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Scalar orthogonality

Let ω be a positive measure on R with finite moments. We can
construct a family of orthonormal polynomials (pn)n

〈pn, pm〉 =

∫

R

pn(x)pm(x)dω(x) = δnm, n,m ≥ 0

This is equivalent to a three term recurrence relation

xpn(x) = an+1pn+1(x)+bnpn(x)+anpn−1(x), an+1 6= 0, bn ∈ R

Jacobi operator (tridiagonal):

x




p0(x)
p1(x)
p2(x)

...


 =




b0 a1

a1 b1 a2

a2 b2 a3

. . .
. . .

. . .
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Bochner problem

Bochner (1929): characterize (pn)n satisfying

Apn ≡ (α2x
2 + α1x + α0)︸ ︷︷ ︸

σ(x)

p′′

n(x) + (β1x + β0)︸ ︷︷ ︸
τ(x)

p′

n(x) = λnpn(x)

This is equivalent to the symmetry of A with respect to 〈·, ·〉,i.e.

〈Apn, pm〉 = 〈pn,Apm〉

Hermite: σ(x) = 1, ω(x) = e−x2
, x ∈ (−∞,∞)

Laguerre: σ(x) = x , ω(x) = xαe−x , α > −1, x ∈ (0,∞)

Jacobi: σ(x) = x(1 − x), ω(x) = xα(1 − x)β , α, β > −1,
x ∈ (0, 1)
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Random walks

A random walk is a Markov chain {Xn : n = 0, 1, 2, . . .} with state
space S = {0, 1, 2, . . .} where

Pr(Xn+1 = j |Xn = i) = 0 for |i − j | > 1, i , j ∈ S

i.e. a tridiagonal transition probability matrix (stochastic)

P =




b0 a0

c1 b1 a1

c2 b2 a2

. . .
. . .

. . .


 , bn ≥ 0, an, cn > 0, an+bn+cn = 1
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Introducing the polynomials (qn)n by the conditions q−1(x) = 0,
q0(x) = 1 and the recursion relation

xqn(x) = anqn+1(x) + bnqn(x) + cnqn−1(x), n = 0, 1, . . .

there exists a unique measure dω(x) supported in [−1, 1] such that
(qn)n are orthogonal w.r.t dω(x).

Karlin-McGregor formula (1959)

Pr(Xn = j |X0 = i) = Pn
ij =

1

‖qi‖2

∫ 1

−1
xnqi (x)qj(x)dω(x)

Invariant measure or distribution

A non-null vector π = (π0, π1, π2, . . . ) ≥ 0 such that

πP = π

⇒ πi =
a0a1 · · · ai−1

c1c2 · · · ci

=
1

‖qi‖2
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Matrix case

Krein (1949): orthogonal matrix polynomials on R (OMP)
Orthogonality: weight matrix W . Matrix valued inner product:

〈P , Q〉W =

∫

R

P(x)dW (x)Q∗(x) ∈ C
N×N , P , Q ∈ C

N×N [x ]

This is equivalent to a three term recurrence relation

xPn(x) = An+1Pn+1(x) + BnPn(x) + A∗

nPn−1(x), n ≥ 0

det(An+1) 6= 0, Bn = B∗

n

Jacobi operator (block tridiagonal)

x




P0(x)
P1(x)
P2(x)

...


 =




B0 A1

A∗

1 B1 A2

A∗

2 B2 A3

. . .
. . .

. . .







P0(x)
P1(x)
P2(x)

...
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Durán (1997): characterize orthonormal (Pn)n satisfying

P ′′

n (x)F2(x) + P ′

n(x)F1(x) + Pn(x)F0(x) = ΛnPn(x), n ≥ 0

grad Fi ≤ i , Λn Hermitian

Equivalent to the symmetry of

A =
d2

dx2
F2(x) +

d

dx
F1(x) +

d0

dx0
F0(x), with PnA = ΛnPn

A es symmetric with respect to W if 〈PA,Q〉W = 〈P ,QA〉W

It has not been until very recently when the first examples
appeared: Grünbaum-Pacharoni-Tirao (2003) and
Durán-Grünbaum (2004)
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Methods and new phenomena

Methods

Matrix spherical functions associated with
Pn(C) = SU(n + 1)/U(n)
Grünbaum-Pacharoni-Tirao (2003)

Durán-Grünbaum (2004): Symmetry equations

New phenomena

For a fixed family of OMP there exist several linearly
independent second-order differential operators having them
as eigenfunctions

OMP satisfying odd-order differential equations

For a fixed second-order differential operator, there can be
more than one family of lin. ind. OMP having them as
eigenfunctions
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Durán-Grünbaum (2004): Symmetry equations

New phenomena

For a fixed family of OMP there exist several linearly
independent second-order differential operators having them
as eigenfunctions

OMP satisfying odd-order differential equations

For a fixed second-order differential operator, there can be
more than one family of lin. ind. OMP having them as
eigenfunctions



Scalar orthogonality Matrix orthogonality

Methods and new phenomena

Methods

Matrix spherical functions associated with
Pn(C) = SU(n + 1)/U(n)
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Quasi-birth-and-death processes

A discrete time quasi-birth-and-death process is a 2-dimensional
Markov chain {Zn = (Xn,Yn) : n = 0, 1, 2, . . .} with state space
C = {0, 1, 2, . . .} × {1, 2, . . . ,N} where

(Pii ′)jj ′ = Pr(Xn+1 = i ,Yn+1 = j |Xn = i ′,Yn = j ′) = 0 for |i−i ′| > 1

i.e. a N × N block tridiagonal transition probability matrix

P =




B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .


 ,

(An)ij , (Bn)ij , (Cn)ij ≥ 0, |An|, |Cn| 6= 0
∑

j

(An)ij + (Bn)ij + (Cn)ij = 1

The first component is called the level while the second component
is the phase.
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OMP: Grünbaum and Dette-Reuther-Studden-Zygmunt (2007):
Introducing the matrix polynomials (Qn)n by the conditions Q−1(x) = 0,
Q0(x) = I and the recursion relation

xQn(x) = AnQn+1(x) + BnQn(x) + CnQn−1(x), n = 0, 1, . . .

and under certain technical conditions over An, Bn, Cn, there exists an
unique weight matrix dW (x) supported in [−1, 1] such that (Qn)n are
orthogonal w.r.t dW (x).

Karlin-McGregor formula

Pn
ij =

(∫ 1

−1

xnQi (x)dW (x)Q∗

j (x)

)(∫ 1

−1

Qj(x)dW (x)Q∗

j (x)

)
−1

Invariant measure or distribution (MdI, 2010)

Non-null vector with non-negative components

π = (π0; π1; · · · ) ≡ (Π0eN ; Π1eN ; · · · )

such that πP = π where eN = (1, . . . , 1)T and

Πn = (CT
1 · · ·CT

n )−1Π0(A0 · · ·An−1) =

(∫ 1

−1

Qn(x)dW (x)Q∗

n (x)

)
−1
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An example

Conjugation

W (x) = T ∗W̃ (x)T

where

T =




1 1

0 −
α + β − k + 2

β − k + 1




Grünbaum-MdI (2008)

W̃ (x) = xα(1 − x)β
(

kx + β − k + 1 (1 − x)(β − k + 1)
(1 − x)(β − k + 1) (1 − x)2(β − k + 1)

)

x ∈ (0, 1), α, β > −1, 0 < k < β + 1
Pacharoni-Tirao (2006)
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We consider the family of OMP (Qn(x))n such that

Three term recurrence relation

xQn(x) = AnQn+1(x) + BnQn(x) + CnQn−1(x), n = 0, 1, . . .

where the Jacobi matrix is stochastic

Choosing Q0(x) = I the leading coefficient of Qn is

Γ(β + 2)Γ(α + β + 2n + 2)

Γ(α + β + n + 2)Γ(β + n + 2)

(
k+n
k

− n(α+β+2n+2)
(α+β+n+2)(α+β−k+2)

0 (n+α+β−k+2)(α+β+2n+2)
(α+β+n+2)(α+β−k+2)

)

Moreover, the corresponding norms are diagonal matrices:

‖Qn‖
2
W =

Γ(n + α + 1)Γ(n + 1)Γ(β + 2)2(n + α + β − k + 2)

Γ(n + α + β + 2)Γ(n + β + 2)
×

(
n+k

k(2n+α+β+2) 0

0 (n+α+1)(n+k+1)
(β−k+1)(2n+α+β+3)(n+α+β+2)

)
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Pentadiagonal Jacobi matrix

Particular case α = β = 0, k = 1/2:

P =




5

9

2

9

2

9
2

9

7

18

4

45

3

10
5

36

1

18

107

225

3

50

27

50
1

6

4

75

23

50

6

175

2

7
14

75

2

75

597

1225

4

147

40

147
1

5

6

245

47

98

8

441

5

18
81

392

3

196

1955

3969

5

324

175

648
. . .

. . .
. . .

. . .
. . .




⇒ Discrete time quasi-birth-and-death process with 2 phases
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Invariant measure

Invariant measure

The row vector
π = (π0;π1; · · · )

π
n =

(
1(

‖Qn‖
2
W

)
1,1

,
1(

‖Qn‖
2
W

)
2,2

, · · · ,
1(

‖Qn‖
2
W

)
N,N

)
, n ≥ 0

is an invariant measure of P

Particular case N = 2, α = β = 0, k = 1/2:

π
n =

(
2(n + 1)3

(2n + 3)(2n + 1)
,
(n + 1)(n + 2)

2n + 3

)
, n ≥ 0

π =

(
2

3
,
2

3
;
16

15
,
6

5
;
54

35
,
12

7
;
128

63
,
20

9
;
250

99
,
30

11
;
432

143
,
42

13
;
686

195
,
56

15
; · · ·

)
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Other applications

Quantum mechanics

[Durán–Grünbaum] P A M Dirac meets M G Krein: matrix

orthogonal polynomials and Dirac´s equation, J. Phys. A: Math.
Gen. (2006)

Time-and-band limiting

[Durán–Grünbaum] A survey on orthogonal matrix polynomials

satisfying second order differential equations, J. Comput. Appl.
Math. (2005)
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