Farthest-Point Queries with Geometric and Combinatorial Constraints

Ovidiu Daescu ${ }^{\text {a }}$, Ningfang Mi^{a}, Chan-Su Shin ${ }^{\mathrm{b}}$, and Alexander Wolff ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083, USA
${ }^{\mathrm{b}}$ School of Electronics and Information Engineering, Hankuk University of Foreign Studies, Korea
${ }^{\text {c }}$ Faculty of Computer Science, Karlsruhe University, Germany. WWW: i11www.ilkd.uka.de/algo/people/awolff

1. Introduction

In this paper we discuss farthest-point problems, in which a sequence $S=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of n points in the plane is given in advance and can be preprocessed to answer various queries efficiently. We first consider the general setting where query points can be arbitrary, then we investigate a special setting where each point in S is queried exactly once.
To describe our problems, we use the following notation. Given two points $p \neq q$, let $p q$ denote the line through the points p and q, let $\overline{p q}$ denote the line segment joining p and q, and let $|p q|$ be the Euclidean distance of p and q. We will use ε to denote a fixed arbitrarily small positive number.

FarthestPointAboveLine (FPAL): Given a pair $\left(q, l_{q}\right)$, where q is a point and l_{q} is a line through q, decide whether there is a point in S above l_{q}, and if yes report the one farthest from q.

Our solution to this problem is a data structure based on [6] that takes $O(n \log n)$ space, $O\left(n^{1+\varepsilon}\right)$ preprocessing time and $O\left(n^{1 / 2+\varepsilon}\right)$ query time. We can do better if S is in convex position:

FPALinConvexpolygon (FPALCP): Given a convex n-gon C and a pair $\left(q, l_{q}\right)$, where q is a point and l_{q} is a line through q, decide whether there is a point in C above l_{q}, and if yes report the one farthest from q.

Our solution takes $O(n \log n)$ space, $O\left(n \log ^{2} n\right)$ preprocessing time and $O\left(\log ^{2} n\right)$ query time.

FarthestPointSameSide (FPSS): Given a triplet $\left(q, \mathcal{L}_{q}, \Delta\right)$, where q is a point and \mathcal{L}_{q} is a line through q such that all points in S are within distance Δ from \mathcal{L}_{q}, decide whether there is a

Email addresses: daescu@utdallas.edu (Ovidiu Daescu), nxm024100@utdallas.edu (Ningfang Mi), cssin@hufs.ac.kr (Chan-Su Shin).
point $p \in S$ such that (i) $|q p|>\Delta$, and (ii) p is above the line l_{q} orthogonal to \mathcal{L}_{q} at q. If yes, report the point p farthest from q that fulfills (ii).

Our data structure for this problem has the same time and space bounds as that for FPALCP.

FarthestindexedPointOtherSide (FIPOS): Given a triplet (i, j, Δ), such that $1 \leq i<j \leq n$ and all points $p_{k} \in S$ with $i<k<j$ are within distance Δ from $p_{i} p_{j}$, decide whether there is a point p_{k} with $i<k<j$ such that (i) $\left|p_{i} p_{k}\right|>\Delta$, and (ii) p_{k} and p_{j} lie on different sides of the line that goes through p_{i} and is orthogonal to $p_{i} p_{j}$. If yes, report the point p_{k} farthest from p_{i} that fulfills (ii).

Our time and space bounds for this problem are by a log-factor above those for FPALCP.

In the special setting where each point in S is queried exactly once we investigate the following problem. We assume the existence of a point $p \notin S$.

BatchedFarthestIndexedPointSameSide
(BFIPSS): For each point $p_{i} \in S$ decide whether there is a point $p_{f} \in\left\{p_{1}, \ldots, p_{i}\right\}$ that lies on the same side as p with respect to the perpendicular bisector of p and p_{i}. If yes report the point p_{f} farthest from p that has the above property.

Our algorithm for this problem runs in $O\left(n \log ^{2} n\right)$ time and uses $O(n \log n)$ space.

The problems we study are related to the nearest-point query problem, to the all-pairs farthest and closest neighbors problem, and to the closest-point-to-line query problem. Although these problems are well understood, we are not aware of work on the problems we consider.

Applications of our data structures are polygonal chain approximation [2], approximate solutions for the one-cylinder problem [1], and geometric spanning trees [5].

20th European Workshop on Computational Geometry

2. Farthest-Point Queries

We first tackle FPALCP, since it is part of the solutions for the problems FPSS and FIPOS.

In the preprocessing phase, we construct a balanced binary tree T in $O\left(n \log ^{2} n\right)$ time as follows. The vertices of the convex polygon C, in counterclockwise order from the rightmost vertex, are associated with the leaves of T. At each internal node u, we compute and store the convex hull and the farthest-point Voronoi diagram V_{u} of the leaf descendants of u from the information available at the children of u. We then preprocess V_{u} for planar point-location queries, which takes a total of $O(n \log n)$ time for each level of T. Thus, the overall computation of T takes $O\left(n \log ^{2} n\right)$ time.

Given a query pair $\left(q, l_{q}\right)$, we find in $O(\log n)$ time the intersection points of l_{q} with the boundary ∂C of C by binary search. We assume that l_{q} has non-empty intersection with the interior of C (the four other cases are trivial). The sought point is either one of the two intersection points of l_{q} with ∂C or a vertex of C that is above l_{q}. Without loss of generality, we assume that no vertex of C lies on l_{q} and that l_{q} has positive slope.

We query T as follows. We select the two endpoints of the segments intersected by l_{q} that are above l_{q}. Let s be the first and t the second endpoint in counter-clockwise order on ∂C. We walk in T from s to t and collect a set \mathcal{V} of $O(\log n)$ farthest-point Voronoi diagrams in two phases. In the ascending phase we go upwards from s. Whenever we get to a node u from its left child, we add to \mathcal{V} the Voronoi diagram stored at the right child of u. In the descending phase we go down towards t. Whenever we go to the right child of a node u, we add to \mathcal{V} the Voronoi diagram stored at the left child of u. Clearly, all points associated with these Voronoi diagrams are above l_{q} and thus the sought vertex is either s, t or one of these points. We locate q in $O(\log n)$ time in each Voronoi diagram in \mathcal{V} and keep track of the point farthest from q. Thus we can answer the query in $O\left(\log ^{2} n\right)$ time.
Theorem 1 There is a data structure for FPALCP that takes $O(n \log n)$ space, $O\left(n \log ^{2} n\right)$ preprocessing time and $O\left(\log ^{2} n\right)$ query time.

One can answer queries for FPSS using the same approach as for FPAL: construct a partition tree based on a fine simplicial partition in $O\left(n^{1+\varepsilon}\right)$ time [6] and enhance it with a second-level data

Fig. 1. The point p farthest from q must be a vertex of the convex hull C of S if $|q p|>\Delta$.
structure consisting of the farthest-point Voronoi diagram (of the points at each internal node) preprocessed for planar point location. This data structure can be used to obtain a collection of disjoint subsets of points representing all points in S which are above the line l_{q}, and then query the farthest-point Voronoi diagrams for the points in each subset in order to answer the query. Note that the point farthest from the query point q may lie inside the convex hull C of S, so it seems our solution of FPALCP cannot be applied here. The following lemma, however, does give us a way to use the FPALCP data structures to solve FPSS.
Lemma 2 Given $S \subset \mathbb{R}^{2}$ and a triplet $\left(q, \mathcal{L}_{q}, \Delta\right)$, where q is a point and \mathcal{L}_{q} is a line through q such that all points in S are within distance Δ from \mathcal{L}_{q}, if there is a point $p \in S$ such that (i) $|q p|>\Delta$, and (ii) p is above the line l_{q} orthogonal to \mathcal{L}_{q} at q, then the point in S farthest from q is a vertex of the convex hull C of S.
PROOF. Wlog. we assume that l_{q} intersects ∂C in two line segments $\overline{p_{i} p_{i+1}}$ and $\overline{p_{j} p_{j+1}}$ with $1 \leq$ $i<j<n$ and that p_{i+1}, \ldots, p_{j} all lie above l_{q}. Let a and b be the intersection points. Clearly for each triangle $q p_{k} p_{k+1}$ above l_{q} either p_{k} or p_{k+1} is farthest from q. We now consider the triangle $t=$ $q p_{j} b$, the triangle $q a p_{i+1}$ is analogous.

Let ℓ be the line through q that is orthogonal to $p_{j} p_{j+1}$. Consider the right-angled triangle t^{\prime} (shaded dark in Figure 1) that is defined by ℓ, $p_{j} p_{j+1}$ and $q b$. Due to Thales' theorem t^{\prime} is contained in the disk D_{b} whose diameter is $\overline{q b}$. Since $|q b| \leq \Delta, D_{b}$ (and thus t^{\prime}) is contained in the radius- Δ disk D_{Δ} centered at q.

Now if $q_{j} \in t^{\prime}$ then $t \subseteq t^{\prime} \subseteq D_{\Delta}$. Otherwise ℓ splits t into t^{\prime} and another right-angled triangle $t^{\prime \prime}$ (shaded lightly in Figure 1) that is defined by $q p_{j}$, $p_{j} p_{j+1}$ and ℓ. Since $\overline{q p_{j}}$ is the hypothenuse of $t^{\prime \prime}$,
p_{j} is farthest from q in $t^{\prime \prime}$. Thus the point farthest from q either lies in D_{Δ} or is a vertex of C.

Theorem 3 There is a data structure for FPSS that takes $O(n \log n)$ space, $O\left(n \log ^{2} n\right)$ preprocessing time and $O\left(\log ^{2} n\right)$ query time.

To solve FIPOS, the indexed version of FPSS, in the preprocessing phase we construct an $O\left(n \log ^{2} n\right)$-size balanced binary tree T as follows. Each leaf of T is associated with a point in S such that the point $p_{i} \in S$ is stored at the i-th leaf of T. We go up the tree T and, at each internal node v, we compute and store the convex hull C_{v} of the leaf descendants of v. We also compute and store at v a secondary level data structure in the form of a balanced binary tree T_{v} of the farthest-point Voronoi diagrams on the vertices of C_{v}, enhanced with a planar point-location data structure, similar to the one used in solving FPSS. Then, the overall computation of T takes $O\left(n \log ^{3} n\right)$ time and requires $O\left(n \log ^{2} n\right)$ space. For a query pair (i, j), let $\pi_{i j}$ be the path in T from p_{i} to p_{j}. We use this path to obtain a set \mathcal{C} of $O(\log n)$ convex hulls whose union contains only the points p_{k} with $i<k<j$ as follows. In the ascending phase we add to \mathcal{C} the convex hull stored at the right child of v if $\pi_{i j}$ gets to v from its left child. In the descending phase we add to \mathcal{C} the convex hull stored at the left child of v if $\pi_{i j}$ goes from v to its right child. For each convex hull $C \in \mathcal{C}$, querying the secondary data structure reduces to FPSS. Let t be the number of vertices on C. Then we can determine in $O\left(\log ^{2} t\right)$ time whether there is a k, $i<k<j$, such that the point $p_{k} \in S$ associated with C satisfies the two FIPOS conditions. Since the size of the set \mathcal{C} is $O(\log n)$, the overall query time is $O\left(\log ^{3} n\right)$.
Theorem 4 There is a data structure for FIPOS that takes $O\left(n \log ^{2} n\right)$ space, $O\left(n \log ^{3} n\right)$ preprocessing time and $O\left(\log ^{3} n\right)$ query time.
Building on our solutions of FPALCP, FPSS, and FIPOS, we extend a recent result in [3].
Theorem 5 Given a polygonal chain $P=\left(p_{1}, p_{2}\right.$, \ldots, p_{n}) in the plane, the min-\# problem with the tolerance zone criterion and L_{2} distance metric can be solved in $O\left(F(m) n \log ^{3} n\right)$ time with $O\left(n \log ^{2} n\right)$ space, where $F(m)$ is the number of vertices of the path approximation graph reachable from p_{1} with at most $m-2$ edges and m is the number of vertices of an optimal approximating path.

A version of BFIPSS without the index restriction has been considered in [5]. There the problem was to report for each point $p_{i} \in S$ a point farthest from the fixed point $p \notin S$ that lies on the same side as p with respect to the perpendicular bisector of p and p_{i}. In [5] the problem is reduced to the problem of finding for each $p_{i} \in S$ the first disk in a sequence of disks that does not contain p_{i}. This problem has been addressed in [2] under the name off-line ball exclusion search (OLBES). The authors set up a tree data structure with a space requirement of $O(n \log n)$ and then query this structure with each point in S. This results in a total running time of $O(n \log n)$ for OLBES in dimension $d=2$. For $d>2$ the problem is solved differently in $O\left(n^{2-2 /(\lfloor d / 2\rfloor)+1}\right)$ time. In [5], a version of OLBES where all disks intersect a common point has been solved for $d=2$ in $O(n \log n)$ time and $O(n)$ space by sweeping an arrangement of circular arcs. To solve BFIPSS in dimension 2 we set up a tree data structure similar to [4, proof of Lemma 2]. Here, however, we must solve a different OLBES problem in each query and thus need to modify our tree successively.
Theorem 6 BFIPSS can be solved in $O\left(n \log ^{2} n\right)$ time and $O(n \log n)$ space for a sequence S of n points and a point $p \notin S$ in the plane.

PROOF. Let $D_{n+1}=\emptyset$ and let D_{1}, \ldots, D_{n} be the sequence of disks in order of non-increasing radius that are centered on the points in S and touch p. We build a binary tree \mathcal{B} that we query with the points in S, and the answer of a query will correspond to the index of the first disk in the sequence D_{1}, \ldots, D_{n+1} that does not contain the query point. The leaves of \mathcal{B} correspond to these answers from left to right. Each inner node v stores the intersection I_{v} of all disks (except D_{n+1}) that correspond to the leaves in the subtree rooted at v. We label each node v with a pair $\left[a_{v}, b_{v}\right]$ encoding the set $S_{v}=\left\{a_{v}, \ldots, b_{v}\right\}$ of consecutive indices that correspond to these disks. In Figure 2 a tree with $n=13$ is depicted. We build \mathcal{B} in a bottomup fashion. Each inner node has two children in the previous level, except possibly a level's rightmost node that can have a right child in an earlier level, see the node with label $[9,13]$ in Figure 2.

Querying \mathcal{B} with a query point q means to follow a path from the root to a leaf. In each inner node v with left child ℓ the test $q \in I_{\ell}$ is performed. If $q \in$

20th European Workshop on Computational Geometry

Fig. 2. The tree data structure \mathcal{B} for $n=13$.
I_{ℓ}, the query continues with the right, otherwise with the left child of v.

Other than in [2,4], we start with an empty skeleton of \mathcal{B}, i.e. all inner nodes v are labeled by $\left[a_{v}, b_{v}\right]$, but all intersections I_{v} are set to \mathbb{R}^{2}. Also other than in [4], the order in which we query becomes crucial. We go through the points $p_{1}, \ldots, p_{n} \in S$ in order of increasing index. Before querying \mathcal{B} with p_{i} we update \mathcal{B} by adding the new disk D_{k} centered on p_{i} (note that usually $k \neq i$) to the intersection I_{v} for each node v on the path from the root to the leaf that corresponds to D_{k}.

The result of a query with p_{i} is the disk D_{j} that corresponds to the leaf at the end of the query path π. If $j=n+1$ then π is the rightmost root-leaf path. Consider the left children of the nodes on π. The sets S_{ℓ} that belong to these left children partition $\{1, \ldots, n\}$. In other words, the intersection of I_{ℓ} over these children is $D_{1} \cap \cdots \cap D_{n}$. Since π is the rightmost root-leaf path, the containment queries in all nodes on π were answered positively. Thus q_{i} is contained in all disks currently in \mathcal{B}, i.e. $q_{i} \in D\left(q_{1}, p\right) \cap \cdots \cap D\left(q_{i}, p\right)$, where $D(a, b)$ is the disk centered at a that touches b. This means that none of q_{1}, \ldots, q_{i} lies in the halfplane $h\left(p, q_{i}\right)$ that contains p and whose boundary is the perpendicular bisector of p and q_{i}. Otherwise [5, Lemma 1] would guarantee that $q_{i} \notin D\left(q_{k}, p\right)$ for the point q_{k} in $\left\{q_{1}, \ldots, q_{i}\right\}$ farthest from p in $h\left(p, q_{i}\right)$.

If $j \leq n$ we again consider the left children of the nodes on the query path π of q_{i}. The sets S_{ℓ} partition $\{1, \ldots, j-1\}$ if we take only those left children ℓ into account that do not themselves lie on π. Similarly to above, the intersection of I_{ℓ} over these children is $D_{1} \cap \cdots \cap D_{j-1}$. Thus q_{i} is contained in all D_{k} with $k<j$ that are currently in \mathcal{B}. On the other hand, since π is not the rightmost root-leaf path, there must be left children that lie on π. The last such left child v is the root of the subtree whose rightmost leaf corresponds to D_{j}. Thus v is asso-
ciated with some set $S_{v}=\left\{i_{v}, \ldots, j\right\}$, where $1 \leq$ $i_{v} \leq j$. Since we have already observed that q_{i} is contained in all D_{k} with $k<j$ that are currently in \mathcal{B}, but π came to v via a "no"-branch, we now know that $q_{i} \notin D_{j}$. Let m be such that $D_{j}=D\left(q_{m}, p\right)$. Note that $q_{i} \notin D\left(q_{m}, p\right)$ means that $D\left(q_{m}, p\right)$ was inserted in \mathcal{B} before querying with q_{i}, and thus $m \leq i$. Since $q_{i} \notin D\left(q_{m}, p\right)$, and $q_{i} \in D\left(q_{r}, p\right)$ for all $r \leq i$ with $\left|p q_{r}\right|>\left|p q_{m}\right|$, [5, Lemma 1] yields that q_{m} is farthest from p in $\left\{q_{1}, \ldots, q_{i}\right\} \cap h\left(p, q_{i}\right)$.

The running time is as follows. Querying \mathcal{B} takes $O\left(\log ^{2} n\right)$ time since the height of \mathcal{B} is $O(\log n)$ and in each node of the query path the query point has to be located in the intersection I_{v} of some disks, which can be done in $O(\log n)$ time.

When we update \mathcal{B} by adding a new disk D_{j}, we have to go from the root to the leaf that corresponds to D_{j}. In each node on this path we must compute $I_{v} \cap D_{j}$ and update our data structure for I_{v}. This can be done in $O(\log n)$ time per node by a procedure detailed in [5, proof of Lemma 4]. Thus each update also takes $O\left(\log ^{2} n\right)$ time.

Now the running time of $O\left(n \log ^{2} n\right)$ is obvious. The space consumption is $O(n \log n)$ since a) each disk contributes only to intersections stored on the path from the root to "its" leaf, and b) a disk that contributes to some intersection I_{v} adds at most one arc to the boundary of I_{v} [5, Fact 2].

References

[1] M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proc. STOC'02, pages 250257, 2002.
[2] D. Z. Chen, O. Daescu, J. Hershberger, P. M. Kogge, and J. Snoeyink. Polygonal path approximation with angle constraints. In Proc. SODA'01, pages 342-343, Washington, D.C., 2001.
[3] O. Daescu and N. Mi. Polygonal path approximation: A query based approach. In Proc. ISAAC'03, volume 2906 of $L N C S$, pages $36-46$, 2003. Springer.
[4] J. Gudmundsson, H. Haverkort, S.-M. Park, C.-S. Shin, and A. Wolff. Facility location and the geometric minimum-diameter spanning tree. In Proc. APPROX '02, vol. 2462 of $L N C S$, pages 146-160, 2002. Springer.
[5] J. Gudmundsson, H. Haverkort, S.-M. Park, C.-S. Shin, and A. Wolff. Facility location and the geometric minimum-diameter spanning tree. Computational Geometry: Theory and Appl., 27(1):87-106, 2004.
[6] J. Matoušek. Efficient partition trees. Discrete and Computational Geometry, 8:315-334, 1992.

