
The Minimum Manhattan Network Problem—

Approximations and Exact Solutions

Marc Benkert a, Takeshi Shirabe b, and Alexander Wolff a

aFaculty of Computer Science, Karlsruhe University, Germany. WWW: i11www.ilkd.uka.de/algo/group
bInstitute for Geoinformation, Technical University of Vienna, Austria. Email: shirabe@geoinfo.tuwien.ac.at

1. Introduction

A Manhattan p–q path is a geodesic in the Man-
hattan (or L1-) metric that connects p and q, i.e.
a staircase path between p and q. Given a set of
points P in the plane, a Manhattan network is a set
of axis-parallel line segments that contains a Man-
hattan p–q path for each pair {p, q} of points in P .

In this paper we consider the minimum Man-
hattan network problem which consists of finding
a Manhattan network of minimum total length, an
MMN in short, i.e. a 1-spanner for the Manhattan
metric. The problem is likely to have applications
in VLSI layout. Its complexity status is unknown.

The problem has been considered before. Gud-
mundsson et al. [1] have proposed a factor-8
O(n log n)-time and a factor-4 O(n3)-time approx-
imation algorithm, where n is the number of input
points. Later Kato et al. [2] have given a factor-2
O(n3)-time approximation algorithm. However,
their correctness proof is incomplete.

In this paper we give a geometric factor-3 ap-
proximation algorithm that runs in O(n log n) time
and the first mixed-integer programming (MIP)
formulation for the MMN problem. We have im-
plemented and evaluated both approaches.

2. Preliminaries

We will use the notion of a generating set that
has been introduced in [2]. A generating set is a
subset Z of

(

P
2

)

with the property that a network
containing Manhattan paths for all pairs in Z is a
Manhattan network of P .

The authors of [2] defined a generating set Z
with the nice property that Z consists only of a
linear number of point pairs. Here we use the same
generating set Z, but more intuitive names for the
subsets of Z. In [2] Z = Zh ∪ Zv ∪ Zx ∪ Zy ∪ Z2.

Here we define Z = Zhor ∪ Zver ∪ Zquad, where
Zhor = Zh ∪ Zy, Zver = Zv ∪ Zx, and Zquad = Z2.
We consider Zquad a set of ordered pairs.

Now let Rhor = {BBox(p, q) | {p, q} ∈ Zhor},
where BBox(p, q) is the smallest axis-parallel
closed rectangle that contains p and q. Note that
BBox(p, q) is just the line segment pq if p and q lie
on the same horizontal or vertical line. In this case
we consider BBox(p, q) a degenerate rectangle. De-
fine Rver and Rquad analogously. Let Ahor, Aver,
and Aquad be the subsets of the plane that are de-
fined by the union of the rectangles in Rhor, Rver,
and Rquad, respectively. As Kato et al. we start
with some basic, yet incomplete network whose
length is bounded by the length of an MMN.

Definition 1 [2] A set of vertical line segments V
covers Rver, if for any horizontal line ℓ and any
R ∈ Rver with R∩ ℓ 6= ∅ there is a V ∈ V with V ∩
ℓ 6= ∅. We say that V is a minimum vertical cover
(MVC) if V has minimum length among all covers
of Rver. The definition of a minimum horizontal
cover (MHC) is analogous.

Kato et al. have observed the following.

Lemma 2 [2] The union of an MVC and an MHC
has length bounded by the length of an MMN.

In general such a union does not satisfy, i.e. con-
nect by Manhattan paths, all pairs in Zver and
Zhor. Additional segments must be added to the
union to achieve this. To ensure that the total
length of these segments can be bounded, we need
covers with a special property. Obviously the seg-
ments in an MVC can be moved such that each seg-
ment is contained in a vertical edge of a rectangle
in Rver. We say that an MVC is nice if addition-
ally each cover segment is incident to a point in P .
Note that each vertical rectangle edge contains at
most one segment of a nice MVC, since degenerate
rectangles do not share edges with other rectangles

20th EWCG Seville, Spain (2004)

20th European Workshop on Computational Geometry

and must therefore be covered completely. In or-
der to show that every point set has in fact a nice
MVC, we need the following definitions.

For a horizontal line ℓ consider the graph
Gℓ(Vℓ, Eℓ), where Vℓ is the intersection of ℓ with
the vertical edges of rectangles in Rver, and there
is an edge in Eℓ if two intersection points belong
to the same rectangle. We say that a point v in
Vℓ is odd if the number of points to the left of v
that belong to the same connected component of
Gℓ is odd, otherwise v is even. For a vertical edge
e of a rectangle in Rver, let an odd segment be an
inclusion-maximal connected set of odd points on
e. Define even segments accordingly. For example,
the segment s (drawn bold in Figure 1) of the
edge f is an even segment, while f \ s is odd. We
say that the parity of an edge changes where two
segments of different parity touch.

Theorem 3 Every point set P has a nice MVC
and a nice MHC.

PROOF. We only show the statement for the ver-
tical case, the horizontal case is analogous. Our
proof is constructive. Let V be the union of all odd
segments and all degenerate rectangles in Rver.
Clearly V covers Rver. Let ℓ be a horizontal that
intersects Aver. Consider a connected component
C of Gℓ and let k be the number of vertices in C. If
k is even then any cover must contain at least k/2
vertices of C, and V contains exactly k/2. On the
other hand, if k > 1 is odd then any cover must
contain at least (k−1)/2 vertices of C, and V con-
tains exactly (k − 1)/2. Thus V is an MVC.

To see that V is nice, we consider a vertical edge
e of a rectangle in Rver and the input point p0 on
e. We show that either e is even or p0 lies on the
only odd segment of e. In both cases V contains
only cover segments that touch an input point.

Wlog. let p0 be the

e

s

f
Lpk

pk

p0

p1

p2

p2

p3

p4

Fig. 1. Proof of Theorem 3.

topmost point of e. Let
p0, p1, . . . , pk be the in-
put points in order of
decreasing x-coordinate
that span the rectangles
in Rver that are rele-
vant for the parity of
e. Let pi = (xi, yi) and
y0 = y0, y1 = y1. For
2 ≤ i ≤ k define recursively yi = min{yi, yi−2} if
i is even, and yi = max{yi, yi−2} if i is odd. Let
pi = (xi, yi), and let L be the polygonal chain

through p0, p1, p2, p3, . . . , pk) in this order, see
Figure 1. Note that the parity of a point v on e is
determined by the number of segments of L that
intersect the horizontal h through v.

If h is below pk, then it intersects a descending
segment for each ascending segment of L, hence v
is even. If on the other hand h goes through or is
above pk, then it intersects an ascending segment
for each descending segment—plus p1p0, hence v
is odd. So e can change parity only in (x0, yk). ✷

A simple sweep-line algorithm yields the following.

Lemma 4 A nice MVC and a nice MHC can be
computed in O(n log n) time using linear space.

3. An Approximation Algorithm

Our algorithm ApproxMMN proceeds in three
phases, see Algorithm 1. In phase I we compute
the generating set Zver ∪ Zhor ∪ Zquad. In phase II
we satisfy all pairs in Zver ∪ Zhor by computing
a nice MVC Cver and a nice MHC Chor, and by
then adding at most one additional line segment
for each rectangle Rver ∪ Rhor. Since each rect-
angle R = BBox(p, q) ∈ Rver (Rhor) is covered
nicely, it suffices to add a horizontal (vertical) seg-
ment whose length is the width (height) of R in
order satisfy {p, q}. Let S be the set of these ad-
ditional segments. Consider the vertical strip that
is defined by a rectangle R ∈ Rver. By definition
of Rver, R is the only rectangle in Rver that inter-
sects the interior of the strip. Thus the total length
of the additional horizontal (vertical) segments is
the width W (height H) of BBox(P). By Lemma 2
the network N1 = Cver ∪ Chor ∪ S has length ≤
|Nopt| + H + W , where Nopt is a fixed MMN and
|M | is the total length of a set M of line segments.

In phase III we satisfy the pairs in Zquad. Let
Q(r, 1) = {s ∈ R

2 | xr < xs and yr < ys} be the
first quadrant of the Cartesian coordinate system
with origin r. Define Q(r, 2), Q(r, 3), Q(r, 4) anal-
ogously and in the usual order. Let P (q, t) = {p ∈
P ∩ Q(q, t) | (p, q) ∈ Zquad} for t = 1, 2, 3, 4. Let
∆(q, t) =

⋃

p∈P (q,t) BBox(p, q) \ int(Ahor ∪ Aver),

where int(M) denotes the interior of a set M ⊆ R
2.

Let δ(q, t) be the union of those connected com-
ponents of ∆(q, t) that are incident to some p ∈
P (q, t). Note that each connected component A
of δ(q, t) is a staircase polygon—by definition of
Zquad there is a strictly x- and y-monotone order-
ing of the points in P (q, t). The C-hull of A is the
union of A and the bounding boxes of neighboring

March 25-26, 2004 Seville (Spain)

Algorithm 1 ApproxMMN

Phase I: Compute Z = Zver ∪ Zhor ∪ Zquad.
Phase II: Satisfy Zver ∪ Zhor:

compute a nice MVC Cver and a nice MHC Chor

compute set S of additional horizontal (vertical)
segments for rectangles in Rver (Rhor)

N1 ← Cver ∪ Chor ∪ S, N2 ← ∅, N3 ← ∅
Phase III: Satisfy Zquad:

for each region δ of type δ(q, t) do
for each connected component A of δ do

compute rectangulation RA′ of A′

N2 ← N2 ∪ ∂A′ ∪ {sA′}
N3 ← N3 ∪ (RA′ \ ∂A′)

end for
end for

return N = N1 ∪N2 ∪N3

input points on the boundary ∂A of A. It is known
that any MMN rectangulates the C-hull of A [1,
Lemma 4]. The same holds for a slightly smaller re-
gion A′ that can be connected to N1 via at most one
segment sA′ . There is a simple O(n)-time factor-
2 approximation algorithm B for rectangulating
staircase polygons [1]. We use B to compute the
rectangulation RA′ of each A′. Let N2 be the union
of all ∂A′ and all sA′ . Let N3 be the union of the
rectangulations RA′ without ∂A′. Our algorithm
returns the line segments in N = N1 ∪N2 ∪N3.

To bound the length of N we partition the plane
into two regions and compare N to Nopt in each
region separately. RegionA3 is the union of int(A′)
over all areas of type A′, while A12 = R

2 \A3. We
have N1∪N2 ⊆ A12 and N3 ⊆ A3, and the interiors
of different regions of type A do not intersect. On
the one hand the approximation factor of B yields
that |N ∩ A3| ≤ 2|Nopt ∩ A3|. On the other hand
we can show that |N2| ≤ 2|Nopt| − (H +W). Thus
|N ∩ A12| = |(N1 ∪ N2) ∩ A12| ≤ 3|Nopt ∩ A12|,
which in turn yields |N | ≤ 3|Nopt|.

Theorem 5 A 3-approximation of an MMN can
be computed in O(n log n) time and O(n) space.

4. A MIP Formulation

In this section we give the first MIP formulation
of the MMN problem. This formulation gives us
the possibility to implement an exact solver for the
MMN problem that can solve small examples in
a bearable amount of time. Those will be used as
benchmarks for our approximation algorithm.

We need some notation: For a set P of n input

points p1(x1, y1), . . . , pn(xn, yn) let x1 < · · · < xu

and y1 < · · · < yw be the ascending sequences of
x- respectively y-coordinates of the input points.
The grid Γ induced by P consists of the grid points
(xi, yj) with i = 1, . . . , u and j = 1, . . . , w. In
this section we will only consider pairs {p, q} ∈ Z
with xp ≤ xq. This is no restriction since we
can flip the names of p and q. For each such
pair let V (p, q) = Γ ∩ BBox(p, q) and let A(p, q)
be the set of arcs between horizontally or verti-
cally adjacent grid points in V (p, q). Horizontal
arcs are always directed from left to right, ver-
tical arcs point upwards (downwards) if yp < yq

(yp > yq). Our formulation is based on the grid
graph GP (V,A), where V =

⋃

{p,q}∈Z V (p, q) and

A =
⋃

{p,q}∈Z A(p, q). Let E = {{g, g′} | (g, g′) ∈

A or (g′, g) ∈ A} be the set of undirected edges.
For each pair {p, q} ∈ Z we enforce the exis-

tence of a p–q Manhattan path by a flow model as
follows. We introduce one 0–1 variable f(p, q, g, g′)
for each arc (g, g′) in A(p, q), which encodes the
size of the flow along arc (g, g′). For each grid point
g in V (p, q) we introduce the flow constraint

∑

(g,g′)∈A(p,q)

f(p, q, g, g′)

−
∑

(g′,g)∈A(p,q)

f(p, q, g′, g)

=

+1 if g = p,

−1 if g = q,

0 else.

(1)

Next we introduce a continuous variable F (g, g′)
for each edge {g, g′} in E. This variable will in
fact be forced to take a 0–1 value by the objective
function and the following constraints. The MMN
that we want to compute will consist of all grid
edges {g, g′} with F (g, g′) = 1. We now add one
or two constraints for each {g, g′} in E and each
{p, q} ∈ Z with gg′ ⊆ BBox(p, q):

F (g, g′) ≥

{

f(p, q, g, g′) if (g, g′) ∈ A,

f(p, q, g′, g) if (g′, g) ∈ A.
(2)

Note that the two conditions are not mutually
exclusive. Our objective function expresses the to-
tal length of the selected grid edges:

min!
∑

{g,g′}∈E

|gg′| · F (g, g′), (3)

where |gg′| is the Euclidean distance of g and g′.
This MIP formulation uses O(n3) variables and

constraints. By treating pairs in Zquad more care-
fully, a reduction to O(n2) is possible, see full pa-
per. It is not hard to see that our formulation al-
ways yields an MMN:

20th European Workshop on Computational Geometry

Theorem 6 Let P be a set of points and let Z, A,
and E be defined as above. Let F : E → R

+
0 and

f : Z×A→ {0, 1} be functions that fulfill (1) & (2)
and minimize (3). Then the set of line segments
{gg′ | {g, g′} ∈ E, F (g, g′) ≥ 1} is an MMN of P .

Due to our objective function (3), Equation (1)
can be replaced by an inequality (with direction
≥). If the resulting constraint matrix was totally
unimodular (every square submatrix has determi-
nant in {−1, 0,+1}), every vertex of the solution
polyhedron would be integral and the MMN prob-
lem would in fact correspond to an LP. Unfortu-
nately it turned out that this is not the case and
that there are instances with fractional vertices
that minimize our objective function.

5. Experiments

We used two different types of random instances.
Squarek instances were generated by drawing

n different points with uniform distribution from a
kn× kn integer grid. We wanted to see the effects
of having more (k small) or less (k large) points
with the same x- or y-coordinate. If a pair of points
shares a coordinate, the manhattan path connect-
ing them is uniquely determined.

Circlek instances consist of a point p1 at the
origin and n − 1 points on the upper half of the
unit circle. The points are distributed as follows.
The interval I = [0, π/4] is split into k subintervals
I1, . . . , Ik of equal length. We used k ∈ {1, 2, 5, 10}.
Then n− 1 random numbers r2, . . . , rn are drawn
from I. If the number ri falls into a subinterval
of even index, it is mapped to the point pi =
(cos ri, sin ri) otherwise to pi = (− cos ri, sin ri).
The resulting points pi (except for the topmost
point in each quadrant and the “bottommost”
point in each subinterval) all form pairs {pi, p1}
that are in Zquad. This makes Circle instances
very different from Square instances where only
few point pairs belong to Zquad.

We generated instances of the above types and
solved them with ApproxMMN and with Cplex
using the MIP formulation of Section 4. We imple-
mented ApproxMMN in C++ using the compiler
gcc-3.3. The asymptotic runtime of our implemen-
tation is Θ(n2), the real runtime was measured on
an AMD Athlon 1800+ with 512 MB RAM under
Linux-2.4.20. To compute exact solutions we used
the LP Barrier Solver of ILOG Cplex-9.0 on an
IBM RS/6000. The results of our experiments can

be found in the diagram below. The sample size,
i.e. the number of points per instance, is shown on
the x-axis. For each sample size we generated 30
instances and averaged the results over those. The
y-axis shows the performance ratio of Approx-

MMN, i.e. the ratio of the length of the network
computed by ApproxMMN over the length of the
MMN computed by Cplex.

Cplex ran out of memory on Circle01 instances
of more than 45 points and on Square10 instances
of more than 110 points. Below these thresholds
ApproxMMN always had a performance ratio be-
low 1.55, which is much better than what the ap-
proximation factor of 3 suggests. While the ratio
seems to approach 1 on Square instances of in-
creasing size, the picture is not so clear for Circle

instances:

1

1.1

1.2

1.3

1.4

1.5

10 20 30 40 50 60 70 80 90 100 110

Circle01

✸
✸

✸

✸ ✸ ✸ ✸
✸

✸

Circle10

+
+

+ + +
+ +

+
+ +

+ + +
+

Square01

✷

✷

✷ ✷
✷

✷
✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷

✷

Square10

×

×
×
× ×

× × × × × × × ×
× × × × × × × ×

×

The runtime of ApproxMMN was practically
independent of the type of instance. The CPU
times we measured reflected the quadratic asymp-
totic runtime. 500 points took roughly 0.3 seconds.

The exact solver depended much more on the
type of instance than the approximation algorithm.
It solved Square instances much faster than Cir-

cle instances. This is due to the fact that pairs in
Zquad require a quadratic number of variables and
constraints in our MIP formulation, while pairs in
Zver and Zhor need only a linear number. 100 points
of type Squarek took 0.6–1.6 seconds and 6–13
seconds for k = 1 and 10, respectively, while 40
points of type Circlek took 61–480 seconds and
1.2–2.4 seconds for k = 1 and 10, respectively.

References

[1] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan.

Approximating a minimum Manhattan network. Nordic
J. Comput., 8:219–232, 2001.

[2] R. Kato, K. Imai, and T. Asano. An improved algorithm
for the minimum Manhattan network problem. In Proc.
ISAAC’02, vol. 2518 of LNCS, pages 344–356, 2002.

