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Abstrat

We analyze the maximal expeted number of extreme points of a point set P in R

d

that is slightly perturbed by

random noise. We assume that eah point in P is uniformly distributed in an axis-aligned hyperube of side length

2� entered in the unit hyperube (the enter of the hyperube an be regarded as the point position without

noise). Our model is motivated by the fat that in many appliations the input data is inherently noisy, e.g. when

the data omes from physial measurement or impreise arithmeti is used. For this input distribution we derive

an upper bound of O((n � log n=�)

1�1=(d+1)

) on the number of extreme points of P .
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1. Introdution

The onvex hull of a point set in the d-

dimensional Eulidean spae is one of the funda-

mental ombinatorial strutures in Computational

Geometry. Many of its properties have been stud-

ied extensively in the last deades. In this paper

we are interested in the number of verties of the

onvex hull of a random point set, sometimes re-

ferred to as the number of extreme points of the

point set. It is known sine nearly 30 years that

the number of extreme points of a point set drawn

uniformly at random from the (unit) hyperube is

O(log

d�1

n), f. [1℄. The number of extreme points

has also been studied for many other input dis-

tributions, e.g. for Gaussian normal distribution.

In this paper we onsider the expeted number of

extreme points when eah input point is hosen

from a (possibly) di�erent small subube of the

unit hyperube. We an think of this input distri-

bution as resulting from some point set P (de�ned

by the enters of the sububes), where eah point

is a�ited with some small random noise. Our
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model is motivated by the fat that in many ap-

pliations the input data is inherently noisy, e.g.

when the data omes from physial measurement

or impreise arithmeti is used.

1.1. Related Work

Several authors have treated the struture of the

onvex hull of n random points. In 1963/64 R�enyi

and Sulanke, [8℄ and [9℄, were the �rst to present the

mean number of extreme points in the planar ase

for di�erent stohasti models. They showed for n

points uniformly hosen from a onvex polygone

with r verties a bound of r � logn. This work was

ontinued by Efron [4℄, Raynaud [6℄ and [7℄, and

Carnal [2℄ and extended to higher dimensions. For

further information we refer to the exellent book

[10℄ by Santal�o.

In 1978 Bentley, Kung, Shkolnik and Thomp-

son [1℄ showed that the expeted number of ex-

treme points of n i.i.d. random points in d spae is

O(ln

d�1

n) for �xed d for some general probabil-

ity distributions. Har-Peled gave in [5℄ a di�erent

proof of this result. Both results are based on the

omputation of the expeted number of maximal

points (f. Setion 3).

The onept of smoothed analysis was intro-

dued in 2001 by Spielman and Teng [11℄. In 2003

20th EWCG Seville, Spain (2004)



20th European Workshop on Computational Geometry

this onept was applied to the number of hanges

to the ombinatorial desribtion of the smallest

enlosing bounding box of a moving point set [3℄

where di�erent probability distributions for the

random noise were onsidered. This work already

overs the two dimensional ase of this paper's

problem. By onsidering moving points the two

dimensional problem was redued to a one dimen-

sional probelm. The general extension to higher

dimensions holds some non trivial diÆulties even

for the ase when uniformle distributed noise is

onsidered.

2. Problem Statement and Uniform Case

Let P := fp

1

; : : : ; p

n

g denote a point set in the

unit hyperube [0; 1℄

d

and let V(P ) be the number

of extreme points (i.e., the number of verties of the

onvex hull) of P . Furthermore, let r

1

; : : : ; r

n

be

i.i.d. random vetors hosen uniformly at random

from [��; �℄

d

and let ep

1

:= p

1

+r

1

; : : : ;fp

n

:= p

n

+r

n

be the perturbed points and

e

P the set of perturbed

points. Then we de�ne the smoothed number of

extreme points to be V(

e

P ) := max

P

E[V(

e

P )℄.

Our bounds are based on the following observa-

tion: A point p 2 P is not extreme, if eah of the 2

d

orthants entered at p ontains at least one point.

In this ase, we say that p is notmaximal. It follows

immediatly that the number of maximal points is

an upper bound on the number of extreme points.

Therefore, we will from now on ount the number

of maximal points.

Fig. 1. 'A point in three dimensional spae has eight or-

thants.' and 'Every extreme point is also a maximal point.'

As a warm-up we illustrate our approah on the

well-understood ase of n points hosen uniformly

at random from the d-dimensional unit hyperube.

We show how to obtain in this ase an upper bound

of O(log

d�1

n) on the number of maximal points

and hene on the number of extreme points.

Theorem 1 Let P = fp

1

; : : : p

n

g be a set of n

points hosen uniformly at random from the d-

dimensional unit hyperube. Then the expeted

number of extreme points of P is O(log

d�1

n) for

�xed dimension d.

Proof : To prove the theorem we show that

Pr[p

i

is maximal℄ = O(log

d�1

n=n) : (1)

By linearity of expetation it follows immediately

that the number of extreme points is O(log

d�1

n).

To prove (1) we onsider the probability that a

�xed orthant �(p

i

) entered at p

i

is empty. Using

a standard union bound we get

Pr[p

i

is maximal℄ � 2

d

�Pr[�(p

i

) is empty℄ :

Wlog. we now �x orthant �(p

i

) :=

Q

d

j=1

[�1; p

(j)

i

℄.

We an write the probability that �(p

i

) is empty as

an integral in the following way: onsider p

i

having

the oordinates (x

(1)

; : : : ; x

(d)

). The probability for

any other point p

k

2 P n fp

i

g to be not in �(p

i

) is

then equal to 1�x

(1)

� x

(2)

� � �x

(d)

. Sine there are

n� 1 other points in P the probability that �(p

i

)

is empty is exatly

Z

1

0

� � �

Z

1

0

(1� x

(1)

� � �x

(d)

)

n�1

dx

(1)

� � � dx

(d)

: (2)

We solve this integral by repeatetd substitution

and demonstrate this on the 2 dimensional integral.

We start with the integral

R

1

0

R

1

0

(1 � xy)

n�1

dxdy

and substitute in a �rst step 1 � xy =: z = z(x)

whih gives us dz = �y � dx and z(0) = 1 and

z(1) = 1� y:

Z

1

0

Z

1

0

(1� xy)

n�1

dxdy =

Z

1

0

Z

1

1�y

z

n�1

y

dzdy =

Z

1

0

�

1

n

�

z

n

y

�

1

1�y

dy =

1

n

Z

1

0

1

y

� (1� (1� y

| {z }

=: z

)

n

)dy :

Now we substitute 1 � y =: z = z(y) and we get

dz = �1 � dy and z(0) = 1 and z(1) = 0:

1

n

Z

1

0

1

1� z

� (1� z

n

)dz =

1

n

Z

1

0

n�1

X

i=0

z

i

dz =

1

n

"

n�1

X

i=0

z

i+1

i+ 1

#

1

0

=

1

n

n

X

i=1

1

i

=

logn+O(1)

n

:
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Sine there are 4 quadrants and n points it follows

that the expeted number of maximal points in the

planar ase is O(log n).

The d-dimensional integral (2) boils down to the

sum

1

n

n

X

i

1

=1

1

i

1

i

1

X

i

2

=1

1

i

2

� � �

i

d�2

X

i

d�1

=1

1

i

d�1

= O

 

log

d�1

n

n

!

;

whih proves the theorem. 2

3. Smoothed Number of Extreme Points

We now want to apply the same approah to

obtain an upper bound on the smoothed number

of extreme points. We onsider again a perturbed

point ep

i

= p

i

+ r

i

, where p

i

= (p

(1)

i

; : : : ; p

(d)

i

) 2

[0; 1℄

d

and r

i

a random vetor hosen uniformly

from [��; �℄

d

. It follows that ep

i

lies in the hyperube

Q

d

j=1

[p

(j)

i

� �; p

(j)

i

+ �℄ =: ph(p

i

) whih we want

to all the perturbation hyperube of point p

i

.

Now we reall that �(ep

i

) =

Q

d

j=1

[�1; ep

i

(j)

℄. For

any other perturbed point ep

k

= p

k

+ r

k

, i 6= k, the

probability that ep

k

does not lie in �(ep

i

) is

Pr[ ep

k

=2 �(ep

i

)℄ =

Z

I(ep

i

;p

k

)

�

1

2�

�

d

dy

where I(ep

i

; p

k

) is the set of all valid positions for ep

k

not lying in �(ep

i

), i.e. I(ep

i

; p

k

) = ph(p

k

)��(ep

i

).

Note that 1=(2�)

d

is the probability density of ep

k

.

We get

Pr[�(ep

i

) is empty℄ =

Z

ph(p

i

)

�

1

2�

�

d

�

�

Y

k 6=i

Z

I(x;p

k

)

�

1

2�

�

d

dy

�

dx :

The main idea is now to subdivide the unit hy-

perube intom = 1=Æ

d

smaller axis-aligned hyper-

ubes of sidelength Æ. Then we subdivide P into

sets C

1

; : : : ; C

m

where C

`

is the subset of P that is

loated (before the perturbation) in the `-th small

hyperube (we assume some ordering among the

small hyperubes). Now we an alulate the ex-

peted number D(C

`

) of maximal points for the

sets C

`

and use

V(

e

P ) �

m

X

`=1

V(

e

C

`

) �

m

X

`=1

D(

e

C

`

) (3)

to obtain an upper bound on the expeted num-

ber of extreme points in

e

P . The advantage of this

approah is that for small enough Æ the points in

a single small hyperube behave almost as in the

uniform random ase.

We now want to ompute the expeted number

of extreme points for the sets C

`

. We assume wlog.

that C

`

is the hyperube [0; Æ℄

d

. Let

�

Æ = (Æ; : : : ; Æ)

and

�

0 = (0; : : : ; 0) et. We now want to �nd an

upper bound on the probability that �(ep

i

) is empty.

This probability is maximized, if p

i

=

�

0 and p

k

=

�

Æ

for every p

k

2 C

`

, i 6= k. Hene, we get

Pr[�(ep

i

) is empty℄ �

Z

ph(

�

0)

�

1

2�

�

d

�

 

Z

I(x;

�

Æ)

�

1

2�

�

d

dy

!

n�1

dx :

Using I(x;

�

Æ) = [Æ � �; Æ+ �℄

d

�

Q

d

j=1

[�1; x

(j)

℄ =

Q

d

j=1

[maxfÆ � �; x

(j)

g; Æ + �℄ we an write the in-

tegral as

Z

[��;�℄

d

�

1

2�

�

d

�

�

X

I�[d℄

(�1)

jIj+1

�

Z

(Æ+�)

I

maxf(Æ��)

I

;x

I

g

�

1

2�

�

jIj

dy

I

�

n�1

dx (4)

where the subsript I for a variable denotes the

jIj dimensional projetion of the variable to the

oordinates in I, i.e. x

I

= (x

(j

1

)

; : : : ; x

(j

t

)

) for I =

fj

1

; : : : ; j

t

g, and the maximum is taken oordinate

wise. Let

F(x; j) :=

X

I�[d�j℄

(�1)

jIj+1

Z

(Æ+�)

I

(Æ��)

I

�

1

2�

�

jIj

dy

I

+

X

I�[j℄

(�1)

jIj+1

Z

(Æ+�)

I

x

I

�

1

2�

�

jIj

dy

I

:

We an rewrite the integral (4) now in the form

d

X

j=0

�

d

j

�

�

Z

Æ��

��

� � �

Z

Æ��

��

| {z }

d�j

Z

�

Æ��

� � �

Z

�

Æ��

| {z }

j

�

1

2�

�

d

� F(x; j)

n�1

dx : (5)

Next we want to alulate this integral. Again

we will use repeated substitution. We obtain the
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following result, whih we prove only for the one

dimensional ase (the omplete proof is deferred to

the full version of this paper).

Lemma 2 Let C

`

� P be a set of 

`

points in the

hyperube [0; Æ℄

d

before the perturbation takes plae.

The smoothed number of extreme points in

e

C

`

is at

most

V(

e

C

`

) � D(

e

C

`

) � 

`

� 2

d

�

�

d �

Æ

2�

+

log

d�1



`



`

�

:

Proof :(only the 1-dimensional ase)

Let us onsider the one dimensional integral.

From (5) we have

Z

Æ��

��

1

2�

�

�

Z

Æ+�

Æ��

1

2�

dy

�

n�1

dx

+

Z

�

Æ��

1

2�

�

�

Z

Æ+�

x

1

2�

dy

�

n�1

dx =

Z

Æ��

��

1

2�

dx +

Z

�

Æ��

1

2�

�

�

1

2�

� (Æ + �� x

| {z }

=: z

)

�

n�1

dx :

The �rst integral solves to Æ=(2�). In the seond

integral we substitute Æ+��x =: z = z(x) and we

get dz = �1 � dx and z(Æ � �) = 2� and z(�) = Æ.

Thus it is

Z

�

Æ��

1

2�

�

�

1

2�

� (Æ + �� x)

�

n�1

dx =

Z

2�

Æ

�

1

2�

�

n

� z

n�1

dz =

1

n

�

�

1�

�

Æ

2�

�

n

�

:

It follows that in the one dimensional ase the prob-

ability for a point to be maximal is at most

2 �

�

Æ

2�

+

1

n

�

:

2

We an now onlude from (3) and Lemma 2 that

V(

e

P ) �

1=Æ

d

X

`=1



`

� 2

d

�

�

d �

Æ

2�

+

log

d�1



`



`

�

:

Our main theorem follows hoosing

Æ = O

��

� � log

d�1

n

d � n

�

1=d

�

:

Theorem 3 The smoothed number of extreme

points of a set

e

P of n perturbed points in d di-

mensional spae with start points from the unit

hyperube and under uniform noise from [��; �℄

d

is

V(

e

P ) = O

��

n � logn

�

�

1�

1

d+1

�

:
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