
On Geometric Properties of Enumerations

of Axis-Parallel Rectangles 1

Kira Vyatkina
Research Institute for Mathematics and Mechanics, St Petersburg State University,

28 Universitetsky pr., Stary Peterhof, 198504, St Petersburg, Russia

Abstract

We show that for any set of non-overlapping axis-parallel rectangles in the plane, there exists a sloping enumeration,
such that the numbers of rectangles intersected by any line with a non-negative slope increase along this line.
Such enumeration can be computed in the optimal time Θ(n log n) using linear space. The notion of a sloping
enumeration can be generalized to higher dimensions; however, already in three-dimensional space it may not
exist. We also consider a strip packing problem for a set of rectangles with a fixed enumeration, which is required
to be sloping for the resulting packing. This problem is proved to be NP-hard in any dimension d ≥ 2.
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1. Introduction

A Young diagram is a collection of boxes, ar-
ranged in left-justified rows, with a (weakly) de-
crasing number of boxes in each row (Fig. 1a). A
standard Young tableau is obtained by placing the
numbers 1, 2, . . . , n in the n boxes of the diagram
in such way that the numbers increase across each
row and down each colomn (Fig. 1b).

a) b)

1 3 7 10 12

2 5 9

4 8

6 11

Fig. 1. a) A Young diagram; b) a standard Young tableau.

Young diagrams were introduced by Alfred
Young in 1900 as a combinatorial tool (see [9]);
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at present combinatorics of Young tableaux has a
wide range of applications in algebraic geometry
and representation theory (see for example [6]).

Sometimes Young diagrams are written upside
down (Fig. 2a).

Instead of considering a Young tableau as a com-
binatorial structure, let us look at its geometric
representation: consider a standard Young tableau
written upside down as a set of enumerated unit
squares drawn in the plane, touching their bound-
aries. It is easy to see that for any line l with a non-
negative slope, the numbers of squares intersected
by l increase along l (Fig. 2a).

We generalize this observation in the following
way: for any set of non-overlapping axis-parallel
rectangles in the plane, there exists a sloping

enumeration, such that for any line l with a non-
negative slope, the numbers of rectangles inter-
sected by l increase along l (Fig. 2b). Such enu-
meration can be efficiently computed in Θ(n log n)
time and O(n) space. These results can be viewed
as a new interpretation of our recent results [3].

All standard Young tableaux corresponding to
a given Young diagram can be obtained as a topo-
logical ordering of vertices of a particular graph
associated with the diagram (see [9]). All sloping
enumerations for a set R of rectangles can be ob-
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Fig. 2. a) A Young tableau written upside down; line l1 con-
sequently intersects squares 1, 2, 4, 6, 11. b) An enumerated

set of rectangles; line l2 consequently intersects rectangles
1, 3, 5, 6. For both a) and b), numbers of squares/rectangles
intersected by any line with a non-negative slope increase
along this line.

tained in the same way from a placement graph as-
sociated with R.

It is straightforward to generalize the notion of
a sloping enumeration to higher dimensions; how-
ever, we provide an example showing that even
in three-dimensional space, a sloping enumeration
may not exist.

A strip packing problem is a special type of or-
thogonal packing problems (see the classification
schemes introduced in [5,11]); much research has
been recently carried out on problems of this kind
(see the references in [5]). We consider the strip
packing problem in the following form: given a set
of enumerated rectangles and a horizontal strip
of height H, we have to pack all rectangles into
the strip, in such way that the given enumeration
would be sloping for the resulting packing. As a
matter of fact, we usually follow these restrictions
when packing our luggage – since, for example, we
do not want heavy objects to press down fragile
ones. Asking for the minimal length of the strip,
sufficient to store all rectangles, is shown to be NP-
hard. This result can be generalized to an arbitrary
dimension.

2. Preliminaries

Further we shall assume that all rectangles are
axis-parallel, and no two of them overlap. We bor-
row terminology from [1,2,4].

For a rectangle p, let us denote its lower left, up-
per left, upper right and lower right vertices by Ap,
Bp, Cp, and Dp, respectively. A zone Z(p) of rect-
angle p is an open lower left quadrant built from

point Cp (Fig. 3a). Given a set R of rectangles, its
placement graph GR has a vertex for each rectan-
gle p ∈ R; for two vertices p and q, GR contains an
arc (p, q) iff p ∩ Z(q) 6= ∅ (Fig. 3b).

Z(p)

p

Dp

CpBp

Ap

a) b)

Fig. 3. a) Rectangle p and its zone Z(p); b) a set of rect-
angles and the corresponding placement graph.

The following properties were observed in [2,10]:
Lemma 1 Let p, q ∈ R. If p ∩ Z(q) 6= ∅, then

q ∩ Z(p) = ∅.
Theorem 2 GR is acyclic.

3. Sloping Enumerations

Theorem 2 implies that the vertices of GR can be
topologically sorted; it follows (see [2,10,1]) that:
Theorem 3 For any set R, there exists an enu-

meration IR : R ↔ {1, 2, . . . , N}, where N = |R|,
such that ∀p ∈ R: ∪{Z(q)|IR(q) < IR(p)} ∩ p = ∅.

It is easy to prove that enumeration IP satisfies
our requirements.
Theorem 4 IR is sloping.

PROOF. Consider a line l with a non-negative
slope; let us assume that l intersects at least two
rectangles. Denote the intersected rectangles by
pk1

, . . . , pkm
, according to the order, in which they

are intersected by l (Fig. 4).

pk1

pk2

pkm

l

Fig. 4. Line l consequently intersects rectangles pk1
, pk2

,
. . . , pkm

. For 1 ≤ i < j ≤ m, we have pki
∩ Z(pkj

) 6= ∅.
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Obviously, 1 ≤ i < j ≤ m implies pki
∩Z(pkj

) 6=
∅, and thus, IR(pki

) < IR(pkj
) must hold. It can

be easily proved by induction that IR(pk1
) < · · · <

IR(pkh
) for any 1 ≤ h ≤ m; this completes our

proof.

A sloping enumeration need not be unique. To
build some sloping enumeration, one may con-
struct the placement graph GR and sort topologi-
cally its vertices.

Graph GR can be constructed with a plane
sweep algorithm in O(n log n+|ER|) time and O(n)
space, where |ER| is the number of its edges. This
algorithm is optimal in the comparison tree model.
The sorting can then be performed in O(n+ |ER|)
time; thus, computing a sloping enumeration in
this way would take us O(n log n + |ER|) time.

The method described above is not optimal;
however, a sloping enumeration can be obtained in
the optimal Θ(n log n) time and in linear space us-
ing a plane sweep algorithm; the reader is referred
to [3] for details.

4. Strip Packing Problem

Let us consider a two-dimensional strip pack-
ing problem with respect to a given enumeration
(SPPE-2).

The optimization problem is:
SPPE-2: Given a set of enumerated rectangles

and a horizontal strip of height H, we ask for the
minimal length L of the strip, sufficient to pack all
rectangles in such way that the given enumeration
is sloping for the resulting packing.

The corresponding decision problem is:
SPPE-2*: For a given a set of enumerated rect-

angles and a horizontal strip of height H and length
L, is there a feasible packing, for which the given
enumeration is sloping?
Theorem 5 SPPE-2 is NP-hard.

PROOF. Clearly, SPPE-2*∈NP. Let us reduce
to SPPE-2* the PARTITION problem, which is
known to be NP-complete [8,7]. In PARTITION,
we are given a finite set A and a size s(A) ∈ Z+

for each a ∈ A, and we ask if there exists a subset
A′ ⊆ A, such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a).

For set A = {ai}
n
i=1, let H = 5, and L =

2
∑n

i=1
s(ai). For each ai ∈ A, we construct rect-

angle r(ai) of size 2s(ai) × 2. In addition, we
construct two rectangles r0 and rn+1, each of size∑n

i=1
s(ai) × 2. We enumerate rectangles as fol-

lows: IR(r0) = 1, IR(rn+1) = n + 2, IR(r(ai)) =
i + 1, for 1 ≤ i ≤ n.

Obviously, the length of the strip needed to pack
all rectangles is at least L. It is precisely L iff the
answer for the PARTITION decision problem is
“yes”.
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Fig. 5.

Fig. 5 illustrates the reduction described above
for set A = {a1, a2, a3, a4}, with sizes s(a1) = 2,
s(a2) = 1, s(a3) = 3, s(a4) = 2. Thus, L = 16;
H = 5. Choosing A′ = {a1, a4} gives us a partition,
and the packing shown on Fig. 5 fits into a strip of
size H ×L. Clearly, our enumeration is sloping for
this packing.

5. Higher-Dimensional Case

The notion of a sloping enumeration can be
easily generalized to higher dimensions. In d-
dimensional space, we shall consider d-dimensional
boxes instead of rectangles.

Let us consider a set of vectors V = {v|v =
∑d

i=1
aiei, ai ≥ 0, 1 ≤ i ≤ d}, where ei are unit

vectors pointing along coordinate axes. Enumera-
tion IR of a set R of boxes is sloping, if for any line
l, such that ∃v ∈ V : l||v, the numbers of boxes
intersected by l increase along l.

For d = 2, this definition is equivalent to the one
given before.

In the three-dimensional case, a sloping enumer-
ation may not exist. A construction from [2], shown
on Fig. 6, illustrates such situation. Notice that if
we set in the definition a1 ≤ 0, a2, a3 ≥ 0, there
will be a sloping enumeration. However, in [3] we
introduce a construction, for which no sloping enu-
meration exists for any choice of signs for a1, a2,
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a3. (In [3], it serves as an example of a set of par-
allelepipeds admitting no right-angled cut parti-
tion.)

.

p

q

x

y

z

s

Fig. 6. For the set {p, q, s}, there exists no sloping enumer-
ation. However, there will be a sloping enumeration, if we
set a1 ≤ 0, a2, a3 ≥ 0: IR(q) = 1, IR(s) = 2, IR(p) = 3.

Let us generalize to higher dimensions the strip
packing problem.

SPPE-d: Given a set of enumerated boxes in d-
dimensional space, we ask for the minimal length
W1 of a container, sufficient to pack all boxes in
such way that the given enumeration is sloping for
the resulting packing, where the sizes in the other
d − 1 dimensions W2, . . . , Wd are fixed.

SPPE-d*: For a given a set of enumerated
boxes in d-dimensional space and a container of
size W d, is there a feasible packing, for which the
given enumeration is sloping?
Theorem 6 SPPE-d is NP-hard.

To prove this theorem, we apply reduction sim-
ilar to the one described above, setting W2 = 5,
W3 = · · · = Wd = 1, and requiring box r(ai) to
have size 2s(ai)×2×1 · · ·×1, 1 ≤ i ≤ n, and boxes
r0 and rn+1 – to have size

∑n

i=1
s(ai)×2×1 · · ·×1.

6. Conclusion

For an arbitrary set of non-overlapping axis-
parallel rectangles in the plane, we have proved
existence of a sloping enumeration, and proposed
methods for computing it efficiently. We have also
considered a strip packing problem for an enumer-
ated set of rectangles; an additional requirement
concerned with the enumeration is the following:
the given enumeration must be sloping for the
resulting packing. This problem is shown to be
NP-hard.

We have generalized the notion of a sloping enu-
meration to the case of d-dimensional space. For
the three-dimensional case, we gave an example of
a set of parallelepipeds, which admits no sloping
enumeration. However, the strip packing problem
may be stated for any dimension d; we have proved
it to be NP-hard in arbitrary dimension.

All valid enumerations arise as a topological or-
dering of vertices of a placement graph. This graph
is known to be acyclic [2,10]; however, we suppose
that much more could be derived on its structure.
We are going to consider this question, along with
the opposite one: what kind of dags can appear as
placement graphs?
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