
Farthest-Point Queries

with Geometric and Combinatorial Constraints

Ovidiu Daescu a, Ningfang Mi a, Chan-Su Shin b, and Alexander Wolff c

aDepartment of Computer Science, University of Texas at Dallas, Richardson, TX 75083, USA
bSchool of Electronics and Information Engineering, Hankuk University of Foreign Studies, Korea

cFaculty of Computer Science, Karlsruhe University, Germany. WWW: i11www.ilkd.uka.de/algo/people/awolff

1. Introduction

In this paper we discuss farthest-point problems,
in which a sequence S = (p1, p2, . . . , pn) of n points
in the plane is given in advance and can be prepro-
cessed to answer various queries efficiently. We first
consider the general setting where query points can
be arbitrary, then we investigate a special setting
where each point in S is queried exactly once.

To describe our problems, we use the following
notation. Given two points p 6= q, let pq denote
the line through the points p and q, let pq denote
the line segment joining p and q, and let |pq| be
the Euclidean distance of p and q. We will use ε to
denote a fixed arbitrarily small positive number.

FarthestPointAboveLine (FPAL): Given a
pair (q, lq), where q is a point and lq is a line
through q, decide whether there is a point in S

above lq, and if yes report the one farthest from q.
Our solution to this problem is a data structure

based on [6] that takes O(n log n) space, O(n1+ε)
preprocessing time and O(n1/2+ε) query time. We
can do better if S is in convex position:

FPALinConvexPolygon (FPALCP): Given
a convex n-gon C and a pair (q, lq), where q is a
point and lq is a line through q, decide whether
there is a point in C above lq, and if yes report the
one farthest from q.

Our solution takes O(n log n) space, O(n log2 n)
preprocessing time and O(log2 n) query time.

FarthestPointSameSide (FPSS): Given a
triplet (q,Lq,∆), where q is a point and Lq is a
line through q such that all points in S are within
distance ∆ from Lq, decide whether there is a

Email addresses: daescu@utdallas.edu (Ovidiu
Daescu), nxm024100@utdallas.edu (Ningfang Mi),
cssin@hufs.ac.kr (Chan-Su Shin).

point p ∈ S such that (i) |qp| > ∆, and (ii) p is
above the line lq orthogonal to Lq at q. If yes,
report the point p farthest from q that fulfills (ii).

Our data structure for this problem has the same
time and space bounds as that for FPALCP.

FarthestIndexedPointOtherSide (FIPOS):
Given a triplet (i, j,∆), such that 1 ≤ i < j ≤ n

and all points pk ∈ S with i < k < j are within dis-
tance ∆ from pipj , decide whether there is a point
pk with i < k < j such that (i) |pipk| > ∆, and (ii)
pk and pj lie on different sides of the line that goes
through pi and is orthogonal to pipj . If yes, report
the point pk farthest from pi that fulfills (ii).

Our time and space bounds for this problem are
by a log-factor above those for FPALCP.

In the special setting where each point in S is
queried exactly once we investigate the following
problem. We assume the existence of a point p 6∈ S.

BatchedFarthestIndexedPointSameSide

(BFIPSS): For each point pi ∈ S decide whether
there is a point pf ∈ {p1, . . . , pi} that lies on the
same side as p with respect to the perpendicular
bisector of p and pi. If yes report the point pf

farthest from p that has the above property.
Our algorithm for this problem runs in O(n log2 n)

time and uses O(n log n) space.
The problems we study are related to the

nearest-point query problem, to the all-pairs far-
thest and closest neighbors problem, and to the
closest-point-to-line query problem. Although
these problems are well understood, we are not
aware of work on the problems we consider.

Applications of our data structures are polyg-
onal chain approximation [2], approximate solu-
tions for the one-cylinder problem [1], and geomet-
ric spanning trees [5].

20th EWCG Seville, Spain (2004)

20th European Workshop on Computational Geometry

2. Farthest-Point Queries

We first tackle FPALCP, since it is part of the
solutions for the problems FPSS and FIPOS.

In the preprocessing phase, we construct a bal-
anced binary tree T in O(n log2 n) time as follows.
The vertices of the convex polygon C, in counter-
clockwise order from the rightmost vertex, are as-
sociated with the leaves of T . At each internal node
u, we compute and store the convex hull and the
farthest-point Voronoi diagram Vu of the leaf de-
scendants of u from the information available at
the children of u. We then preprocess Vu for pla-
nar point-location queries, which takes a total of
O(n log n) time for each level of T . Thus, the over-
all computation of T takes O(n log2 n) time.

Given a query pair (q, lq), we find in O(log n)
time the intersection points of lq with the boundary
∂C of C by binary search. We assume that lq has
non-empty intersection with the interior of C (the
four other cases are trivial). The sought point is
either one of the two intersection points of lq with
∂C or a vertex of C that is above lq. Without loss
of generality, we assume that no vertex of C lies on
lq and that lq has positive slope.

We query T as follows. We select the two end-
points of the segments intersected by lq that are
above lq. Let s be the first and t the second end-
point in counter-clockwise order on ∂C. We walk
in T from s to t and collect a set V of O(log n)
farthest-point Voronoi diagrams in two phases. In
the ascending phase we go upwards from s. When-
ever we get to a node u from its left child, we add
to V the Voronoi diagram stored at the right child
of u. In the descending phase we go down towards
t. Whenever we go to the right child of a node u,
we add to V the Voronoi diagram stored at the left
child of u. Clearly, all points associated with these
Voronoi diagrams are above lq and thus the sought
vertex is either s, t or one of these points. We lo-
cate q in O(log n) time in each Voronoi diagram in
V and keep track of the point farthest from q. Thus
we can answer the query in O(log2 n) time.

Theorem 1 There is a data structure for
FPALCP that takes O(n log n) space, O(n log2 n)
preprocessing time and O(log2 n) query time.

One can answer queries for FPSS using the
same approach as for FPAL: construct a partition
tree based on a fine simplicial partition in O(n1+ε)
time [6] and enhance it with a second-level data

lq

q

ℓ

pj

pj+1

Lq

∆

C
D∆

Db

b

a

t′

t′′

pi

pi+1

Fig. 1. The point p farthest from q must be a vertex of the
convex hull C of S if |qp| > ∆.

structure consisting of the farthest-point Voronoi
diagram (of the points at each internal node)
preprocessed for planar point location. This data
structure can be used to obtain a collection of
disjoint subsets of points representing all points
in S which are above the line lq, and then query
the farthest-point Voronoi diagrams for the points
in each subset in order to answer the query. Note
that the point farthest from the query point q may
lie inside the convex hull C of S, so it seems our
solution of FPALCP cannot be applied here. The
following lemma, however, does give us a way to
use the FPALCP data structures to solve FPSS.

Lemma 2 Given S ⊂ R
2 and a triplet (q,Lq,∆),

where q is a point and Lq is a line through q such
that all points in S are within distance ∆ from Lq,
if there is a point p ∈ S such that (i) |qp| > ∆,
and (ii) p is above the line lq orthogonal to Lq at
q, then the point in S farthest from q is a vertex of
the convex hull C of S.

PROOF. Wlog. we assume that lq intersects ∂C

in two line segments pipi+1 and pjpj+1 with 1 ≤
i < j < n and that pi+1, . . . , pj all lie above lq.
Let a and b be the intersection points. Clearly for
each triangle qpkpk+1 above lq either pk or pk+1 is
farthest from q. We now consider the triangle t =
qpjb, the triangle qapi+1 is analogous.

Let ℓ be the line through q that is orthogonal
to pjpj+1. Consider the right-angled triangle t′

(shaded dark in Figure 1) that is defined by ℓ,
pjpj+1 and qb. Due to Thales’ theorem t′ is con-
tained in the disk Db whose diameter is qb. Since
|qb| ≤ ∆, Db (and thus t′) is contained in the
radius-∆ disk D∆ centered at q.

Now if qj ∈ t′ then t ⊆ t′ ⊆ D∆. Otherwise ℓ

splits t into t′ and another right-angled triangle t′′

(shaded lightly in Figure 1) that is defined by qpj ,
pjpj+1 and ℓ. Since qpj is the hypothenuse of t′′,

March 25-26, 2004 Seville (Spain)

pj is farthest from q in t′′. Thus the point farthest
from q either lies in D∆ or is a vertex of C. ✷

Theorem 3 There is a data structure for FPSS
that takes O(n log n) space, O(n log2 n) preprocess-
ing time and O(log2 n) query time.

To solve FIPOS, the indexed version of FPSS,
in the preprocessing phase we construct an
O(n log2 n)-size balanced binary tree T as follows.
Each leaf of T is associated with a point in S such
that the point pi ∈ S is stored at the i-th leaf of
T . We go up the tree T and, at each internal node
v, we compute and store the convex hull Cv of the
leaf descendants of v. We also compute and store
at v a secondary level data structure in the form
of a balanced binary tree Tv of the farthest-point
Voronoi diagrams on the vertices of Cv, enhanced
with a planar point-location data structure, sim-
ilar to the one used in solving FPSS. Then, the
overall computation of T takes O(n log3 n) time
and requires O(n log2 n) space. For a query pair
(i, j), let πij be the path in T from pi to pj . We
use this path to obtain a set C of O(log n) convex
hulls whose union contains only the points pk with
i < k < j as follows. In the ascending phase we
add to C the convex hull stored at the right child
of v if πij gets to v from its left child. In the de-
scending phase we add to C the convex hull stored
at the left child of v if πij goes from v to its right
child. For each convex hull C ∈ C, querying the
secondary data structure reduces to FPSS. Let
t be the number of vertices on C. Then we can
determine in O(log2 t) time whether there is a k,
i < k < j, such that the point pk ∈ S associated
with C satisfies the two FIPOS conditions. Since
the size of the set C is O(log n), the overall query
time is O(log3 n).

Theorem 4 There is a data structure for FIPOS
that takes O(n log2 n) space, O(n log3 n) prepro-
cessing time and O(log3 n) query time.

Building on our solutions of FPALCP, FPSS,
and FIPOS, we extend a recent result in [3].

Theorem 5 Given a polygonal chain P = (p1, p2,
. . ., pn) in the plane, the min-# problem with the
tolerance zone criterion and L2 distance metric can
be solved in O(F (m) n log3 n) time with O(n log2 n)
space, where F (m) is the number of vertices of the
path approximation graph reachable from p1 with at
most m − 2 edges and m is the number of vertices
of an optimal approximating path.

A version of BFIPSS without the index restric-
tion has been considered in [5]. There the problem
was to report for each point pi ∈ S a point far-
thest from the fixed point p 6∈ S that lies on the
same side as p with respect to the perpendicular
bisector of p and pi. In [5] the problem is reduced
to the problem of finding for each pi ∈ S the first
disk in a sequence of disks that does not contain
pi. This problem has been addressed in [2] under
the name off-line ball exclusion search (OLBES).
The authors set up a tree data structure with a
space requirement of O(n log n) and then query
this structure with each point in S. This results in
a total running time of O(n log n) for OLBES in
dimension d = 2. For d > 2 the problem is solved
differently in O(n2−2/(⌊d/2⌋)+1) time. In [5], a ver-
sion of OLBES where all disks intersect a common
point has been solved for d = 2 in O(n log n) time
and O(n) space by sweeping an arrangement of
circular arcs. To solve BFIPSS in dimension 2 we
set up a tree data structure similar to [4, proof of
Lemma 2]. Here, however, we must solve a differ-
ent OLBES problem in each query and thus need
to modify our tree successively.

Theorem 6 BFIPSS can be solved in O(n log2 n)
time and O(n log n) space for a sequence S of n

points and a point p 6∈ S in the plane.

PROOF. Let Dn+1 = ∅ and let D1, . . . ,Dn be
the sequence of disks in order of non-increasing
radius that are centered on the points in S and
touch p. We build a binary tree B that we query
with the points in S, and the answer of a query
will correspond to the index of the first disk in the
sequence D1, . . . ,Dn+1 that does not contain the
query point. The leaves of B correspond to these
answers from left to right. Each inner node v stores
the intersection Iv of all disks (except Dn+1) that
correspond to the leaves in the subtree rooted at v.
We label each node v with a pair [av, bv] encoding
the set Sv = {av, . . . , bv} of consecutive indices
that correspond to these disks. In Figure 2 a tree
with n = 13 is depicted. We build B in a bottom-
up fashion. Each inner node has two children in the
previous level, except possibly a level’s rightmost
node that can have a right child in an earlier level,
see the node with label [9, 13] in Figure 2.

Querying B with a query point q means to follow
a path from the root to a leaf. In each inner node v

with left child ℓ the test q ∈ Iℓ is performed. If q ∈

20th European Workshop on Computational Geometry

1 2 3 4 5 6 7 8

[1, 2] [3, 4] [5, 6] [7, 8]

9 10 11 12

[9, 10] [11, 12]

[1, 4] [5, 8] [9, 12]

[1, 8] [9, 13]

[1, 13]

∅

no yes

13

[13, 13]

Fig. 2. The tree data structure B for n = 13.

Iℓ, the query continues with the right, otherwise
with the left child of v.

Other than in [2,4], we start with an empty skele-
ton ofB, i.e. all inner nodes v are labeled by [av, bv],
but all intersections Iv are set to R

2. Also other
than in [4], the order in which we query becomes
crucial. We go through the points p1, . . . , pn ∈ S in
order of increasing index. Before querying B with
pi we update B by adding the new disk Dk centered
on pi (note that usually k 6= i) to the intersection
Iv for each node v on the path from the root to the
leaf that corresponds to Dk.

The result of a query with pi is the disk Dj that
corresponds to the leaf at the end of the query path
π. If j = n + 1 then π is the rightmost root–leaf
path. Consider the left children of the nodes on π.
The sets Sℓ that belong to these left children par-
tition {1, . . . , n}. In other words, the intersection
of Iℓ over these children is D1 ∩ · · · ∩ Dn. Since π

is the rightmost root–leaf path, the containment
queries in all nodes on π were answered positively.
Thus qi is contained in all disks currently in B, i.e.
qi ∈ D(q1, p) ∩ · · · ∩ D(qi, p), where D(a, b) is the
disk centered at a that touches b. This means that
none of q1, . . . , qi lies in the halfplane h(p, qi) that
contains p and whose boundary is the perpendic-
ular bisector of p and qi. Otherwise [5, Lemma 1]
would guarantee that qi 6∈ D(qk, p) for the point
qk in {q1, . . . , qi} farthest from p in h(p, qi).

If j ≤ n we again consider the left children of the
nodes on the query path π of qi. The sets Sℓ par-
tition {1, . . . , j − 1} if we take only those left chil-
dren ℓ into account that do not themselves lie on π.
Similarly to above, the intersection of Iℓ over these
children is D1 ∩ · · · ∩Dj−1. Thus qi is contained in
all Dk with k < j that are currently in B. On the
other hand, since π is not the rightmost root–leaf
path, there must be left children that lie on π. The
last such left child v is the root of the subtree whose
rightmost leaf corresponds to Dj . Thus v is asso-

ciated with some set Sv = {iv, . . . , j}, where 1 ≤
iv ≤ j. Since we have already observed that qi is
contained in all Dk with k < j that are currently in
B, but π came to v via a “no”-branch, we now know
that qi 6∈ Dj . Let m be such that Dj = D(qm, p).
Note that qi 6∈ D(qm, p) means that D(qm, p) was
inserted in B before querying with qi, and thus
m ≤ i. Since qi 6∈ D(qm, p), and qi ∈ D(qr, p) for
all r ≤ i with |pqr| > |pqm|, [5, Lemma 1] yields
that qm is farthest from p in {q1, . . . , qi}∩h(p, qi).

The running time is as follows. Querying B takes
O(log2 n) time since the height of B is O(log n) and
in each node of the query path the query point has
to be located in the intersection Iv of some disks,
which can be done in O(log n) time.

When we update B by adding a new disk Dj ,
we have to go from the root to the leaf that corre-
sponds to Dj . In each node on this path we must
compute Iv ∩ Dj and update our data structure
for Iv. This can be done in O(log n) time per node
by a procedure detailed in [5, proof of Lemma 4].
Thus each update also takes O(log2 n) time.

Now the running time of O(n log2 n) is obvious.
The space consumption is O(n log n) since a) each
disk contributes only to intersections stored on the
path from the root to “its” leaf, and b) a disk that
contributes to some intersection Iv adds at most
one arc to the boundary of Iv [5, Fact 2]. ✷

References

[1] M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate
clustering via core-sets. In Proc. STOC’02, pages 250–
257, 2002.

[2] D. Z. Chen, O. Daescu, J. Hershberger, P. M. Kogge,

and J. Snoeyink. Polygonal path approximation with
angle constraints. In Proc. SODA’01, pages 342–343,
Washington, D.C., 2001.

[3] O. Daescu and N. Mi. Polygonal path approximation:
A query based approach. In Proc. ISAAC’03, volume
2906 of LNCS, pages 36–46, 2003. Springer.

[4] J. Gudmundsson, H. Haverkort, S.-M. Park, C.-S. Shin,
and A. Wolff. Facility location and the geometric
minimum-diameter spanning tree. In Proc. APPROX
’02, vol. 2462 of LNCS, pages 146–160, 2002. Springer.

[5] J. Gudmundsson, H. Haverkort, S.-M. Park, C.-S. Shin,
and A. Wolff. Facility location and the geometric
minimum-diameter spanning tree. Computational

Geometry: Theory and Appl., 27(1):87–106, 2004.

[6] J. Matoušek. Efficient partition trees. Discrete and

Computational Geometry, 8:315–334, 1992.

