
Towards developing generic solutions with aspects

A. M. Reina
Languages and Computer

Systems Department
Avda. Reina Mercedes, s/n

41012 Seville, Spain

reinaqu@lsi.us.es

J. Torres
Languages and Computer

Systems Department
Avda. Reina Mercedes, s/n

41012 Seville, Spain

jtorres@lsi.us.es

M. Toro
Languages and Computer

Systems Department
Avda. Reina Mercedes, s/n

41012 Seville, Spain

mtoro@lsi.us.es

ABSTRACT
Software industry has to face up to continuous and fast
changes of technology as well as varying customer’s require-
ments. In order to adapt software for these new platforms
and technologies at a minimum cost some proposals like MDA
have been brought up, but also, simultaneously, others like
aspect-oriented programming are addressing the chan-
geability of customer’s requirements. We propose the use of
the MDA philosophy to raise the level of abstraction of
current aspect-oriented design modelling languages, because
most of them are platform dependent. Thus, we suggest the
use of concern-specific modelling languages to specify con-
cerns in a platform independent way. And, we also propose
to tailor UML to the specific requirements of each aspect, so
that, UML extension mechanisms (MOF metamodels and
UML-profiles) are needed to define semantics of new aspect-
specific constructs. Finally, a rational is given to determine
which extension mechanism is the best for specifying each
concern-specific language.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Design, Languages

Keywords
advanced separation of concerns, MDA,
UML

 1.INTRODUCTION

Software industry has one special feature that makes it di-
fferent from other industries: the high rate of changes that
are produced in a relatively short period of time. In the last
few years, additional technologies and platforms have been
brought up, and we have become familiar with terms such as

Java, Linux, HTML, XML, SOAP, UML, J2EE, .NET, JSP,
Flash, web services, and so on. In this changing world, many
companies have had to be compliant with these new tech-
nologies due to customer’s requirements or, also, because
they need some tools based on these new platforms. There-
fore, to face up to technological changes and the variability
of customer’s requirements at a minimum cost has become
a key point for the survival of any company.

Researchers are aware of these needs, so that, different
proposals which are trying to solve these problems can be
found in literature. On the one hand, MDA (Model Driven
Architecture) [31] is facing up to technological changes. On
the other hand, aspect-oriented programming [19] improves
software evolution because it localizes changes in concrete
points and minimizes the dependencies among the different
aspects that compose the whole system.

Although the first proposals in aspect-orientation commu-
nity were mainly for separating concerns at programming
level [17, 32, 7, 22], researchers felt the need for raising the
level of abstraction, thus new proposals have been brought
up to specify concerns at design-time. Most of these pro-
posals [6, 13, 37, 36, 1, 41] are inspired by AspectJ [33].
Moreover, many of them has as a main aim the code gener-
ation, and they end up generating AspectJ code.

We think that the previous proposals are too dependent
on a concrete platform and they have been thought having in
mind the generation of code for aspect-oriented languages.
But many times customer’s requirements impose the choice
of a platform that is not aspect-oriented. Therefore, we
think that the level of abstraction should be higher at de-
sign time, in such a way that although we work with sepa-
rated concerns, the system can be adapted to any platform,
whether aspect-oriented or not.

This paper proposes the use of MDA philosophy to achieve
this platform independence. If MDA ideas are followed,
models to specify concerns platform-independently will be
needed. We think that UML and its extensions (UML-
profiles or MOF metamodels) are enough to specify these
concerns, and as a consequence, we propose the definition of
domain-specific languages based on these UML-extensions
to model concerns.

The rest of the paper is organized as follows: in section
2, a general overview of MDA is given, in order to clarify
some terms and define some terminology used in the rest of
the paper. After that, an analysis of the different proposals
for defining concerns at the design level is made in section 3.
Then, in section 4, the details of our proposal are introduced,
and finally, the paper is concluded and our future lines of

work are pointed out.

2. MDA
MDA [31] is a framework defined by the OMG (Object

Management Group) for software development. The foun-
dation of this proposal is the importance of models in the
software development process. In order to face up to tech-
nological changes, MDA proposes the separation of the spe-
cification of the functionality and the specification of the
implementation of the system on a specific platform.

The main steps in the MDA development process are de-
picted in Figure 1, where three different layers of modelling
are shown: PIM, PSM and code. According to the OMG
[31], a platform independent model (PIM) is a view of a
system from the platform independent viewpoint, while a
platform specific model (PSM) is a view of a system from
the platform specific viewpoint.

PIM

PSM

Code

Metamodel

Metamodel

T
ra

n
s

fo
rm

a
ti

o
n

s
P

IM

--
>

 P
S

M

T
ra

n
sf

o
rm

a
ti

o
n

P
S

M
 -

->
 S

o
u

rc
e

C
o

d
e

Figure 1: Main steps in the MDA development pro-
cess

MDA does not require the use of UML to specify PIMs or
PSMs, but in case other languages are required, the MOF
metamodels for them should be indicated. The Meta Object
Facility(MOF)[30] is a standard maintained by the OMG
for the description of modelling constructs, and it can be
considered as one of the key foundations of MDA.

The development process proposed by MDA starts with
the specification of a platform independent model. Then,
a set of transformations are needed in order to obtain the
specification of the platform specific model, that is, the
model but custom-designed for the specific platform where
the application is going to be deployed. After that, another
set of transformations are applied to the PSM to get the
final source code.

3. MODELLING ASPECTS
Although the first proposals formulated for separating

concerns were focused on implementation [17, 32, 7, 22],
the level of abstraction has risen more and more. Thus,
nowadays we can find proposals that pursue the separation

from the very beginning of the software development pro-
cess, and, as a consequence, a new term has been coined
for naming these concerns obtained during the first phases
of the software development process: early aspects. Nearly
at the same time, many proposals have been brought up to
model concerns.

First of all these proposals for specifying concerns at de-
sign time have been surveyed and analyzed, and as a result,
its main features and contributions have been summarized
in Table 1. This table shows the different proposals ordered
by its year of publication. Thus, the first column of the table
represents the year of publication, and the second one, its
reference. The rest of the columns reflect a set of features
that are interesting to compare all of them. They are:

Abstraction Level This property can have two values: high
or low. The level of abstraction represents if the con-
structs proposed in the modelling language are close to
concepts of programming languages or not. A proposal
with a low level of abstraction use constructs that are
near to the concepts managed by a programming lan-
guage.

Inspired by Many of the modelling languages have been
inspired by proposals which separate concerns at pro-
gramming. Thus, this column shows the name of the
proposal that has inspired the concepts expressed in
the language.

Extension Mechanism In one way or another, all of the
proposals use the UML as base language, and they
suggest UML extensions to express concerns. This co-
lumn represents the kind of extension mechanism used,
whether a UML profile, a metamodel or others.

Purpose This property can have two different values: ge-
neral or specific. A general purpose proposal means
that a general purpose language is proposed for mod-
elling all kind of aspects, while a specific purpose one
means that one language should be specified for every
aspect.

Main Contributions It shows a list with a brief descrip-
tion of the main contributions of the proposal.

Analyzing Table 1, it can be seen that one of the first
proposals which has incorporated aspects at design is [37],
where an extension to the UML metamodel is suggested in
order to support aspects. Otherwise, in [6] new constructs
are incorporated to UML (pointcuts and aspects) and the
use of packages to separate and encapsulate aspects is pro-
posed. Moreover, in [13] an extension to UML by means of
stereotypes, tagged values and constraints is proposed.

UML has evolved along with aspect orientation, and more
formal mechanisms to its extension have been brought up.
Thus, there are proposals which use light-weight UML ex-
tensions, such as [1], where a profile for AOM is given and
stereotypes for aspects and crosscuts are introduced. But
also, there are others like [9], that extend UML in a heavy-
weight way, that is, they propose a metamodel to express
aspects.

Table 1 also shows that most of the proposals work with
constructs that are very close to the ones defined in progra-
mming, and also, it reveals that those constructs are inspired
mainly by Aspect/J (only [10] and [14] are based on HyperJ

Year Ref. Abstraction
Level

Inspired by Extension
Mechanism

Purpose Main Contributions

1999 [37] low Aspect/J metamodel general * It adds new elements for aspect and woven class to the
UML metamodel.
* Model of relation aspect-class as an abstraction depen-
dency relationship.

2002 [10] low Hyper/J metamodel general * It adds new decomposition capabilities in order to align
design models with individual requirements.
* New abstract construct for ComposableElement.
* New composition relationship.

2002 [36] low Aspect/J stereotypes general * It provides representations for all language constructs in
AspectJ.
* It specifies an UML implementation of AspectJ’s weaving
mechanism.
* Meta-attributes are defined to hold the weaving instruc-
tions.

2002 [41] low Aspect/J profile general * Stereotypes of Class for modelling aspects and pointcuts.
* Tagged values of Association for modelling relations be-
tween classes and aspects.
* Stereotype of Association for modelling the relation be-
tween aspects.
* Stereotypes of Operation for modelling before, after,
around, ...

2002 [23] low Aspect/J metamodel general * Definition of a metamodel to express aspects.
2002 [9] low Aspect/J metamodel general * Definition of a metamodel to express aspects.
2002 [14] high Aspectual metamodel general * Packages as first-class citizens.

Collaborations * It refines the binding by which a complex behavior is
applied to a core module.
* It gives a new semantics to packages, adding them hig
h-level properties.

2003 [6] low Aspect/J profile general * Use of packages to separate concerns.
* New constructs for pointcut and aspects.
* New dependency relation, to link aspects and compo-
nents to pointcuts.

2003 [13] low Aspect/J stereotypes,
tagged va-
lues and
constraints

general * Base package, aspect package and connector package.

2003 [1] low Aspect/J profile general * Stereotypes of Class for modelling aspects.
* Stereotype of Association for modelling crosscut.
* Stereotypes of Operation for preactivation and postacti-
vation ...

2003 [34] low Hyper/J profile general * Extension provided specially for the development of
product lines.

2003 [26] high none profile general * It incorporates AO concepts into modelling and MDA.
2003 [21] high none none general * Specification of aspects as models.

* Weaving as model transformation.

Table 1: Classification of the different proposals for aspects modelling at design level

and Aspectual Collaborations [15], respectively). Further-
more, most of them suggest the use of a general purpose
modelling language, that is, by means of a metamodel or a
profile, they express all kind of aspects.

Finally, we think that the proposals which are closer to
ours are [26] and [21]. In the first one, a framework for incor-
porating AO concepts into modelling and MDA is proposed.
Weaving is made by means of model transformations, and,
finally, a model which includes structure, behavior and logic
is obtained. In this proposal, executable models are built
for one single subject matter. These executable models are
defined with the profile Executable UML [27].

On the other hand, in [21], the MDA approach and the
specification of components and aspects in their own mod-
elling languages are proposed. They also see the weaving
of an aspect into the component as a transformation of the
component model. Thus, a weaver in this context, will be a
model transformer that will take the aspect model and the
component model as input and will produce a component
model transformed. It also proposes a need to investigate
how aspects can be modelled.

4. SEPARATING CONCERNS
If the different proposals introduced in the previous sec-

tion are analyzed, it turns out that most of them specify
aspects by means of a general-purpose design modelling lan-
guage in such a way that the same UML extension is used
for expressing every kind of aspect. There is also a general
trend: the inspiration on terms and concepts of AspectJ [18].
We think that these proposals are valuable, but they are
platform-specific. That is, they were thought pursuing the
generation of aspect-oriented code. But many times, cus-
tomer’s requirements impose platforms that are not aspect-
oriented. Therefore, we need a way to specify concerns in-
dependently of the specific platform, in a higher level of
abstraction.

We are not discarding the profiles and metamodels ana-
lyzed in the previous section, but we are leaving them for
PSMs (Platform Specific Models), and in order to separate
concerns at PIMs we propose the use of metamodels and
UML profiles, in such a way that a UML-based language
should be specified for each high-level aspect.

We think that nowadays we are in a point very similar
to the one we were at the beginning of aspect-oriented pro-

gramming. At those times, many specific-purpose aspect
languages proposals were brought forth, such as Cool and
RIDL [25]. One of the main disadvantages of these kinds
of languages is that they couldn’t support aspects different
to the ones they were designed for. However, they have a
higher abstraction level than the base language, that is, the
language used for the implementation of the basic functio-
nality.

But now, this inconvenience can be overcome at the design
level using UML as the modelling language, because it is a
general purpose language which can be extended by way of
two extension mechanisms. These mechanisms (metamod-
els and UML-profiles) let us express the different aspects by
means of specific terms of the aspect’s domain. We think
that a combination of both of them can be used to specify
concerns at the PIM level and although nowadays, an archi-
tect has to choose which is the best extension mechanism
to model a specific domain, in the future, the distinction
between them seems to be erased. Thus in [12], it is stated:
‘We envision MDA tools on the horizon that provide much
more freedom and eliminate the distinction between meta-
models and profiles’.

But now, the first step to develop an application is to
determine the number of concerns to be separated. Once the
concepts are clear, we should decide if we are going to specify
every one by means of an UML profile or a metamodel. In
this sense, in [11] Desfray gives a rational in order to choose
the right metamodeling technique. We propose this rational
to choose if an aspect should be specified with a metamodel
or a UML-profile. Thus, if we adapt Desfray’s proposal to
concerns, it can be stated that they should be specified with
a MOF based technique, if

• the domain is well defined and has a unique, well-
accepted main set of concepts, or

• the model is not subject to be transferred into other
domains, or

• there is no need to combine the aspect domain with
other domains.

On the contrary, a UML-profile based technique, should
be chosen when

• the aspect domain is not subject to consensus, or

• many changes and evolutions may occur, or

• the aspect domain may be combined with other do-
mains in an unpredictable way, or

• models defined under the domain may be interchanged
with other domains.

Another important advantage of choosing a profile exten-
sion is that generic UML tools can be used, whereas heavy-
weight extensions are likely to be too dependent on vendors
and the revision of their tools. The main disadvantage of the
profile approach is that it is not as semantically powerful as
the metamodel approach.

Let’s see an example in order to clarify our proposal, we
have chosen a generic distributed web application. Firstly,
we should decide which high level concerns are going to be
specified separately. A typical distributed web application
is composed of the following concerns, at least: user in-
terface, navigation, security, distribution and persistence.

Thus, separate models should be maintained for every con-
cern.

Figure 2 depicts the structure of the distributed web appli-
cation with our proposal. As we propose an MDA approach
there are three different layers of models: PIMs, PSMs and
code. The first layer, the platform-independet one, shows
the five different models corresponding to the high level con-
cerns enumerated previously. As well as [14], we think that
packages should be first-class citizens. Thus, we have one
package for every concern.

In an ideal situation this separation obtained in the first
layer should be maintained from PIMs to source code, how-
ever, we should take into account that many times we have
to deal with specific platforms which don’t separate con-
cerns adequately, due to customer’s impositions. Thus, in
Figure 2, some transformations are applied to the PIMs spe-
cifying aspects of navigation and user interface, and PSMs
for the JSF (Java Server Faces) [8] platform are obtained.
In this case, JSF does not provide a complete separation of
navigation and user interface, so we’ll have to express them
at PSM level using the same metamodel or profile.

There are many proposals for the modelling of navigation
and user interface [28, 5, 20], but there is a general agree-
ment for modelling user interface and navigation by means
of a metamodel. Moreover, in [28], a discussion about choos-
ing a metamodel or a profile to model web applications is
made, and it is concluded that the metamodel is the best
option for modelling web applications because the seman-
tic distance between UML elements and web modelling el-
ements is too large. In this case, we also propose following
the general trend and use models based on one of the meta-
models mentioned previously to specify user interface and
navigation.

However, if we look at the persistence aspect, we can
check that most of the proposals [40, 3] have opted for a
UML-profile, because the semantic distance is less. In [40] a
profile for persistence in PIMs is proposed whereas in [3] a
relational persistence profile is suggested. This profile can be
considered technology-specific, because it has been thought
to model a concrete technology: relational databases. But
it should be noticed that there are other options in object
persistence, for example, data might be stored in XML in a
file system.

With regards to distribution, in [35] a profile for distri-
bution is defined, valuable to be used in PIMs. In relation
to PSMs, the OMG has adopted a MOF metamodel of Java
and EJB.

Finally, in [24] a new modelling language named SecureUML
is specified as a metamodel extension to UML. This language
is focused on access control.

To conclude this section, our vision of high-level concerns
is composed of a set of packages that are related to a set of
metamodels and UML profiles stored in MOF and profiles
repositories.

5. CONCLUSIONS AND FURTHER WORK
After surveying many of the design modelling languages

defined to express concerns, it turns out that most of them
are general purpose and low level languages, which means
that most of them are looking for a language which expresses
every kind of aspect, but also they use constructs that are
very close to the ones used in aspect oriented programming
languages.

PIM
User Interface

PIM
Navitgation

PIM
Security

PIM
Distribution

PIM
Persistence

PIM

BD(Conceptual
Model)

PSM
User Interface

 JSF Components

PSM
Navigation

JSF Components

PSM
Security

EJB Components

PSM
Distribution

EJB Components

PSM
Persistence

EJB Components
Relational PSM

JSF Source Code JSF Source Code EJB Soruce Code EJB Source Code EJB Source Code SQL Source Code

Transformation:
Code Generation

Transformation:
Code Generation

Transformation:
Code Generation

Transformation:
Code Generation

Transformation:
Code Generation

Transformation:
Code Generation

Transformation:
PIM Relational

Transformation:
PIM EJB Component

Transformation:
PIM EJB Component

Transformation:
PIM EJB Component

Transformation:
PIM -> JSF Component

Transformation:
PIM -> JSF Component

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Comunication
Bridge

Figure 2: Structure of a typical distributed web application

We think that there is a need for raising the abstraction
level of these modelling languages, because most of the sur-
veyed have been thought to produce aspect-oriented source
code, but sometimes, we have to work with non aspect-
oriented platforms due to customer’s requirements.

In order to increase the level of abstraction, and there-
fore, to adapt more easily to changes of requirements and
technology, the MDA philosophy has been proposed. Thus,
adjusting to this philosophy two levels of models and a set
of transformations are needed. Firstly, we will have a set
of models that are platform independent. By means of a
set of transformations, we will obtain a set of models that
are specific to the platform where the system is going to be
deployed.

To separate concerns adequately, we propose the extension
of UML by means of a metamodel or a UML profile for every
concern. That is, we propose the use of domain specific web
modelling languages, because they let us reason easily about
concerns. We also propose the use of packages as first class
citizens to group all models related to one specific aspect.

As a future line of research we are working on a frame-
work to support all the ideas proposed in this paper. In this
first stage, we are focusing specifically on web applications,
so we’d like to test this framework with this kinds of appli-
cations. We also want to define repositories of metamodels
with some of the ones proposed in this paper. Some of these
extensions, need to be completed, and other new ones have
to be developed.

Finally, another important focus of our research is the
study of the incompatibilities and relationships among diffe-
rent high-level aspects, and the resolution of conflicts when
they are weaved. We would like to provide the right mod-
elling mechanism to specify the order of weaving or model
transformations.

6. ACKNOWLEDGMENTS
This work has been partially supported by the Spanish

Ministery of Science and Technology and FEDER funds:
TIC 2003-369.

7. REFERENCES
[1] O. Aldawud, T. Elrad, and A. Bader. UML profile for

aspect-oriented software development. In Aldawud
et al. [2].

[2] O. Aldawud, M. Kandé, G. Booch, B. Harrison, and
D. Stein, editors. Third International Workshop on
Aspect Oriented Modeling, Mar. 2003.

[3] S. W. Ambler. Towards a Relational Persistence
Model Profile for UML 2.0. In COM00 [29].

[4] Workshop on Aspect-Oriented Modeling with UML
(AOSD-2002), Mar. 2002.

[5] L. Baresi, F. Garzotto, L. Mainetti, and P. Paolini.
Meta-modeling Techniques Meet Web Application
Design Tools. In Proceedings of the 5th International
Conference on Fundamental Approaches to Software
Engineering, volume 2306 of LNCS, pages 294–307.
Springer-Verlag, 2002.

[6] M. Basch and A. Sanchez. Incorporating aspects into
the UML. In Aldawud et al. [2].

[7] L. Bergmans and M. Akşit. Composing crosscutting
concerns using composition filters. Comm. ACM,
44(10):51–57, Oct. 2001.

[8] P. S. Bhogill. An Introduction to Java Server Faces.
Java News Brief, Aug 2003.

[9] C. Chavez and C. Lucena. A metamodel for
aspect-oriented modeling. In AOSD-UML02 [4].

[10] S. Clarke. Extending standard UML with model
composition semantics. Science of Computer
Programming, to appear.

[11] P. Desfray. UML Profiles versus Metamodeling
Extensions... an Ongoing Debate. In COM00 [29].

[12] D. S. Frankel. Model Driven Architecture. Applying
MDA to Enterprise Computing. Wiley Publishing,
Inc., 2003.

[13] I. Groher and S. Schulze. Generating aspect code from
UML models. In Aldawud et al. [2].

[14] S. Herrmann. Composable designs with UFA. In
AOSD-UML02 [4].

[15] S. Herrmann and M. Mezini. Combining composition
styles in the evolvable language LAC. In Workshop on
Advanced Separation of Concerns in Software
Engineering (ICSE 2001), May 2001.

[16] M. Kandé, O. Aldawud, G. Booch, and B. Harrison,
editors. Second International Workshop on
Aspect-Oriented Modeling with UML
(<<UML>>2002), Sept. 2002.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting started with

AspectJ. Comm. ACM, 44(10):59–65, Oct. 2001.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, Proc. ECOOP
2001, LNCS 2072, pages 327–353, Berlin, June 2001.
Springer-Verlag.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Akşit and S. Matsuoka, editors,
11th Europeen Conf. Object-Oriented Programming,
volume 1241 of LNCS, pages 220–242. Springer
Verlag, 1997.

[20] N. Koch and A. Kraus. Towards a Common
Metamodel for the Development of Web Applications.
In J. M. C. Lovelle, B. M. G. Rodŕıguez, L. J. Aguilar,
J. E. L. Gayo, and M. del Puerto Paule Rúız, editors,
Web Engineering, International Conference, ICWE
2003, Oviedo, Spain, July 14-18, 2003, Proceedings,
volume 2722 of Lecture Notes in Computer Science,
pages 497–506. Springer, 2003.

[21] V. Kulkarni and S. Reddy. Supporting Aspects in
MDA. In WISME-UML03 [39].

[22] K. Lieberherr, D. Orleans, and J. Ovlinger.
Aspect-oriented programming with adaptive methods.
Comm. ACM, 44(10):39–41, Oct. 2001.

[23] J. M. Lions, D. Simoneau, G. Pitette, and I. Moussa.
Extending OpenTool/UML Using Metamodeling: An
Aspect-Oriented Programming Case Study. In Kandé
et al. [16].

[24] T. Lodderstedt, D. A. Basin, and J. Doser.
SecureUML: A UML-Based Modelling Language for
Model-Driven Security. In Proceedings of the 5th
International Conference on the Unified Modelling
Language, 2002.

[25] C. V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, 1997.

[26] S. J. Mellor. A Framework for Aspect-Oriented
Modeling. In UML-AOM03 [38].

[27] S. J. Mellor and M. J. Balcer. Executable UML: A
Foundation for Model-Driven Architecture. Addison
Wesley, 2002.

[28] P. Muller, P. Studer, and J. Bézivin. Platform
Independent Web Application Modeling. In
P. Stevens, J. Whittle, and G. Booch, editors, UML
2003 - The Unified Modeling Language. Model
Languages and Applications. 6th International
Conference, San Francisco, CA, USA, October 2003,
Proceedings, volume 2863 of LNCS, pages 220–233.
Springer, 2003.

[29] OMG. Proceedings of the First Workshop on UML in
the .COM Enterprise: Modeling CORBA,
Components, XML/XMI and Metadata, 2000.

[30] OMG. Meta Object Facility Specification Version 1.4.
Technical Report OMG document formal/02-04-03,
OMG, 2002.

[31] OMG. MDA Guide Version 1.0. Technical Report
omg/2003-05-01, OMG, May 2003.

[32] H. Ossher and P. Tarr. The shape of things to come:
Using multi-dimensional separation of concerns with
Hyper/J to (re)shape evolving software. Comm. ACM,
44(10):43–50, Oct. 2001.

[33] X. PARC. Aspectj home page. web, 2002.

[34] I. Phillipow, M. Riebisch, and K. Boellert. The
Hyper/UML Approach for Feature Based Software
Design. In UML-AOM03 [38].

[35] R. Silaghi, F. Fondement, and A. Strohmeier. Towards
an MDA-Oriented UML Profile for Distribution.
Technical Report IC/2004/49, Swiss Federal Institute
of Technology in Lausanne, Lausanne, Switzerland,
May 2004. Also to be published in the Proceedings of
the 8th IEEE International Enterprise Distributed
Object Computing Conference, EDOC, Monterey, CA,
USA. September 20-34, IEEE Computer Society, 2004.

[36] D. Stein, S. Hanenberg, and R. Unland. An
UML-based Aspect-Oriented Design Notation. In
G. Kiczales, editor, Proc. 1st Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2002),
pages 106–112. ACM Press, Apr. 2002.

[37] J. Suzuki and Y. Yamamoto. Extending UML with
aspects: Aspect support in the design phase. In Int’l
Workshop on Aspect-Oriented Programming (ECOOP
1999), June 1999.

[38] Fourth International Workshop on Aspect-Oriented
Modeling with UML (<<UML>>2003), Oct. 2003.

[39] Proceedings of the Workshop in Software Model
Engineering held in conjunction with the UML 2003 -
The Unified Modeling Language. Model Languages and
Applications. 6th International Conference, oct 2003.

[40] W. Witthawaskul and R. Johnson. Specyifing
persistence in platform independent models. In
WISME-UML03 [39].

[41] A. A. Zakaria, H. Hosny, and A. Zeid. A UML
Extension for Modeling Aspect-Oriented Systems. In
Kandé et al. [16].

