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1. Introduction

The area of visibility and illumination problems
is a very attractive field inside computational ge-
ometry. We refer the interested reader to [8] for an
overview of recent results. In this paper we study
two illumination problems involving floodlights.
Loosely spoken a floodlight is a light source that
illuminates a region in the plane which is bounded
by two rays emanating from a common point, the
apex of the floodlight. The size of a floodlight is
the angle between its bounding rays.

In the first problem we are given a segment S of
a straight line L in the plane and a finite set P of n

points. P is contained in one of the open halfplanes
bounded by L. We want to find a set F of floodlights
such that each point of S is contained in at least
one floodlight, (ie the floodlights in F illuminate
S), such that the apex of each floodlight in F is a
point from P , and such that the sum of the sizes of
the floodlights in F is minimum. Furthermore we
require that no two floodlights in F share a common
apex.

Variants of this problem have been studied be-
fore. In [1] the authors formulate a related decision
problem and outline the difficulties in finding an
efficient algorithm for it: We are given a segment
S, called the stage, a set of points P and |P | an-
gles. Can floodlights whose sizes equal the given
angles be placed at the given points to illuminate
S? Please note that here it is not forbidden to place
two or more floodlights at the same point.

A partial answer to the question about the com-
putational complexity of the last mentioned vari-
ant was given in [6]. The variant considered there
is stated as follows: We are given a segment S, a
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set of points P and a set of angles A. Every angle
α ∈ A is mapped to a point p(α) ∈ P . Can we find
floodlights Fα, α ∈ A, that together illuminate S,
such that the apex of Fα is placed at p(α) and the
size of Fα is α? It is shown that this problem is
NP-complete.

The problem of illuminating a given segment S

from a given set P of points such that the sum of
the sizes of the floodlights used is minimized was
studied in [4] and [3]. But there it was not required
that the apices of the floodlights have to be pair-
wise distinct. The authors give an O(nlogn) time
and O(n) space algorithm to solve this problem.
Since it may happen that more than one floodlight
is placed at a point from P , it could be interest-
ing to study the problem with such placement ex-
plicitly ruled out. This was also posed as an open
question in [8] and [2].

In the second problem that we consider in this
paper we are given a convex polygon P with n

vertices and a positive integer k. We want to illu-
minate P with k floodlights such that the sum of
their sizes is minimum. Such a set of k floodlights is
called optimal. The apices of the floodlights must
be located in P .

For k = 1 the problem is easy: We have to find
a vertex v of the convex polygon P such that the
interior angle at v is minimum. This can trivially be
done in O(n) time. For k = 2 in [5] an algorithm is
given that solves this problem in O(n2) time using
O(n) space. The algorithm exploits the fact that
in an optimal set with two floodlights the apices of
these two floodlights must be located at vertices of
P . For k ≥ 3 the problem was open [7]. We consider
the case k = 3.

This paper is structured as follows. After this
introduction we give some formal definitions. In
the third section we present an O(nlogn) time and
O(n) space algorithm for the first problem (illu-
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mination of a stage). In the fourth section we give
an O(n2) time and O(n) space algorithm for the
second problem (illumination of a convex polygon
with three floodlights). We end with some conclud-
ing remarks.

2. Preliminaries

Our setting will be the plane R
2. For M ⊆ R

2 we
denote by int(M) the interior of M , by relint(M)
the relative interior of M , by bd(M) the boundary
of M , and by cl(M) the closure of M .
Definition 1 Let p and q be points in the plane.
By pq we denote the straight line segment with end-
points p and q.
Definition 2 Let M ⊆ R

2. M is called convex iff
for every p, q ∈ M the straight line segment pq is
contained in M .
Definition 3 Let Rl and Rr be two distinct rays
with common starting point p. Let R be a ray rotat-
ing around p in clockwise direction starting at the
position where R = Rl and stopping at the position
where R = Rr. Every point touched by R during
its rotation belongs to the floodlight F with bound-
ing rays l(F ) = Rl and r(F ) = Rr. The point p

is called the apex of F and denoted by a(F ). The
angle from Rl to Rr in clockwise direction is called
the size of F and denoted by s(F ).
Definition 4 Let v1, . . . , vn be pairwise distinct
points in the plane and n ∈ N, n ≥ 3. The set
of points S = vnv1 ∪

⋃n−1
i=1 vivi+1 is called a sim-

ple closed polygonal curve iff it is a homeomorph of
the boundary of an open disk and no two consecu-
tive line segments on S are collinear. The points in
v(S) = {v1, . . . , vn} are called the vertices of S. The
line segments in e(S) = {vnv1, v1v2, . . . , vn−1vn}
are called the edges of S.
Definition 5 A set P of points is called a sim-
ple polygon iff P is closed, bounded, and connected,
int(P ) 6= ∅ and bd(P ) is a simple closed polygo-
nal curve. We set v(P ) = v(bd(P )) and e(P ) =
e(bd(P )). A simple polygon P is called a convex
polygon iff P is convex.
Definition 6 Let P be a simple polygon, p and q

points, F a floodlight. We say that p and q can see
each other and write this p ↔ q iff pq ⊆ P . The
region visible from point p is vis(p, P ) = {x ∈ R

2 :
p ↔ x}. The region illuminated by F is ill(F, P ) =
F ∩ vis(a(F ), P ).

3. Illumination of a stage

Now we can state our stage illumination problem

or SIP for short more formally: An instance (S, P )
consists of a segment S of a straight line L and a
finite set of points P such that P is contained in
one of the open halfplanes bounded by L. We want
to find a set F of floodlights with the following
properties:

(i) S ⊆ ∪F∈FF

(ii) ∀F ∈ F (a(F ) ∈ P )
(iii) ∀F1, F2 ∈ F (F1 6= F2 ⇒ a(F1) 6= a(F2))
(iv) s(F) =

∑
F∈F s(F ) is minimum

Now it is clear that without loss of generality we
can assume that L is the x-axis and all points in P

have a positive y-coordinate, ie the points in P lie
above the x-axis.
Definition 7 Let (S, P ) be an instance, p ∈ P and
z be a point on L. By Cp(z) we denote the circle
through the point p such that L is tangent to Cp(z)
at the point z.

If we drop property (iii) in SIP we will obtain the
problem considered in [4] and denote it by SIP∗.
From [4] we know that in a solution F∗ to an in-
stance (S, P ) for SIP∗ a point z ∈ S is contained
in a floodlight F ∈ F∗ if and only if no point of P

lies outside Ca(F )(z). Hence for SIP∗ to every in-
stance there exists a unique solution. Please note
that SIP∗ is meaningful even in the limiting case,
ie if S = L.
Observation 8 Consider the solution to an in-
stance (S, P ) for SIP∗.

(i) There are at most two floodlights placed at
each point of P .

(ii) There is at most one point p ∈ P such that
there are two floodlights placed at p.

(iii) If there are two floodlights placed at p ∈ P

then p has a smaller y-coordinate than every
other point in P .

If we have an instance (S, P ) and solutions F and
F∗ to this instance for SIP and SIP∗ respectively
then it is clear that s(F) ≥ s(F∗).
Observation 9 Consider a solution F to an in-
stance (S, P ) for SIP.

(i) ∀F ∈ F (F ∩ L = F ∩ S)
(ii) ∀F1, F2 ∈ F (F1 6= F2 ⇒ relint(F1 ∩ S) ∩

relint(F2 ∩ S) = ∅).
Definition 10 Let p and q be two points on the x-
axis. Then [p, q] = pq and the x-coordinate of q is
not smaller than the x-coordinate of p.
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Definition 11 Let F be a solution to an instance
(S, P ) for SIP and k = |F|. According to observa-
tion 9 the segment S is partitioned into k internally
disjoined subsegments, each of which is the inter-
section of a floodlight from F with S.

(i) Let S1, S2, . . . , Sk denote these subsegments
in order they appear on S from left to right.

(ii) Let zi−1 and zi denote the endpoints of Si,
that is Si = [zi−1, zi], i ∈ {1, . . . , k}.

(iii) Let Fi denote the floodlight from F that con-
tains Si, i ∈ {1, . . . , k}.

The next three lemmas we give without proof.
Lemma 12 Let F be a solution to an instance
(S, P ) for SIP, k = |F| and i ∈ {1, . . . , k − 1}.
Then the point ai+1 = a(Fi+1) lies in clockwise
direction between zi and ai = a(Fi) on the circle
C = Cai

(zi).
Lemma 13 Let I = (S, P ) be an instance such
that in the solution F∗ to I for SIP∗ there are two
floodlights placed at the point p ∈ P . Then in every
solution F to I for SIP there exists a floodlight F ∈
F such that a(F ) = p.
Lemma 14 Let I = (S, P ) be an instance such
that in the solution F∗ to I for SIP∗ there are two
floodlights placed at the point p ∈ P . Let F be a so-
lution to I for SIP and k = |F|. Then it is a(F1) =
p or a(Fk) = p again using the notation from defi-
nition 11.

Now it is not hard to see that the problem SIP
can be solved in polynomial time employing the
dynamic programming technique. We found an al-
gorithm running in O(nlogn) time and O(n) space
which first sorts the points in P according to their
y-coordinates and then processes these points in
the order obtained from sorting. We omit the de-
tails and summarize our results.
Theorem 15 Let I = ([a, b], P ) be an instance
and n = |P |. A solution to instance I for SIP can
be computed in O(nlogn) time using O(n) space in
the real RAM model of computation. In the worst
case we need Ω(nlogn) time to find a solution.
Remark 16 The lower bound follows from the re-
duction of SORTING to SIP∗ presented in [4] and
[2].

4. Illumination of a convex polygon

First we state our illumination problem more
formally. Fix a positive integer k. Given a convex

polygon P we want to find a set of floodlights F

such that:
(i) P =

⋃
F∈F ill(F, P )

(ii) |F| = k

(iii) s(F) =
∑

F∈F s(F ) is minimum
(iv) ∀k∗ ∈ {1, . . . , k−1}∀F∗ (F∗ is a solution to P

of Πk∗ ⇒ s(F∗) > s(F))
We will refer to this problem as Πk and call a set
F satisfying (i)-(iv) a solution to instance P of Πk.
Remark 17 An instance P of Πk need not have a
solution (consider for example an instance P of Π2

such that P is a triangle). But for such an instance
P there exists k∗ < k such that P has a solution for
problem Πk∗ and using more than k∗ (but at most k)
floodlights does not help to decrease the total size.
Observation 18 Let P be an instance of Πk and
F a solution to P . Then for every F ∈ F holds
a(F ) ∈ bd(P ).

But are there polygons where three floodlights
are better than two? The answer is yes. Consider
for example the convex polygon with vertices (0,0),
(0,2), (10,2), (15,1), (10,0).
Definition 19 Let P be a convex polygon and
p, q ∈ bd(P ) such that p 6= q. By [p, q] we denote the
closed segment of the boundary of P that consists of
those points in bd(P ) which we meet by traversing
the boundary of P from p to q in clockwise direction.
Furthermore we introduce ]p, q[= [p, q] \ {p, q}.
Definition 20 Let P be a convex polygon and F

a finite set of floodlights such that ∀F ∈ F (a(F ) ∈
bd(P )). Then cl(P \ (∪F∈FF )) = ∪Q∈QQ where
Q is a finite set of convex polygons such that
∀Q1, Q2 ∈ Q (Q1 6= Q2 ⇒ Q1 ∩ Q2 ⊆ bd(P )).
We set v(cl(P \ (∪F∈FF ))) = ∪Q∈Qv(Q).

The next lemmas tell us something about the
structure of solutions. We give them without proof.
Lemma 21 Let P be a convex polygon, F =
{F1, F2, F3} a solution to P of Π3, Ri, i ∈ {1, 2, 3},
a bounding ray of Fi such that R1, R2, R3 are pair-
wise nonparallel. Then there is no point s ∈ int(P )
sucht that s ∈ R1 ∩ R2 ∩ R3.
Lemma 22 Let P be a convex polygon and F a
solution to P of Π3. Then v(cl(P \ (∪F∈FF ))) ∩
int(P ) = ∅.
Lemma 23 Let P be a convex polygon and F a
solution to P of Π3. Then ∀F1, F2 ∈ F (F1 6= F2 ⇒
int(F1) ∩ int(F2) = ∅).
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Lemma 24 Let P be a convex polygon and F a so-
lution to P of Π3. Then we can number the elements
of F with elements of {1, 2, 3} such that a(F1) ∈
l(F2), a(F2) ∈ l(F1), a(F2) ∈ r(F3) and a(F3) ∈
r(F2).
Lemma 25 Let P be a convex polygon and F a
solution to P of Π3. Then {a(F ) : F ∈ F} ⊆ v(P ).
Lemma 26 Let P be a convex polygon and F =
{F1, F2, F3} a solution to P of Π3. Let the elements
of F be numbered as in lemma 24 and let D denote
the disk bounded by the circle through the points
a(F1), a(F2) and a(F3). Then [a(F3), a(F1)] ⊆ D.

Now we are ready to sketch an algorithm for
problem Π3. Given a convex polygon P if there
exists a solution {F1, F2, F3} to P of Π3 then from
lemma 24 we know the way the floodlights in this
solution are arranged. In connection with lemma
26 this suggests the following strategy: For every
pair of distinct vertices u and w of P try to find a
vertex v ∈]u, w[ such that [u, w] is contained in the
disk bounded by the circle through the points u, v

and w. That is we fix a position for a(F3) (vertex
u) and a position for a(F1) (vertex w) and try to
find a position for a(F2) (vertex v). It should be
clear that by pursueing this strategy if there is a
solution to P of Π3 then we will find it. Since we
may suppose that solutions to P of Π1 and Π2 are
available (or we know that there is no solution to
P of Π2), it is also easy to detect those polygons
that admit no solution of Π3.

The question that remains is about an efficient
implementation of the above sketched algorithm.
We can achieve a running time in O(n2). But we
omit the details and summarize our results.
Theorem 27 Given a convex polygon P with n

vertices we can compute in O(n2) time and O(n)
space a solution to P of Π3 or find out that there
is no such solution using the real RAM model of
computation.

5. Concluding remarks

In our view there are at least two interesting
open questions regarding the illumination problem
of convex polygons: Are there algorithms for prob-
lems Π2 and Π3 with running time in o(n2)? Can
our results be extended to problems Πk with k ≥
4?
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