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Abstra
t

We analyze the maximal expe
ted number of extreme points of a point set P in R

d

that is slightly perturbed by

random noise. We assume that ea
h point in P is uniformly distributed in an axis-aligned hyper
ube of side length

2� 
entered in the unit hyper
ube (the 
enter of the hyper
ube 
an be regarded as the point position without

noise). Our model is motivated by the fa
t that in many appli
ations the input data is inherently noisy, e.g. when

the data 
omes from physi
al measurement or impre
ise arithmeti
 is used. For this input distribution we derive

an upper bound of O((n � log n=�)

1�1=(d+1)

) on the number of extreme points of P .
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1. Introdu
tion

The 
onvex hull of a point set in the d-

dimensional Eu
lidean spa
e is one of the funda-

mental 
ombinatorial stru
tures in Computational

Geometry. Many of its properties have been stud-

ied extensively in the last de
ades. In this paper

we are interested in the number of verti
es of the


onvex hull of a random point set, sometimes re-

ferred to as the number of extreme points of the

point set. It is known sin
e nearly 30 years that

the number of extreme points of a point set drawn

uniformly at random from the (unit) hyper
ube is

O(log

d�1

n), 
f. [1℄. The number of extreme points

has also been studied for many other input dis-

tributions, e.g. for Gaussian normal distribution.

In this paper we 
onsider the expe
ted number of

extreme points when ea
h input point is 
hosen

from a (possibly) di�erent small sub
ube of the

unit hyper
ube. We 
an think of this input distri-

bution as resulting from some point set P (de�ned

by the 
enters of the sub
ubes), where ea
h point

is a�i
ted with some small random noise. Our
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model is motivated by the fa
t that in many ap-

pli
ations the input data is inherently noisy, e.g.

when the data 
omes from physi
al measurement

or impre
ise arithmeti
 is used.

1.1. Related Work

Several authors have treated the stru
ture of the


onvex hull of n random points. In 1963/64 R�enyi

and Sulanke, [8℄ and [9℄, were the �rst to present the

mean number of extreme points in the planar 
ase

for di�erent sto
hasti
 models. They showed for n

points uniformly 
hosen from a 
onvex polygone

with r verti
es a bound of r � logn. This work was


ontinued by Efron [4℄, Raynaud [6℄ and [7℄, and

Carnal [2℄ and extended to higher dimensions. For

further information we refer to the ex
ellent book

[10℄ by Santal�o.

In 1978 Bentley, Kung, S
hkolni
k and Thomp-

son [1℄ showed that the expe
ted number of ex-

treme points of n i.i.d. random points in d spa
e is

O(ln

d�1

n) for �xed d for some general probabil-

ity distributions. Har-Peled gave in [5℄ a di�erent

proof of this result. Both results are based on the


omputation of the expe
ted number of maximal

points (
f. Se
tion 3).

The 
on
ept of smoothed analysis was intro-

du
ed in 2001 by Spielman and Teng [11℄. In 2003
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this 
on
ept was applied to the number of 
hanges

to the 
ombinatorial des
ribtion of the smallest

en
losing bounding box of a moving point set [3℄

where di�erent probability distributions for the

random noise were 
onsidered. This work already


overs the two dimensional 
ase of this paper's

problem. By 
onsidering moving points the two

dimensional problem was redu
ed to a one dimen-

sional probelm. The general extension to higher

dimensions holds some non trivial diÆ
ulties even

for the 
ase when uniformle distributed noise is


onsidered.

2. Problem Statement and Uniform Case

Let P := fp

1

; : : : ; p

n

g denote a point set in the

unit hyper
ube [0; 1℄

d

and let V(P ) be the number

of extreme points (i.e., the number of verti
es of the


onvex hull) of P . Furthermore, let r

1

; : : : ; r

n

be

i.i.d. random ve
tors 
hosen uniformly at random

from [��; �℄

d

and let ep

1

:= p

1

+r

1

; : : : ;fp

n

:= p

n

+r

n

be the perturbed points and

e

P the set of perturbed

points. Then we de�ne the smoothed number of

extreme points to be V(

e

P ) := max

P

E[V(

e

P )℄.

Our bounds are based on the following observa-

tion: A point p 2 P is not extreme, if ea
h of the 2

d

orthants 
entered at p 
ontains at least one point.

In this 
ase, we say that p is notmaximal. It follows

immediatly that the number of maximal points is

an upper bound on the number of extreme points.

Therefore, we will from now on 
ount the number

of maximal points.

Fig. 1. 'A point in three dimensional spa
e has eight or-

thants.' and 'Every extreme point is also a maximal point.'

As a warm-up we illustrate our approa
h on the

well-understood 
ase of n points 
hosen uniformly

at random from the d-dimensional unit hyper
ube.

We show how to obtain in this 
ase an upper bound

of O(log

d�1

n) on the number of maximal points

and hen
e on the number of extreme points.

Theorem 1 Let P = fp

1

; : : : p

n

g be a set of n

points 
hosen uniformly at random from the d-

dimensional unit hyper
ube. Then the expe
ted

number of extreme points of P is O(log

d�1

n) for

�xed dimension d.

Proof : To prove the theorem we show that

Pr[p

i

is maximal℄ = O(log

d�1

n=n) : (1)

By linearity of expe
tation it follows immediately

that the number of extreme points is O(log

d�1

n).

To prove (1) we 
onsider the probability that a

�xed orthant �(p

i

) 
entered at p

i

is empty. Using

a standard union bound we get

Pr[p

i

is maximal℄ � 2

d

�Pr[�(p

i

) is empty℄ :

Wlog. we now �x orthant �(p

i

) :=

Q

d

j=1

[�1; p

(j)

i

℄.

We 
an write the probability that �(p

i

) is empty as

an integral in the following way: 
onsider p

i

having

the 
oordinates (x

(1)

; : : : ; x

(d)

). The probability for

any other point p

k

2 P n fp

i

g to be not in �(p

i

) is

then equal to 1�x

(1)

� x

(2)

� � �x

(d)

. Sin
e there are

n� 1 other points in P the probability that �(p

i

)

is empty is exa
tly

Z

1

0

� � �

Z

1

0

(1� x

(1)

� � �x

(d)

)

n�1

dx

(1)

� � � dx

(d)

: (2)

We solve this integral by repeatetd substitution

and demonstrate this on the 2 dimensional integral.

We start with the integral

R

1

0

R

1

0

(1 � xy)

n�1

dxdy

and substitute in a �rst step 1 � xy =: z = z(x)

whi
h gives us dz = �y � dx and z(0) = 1 and

z(1) = 1� y:

Z

1

0

Z

1

0

(1� xy)

n�1

dxdy =

Z

1

0

Z

1

1�y

z

n�1

y

dzdy =

Z

1

0

�

1

n

�

z

n

y

�

1

1�y

dy =

1

n

Z

1

0

1

y

� (1� (1� y

| {z }

=: z

)

n

)dy :

Now we substitute 1 � y =: z = z(y) and we get

dz = �1 � dy and z(0) = 1 and z(1) = 0:

1

n

Z

1

0

1

1� z

� (1� z

n

)dz =

1

n

Z

1

0

n�1

X

i=0

z

i

dz =

1

n

"

n�1

X

i=0

z

i+1

i+ 1

#

1

0

=

1

n

n

X

i=1

1

i

=

logn+O(1)

n

:
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Sin
e there are 4 quadrants and n points it follows

that the expe
ted number of maximal points in the

planar 
ase is O(log n).

The d-dimensional integral (2) boils down to the

sum

1

n

n

X

i

1

=1

1

i

1

i

1

X

i

2

=1

1

i

2

� � �

i

d�2

X

i

d�1

=1

1

i

d�1

= O

 

log

d�1

n

n

!

;

whi
h proves the theorem. 2

3. Smoothed Number of Extreme Points

We now want to apply the same approa
h to

obtain an upper bound on the smoothed number

of extreme points. We 
onsider again a perturbed

point ep

i

= p

i

+ r

i

, where p

i

= (p

(1)

i

; : : : ; p

(d)

i

) 2

[0; 1℄

d

and r

i

a random ve
tor 
hosen uniformly

from [��; �℄

d

. It follows that ep

i

lies in the hyper
ube

Q

d

j=1

[p

(j)

i

� �; p

(j)

i

+ �℄ =: ph
(p

i

) whi
h we want

to 
all the perturbation hyper
ube of point p

i

.

Now we re
all that �(ep

i

) =

Q

d

j=1

[�1; ep

i

(j)

℄. For

any other perturbed point ep

k

= p

k

+ r

k

, i 6= k, the

probability that ep

k

does not lie in �(ep

i

) is

Pr[ ep

k

=2 �(ep

i

)℄ =

Z

I(ep

i

;p

k

)

�

1

2�

�

d

dy

where I(ep

i

; p

k

) is the set of all valid positions for ep

k

not lying in �(ep

i

), i.e. I(ep

i

; p

k

) = ph
(p

k

)��(ep

i

).

Note that 1=(2�)

d

is the probability density of ep

k

.

We get

Pr[�(ep

i

) is empty℄ =

Z

ph
(p

i

)

�

1

2�

�

d

�

�

Y

k 6=i

Z

I(x;p

k

)

�

1

2�

�

d

dy

�

dx :

The main idea is now to subdivide the unit hy-

per
ube intom = 1=Æ

d

smaller axis-aligned hyper-


ubes of sidelength Æ. Then we subdivide P into

sets C

1

; : : : ; C

m

where C

`

is the subset of P that is

lo
ated (before the perturbation) in the `-th small

hyper
ube (we assume some ordering among the

small hyper
ubes). Now we 
an 
al
ulate the ex-

pe
ted number D(C

`

) of maximal points for the

sets C

`

and use

V(

e

P ) �

m

X

`=1

V(

e

C

`

) �

m

X

`=1

D(

e

C

`

) (3)

to obtain an upper bound on the expe
ted num-

ber of extreme points in

e

P . The advantage of this

approa
h is that for small enough Æ the points in

a single small hyper
ube behave almost as in the

uniform random 
ase.

We now want to 
ompute the expe
ted number

of extreme points for the sets C

`

. We assume wlog.

that C

`

is the hyper
ube [0; Æ℄

d

. Let

�

Æ = (Æ; : : : ; Æ)

and

�

0 = (0; : : : ; 0) et
. We now want to �nd an

upper bound on the probability that �(ep

i

) is empty.

This probability is maximized, if p

i

=

�

0 and p

k

=

�

Æ

for every p

k

2 C

`

, i 6= k. Hen
e, we get

Pr[�(ep

i

) is empty℄ �

Z

ph
(

�

0)

�

1

2�

�

d

�

 

Z

I(x;

�

Æ)

�

1

2�

�

d

dy

!

n�1

dx :

Using I(x;

�

Æ) = [Æ � �; Æ+ �℄

d

�

Q

d

j=1

[�1; x

(j)

℄ =

Q

d

j=1

[maxfÆ � �; x

(j)

g; Æ + �℄ we 
an write the in-

tegral as

Z

[��;�℄

d

�

1

2�

�

d

�

�

X

I�[d℄

(�1)

jIj+1

�

Z

(Æ+�)

I

maxf(Æ��)

I

;x

I

g

�

1

2�

�

jIj

dy

I

�

n�1

dx (4)

where the subs
ript I for a variable denotes the

jIj dimensional proje
tion of the variable to the


oordinates in I, i.e. x

I

= (x

(j

1

)

; : : : ; x

(j

t

)

) for I =

fj

1

; : : : ; j

t

g, and the maximum is taken 
oordinate

wise. Let

F(x; j) :=

X

I�[d�j℄

(�1)

jIj+1

Z

(Æ+�)

I

(Æ��)

I

�

1

2�

�

jIj

dy

I

+

X

I�[j℄

(�1)

jIj+1

Z

(Æ+�)

I

x

I

�

1

2�

�

jIj

dy

I

:

We 
an rewrite the integral (4) now in the form

d

X

j=0

�

d

j

�

�

Z

Æ��

��

� � �

Z

Æ��

��

| {z }

d�j

Z

�

Æ��

� � �

Z

�

Æ��

| {z }

j

�

1

2�

�

d

� F(x; j)

n�1

dx : (5)

Next we want to 
al
ulate this integral. Again

we will use repeated substitution. We obtain the
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following result, whi
h we prove only for the one

dimensional 
ase (the 
omplete proof is deferred to

the full version of this paper).

Lemma 2 Let C

`

� P be a set of 


`

points in the

hyper
ube [0; Æ℄

d

before the perturbation takes pla
e.

The smoothed number of extreme points in

e

C

`

is at

most

V(

e

C

`

) � D(

e

C

`

) � 


`

� 2

d

�

�

d �

Æ

2�

+

log

d�1




`




`

�

:

Proof :(only the 1-dimensional 
ase)

Let us 
onsider the one dimensional integral.

From (5) we have

Z

Æ��

��

1

2�

�

�

Z

Æ+�

Æ��

1

2�

dy

�

n�1

dx

+

Z

�

Æ��

1

2�

�

�

Z

Æ+�

x

1

2�

dy

�

n�1

dx =

Z

Æ��

��

1

2�

dx +

Z

�

Æ��

1

2�

�

�

1

2�

� (Æ + �� x

| {z }

=: z

)

�

n�1

dx :

The �rst integral solves to Æ=(2�). In the se
ond

integral we substitute Æ+��x =: z = z(x) and we

get dz = �1 � dx and z(Æ � �) = 2� and z(�) = Æ.

Thus it is

Z

�

Æ��

1

2�

�

�

1

2�

� (Æ + �� x)

�

n�1

dx =

Z

2�

Æ

�

1

2�

�

n

� z

n�1

dz =

1

n

�

�

1�

�

Æ

2�

�

n

�

:

It follows that in the one dimensional 
ase the prob-

ability for a point to be maximal is at most

2 �

�

Æ

2�

+

1

n

�

:

2

We 
an now 
on
lude from (3) and Lemma 2 that

V(

e

P ) �

1=Æ

d

X

`=1




`

� 2

d

�

�

d �

Æ

2�

+

log

d�1




`




`

�

:

Our main theorem follows 
hoosing

Æ = O

��

� � log

d�1

n

d � n

�

1=d

�

:

Theorem 3 The smoothed number of extreme

points of a set

e

P of n perturbed points in d di-

mensional spa
e with start points from the unit

hyper
ube and under uniform noise from [��; �℄

d

is

V(

e

P ) = O

��

n � logn

�

�

1�

1

d+1

�

:
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