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Abstract

We analyze the maximal expected number of extreme points of a point set P in R? that is slightly perturbed by
random noise. We assume that each point in P is uniformly distributed in an axis-aligned hypercube of side length
2¢ centered in the unit hypercube (the center of the hypercube can be regarded as the point position without
noise). Our model is motivated by the fact that in many applications the input data is inherently noisy, e.g. when
the data comes from physical measurement or imprecise arithmetic is used. For this input distribution we derive
an upper bound of O((n - log n/€)*~*/@+1) on the number of extreme points of P.
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1. Introduction

The convex hull of a point set in the d-
dimensional Euclidean space is one of the funda-
mental combinatorial structures in Computational
Geometry. Many of its properties have been stud-
ied extensively in the last decades. In this paper
we are interested in the number of vertices of the
convex hull of a random point set, sometimes re-
ferred to as the number of extreme points of the
point set. It is known since nearly 30 years that
the number of extreme points of a point set drawn
uniformly at random from the (unit) hypercube is
O(log?~* n), cf. [1]. The number of extreme points
has also been studied for many other input dis-
tributions, e.g. for Gaussian normal distribution.
In this paper we consider the expected number of
extreme points when each input point is chosen
from a (possibly) different small subcube of the
unit hypercube. We can think of this input distri-
bution as resulting from some point set P (defined
by the centers of the subcubes), where each point
is afflicted with some small random noise. Our
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model is motivated by the fact that in many ap-
plications the input data is inherently noisy, e.g.
when the data comes from physical measurement
or imprecise arithmetic is used.

1.1. Related Work

Several authors have treated the structure of the
convex hull of n random points. In 1963/64 Rényi
and Sulanke, [8] and [9], were the first to present the
mean number of extreme points in the planar case
for different stochastic models. They showed for n
points uniformly chosen from a convex polygone
with r vertices a bound of r - logn. This work was
continued by Efron [4], Raynaud [6] and [7], and
Carnal [2] and extended to higher dimensions. For
further information we refer to the excellent book
[10] by Santald.

In 1978 Bentley, Kung, Schkolnick and Thomp-
son [1] showed that the expected number of ex-
treme points of n i.i.d. random points in d space is
O(In?"* n) for fixed d for some general probabil-
ity distributions. Har-Peled gave in [5] a different
proof of this result. Both results are based on the
computation of the expected number of maximal
points (cf. Section 3).

The concept of smoothed analysis was intro-
duced in 2001 by Spielman and Teng [11]. In 2003
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this concept was applied to the number of changes
to the combinatorial describtion of the smallest
enclosing bounding box of a moving point set [3]
where different probability distributions for the
random noise were considered. This work already
covers the two dimensional case of this paper’s
problem. By considering moving points the two
dimensional problem was reduced to a one dimen-
sional probelm. The general extension to higher
dimensions holds some non trivial difficulties even
for the case when uniformle distributed noise is
considered.

2. Problem Statement and Uniform Case

Let P := {p1,...,pn} denote a point set in the
unit hypercube [0, 1]¢ and let V(P) be the number
of extremne points (i-e., the number of vertices of the
convex hull) of P. Furthermore, let rq,...,r, be
i.i.d. random vectors chosen uniformly at random
from [—¢, €] and let p; := p; 7, s Pn i= Pntrn
be the perturbed points and P the set of perturbed
points. Then we define the smoothed number of
extreme points to be V(P) := maxp E[V(P)].

Our bounds are based on the following observa-
tion: A point p € P is not extreme, if each of the 2¢
orthants centered at p contains at least one point.
In this case, we say that pis not mazimal. It follows
immediatly that the number of maximal points is
an upper bound on the number of extreme points.
Therefore, we will from now on count the number
of maximal points.

Fig. 1. A point in three dimensional space has eight or-
thants.” and ’Every extreme point is also a maximal point.’

As a warm-up we illustrate our approach on the
well-understood case of n points chosen uniformly
at random from the d-dimensional unit hypercube.
We show how to obtain in this case an upper bound
of O(log®™' n) on the number of maximal points
and hence on the number of extreme points.

Theorem 1 Let P = {p1,...pn} be a set of n
points chosen uniformly at random from the d-
dimensional unit hypercube. Then the expected
number of extreme points of P is O(log? * n) for
fized dimension d.

Proof : To prove the theorem we show that
Prp; is maximal] = O(log*™' n/n) . (1)

By linearity of expectation it follows immediately
that the number of extreme points is O(log? * n).
To prove (1) we consider the probability that a
fixed orthant ¢(p;) centered at p; is empty. Using
a standard union bound we get

Pr[p; is maximal] < 2¢ - Pr[o(p;) is empty] .
Wlog. we now fix orthant ¢(p;) := H?:l [—o0, pi7].
We can write the probability that ¢(p;) is empty as
an integral in the following way: consider p; having
the coordinates (z(1, ..., z(9). The probability for
any other point py € P\ {p;} to be not in ¢(p;) is
then equal to 1 — () - z(2) ... (4 Since there are
n — 1 other points in P the probability that o(p;)
is empty is exactly

1 1
/ / (1= 20 e p@yn=1q00 g2 (g)
0 0

We solve this integral by repeatetd substitution
and demonstrate this on the 2 dimensional integral.
We start with the integral fol fol(l — zy)" " tdady
and substitute in a first step 1 — xy =: z = z(x)
which gives us dz = —y - dz and 2z(0) = 1 and
z()=1—y:

1,1 Lol net
//(l—wy)"_ldwdy:// dzdy
o Jo 0o Ji—y Y

1

/:H%T dy = g/oli'(l—({;g)”)dy.

1—
Y =iz

Now we substitute 1 — y =: z = z(y) and we get
dz = —1-dy and 2(0) = 1 and 2(1) = 0:

1n—1

1/ 1 .
— . 1— n = — E ¢ =
”/0 -2 (1= 2")dz n/o i:OZdZ

n 141

=0

1
B lz":l _ logn+O(1)
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Since there are 4 quadrants and n points it follows
that the expected number of maximal points in the
planar case is O(logn).

The d-dimensional integral (2) boils down to the
sum

T 11 & log® 1 n
DI z-dl:O( ; )

i1=1 io=1 ig—1=1

which proves the theorem. O

3. Smoothed Number of Extreme Points

We now want to apply the same approach to
obtain an upper bound on the smoothed number
of extreme points. We consider again a perturbed
point fi = p; +ri, where p; = (pi,...,pl”) €
[0,1]¢ and r; a random vector chosen uniformly
from [—e, €]¢. It follows that p; lies in the hypercube

H?zl[pgj) - e,pl(.j) + €] =: phc(p;) which we want

to call the perturbation hypercube of point p;.
Now we recall that ¢(p;) = H?Zl[—oo,ﬁi(] ]. For

any other perturbed point py = pi, + 71, @ # k, the

probability that py does not lie in ¢(p;) is

e ol = [ (5)

where Z(p;, pr) is the set of all valid positions for py
not lying in 0(57), Le. Z(Firpr) = phe(pe) — 0(F).
Note that 1/(2€)? is the probability density of py.
We get

Prlo(pi) is empty] =

1\? 1\*
— 1 - — dy) dr .
/phc(pi) <2€> <kl;[l/l"(x,pk) <2€>

The main idea is now to subdivide the unit hy-
percube into m = 1/6? smaller axis-aligned hyper-
cubes of sidelength §. Then we subdivide P into
sets C, ..., C,, where Cy is the subset of P that is
located (before the perturbation) in the ¢-th small
hypercube (we assume some ordering among the
small hypercubes). Now we can calculate the ex-
pected number D(Cy) of maximal points for the
sets Cy and use
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to obtain an upper bound on the expected num-
ber of extreme points in P. The advantage of this
approach is that for small enough § the points in
a single small hypercube behave almost as in the
uniform random case.

We now want to compute the expected number
of extreme points for the sets Cy. We assume wlog.
that Cy is the hypercube [0,6]%. Let 6 = (6,...,d)
and 0 = (0,...,0) etc. We now want to find an
upper bound on the probability that ¢(p;) is empty.
This probability is maximized, if p; = 0 and py, = 0
for every py, € Cy, i # k. Hence, we get

Pr(o(p;) is empty] <

n—1
1\ 1\¢
Lo Go) (L (52) ) e
phe(0) \ 2€ Z(e,5) \2€

Using Z(x,0) = [0 — €,8 + €4 — []%_,[~00,2)] =

i=1
H;.lzl[max{é — 6,29}, 6 + €] we can write the in-
tegral as

1\
L) (g
[=e.el? 1C[d]
(6+e)1 1 1] n—1
Joaominy (20) )t @

where the subscript I for a variable denotes the
|I| dimensional projection of the variable to the
coordinates in I, i.e. xy = (zUV), ..., 20)) for I =
{j1,.--,Jt}, and the maximum is taken coordinate
wise. Let

F(z,j):= > (_1)|1|+1/(5+€)1 (i)l dyr

1C[d—j] (0=

41 (6+e)1 1 [T}
+ 1(—1) /xl (2—€> dyr .

ICfy

We can rewrite the integral (4) now in the form

SO L]

-~

J

(i)d Bz, )" e . (5)

Next we want to calculate this integral. Again
we will use repeated substitution. We obtain the
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following result, which we prove only for the one
dimensional case (the complete proofis deferred to
the full version of this paper).

Lemma 2 Let C; C P be a set of ¢g points in the
hypercube [0, 6]¢ before the perturbation takes place.

The smoothed number of extreme points in Cy is at
most

- - 5 1 d—1
V(Cy) < D(Cy) < e-2%- (d- 24 M)
2¢ )
Proof :(only the 1-dimensional case)

Let us consider the one dimensional integral.
From (5) we have
n—1
) dz

d—e¢ d+¢€
1 1
[
_e 2¢ S—e 2¢
€ 1 d+¢ 1
(] =

d—e € n—1
1 1 1
—d — (= (+e— dz .
/_6 2 “/5_626 <2€ <w) z
—~—

The first integral solves to §/(2¢). In the second
integral we substitute d + € —x =: z = z(z) and we
get dz = —1-dx and 2(6 — €) = 2¢ and z(e) = 4.
Thus it is

c 1 (/1 nt
/6_€£-(£-(6+6—w)> de =
O\" 1 §\"

[GE) e =t (-G))

It follows that in the one dimensional case the prob-
ability for a point to be maximal is at most

0 1
2(£+5)

We can now conclude from (3) and Lemma 2 that

d

~ AN d § log" e
P) < E od (g 24 e T
V(P) < 2 Ce (d 5 + )

€ Cy

Our main theorem follows choosing

. d—1 1/d
620((6 log n) >
d-n

Theorem 3 The smoothed number of extreme
points of a set P of n perturbed points in d di-

mensional space with start points from the unit

hypercube and under uniform noise from [—¢, €]¢ is

vip) - of () )
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