×(0,T )
e−2sαξ3|ϕ|2,

∀s ≥ s1 = σ1(T + T 2 + T 2||a||2/3
∞ ), λ ≥ λ1, with ϕ solution to (5) and

I(ϕ) ≡ s−1
∫∫

Q
e−2sαξ−1[|∂tϕ|2 + |∆ϕ|2]

+ sλ2
∫∫

Q
e−2sαξ|∇ϕ|2 + s3λ4

∫∫
Q

e−2sαξ3|ϕ|2.

ω0 = {x ∈ ω : dist (x , ω1) < d1/2}.
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4. Global Carleman Inequalities. Some Examples
The proof is given in
L. DE TERESA, M. G.-B., Some results on controllability for linear and
nonlinear heat equations in unbounded domains, Adv. Diff. Eq. 12
(2007), no. 11, 1201–1240.

Corollary

(H4) implies (H3) (p. 25) for the previous ω0, d0 = d1/2 and

C(Ω, ω,T , ‖a‖∞) ≡ exp
{

C(1 + 1/T + T ||a||∞ + ||a||2/3
∞ )

}
with C = C(C0, C1,d1) > 0.

We have an explicit dependence of the constant C with respect to
||a||∞, then, the proof of Corollary 3.3 also gives a global controllability
result for system (2) when the nonlinearity F satisfies some growth
assumption:
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Corollary

Let us assume (H4) and ∂ω ∩ ∂Ω is of class C2 uniformly (if
∂ω ∩ ∂Ω 6= ∅). Let F ∈ C1(R) be a function s.t. F (0) = 0 and

lim
|s|→∞

|F (s)|
|s| log3/2(1 + |s|)

= 0.

Then, for any y0 ∈ L2(Ω)∩ L∞(Ω) there exists v ∈ L2(Q)∩ L∞(Q) such
that the solution y to (2) satisfies y(·,T ) = 0 in Ω.

Question
Is it possible to provide open sets Ω and ω which fulfill assumption
(H4)??? YES.

1. Ω ⊂ RN a BOUNDED open set with Ω ∈ C2 and ω ⊂⊂ Ω.
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NONTRIVIAL EXAMPLES

2. Ω ⊂ RN an UNBOUNDED open set with ∂Ω ∈ C2 uniformly and
ω ⊂ Ω such that Ω \ ω is BOUNDED.

3. Ω = (0,∞) and
ω =

⋃
n≥0

(an,bn),

with 0 < an < bn < an+1, lim an = lim bn =∞, bn − an ≥ m > 0
and an+1 − bn ≤ M <∞.

η0 is an oscillating function,

d1 =
m
8
, C0 =

1
M + m

and C1 = C
(

1 +
1

m2

)
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4. Global Carleman Inequalities. Some Examples
4. Ω ⊂ RN unbounded open set of class C2 uniformly and

ω = {x ∈ Ω : dist (x , ∂Ω) > δ}

with δ = δ(Ω) > 0 a constant.

δ(Ω) ∼ radius such that Ω satisfies a uniform interior sphere
condition,
η0(x) ∼ dist (x , ∂Ω) near ∂Ω,

d1 ∼ δ(Ω), C0 = 1 and C1 ∼
1

δ(Ω)2 .
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4. Global Carleman Inequalities. Some Examples
5. Ω = Ω0 ×O and ω = ω0 ×O with ω0 ⊂ Ω0 ⊂ RN satisfying (H4)

and O ⊂ RM an arbitrary open set such that
DΩ(−∆) = H2(Ω)× H1

0 (Ω). The constants appearing in
Theorem 4.1 and Corollary 4.2 are independent of O.

ηω0 (x , y) = ηω0
0 (x), ∀(x , y) ∈ Ω0 ×O.

6. Ω = Ω0 × Ω1 and ω = ω0 × ω1 with ω0 ⊂ Ω0 ⊂ RN and
ω1 ⊂ Ω1 ⊂ RM satisfying (H4) and DΩ(−∆) = H2(Ω)× H1

0 (Ω).

ηω0 (x , y) = ηω0
0 (x)ηω1

0 (y), ∀(x , y) ∈ Ω0 × Ω1.
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Thank you for your attention!!
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