New phenomena in the null controllability of coupled parabolic systems

Manuel González-Burgos, UNIVERSIDAD DE SEVILLA

Workshop on Control Systems and Identification Problems, Valparaíso, CHILE. January 12-16, 2015.

M. González-Burgos New phenomena in the NC of coupled parabolic systems

GOAL:

The general aim of this talk is to show some phenomenona which arise when we deal with the null controllability properties of **coupled parabolic** systems:

- First phenomenon: Boundary controllability is not equivalent to distributed controllability for coupled parabolic systems.
- Second phenomenon: The null controllability properties are not equivalent to the approximated controllability of these problems.
- Third phenomenon: Minimal time of controllability. The null controllability only holds if is *T* is large enough.
- Fourth phenomenon: The null controllability of parabolic system depends on the position of the control open set (de Teresa's talk).

• • • • • • • •

2 First phenomenon: Boundary and distributed controllability

3 Second phenomenon: Approximate and null controllability

4 Third phenomenon: Minimal time of controllability

A > < = > < =

1. Introduction. Statement of the problem

M. González-Burgos New phenomena in the NC of coupled parabolic systems

4 3 5 4 3

1 Introduction. Statement of the problem

Let us fix T > 0 and $\omega = (a, b) \subset (0, \pi)$. We consider the coupled parabolic systems:

(1)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = Bu \mathbf{1}_{\omega} & \text{in } Q := (0, \pi) \times (0, T), \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$
(2)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

In (1) and (2), 1_{ω} is the characteristic function of the set ω , y(x, t) is the state, $y_0 \in L^2(0, \pi; \mathbb{R}^2)$ (or $y_0 \in H^{-1}(0, \pi; \mathbb{R}^2)$) is the initial datum and

•
$$D = \text{diag}(d_1, d_2) \in \mathcal{L}(\mathbb{R}^2)$$
, with $d_i > 0$, and $A_0 \in \mathcal{L}(\mathbb{R}^2)$ constant matrices; $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ constant vector of \mathbb{R}^2 ;

• $v \in L^2(0,T)$ and $u \in L^2(Q)$ are scalar control functions.

1 Introduction. Statement of the problem

Remark

In this talk we are interested in studying the controllability properties of systems (2) and (1). Boundary and distributed control problems.

IMPORTANT

We have systems of two coupled heat equations and we want to control these systems (two states) only acting on the second equation.

伺 ト イ ヨ ト イ ヨ

1 Introduction. Statement of the problem

Objective

We want to study the controllability properties of systems (1) and (2):

$$\begin{cases} y_t - Dy_{xx} + A_0 y = Bu 1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

under the assumption:

$$\boldsymbol{D} = \operatorname{diag}\left(\boldsymbol{d}_1, \boldsymbol{d}_2\right).$$

We will consider the "simplest" case: 1 - d, two equations and

$$\boldsymbol{A}_0 = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \quad \boldsymbol{B} = \left(\begin{array}{cc} 0 \\ 1 \end{array}\right)$$

2 b

2. First phenomenon: Boundary and distributed controllability

M. González-Burgos New phenomena in the NC of coupled parabolic systems

2.1 Distributed null controllability of a linear reaction-diffusion system

Let us consider the 2×2 linear reaction-diffusion system

(3)
$$\begin{cases} y_t - Dy_{xx} + A_1 y = Bu 1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Here ω and T are as before, $y_0 \in L^2((0, \pi); \mathbb{R}^2)$ and

$$\boldsymbol{D} = \left(\begin{array}{cc} d_1 & 0\\ 0 & d_2 \end{array}\right), \quad \boldsymbol{d}_1, \boldsymbol{d}_2 > 0, \quad \boldsymbol{A}_1 = \left(\begin{array}{cc} a_{11} & a_{12}\\ a_{21} & a_{22} \end{array}\right), \quad \boldsymbol{B} = \left(\begin{array}{cc} 0\\ 1 \end{array}\right).$$

• • **=** • • **=**

2.1 Distributed null controllability of a linear reaction-diffusion system

Let us consider the 2×2 linear reaction-diffusion system

(3)
$$\begin{cases} y_t - Dy_{xx} + A_1 y = Bu 1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Here ω and T are as before, $y_0 \in L^2((0,\pi); \mathbb{R}^2)$ and

$$\boldsymbol{D} = \left(\begin{array}{cc} d_1 & 0\\ 0 & d_2 \end{array}\right), \quad \boldsymbol{d}_1, \boldsymbol{d}_2 > 0, \quad \boldsymbol{A}_1 = \left(\begin{array}{cc} a_{11} & a_{12}\\ a_{21} & a_{22} \end{array}\right), \quad \boldsymbol{B} = \left(\begin{array}{cc} 0\\ 1 \end{array}\right).$$

One has

Theorem

System (3) is exactly controllable to trajectories at time T if and only if

$$\det\left[\underline{B}, \underline{A_1}\underline{B}\right] \neq 0 \Longleftrightarrow \underline{a_{12}} \neq 0.$$

2.1 Distributed null controllability of a linear reaction-diffusion system

Proof: \implies : If $a_{12} = 0$, then y_1 is independent of u.

 \leftarrow : The controllability result for system (3) is equivalent to the observability inequality: $\exists C > 0$ such that

$$\|\varphi_1(\cdot,0)\|_{L^2}^2 + \|\varphi_2(\cdot,0)\|_{L^2}^2 \le C \iint_{\omega \times (0,T)} |\varphi_2(x,t)|^2 \, dx \, dt,$$

where φ is the solution associated to $\varphi_0 \in L^2(\Omega; \mathbb{R}^2)$ of the adjoint problem:

(4)
$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + A_1^*\varphi = 0 & \text{in } Q, \\ \varphi = 0 \text{ on } \Sigma, \quad \varphi(\cdot, T) = \varphi_0 & \text{in } \Omega. \end{cases}$$

It is a consequence of well known global Carleman estimates for parabolic equations.

イロト イポト イヨト イヨト

2.1 Distributed null controllability of a linear reaction-diffusion system

Lemma

There exist a positive regular function, α_0 , and two positive constants C_0 and σ_0 (only depending on ω) s.t.

$$\begin{cases} \mathcal{I}(\phi) \equiv \iint_{Q} e^{-2s\alpha} [s\rho(t)]^{-1} \left(|\phi_{t}|^{2} + |\phi_{xx}|^{2} \right) \\ + \iint_{Q} e^{-2s\alpha} [s\rho(t)] |\nabla \phi|^{2} + \iint_{Q} e^{-2s\alpha} [s\rho(t)]^{3} |\phi|^{2} \\ \leq C_{0} \left(\iint_{\omega \times (0,T)} e^{-2s\alpha} [s\rho(t)]^{3} |\phi|^{2} + \iint_{Q} e^{-2s\alpha} |\phi_{t} \pm \phi_{xx}|^{2} \right), \end{cases}$$

 $\forall s \geq s_0 = \sigma_0(\Omega, \omega)(T + T^2) \text{ and } \phi \in L^2(0, T; H^1_0(\Omega)) \text{ s.t. } \phi_t \pm \phi_{xx} \in L^2(Q).$ The functions $\rho(t)$ and $\alpha = \alpha(x, t)$ are given by

$$\boldsymbol{\rho}(t) = [t(T-t)]^{-1}, \quad \boldsymbol{\alpha}(x,t) = \boldsymbol{\alpha}_0(x)/t(T-t).$$

Э

2.1 Distributed null controllability of a linear reaction-diffusion system

Coming back to the adjoint problem for system (4), if we apply to $\phi = \varphi_1$ and $\phi = \varphi_2$ the previous inequality in $\omega_0 \subset \omega$. After some computations we get

$$\mathcal{I}(\varphi_1) + \mathcal{I}(\varphi_2) \leq \mathbf{C}_1 s^3 \iint_{\boldsymbol{\omega}_0 \times (0,T)} e^{-2s\boldsymbol{\alpha}} [t(T-t)]^{-3} \left(|\varphi_1|^2 + |\varphi_2|^2 \right),$$

 $\forall s \ge s_1 = \sigma_1(\Omega, \omega_0)(T + T^2).$

伺下 イヨト イヨト

2.1 Distributed null controllability of a linear reaction-diffusion system

Coming back to the adjoint problem for system (4), if we apply to $\phi = \varphi_1$ and $\phi = \varphi_2$ the previous inequality in $\omega_0 \subset \omega$. After some computations we get

$$\mathcal{I}(\varphi_1) + \mathcal{I}(\varphi_2) \leq \mathbf{C}_1 s^3 \iint_{\omega_0 \times (0,T)} e^{-2s\alpha} [t(T-t)]^{-3} \left(|\varphi_1|^2 + |\varphi_2|^2 \right),$$

 $\forall s \ge s_1 = \sigma_1(\Omega, \omega_0)(T + T^2).$ We now use the second equation in (4), $a_{12}\varphi_1 = \varphi_{2,t} + d_2\varphi_{2,xx} - a_{22}\varphi_2$, to prove ($\varepsilon > 0$):

$$s^{3} \iint_{\omega_{0} \times (0,T)} e^{-2s\alpha} [t(T-t)]^{-3} |\varphi_{1}|^{2} \leq \varepsilon \mathcal{I}(\varphi_{1})$$
$$+ \frac{C_{2}}{\varepsilon} s^{7} \iint_{\omega \times (0,T)} e^{-2s\alpha} [t(T-t)]^{-7} |\varphi_{2}|^{2}.$$

 $\forall s \geq s_1 = \sigma_1(\Omega, \omega_0)(T + T^2).$

2.1 Distributed null controllability of a linear reaction-diffusion system

From the two previous inequalities (global Carleman estimate)

$$\mathcal{I}(\varphi_1) + \mathcal{I}(\varphi_2) \leq \frac{C_2 s^7}{\int \int_{\omega \times (0,T)} e^{-2s\alpha} [t(T-t)]^{-7} |\varphi_2|^2},$$

 $\forall s \geq s_1 = \sigma_1(\Omega, \omega_0)(T + T^2)$. Combining this inequality and energy estimates for system (4) we deduce the desired observability inequality.

2.1 Distributed null controllability of a linear reaction-diffusion system

$$\begin{cases} y_t - Dy_{xx} + A_1 y = Bu 1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Remark

- System (3) is always controllable if we exert a control in each equation (two controls). Important: D is a diagonal matrix.
- The controllability result for system (3) is independent of the diffusion matrix *D*. This positive controllability result is also valid in the *N*-dimensional case.
- The same result can be obtained for the approximate controllability at time T. Therefore, *approximate* and *null controllability* are equivalent concepts.

- E - E

2.1 Distributed null controllability of a linear reaction-diffusion system

References

- DE TERESA, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations 25 (2000).
- AMMAR KHODJA, BENABDALLAH, DUPAIX, KOSTIN, Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim. 42 (2003).
- G.-B., PÉREZ-GARCÍA, Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal. 46 (2006).
- G.-B., DE TERESA, Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math. 67 (2010).

伺い イヨト イヨト

2.1 Distributed null controllability of a linear reaction-diffusion system

Let us consider the problem

(5)

$$\begin{cases} y_t - \mathbf{D}\Delta y + Ay = \mathbf{B}\mathbf{v}\mathbf{1}_{\boldsymbol{\omega}} & \text{in } Q = \Omega \times (0, T), \\ y = 0 \text{ on } \Sigma = \partial \Omega \times (0, T), \quad y(\cdot, 0) = y_0 \text{ in } \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a nonempty smooth bounded connected open set, $\omega \subset \Omega$ a nonempty open subset, $A \in \mathcal{L}(\mathbb{R}^n)$, $B \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ and $D \in \mathcal{L}(\mathbb{R}^n)$ (positive definite). The control $\nu \in L^2(Q; \mathbb{R}^m)$: *m*-controls.

2.1 Distributed null controllability of a linear reaction-diffusion system

(5)

$$\begin{cases} y_t - \mathbf{D}\Delta y + Ay = \mathbf{B}\mathbf{v}\mathbf{1}_{\boldsymbol{\omega}} & \text{in } Q = \Omega \times (0, T), \\ y = 0 \text{ on } \Sigma = \partial \Omega \times (0, T), \quad y(\cdot, 0) = y_0 \text{ in } \Omega, \end{cases}$$

The dimensions of the Jordan blocks of the canonical form of D are ≤ 4 .

Theorem (Distributed control)

System (5) is null controllable at time T if and only if

$$\operatorname{rank}\left[\lambda_k D + A \mid B\right] = n, \quad \forall k \ge 1.$$

where $\{\lambda_k\}_{k\geq 1}$ is the sequence of eigenvalues for $-\Delta$ with homogeneous Dirichlet boundary conditions and

$$[\lambda_k D + A \mid B] = [B, (\lambda_k D + A)B, (\lambda_k D + A)^2 B, \cdots, (\lambda_k D + A)^{n-1}B].$$

・ 同 ト ・ ヨ ト ・ ヨ

2.1 Distributed null controllability of a linear reaction-diffusion system

(5)

References

- AMMAR KHODJA, BENABDALLAH, DUPAIX, G.-B., A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ. 9 (2009).
- FERNÁNDEZ-CARA,G.-B., DE TERESA, Controllability of linear and semilinear non-diagonalizable parabolic systems, to appear in ESAIM Control Optim. Calc. Var. (2015).

伺き くほき くほき

2.2 Boundary null controllability of a linear reaction-diffusion system

(6)
$$\begin{cases} y_t - Dy_{xx} + A_1 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$A_1 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\nu \in L^2(0,T)$: scalar control.

▶ < E > < E</p>

2.2 Boundary null controllability of a linear reaction-diffusion system

(6)
$$\begin{cases} y_t - Dy_{xx} + A_1 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$A_1 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\nu \in L^2(0,T)$: scalar control.

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010))

Assume $d_1 = d_2 > 0$. Assume μ_1, μ_2 are the eigenvalues of A_1 . Then system (6) is null controllable at time T if and only $det [B, A_1B] = a_{12} \neq 0$ and

$$\pi^{-2}(\mu_1 - \mu_2) \neq j^2 - k^2 \quad \forall k, j \in \mathbb{N} \text{ with } k \neq j.$$

• FERNÁNDEZ-CARA, G.-B., DE TERESA, Boundary controllability of parabolic coupled equations, J. Funct. Anal. 259 (2010).

2.2 Boundary null controllability of a linear reaction-diffusion system

$$\begin{cases} y_t - Dy_{xx} + A_1 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

First phenomenon

The boundary and distributed controllability properties of the system

$$y_t - \mathbf{D}y_{xx} + \mathbf{A}_1 y$$

are different and not equivalent.

• AMMAR KHODJA, BENABDALLAH, G.-B., DE TERESA, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl. (2011).

2.2 Boundary null controllability of a linear reaction-diffusion system

$$\begin{cases} y_t - Dy_{xx} + A_1 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Remark

The same result can be obtained for the approximate controllability at time T. Therefore, approximate and null controllability are equivalent concepts.

• • **=** • • **=**

3. Second phenomenon: Approximate and null controllability

M. González-Burgos New phenomena in the NC of coupled parabolic systems

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$D = \text{diag}(d_1, d_2), A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

We will assume that $d_1 \neq d_2$ and, for instance, $d_1 = 1$, $d_2 = d \neq 1$.

GOAL

(2)

Given
$$T > 0$$
, does there exist $v \in L^2(0, T)$ s.t. $y(T) = 0$?

Remark

Recall that the parabolic system $y_t - Dy_{xx} + A_0y = u1_{\omega}$ is approximate and null controllable at time T for any T > 0.

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability:

(2)

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010)) Assume $d \neq 1$. Then system (2) is approximately controllable at time T > 0 if and only if $\sqrt{d} \notin \mathbb{Q}$.

- A 🗉 🕨

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability:

(2)

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010)) Assume $d \neq 1$. Then system (2) is approximately controllable at time T > 0 if and only if $\sqrt{d} \notin \mathbb{Q}$.

Is this problem null controllable when $\left| \sqrt{d} \notin \mathbb{Q} \right|$??? No:

伺 ト イ ヨ ト イ ヨ

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Theorem (Luca, de Teresa, (2012))

There exists d > 0 *with* $\sqrt{d} \notin \mathbb{Q}$ *such that system* (2) *is not null controllable at any time* T > 0.

• LUCA, DE TERESA, Control of coupled parabolic systems and Diophantine approximations, SeMA J. 61 (2013).

Second phenomenon

For system (2): Approximate controllability (null controllability.

4 日 2 4 周 2 4 国 2 4 国

4. Third phenomenon: Minimal time of controllability

M. González-Burgos New phenomena in the NC of coupled parabolic systems

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$D = \operatorname{diag}(d_1, d_2), A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Assumption

In the sequel,
$$\boxed{D = \text{diag}(1, d)}$$
 with $\boxed{d \neq 1}$ and $\sqrt{d} \notin \mathbb{Q}$

Goal

(2)

Analyze the null controllability properties at time T > 0 of system (2).

イロト イ理ト イヨト イヨト

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Let φ be a solution of the adjoint problem:

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^*\varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \\ \varphi(\cdot, T) = \varphi_0 \in H_0^1(0, \pi)^2 & \text{in } (0, \pi). \end{cases}$$

If *y* is a solution of the direct problem, then

$$\langle y(T), \varphi_0 \rangle - \langle y_0, \varphi(0) \rangle = \int_0^T v(t) B^* D \varphi_x(0, t) dt$$

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Let φ be a solution of the adjoint problem:

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^*\varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \\ \varphi(\cdot, T) = \varphi_0 \in H_0^1(0, \pi)^2 & \text{in } (0, \pi). \end{cases}$$

If *y* is a solution of the direct problem, then

$$\langle y(T),\varphi_0\rangle - \langle y_0,\varphi(0)\rangle = \int_0^T v(t)B^*D\varphi_x(0,t)\,dt$$

Thus
$$y(T) = 0 \iff \exists \mathbf{v} \in L^2(0, T)$$
 such that
$$\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(0, t) \, dt = -\langle y_0, \varphi(0) \rangle, \quad \forall \varphi_0 \in H_0^1(0, \pi)^2$$

Fattorini-Russell Method

Material at our disposal

- $\sigma(-D\partial_{xx}^2 + A_0^*) = \bigcup_{k \ge 1} \{k^2, dk^2\} := \bigcup_{k \ge 1} \{\lambda_{k,1}, \lambda_{k,2}\}$
- $V_{k,1}$ and $V_{k,2}$: eigenvectors of the matrix $(k^2 D + A_0^*)$ associated to the eigenvalues k^2 , dk^2 .
- $\Phi_{k,i} = V_{k,i} \sin kx$, i = 1, 2: eigenfunctions of $(-D\partial_{xx}^2 + A_0^*)$.
- {Φ_{k,i}} is a (Riesz) basis of H¹₀(0, π)². Let {Ψ_{k,i}} be the associated biorthogonal family (for the duality ⟨·, ·⟩_{((H¹₀)²,(H⁻¹)²)})

$$f \in H_0^1(0,\pi)^2 \Longleftrightarrow f = \sum_{k \ge 1, i=1,2} \langle f, \Psi_{k,i} \rangle \Phi_{k,i}$$
$$\|f\|_{(H_0^1)^2}^2 \sim \sum_{k \ge 1, i=1,2} |\langle f, \Psi_{k,i} \rangle|^2$$

(日)

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Objective: Existence of $v \in L^2(0, T)$ s.t.

$$\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(0,t) \, dt = - \langle y_0, \varphi(0) \rangle \,, \quad \forall \varphi_0 \in H_0^1(0,\pi)^2$$

伺 とくき とくきょ

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Objective: Existence of $v \in L^2(0, T)$ s.t.

$$\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(0,t) \, dt = -\langle y_0, \varphi(0) \rangle \,, \quad \forall \varphi_0 \in H_0^1(0,\pi)^2$$

• Choosing $\varphi_0 = \Phi_{k,i}$, we have $\varphi(\cdot, t) = e^{-\lambda_{k,i}(T-t)} \Phi_{k,i}$ and

$$\varphi(x,0) = e^{-\lambda_{k,i}T} \Phi_{k,i}(x), \quad \varphi_x(0,t) = k e^{-\lambda_{k,i}(T-t)} V_{k,i}$$

• The identity connecting y and φ writes (moment problem)

$$kB^*DV_{k,i}\int_0^T v(T-t)e^{-\lambda_{k,i}t}\,dt = -e^{-\lambda_{k,i}T}\left\langle y_0, \Phi_{k,i}\right\rangle, \quad \forall (k,i)$$

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (I)

•
$$\left[\frac{kB^*DV_{k,i}}{\int_0^T v(T-t)e^{-\lambda_{k,i}t}} dt = -e^{-\lambda_{k,i}T} \langle y_0, \Phi_{k,i} \rangle, \quad \forall (k,i) \right]$$

→ Ξ → < Ξ</p>

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (I)

•
$$\boxed{kB^*DV_{k,i}} \int_0^T v(T-t)e^{-\lambda_{k,i}t} dt = -e^{-\lambda_{k,i}T} \langle y_0, \Phi_{k,i} \rangle, \quad \forall (k,i)$$

- A necessary condition: $B^*DV_{k,i} \neq 0$ for all $k \ge 1, i = 1, 2$
- Recall $d \neq 1$,

$$\boldsymbol{B}^* = (0,1), \quad \boldsymbol{V}_{k,1} = \begin{pmatrix} 1\\ \frac{1}{(d-1)k^2} \end{pmatrix}, \quad \boldsymbol{V}_{k,2} = \begin{pmatrix} 0\\ 1 \end{pmatrix}, \quad \forall k \ge 1.$$

So, here $B^*DV_{k,i} \neq 0$, $\forall k \ge 1, i = 1, 2$

(2)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (II)

$$\lambda_{k,1} = \lambda_{j,2} = \lambda \Rightarrow \begin{cases} kB^* DV_{k,1} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{k,1} \rangle \\ jB^* DV_{j,2} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{j,2} \rangle \end{cases}$$

So it is necessary to have $\lambda_{k,1} \neq \lambda_{j,2}$. This leads to

$$k^2 \neq dj^2, \quad \forall k \neq j \ge 1 \iff \sqrt{d} \notin \mathbb{Q}$$

▶ < Ξ ▶ < Ξ</p>

(2)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (II)

$$\lambda_{k,1} = \lambda_{j,2} = \lambda \Rightarrow \begin{cases} kB^* DV_{k,1} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{k,1} \rangle \\ jB^* DV_{j,2} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{j,2} \rangle \end{cases}$$

So it is necessary to have $\lambda_{k,1} \neq \lambda_{j,2}$. This leads to

$$k^2 \neq dj^2, \quad \forall k \neq j \ge 1 \Longleftrightarrow \sqrt{d} \notin \mathbb{Q}$$

In the sequel, we will assume $\sqrt{d} \notin \mathbb{Q}$, i.e., the eigenvalues of $-D\partial_{xx}^2 + A_0^*$ with Dirichlet boundary conditions are pairwise distinct.

 $\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$

$$kB^*DV_{k,i}\int_0^T v(T-t)e^{-\lambda_{k,i}t}\,dt = -e^{-\lambda_{k,i}T}\left\langle y_0, \Phi_{k,i}\right\rangle, \quad \forall (k,i)$$

Summarizing

(2)

Let
$$m_{k,i} = -\langle y_0, \Phi_{k,i} \rangle$$
, $b_{k,i} = kB^* DV_{k,i}$ (for any $\varepsilon > 0$, $||m_{k,i}| \le C_{\varepsilon} e^{\varepsilon \lambda_{k,i}}|$ and
 $|b_{k,i}| \ge C_{\varepsilon} e^{-\varepsilon \lambda_{k,i}}|$),
 $\exists ? \mathbf{v} \in L^2(0,T) : \int_0^T \mathbf{v}(T-t) e^{-\lambda_{k,i}t} dt = \frac{m_{k,i}}{b_{k,i}} e^{-\lambda_{k,i}T}, \quad \forall k \ge 1, \ i = 1, 2$

イロト 人間 トイヨト イヨト

3

The moment problem: Abstract setting

Let $\Lambda = {\lambda_k}_{k\geq 1} \subset (0,\infty)$ be a sequence with pairwise distinct elements:

$$\sum_{k\geq 1}\frac{1}{|\boldsymbol{\lambda}_k|}<\infty$$

Goal: Given
$$\{m_k\}_{k\geq 1}, \{b_k\}_{k\geq 1} \subset \mathbb{R}$$
 satisfying $|m_k| \leq C_{\varepsilon} e^{\varepsilon \lambda_k}$ and
 $|b_k| \geq C_{\varepsilon} e^{-\varepsilon \lambda_k}$, find $\nu \in L^2(0, T)$ s.t.
 $\int_0^T \nu(T-t) e^{-\lambda_k t} dt = \frac{m_k}{b_k} e^{-\lambda_k T}, \quad \forall k \geq 1.$

伺き くほき くほ

The moment problem: Abstract setting

Theorem

Under the previous assumptions, $\{e^{-\lambda_k t}\}_{k\geq 1} \subset L^2(0,T)$ admits a biorthogonal family $\{q_k\}_{k\geq 1}$ in $L^2(0,T)$, i.e.:

$$\int_0^T e^{-\lambda_k t} q_l(t) \, dt = \delta_{kl}, \quad \forall k, l \ge 1$$

4. Third phenomenon The moment problem: Abstract setting

A formal solution to

$$\int_0^T \mathbf{v}(T-t) e^{-\boldsymbol{\lambda}_k t} \, dt = \frac{m_k}{b_k} e^{-\boldsymbol{\lambda}_k T}, \quad \forall k \ge 1,$$

is
$$\mathbf{v}$$
 given by: $\mathbf{v}(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t)$,

★ ∃ ► < ∃</p>

4. Third phenomenon The moment problem: Abstract setting

A formal solution to

$$\int_0^T v(T-t)e^{-\lambda_k t} dt = \frac{m_k}{b_k}e^{-\lambda_k T}, \quad \forall k \ge 1,$$

is
$$\mathbf{v}$$
 given by: $\mathbf{v}(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t)$,

Question:
$$v \in L^2(0, T)$$
?, i.e., is the series $\sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t)$ convergent in $L^2(0,T)$?

But this question itself amounts to:

$$\|\boldsymbol{q}_k\|_{L^2(0,T)} \underset{k\to\infty}{\sim}?$$

3 ×

The moment problem: Abstract setting

Theorem

Assume

$$\sum_{k\geq 1}\frac{1}{|\lambda_k|}<\infty.$$

Then, for any $\varepsilon > 0$ *one has*

$$C_{1,\varepsilon}\frac{e^{-\varepsilon\lambda_k}}{|E'(\lambda_k)|} \le \|q_k\|_{L^2(0,T)} \le C_{2,\varepsilon}\frac{e^{\varepsilon\lambda_k}}{|E'(\lambda_k)|}, \quad \forall k \ge 1,$$

where E(z) is the interpolating function:

$$E(z) = \prod_{k=1}^{\infty} (1 - \frac{z^2}{\lambda_k^2}), \qquad E'(\lambda_k) = -\frac{2}{\lambda_k} \prod_{j \neq k}^{\infty} \left(1 - \frac{\lambda_k^2}{\lambda_j^2} \right)$$

🗇 🕨 🖉 🕨 🖉 🗎

The moment problem: Abstract setting

Definition

The condensation index of $\Lambda = \{\lambda_k\}_{k \ge 1} \subset \mathbb{C}$ is:

$$c(\Lambda) = \limsup_{k \to \infty} \frac{-\ln |E'(\lambda_k)|}{\Re(\lambda_k)} \in [0, +\infty].$$

Corollary

For any $\varepsilon > 0$ one has

$$\|q_k\|_{L^2(0,T;)} \leq C_{\varepsilon} e^{(c(\Lambda)+\varepsilon)\lambda_k}, \quad \forall k \geq 1.$$

イロト イポト イヨト イヨト

The moment problem: Abstract setting

Recall that we had m_k s.t. $|m_k| \le C_{\varepsilon} e^{\varepsilon \lambda_k}$, $|b_k| \ge C_{\varepsilon} e^{-\varepsilon \lambda_k}$, for any $\varepsilon > 0$, and we wanted to solve: $\nu \in L^2(0,T)$ and

$$\int_0^T v(T-t)e^{-\lambda_k t} dt = \frac{m_k}{b_k}e^{-\lambda_k T}, \quad \forall k \, | \,$$

We took
$$\mathbf{v}(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t).$$

The moment problem: Abstract setting

Recall that we had m_k s.t. $|m_k| \le C_{\varepsilon} e^{\varepsilon \lambda_k}$, $|b_k| \ge C_{\varepsilon} e^{-\varepsilon \lambda_k}$, for any $\varepsilon > 0$, and we wanted to solve: $\nu \in L^2(0,T)$ and

$$\int_0^T v(T-t)e^{-\lambda_k t} dt = \frac{m_k}{b_k}e^{-\lambda_k T}, \quad \forall k \,$$

We took
$$v(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t).$$

From the previous result: Given $\varepsilon > 0$:

$$\left|rac{m_k}{b_k}
ight|e^{-\lambda_k T}\left\|q_k
ight\|_{L^2(0,T)}\leq C_arepsilon e^{-\lambda_{k,i}(T-c(\Lambda)-arepsilon)}$$

Then

$$T > c(\Lambda) \Longrightarrow v(T-t) = \sum_{k \ge 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t) \in L^2(0,T).$$

 $\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$

In our case,

$$\Lambda_d := \{\lambda_k\}_{k\geq 1} = \{j^2, dj^2\}_{j\geq 1}.$$

Then

(2)

If $T > c(\Lambda_d)$, system (2) is null controllable at time *T*, where $c(\Lambda_d)$ is the **condensation index** of the sequence Λ_d .

伺き くほき くほき

4. Third phenomenon The controllability result

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = By, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$\Lambda_d = \{k^2, dk^2\}_{k \ge 1}, \quad \sqrt{d} \notin \mathbb{Q}.$$

We have proved:

Theorem

There exists $T_0 = c(\Lambda_d) \in [0, +\infty]$ *such that if* $T > T_0$ *then system* (2) *is null controllable at time* T

• • **=** • • **=**

4. Third phenomenon The controllability result

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = By, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$\Lambda_d = \{k^2, dk^2\}_{k \ge 1}, \quad \sqrt{d} \notin \mathbb{Q}.$$

We have proved:

Theorem

There exists $T_0 = c(\Lambda_d) \in [0, +\infty]$ *such that if* $T > T_0$ *then system* (2) *is null controllable at time* T

 $T > c(\Lambda_d)$ is a sufficient condition for the null controllability of system (2) at time *T*. But,

what happens if
$$T < c(\Lambda_d)$$
?

M. González-Burgos New phenomena in the NC of coupled parabolic systems

The non-controllability result

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = B\nu, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

The null controllability property at time T of system (2) is equivalent to the **observability inequality**:

$$\|\varphi(\cdot,0)\|_{(H_0^1)^2}^2 \leq C_T \int_0^T |\boldsymbol{B}^* \boldsymbol{D} \partial_x \varphi(0,t)|^2 dt,$$

for the solutions to the adjoint problem

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^* \varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \end{cases}$$

The non-controllability result

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^* \varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \end{cases}$$

•
$$\sigma(-D\partial_{xx}^2 + A_0^*) = \bigcup_{k \ge 1} \{k^2, dk^2\} := \bigcup_{k \ge 1} \{\lambda_{k,1}, \lambda_{k,2}\}$$

- $V_{k,1}$ and $V_{k,2}$: eigenvectors of the matrix $(k^2 D + A_0^*)$ associated to the eigenvalues k^2 , dk^2 .
- $\Phi_{k,i} = V_{k,i} \sin kx$, i = 1, 2: eigenfunctions of $(-D\partial_{xx}^2 + A_0^*)$.
- {Φ_{k,i}} is a (Riesz) basis of H¹₀ (0, π)². Let {Ψ_{k,i}} be the associated biorthogonal family (for the duality ⟨·, ·⟩_{((H¹₀)²,(H⁻¹)²)}

$$f \in H_0^1(0,\pi)^2 \iff f = \sum_{k \ge 1, i=1,2} \langle f, \Psi_{k,i} \rangle \Phi_{k,i}$$
$$\|f\|_{(H_0^1)^2}^2 = \sum_{k \ge 1, i=1,2} |\langle f, \Psi_{k,i} \rangle|^2$$

The non-controllability result

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + A_0^*\varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \end{cases}$$

Thus, the observability inequality for the adjoint system writes

$$\sum_{n,i} e^{-2\lambda_{n,i}T} |a_{n,i}|^2 \leq C_T \int_0^T \left| \sum_{n,i} n B^* D V_{n,i} e^{-\lambda_{n,i}t} a_{n,i} \right|^2 dt,$$

 $\forall \{\mathbf{a}_{n,i}\}_{n,i} \in \ell^2.$

- E - E

The non-controllability result

$$\left|\sum_{n,i} e^{-2\lambda_{n,i}T} |a_{n,i}|^2 \leq C_T \int_0^T \left|\sum_{n,i} nB^* DV_{n,i} e^{-\lambda_{n,i}t} a_{n,i}\right|^2 dt,\right|$$

Assume $T \in (0, c(\Lambda_d))$.

By contradiction: Assume the **observability inequality** holds for $C_T > 0$

Construction of a suitable sequence of initial data

The idea is to construct sequences $\{a_{n,i}^{(k)}\}_{n,i} \in \ell^2$ such that

$$\int_0^T \left| \sum_{n,i} n B^* D V_{n,i} e^{-\lambda_{n,i} t} a_{n,i}^{(k)} \right|^2 \to 0, \quad \sum_{n,i} e^{-2\lambda_{n,i} T} |a_{n,i}^{(k)}|^2 \ge \delta > 0.$$

イロト イポト イヨト イヨト

э

Argument: Use the overconvergence of Dirichlet series

Theorem

Suppose that the sequence $\Lambda = {\lambda_n}_{n\geq 1}$ has condensation index $c(\Lambda)$. We can choose a sequence of finite sets $N_k \subset \mathbb{N}$, a sequence ${\alpha_n}_{n\geq 1} \subset \mathbb{C}$, such that there exists $R \geq 0$ such that

- the series $\sum_{n>1} \alpha_n e^{-\lambda_n z}$ converges in the region $\Re z > R$
- **2** the series $\sum_{n>1} \alpha_n e^{-\lambda_n z}$ diverges in the region $\Re z < R$
- the series $\sum_{k\geq 1} (\sum_{n\in N_k} \alpha_n e^{-\lambda_n z})$ converges in the region $\Re z > R c(\Lambda)$
 - One can construct $\{\alpha_n\}_{n\geq 1}$ such that $R = c(\Lambda)$.
 - The construction of the sequence $\{\alpha_n\}_{n\geq 1}$ is explicit.

イロト イ押ト イヨト イヨト

The non-controllability result

•
$$\Lambda_d = {\lambda_n}_{n\geq 1} = {k^2, dk^2}_{k\geq 1}$$
. We construct ${a_n^{(k)}}_{n\geq 1} \in \ell^2$:

$$a_n^{(k)} = \begin{cases} \frac{\alpha_n}{b_n} & n \in N_k \\ 0 & n \notin N_k \end{cases}$$

 $\boldsymbol{b}_n = n \left| \boldsymbol{B}^* \boldsymbol{D} \boldsymbol{V}_n \right|$

- $\{a_n^{(k)}\}_{n\geq 1} \in \ell^2$ (recall that the sets N_k are finite).
- The observability inequality is

$$\sum_{n\in N_k} e^{-2\lambda_n T} |a_n^{(k)}|^2 \leq C_T \int_0^T \left| \sum_{n\in N_k} e^{-\lambda_n t} \alpha_n \right|^2 dt,$$

• • **=** • • **=**

The non-controllability result

$$\sigma_1^{(k)} := \sum_{n \in N_k} e^{-2\lambda_n T} |a_n^{(k)}|^2 \leq C_T \int_0^T \left| \sum_{n \in N_k} e^{-\lambda_n t} \alpha_n \right|^2 dt := \sigma_2^{(k)},$$

• The convergence of the series $\sum_{k\geq 1} (\sum_{n\in N_k} \alpha_n e^{-\lambda_n t})$ for all t > 0 (recall that $R = c(\Lambda_d)$ and then $R - c(\Lambda_d) = 0$) implies:

$$\lim_{k \to +\infty} \sum_{n \in N_k} \alpha_n e^{-\lambda_n t} = 0, \quad \forall t > 0$$

- E - E

The non-controllability result

$$\sigma_1^{(k)} := \sum_{n \in N_k} e^{-2\lambda_n T} |a_n^{(k)}|^2 \leq C_T \int_0^T \left| \sum_{n \in N_k} e^{-\lambda_n t} \alpha_n \right|^2 dt := \sigma_2^{(k)},$$

• The convergence of the series $\sum_{k\geq 1} (\sum_{n\in N_k} \alpha_n e^{-\lambda_n t})$ for all t > 0 (recall that $R = c(\Lambda_d)$ and then $R - c(\Lambda_d) = 0$) implies:

$$\lim_{k \to +\infty} \sum_{n \in N_k} \alpha_n e^{-\lambda_n t} = 0, \quad \forall t > 0$$

• Moreover, one can prove there exist $C_1, C_2 > 0$ such that

$$\left|\sum_{n\in N_k}\alpha_n e^{-\lambda_n t}\right| \leq C_1 e^{-C_2 t}.$$

• Thus, from Lebesgue's dominated convergence theorem, we obtain $\sigma_2^{(k)} \rightarrow 0.$

The non-controllability result

$$\sigma_1^{(k)} := \sum_{n \in N_k} e^{-2\lambda_n T} |a_n^{(k)}|^2 \le C_T \int_0^T \left| \sum_{n \in N_k} e^{-\lambda_n t} \alpha_n \right|^2 dt := \sigma_2^{(k)},$$

By construction the sequence {α_n}_{n≥1} satisfies that for all k ≥ 1 there exists n_k ∈ N_k such that

$$\left|a_{n_{k}}^{(k)}\right| = \left|\frac{\alpha_{n_{k}}}{b_{n_{k}}}\right| \geq C_{\varepsilon}e^{\Re(\lambda_{n_{k}})(c(\Lambda_{d})-\varepsilon)}$$

• One gets:

$$\sigma_1^{(k)} \geq e^{-2\lambda_{n_k}T} \left| a_{n_k}^{(k)} \right|^2 \geq C_{\varepsilon} e^{2\Re(\lambda_{n_k})(c(\Lambda_d) - T - \varepsilon)} \underset{T < c(\Lambda_d)}{\to} +\infty.$$

• So, one has proved

$$\sigma_1^{(k)} \to +\infty, \quad \sigma_2^{(k)} \to 0$$

4. Third phenomenon The controllability result

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

The controllability result

0 $\forall T > 0$: **Approximate controllability** if and only if $\sqrt{d} \notin \mathbb{Q}$

2 Assume $\sqrt{d} \notin \mathbb{Q}, \exists T_0 = c(\Lambda_d) \in [0, +\infty]$ such that

• the system is null controllable at time T if $T > T_0$

② Even if $\sqrt{d} \notin \mathbb{Q}$, if $T < T_0$ the system is **not null controllable** at time *T*!

イロト イポト イヨト イヨト

4. Third phenomenon The controllability result

(2)

$$\begin{cases} y_t - \mathbf{D} y_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = \mathbf{B} \nu, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

In fact, the good minimal time is

$$T_0 = \limsup_{k \to \infty} \frac{-\left(\ln |\boldsymbol{b}_k| + \ln |E'(\boldsymbol{\lambda}_k)|\right)}{\Re(\boldsymbol{\lambda}_k)} \in [0,\infty]$$

🗇 🕨 🖉 🕨 🖉 🗎

2)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$T_0 > 0?$

Is it possible to have a minimal time of control > 0? I.e., for $\Lambda_d = \{k^2, dk^2\}_{k \ge 1}$ with $\sqrt{d} \notin \mathbb{Q}$, is it possible that $c(\Lambda_d) > 0$?

2)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$T_0 > 0?$

Is it possible to have a minimal time of control > 0? I.e., for $\Lambda_d = \{k^2, dk^2\}_{k \ge 1}$ with $\sqrt{d} \notin \mathbb{Q}$, is it possible that $c(\Lambda_d) > 0$?

Theorem

For any
$$\tau \in [0, +\infty]$$
, there exists $\sqrt{d} \notin \mathbb{Q}$ such that $c(\Lambda_d) = \tau$.

Remark

- There exists $\sqrt{d} \notin \mathbb{Q}$ such that $c(\Lambda_d) = +\infty$ (LUCA, DE TERESA).
- $c(\Lambda_d) = 0$ for almost $d \in (0, \infty)$ such that $\sqrt{d} \notin \mathbb{Q}$.
- For any $\tau \in [0, +\infty]$, the set $\{d \in (0, \infty) : c(\Lambda_d) = \tau\}$ is dense in $(0, +\infty)$.

Remark

This minimal time also arises in other parabolic problems (degenerated problems):

BEAUCHARD, CANNARSA, GUGLIELMI, Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. (JEMS) (2014).

Reference

F. AMMAR KHODJA, A. BENABDALLAH, M.G.-B., L. DE TERESA, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, J. Funct. Anal. **267** (2014).

http://personal.us.es/manoloburgos

伺下 イヨト イヨト

Scalar case versus systems (parabolic problems)

SCALAR CASE SYSTEMS

boundary \Leftrightarrow distributed control	Yes	No
approximate \Leftrightarrow null controllability	Yes	No
minimal time for controling	No	Yes
geometrical conditions	No	Yes

□▶★□▶★■▶

Some references

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Existing results: $d_1 = d_2$: Approximate and null controllability.

- L. ROSIER, L. DE TERESA, C. R. Math. Acad. Sci. Paris (2011), 2 × 2 systems, 1-d, cascade systems, sing conditions, sufficient conditions.
- F. ALABAU-BOUSSOUIRA, M. LÉAUTAUD, J. Math. Pures Appl. (2012): 2 × 2 systems, *N*-d, particular matrices depending on *x*, sing conditions, sufficient conditions, geometric control condition.
- F. ALABAU-BOUSSOUIRA, Math. Control Signals Systems (2014): 2 × 2 systems, *N*-d, cascade systems, sing conditions, sufficient conditions, geometric control condition.

• • • • • • •

Some references

(2)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Existing results: $d_1 = d_2$: Approximate and null controllability.

• A. BENABDALLAH, F. BOYER, M.G.-B., G. OLIVE, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null-controllability in cylindrical domains, SIAM J. Control and Optim. (2014).

Some references

$$\begin{cases} \partial_t y_1 - d_1 \partial_x^2 y_1 + a_{11} y_1 + a_{12} y_2 = 0 & \text{in } Q, \\ \partial_t y_2 - d_2 \partial_x^2 y_2 + a_{22} y_2 + a_{21} y_1 = u \mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Existing results: a_{12} is a PD operator of order ≤ 2 with $\omega \cap \text{Supp } a_{12} \neq \emptyset$ and a_{12} is "invertible": Approximate and null controllability.

- S. GUERRERO, SIAM J. Control Optim. 25 (2007).
- A. BENABDALLAH, M. CRISTOFOL, P. GAITAN, L. DE TERESA, Math. Control Relat. Fields (2014).
- K. MAUFFREY, J. Math. Pures Appl. (2013).

Different diffusion coefficients, any space dimension.

Thank you for your attention!!

< E