DIFFERENTIAL PROPERTIES OF ORTHOGONAL MATRIX POLYNOMIALS

Manuel Domínguez de la Iglesia

Courant Institute of Mathematical Sciences, New York University
International Congress of Mathematicians
Hyderabad, August 21, 2010

Outline

(1) Scalar orthogonality

- Difference and differential equations
- Random walks and OP's
(2) Matrix orthogonality
- Difference and differential equations
- Quasi-birth-and-death processes and OMP's
- An example
- Other applications

Scalar orthogonality

Let ω be a positive measure on \mathbb{R} with finite moments. We can construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$

$$
\left\langle p_{n}, p_{m}\right\rangle=\int_{\mathbb{R}} p_{n}(x) p_{m}(x) \mathrm{d} \omega(x)=\delta_{n m}, \quad n, m \geq 0
$$

This is equivalent to a three term recurrence relation Jacobi operator (tridiagonal):

Scalar orthogonality

Let ω be a positive measure on \mathbb{R} with finite moments. We can construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$

$$
\left\langle p_{n}, p_{m}\right\rangle=\int_{\mathbb{R}} p_{n}(x) p_{m}(x) \mathrm{d} \omega(x)=\delta_{n m}, \quad n, m \geq 0
$$

This is equivalent to a three term recurrence relation

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x), \quad a_{n+1} \neq 0, \quad b_{n} \in \mathbb{R}
$$

Scalar orthogonality

Let ω be a positive measure on \mathbb{R} with finite moments. We can construct a family of orthonormal polynomials $\left(p_{n}\right)_{n}$

$$
\left\langle p_{n}, p_{m}\right\rangle=\int_{\mathbb{R}} p_{n}(x) p_{m}(x) \mathrm{d} \omega(x)=\delta_{n m}, \quad n, m \geq 0
$$

This is equivalent to a three term recurrence relation

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x), \quad a_{n+1} \neq 0, \quad b_{n} \in \mathbb{R}
$$

Jacobi operator (tridiagonal):

$$
\times\left(\begin{array}{c}
p_{0}(x) \\
p_{1}(x) \\
p_{2}(x) \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccc}
b_{0} & a_{1} & & & \\
a_{1} & b_{1} & a_{2} & & \\
& a_{2} & b_{2} & a_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
p_{0}(x) \\
p_{1}(x) \\
p_{2}(x) \\
\vdots
\end{array}\right)
$$

Bochner Problem

Bochner (1929): characterize $\left(p_{n}\right)_{n}$ satisfying

$$
\mathcal{A} p_{n} \equiv \underbrace{\left(\alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}\right)}_{\sigma(x)} p_{n}^{\prime \prime}(x)+\underbrace{\left(\beta_{1} x+\beta_{0}\right)}_{\tau(x)} p_{n}^{\prime}(x)=\lambda_{n} p_{n}(x)
$$

This is equivalent to the symmetry of \mathcal{A} with respect to $\langle\cdot, \cdot\rangle$, i.e

$$
\left\langle\mathcal{A} p_{n}, p_{m}\right\rangle=\left\langle p_{n}, \mathcal{A}_{p_{m}}\right\rangle
$$

Bochner Problem

Bochner (1929): characterize $\left(p_{n}\right)_{n}$ satisfying

$$
\mathcal{A} p_{n} \equiv \underbrace{\left(\alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}\right)}_{\sigma(x)} p_{n}^{\prime \prime}(x)+\underbrace{\left(\beta_{1} x+\beta_{0}\right)}_{\tau(x)} p_{n}^{\prime}(x)=\lambda_{n} p_{n}(x)
$$

This is equivalent to the symmetry of \mathcal{A} with respect to $\langle\cdot, \cdot\rangle$, i.e.

$$
\left\langle\mathcal{A} p_{n}, p_{m}\right\rangle=\left\langle p_{n}, \mathcal{A} p_{m}\right\rangle
$$

Bochner problem

Bochner (1929): characterize $\left(p_{n}\right)_{n}$ satisfying

$$
\mathcal{A} p_{n} \equiv \underbrace{\left(\alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}\right)}_{\sigma(x)} p_{n}^{\prime \prime}(x)+\underbrace{\left(\beta_{1} x+\beta_{0}\right)}_{\tau(x)} p_{n}^{\prime}(x)=\lambda_{n} p_{n}(x)
$$

This is equivalent to the symmetry of \mathcal{A} with respect to $\langle\cdot, \cdot\rangle$, i.e.

$$
\left\langle\mathcal{A} p_{n}, p_{m}\right\rangle=\left\langle p_{n}, \mathcal{A} p_{m}\right\rangle
$$

- Hermite: $\sigma(x)=1, \omega(x)=\mathrm{e}^{-x^{2}}, x \in(-\infty, \infty)$
 $x \in(0,1)$

Bochner Problem

Bochner (1929): characterize $\left(p_{n}\right)_{n}$ satisfying

$$
\mathcal{A} p_{n} \equiv \underbrace{\left(\alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}\right)}_{\sigma(x)} p_{n}^{\prime \prime}(x)+\underbrace{\left(\beta_{1} x+\beta_{0}\right)}_{\tau(x)} p_{n}^{\prime}(x)=\lambda_{n} p_{n}(x)
$$

This is equivalent to the symmetry of \mathcal{A} with respect to $\langle\cdot, \cdot\rangle$, i.e.

$$
\left\langle\mathcal{A} p_{n}, p_{m}\right\rangle=\left\langle p_{n}, \mathcal{A} p_{m}\right\rangle
$$

- Hermite: $\sigma(x)=1, \omega(x)=\mathrm{e}^{-x^{2}}, x \in(-\infty, \infty)$
- Laguerre: $\sigma(x)=x, \omega(x)=x^{\alpha} \mathrm{e}^{-x}, \alpha>-1, x \in(0, \infty)$

Bochner Problem

Bochner (1929): characterize $\left(p_{n}\right)_{n}$ satisfying

$$
\mathcal{A} p_{n} \equiv \underbrace{\left(\alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}\right)}_{\sigma(x)} p_{n}^{\prime \prime}(x)+\underbrace{\left(\beta_{1} x+\beta_{0}\right)}_{\tau(x)} p_{n}^{\prime}(x)=\lambda_{n} p_{n}(x)
$$

This is equivalent to the symmetry of \mathcal{A} with respect to $\langle\cdot, \cdot\rangle$, i.e.

$$
\left\langle\mathcal{A} p_{n}, p_{m}\right\rangle=\left\langle p_{n}, \mathcal{A} p_{m}\right\rangle
$$

- Hermite: $\sigma(x)=1, \omega(x)=\mathrm{e}^{-x^{2}}, x \in(-\infty, \infty)$
- Laguerre: $\sigma(x)=x, \omega(x)=x^{\alpha} \mathrm{e}^{-x}, \alpha>-1, x \in(0, \infty)$
- Jacobi: $\sigma(x)=x(1-x), \omega(x)=x^{\alpha}(1-x)^{\beta}, \alpha, \beta>-1$, $x \in(0,1)$

RANDOM WALKS

A random walk is a Markov chain $\left\{X_{n}: n=0,1,2, \ldots\right\}$ with state space $\mathcal{S}=\{0,1,2, \ldots\}$ where

$$
\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right)=0 \quad \text { for } \quad|i-j|>1, \quad i, j \in \mathcal{S}
$$

i.e. a tridiagonal transition probability matrix (stochastic)
$P=\left(\begin{array}{lllll}b_{0} & a_{0} & & & \\ c_{1} & b_{1} & a_{1} & & \\ & c_{2} & b_{2} & a_{2} & \\ & & \ddots & \ddots & \ddots\end{array}\right), \quad b_{n} \geq 0, a_{n}, c_{n}>0, \quad a_{n}+b_{n}+c_{n}=1$

RANDOM WALKS

A random walk is a Markov chain $\left\{X_{n}: n=0,1,2, \ldots\right\}$ with state space $\mathcal{S}=\{0,1,2, \ldots\}$ where

$$
\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right)=0 \quad \text { for } \quad|i-j|>1, \quad i, j \in \mathcal{S}
$$

i.e. a tridiagonal transition probability matrix (stochastic)

$$
P=\left(\begin{array}{lllll}
b_{0} & a_{0} & & & \\
c_{1} & b_{1} & a_{1} & & \\
& c_{2} & b_{2} & a_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right), \quad b_{n} \geq 0, a_{n}, c_{n}>0, \quad a_{n}+b_{n}+c_{n}=1
$$

Introducing the polynomials $\left(q_{n}\right)_{n}$ by the conditions $q_{-1}(x)=0$, $q_{0}(x)=1$ and the recursion relation

$$
x q_{n}(x)=a_{n} q_{n+1}(x)+b_{n} q_{n}(x)+c_{n} q_{n-1}(x), \quad n=0,1, \ldots
$$

there exists a unique measure $\mathrm{d} \omega(x)$ supported in $[-1,1]$ such that $\left(q_{n}\right)_{n}$ are orthogonal w.r.t d $\omega(x)$.

Invariant measure or distribution
A non-null vector $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots\right) \geq 0$ such that

Introducing the polynomials $\left(q_{n}\right)_{n}$ by the conditions $q_{-1}(x)=0$, $q_{0}(x)=1$ and the recursion relation

$$
x q_{n}(x)=a_{n} q_{n+1}(x)+b_{n} q_{n}(x)+c_{n} q_{n-1}(x), \quad n=0,1, \ldots
$$

there exists a unique measure $\mathrm{d} \omega(x)$ supported in $[-1,1]$ such that $\left(q_{n}\right)_{n}$ are orthogonal w.r.t d $\omega(x)$.

Karlin-McGregor formula (1959)

$$
\operatorname{Pr}\left(X_{n}=j \mid X_{0}=i\right)=P_{i j}^{n}=\frac{1}{\left\|q_{i}\right\|^{2}} \int_{-1}^{1} x^{n} q_{i}(x) q_{j}(x) \mathrm{d} \omega(x)
$$

A non-null vector $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots\right) \geq 0$ such that

Introducing the polynomials $\left(q_{n}\right)_{n}$ by the conditions $q_{-1}(x)=0$, $q_{0}(x)=1$ and the recursion relation

$$
x q_{n}(x)=a_{n} q_{n+1}(x)+b_{n} q_{n}(x)+c_{n} q_{n-1}(x), \quad n=0,1, \ldots
$$

there exists a unique measure $\mathrm{d} \omega(x)$ supported in $[-1,1]$ such that $\left(q_{n}\right)_{n}$ are orthogonal w.r.t d $\omega(x)$.

Karlin-McGregor formula (1959)

$$
\operatorname{Pr}\left(X_{n}=j \mid X_{0}=i\right)=P_{i j}^{n}=\frac{1}{\left\|q_{i}\right\|^{2}} \int_{-1}^{1} x^{n} q_{i}(x) q_{j}(x) \mathrm{d} \omega(x)
$$

Invariant measure or distribution

A non-null vector $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots\right) \geq 0$ such that

$$
\pi P=\pi
$$

Introducing the polynomials $\left(q_{n}\right)_{n}$ by the conditions $q_{-1}(x)=0$, $q_{0}(x)=1$ and the recursion relation

$$
x q_{n}(x)=a_{n} q_{n+1}(x)+b_{n} q_{n}(x)+c_{n} q_{n-1}(x), \quad n=0,1, \ldots
$$

there exists a unique measure $\mathrm{d} \omega(x)$ supported in $[-1,1]$ such that $\left(q_{n}\right)_{n}$ are orthogonal w.r.t d $\omega(x)$.

Karlin-McGregor formula (1959)

$$
\operatorname{Pr}\left(X_{n}=j \mid X_{0}=i\right)=P_{i j}^{n}=\frac{1}{\left\|q_{i}\right\|^{2}} \int_{-1}^{1} x^{n} q_{i}(x) q_{j}(x) \mathrm{d} \omega(x)
$$

Invariant measure or distribution

A non-null vector $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{2}, \ldots\right) \geq 0$ such that

$$
\begin{gathered}
\pi P=\pi \\
\Rightarrow \pi_{i}=\frac{a_{0} a_{1} \cdots a_{i-1}}{c_{1} c_{2} \cdots c_{i}}=\frac{1}{\left\|q_{i}\right\|^{2}}
\end{gathered}
$$

Matrix Case

Krein (1949): orthogonal matrix polynomials on \mathbb{R} (OMP)
Orthogonality: weight matrix W. Matrix valued inner product:

This is equivalent to a three term recurrence relation

$$
\begin{aligned}
& x P_{n}(x)=A_{n+1} P_{n+1}(x)+B_{n} P_{n}(x)+A_{n}^{*} P_{n-1}(x), \\
& \operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
\end{aligned}
$$

Jacobi operator (block tridiagonal)

Matrix Case

Krein (1949): orthogonal matrix polynomials on \mathbb{R} (OMP) Orthogonality: weight matrix W. Matrix valued inner product:

$$
\langle P, Q\rangle_{W}=\int_{\mathbb{R}} P(x) \mathrm{d} W(x) Q^{*}(x) \in \mathbb{C}^{N \times N}, \quad P, Q \in \mathbb{C}^{N \times N}[x]
$$

$$
\operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
$$

Jacobi operator (block tridiagonal)

Matrix Case

Krein (1949): orthogonal matrix polynomials on \mathbb{R} (OMP) Orthogonality: weight matrix W. Matrix valued inner product:

$$
\langle P, Q\rangle_{W}=\int_{\mathbb{R}} P(x) \mathrm{d} W(x) Q^{*}(x) \in \mathbb{C}^{N \times N}, \quad P, Q \in \mathbb{C}^{N \times N}[x]
$$

This is equivalent to a three term recurrence relation

$$
\begin{aligned}
& x P_{n}(x)=A_{n+1} P_{n+1}(x)+B_{n} P_{n}(x)+A_{n}^{*} P_{n-1}(x), \quad n \geq 0 \\
& \operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
\end{aligned}
$$

Jacobi operator (block tridiagonal)

Matrix Case

Krein (1949): orthogonal matrix polynomials on \mathbb{R} (OMP)
Orthogonality: weight matrix W. Matrix valued inner product:

$$
\langle P, Q\rangle_{W}=\int_{\mathbb{R}} P(x) \mathrm{d} W(x) Q^{*}(x) \in \mathbb{C}^{N \times N}, \quad P, Q \in \mathbb{C}^{N \times N}[x]
$$

This is equivalent to a three term recurrence relation

$$
\begin{aligned}
& x P_{n}(x)=A_{n+1} P_{n+1}(x)+B_{n} P_{n}(x)+A_{n}^{*} P_{n-1}(x), \quad n \geq 0 \\
& \operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
\end{aligned}
$$

Jacobi operator (block tridiagonal)

$$
x\left(\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
P_{2}(x) \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccc}
B_{0} & A_{1} & & & \\
A_{1}^{*} & B_{1} & A_{2} & & \\
& A_{2}^{*} & B_{2} & A_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
P_{2}(x) \\
\vdots
\end{array}\right)
$$

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying

$$
P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geq 0
$$

$$
\operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \quad \text { Hermitian }
$$

Equivalent to the symmetry of

\mathcal{A} es symmetric with respect to W if $\langle P \mathcal{A}, Q\rangle_{w}=\langle P, Q \mathcal{A}\rangle_{W}$
It has not been until very recently when the first examples appeared: Grünbaum-Pacharoni-Tirao (2003) and
Durán-Grünbaum (2004)

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying

$$
\begin{aligned}
& P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geq 0 \\
& \operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \quad \text { Hermitian }
\end{aligned}
$$

Equivalent to the symmetry of

$$
\mathcal{A}=\frac{d^{2}}{d x^{2}} F_{2}(x)+\frac{d}{d x} F_{1}(x)+\frac{d^{0}}{d x^{0}} F_{0}(x), \quad \text { with } \quad P_{n} \mathcal{A}=\Lambda_{n} P_{n}
$$

\mathcal{A} es symmetric with respect to W if $\langle P \mathcal{A}, Q\rangle_{W}=\langle P, Q \mathcal{A}\rangle_{W}$
It has not been until very recently when the first examples appeared: Grünbaum-Pacharoni-Tirao (2003) and Durán-Grünbaum (2004)

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying

$$
\begin{aligned}
& P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geq 0 \\
& \operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \quad \text { Hermitian }
\end{aligned}
$$

Equivalent to the symmetry of

$$
\mathcal{A}=\frac{d^{2}}{d x^{2}} F_{2}(x)+\frac{d}{d x} F_{1}(x)+\frac{d^{0}}{d x^{0}} F_{0}(x), \quad \text { with } \quad P_{n} \mathcal{A}=\Lambda_{n} P_{n}
$$

\mathcal{A} es symmetric with respect to W if $\langle P \mathcal{A}, Q\rangle_{W}=\langle P, Q \mathcal{A}\rangle_{W}$
It has not been until very recently when the first examples appeared: Grünbaum-Pacharoni-Tirao (2003) and Durán-Grünbaum (2004)

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying

$$
\begin{aligned}
& P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geq 0 \\
& \operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \quad \text { Hermitian }
\end{aligned}
$$

Equivalent to the symmetry of

$$
\mathcal{A}=\frac{d^{2}}{d x^{2}} F_{2}(x)+\frac{d}{d x} F_{1}(x)+\frac{d^{0}}{d x^{0}} F_{0}(x), \quad \text { with } \quad P_{n} \mathcal{A}=\Lambda_{n} P_{n}
$$

\mathcal{A} es symmetric with respect to W if $\langle P \mathcal{A}, Q\rangle_{W}=\langle P, Q \mathcal{A}\rangle_{W}$
It has not been until very recently when the first examples appeared: Grünbaum-Pacharoni-Tirao (2003) and Durán-Grünbaum (2004) $\Rightarrow W(x)=\rho(x) T(x) T^{*}(x)$

Methods and new phenomena

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$
Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

```
NEW PHENOMENA
    - For a fixed family of OMP there exist several linearly
        independent second-order differential operators having them
        as eigenfunctions
    - OMP satisfying odd-order differential equations
    - For a fixed second-order differential operator, there can be
        more than one family of lin. ind. OMP having them as
        eigenfunctions
```


Methods and new phenomena

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$
Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

```
NEW PHENOMENA
    - For a fixed family of OMP there exist several linearly
        independent second-order differential operators having them
        as eigenfunctions
    - OMP satisfying odd-order differential equations
    - For a fixed second-order differential operator, there can be
    more than one family of lin. ind. OMP having them as
    eigenfunctions
```


METHODS AND NEW PHENOMENA

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$
Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

New Phenomena

- For a fixed family of OMP there exist several linearly independent second-order differential operators having them as eigenfunctions
- OMP satisfying odd-order differential equations
- For a fixed second-order differential operator, there can be more than one family of lin. ind. OMP having them as eigenfunctions

METHODS AND NEW PHENOMENA

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$
Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

New Phenomena

- For a fixed family of OMP there exist several linearly independent second-order differential operators having them as eigenfunctions
- OMP satisfying odd-order differential equations
- For a fixed second-order differential operator, there can be more than one family of lin. ind. OMP having them as eigenfunctions

METHODS AND NEW PHENOMENA

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$
Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

New Phenomena

- For a fixed family of OMP there exist several linearly independent second-order differential operators having them as eigenfunctions
- OMP satisfying odd-order differential equations
- For a fixed second-order differential operator, there can be more than one family of lin. ind. OMP having them as eigenfunctions

QuASI-BIRTH-AND-DEATH PROCESSES

A discrete time quasi-birth-and-death process is a 2-dimensional Markov chain $\left\{Z_{n}=\left(X_{n}, Y_{n}\right): n=0,1,2, \ldots\right\}$ with state space $\mathcal{C}=\{0,1,2, \ldots\} \times\{1,2, \ldots, N\}$ where
$\left(P_{i i^{\prime}}\right)_{j j^{\prime}}=\operatorname{Pr}\left(X_{n+1}=i, Y_{n+1}=j \mid X_{n}=i^{\prime}, Y_{n}=j^{\prime}\right)=0 \quad$ for $\quad\left|i-i^{\prime}\right|>1$
i.e. a $N \times N$ block tridiagonal transition probability matrix
$P=\left(\begin{array}{lllll}B_{0} & A_{0} & & & \\ C_{1} & B_{1} & A_{1} & & \\ & C_{2} & B_{2} & A_{2} & \\ & & \ddots & \ddots & \ddots\end{array}\right), \begin{aligned} & \left(A_{n}\right)_{i j},\left(B_{n}\right)_{i j},\left(C_{n}\right)_{i j} \geq 0,\left|A_{n}\right|,\left|C_{n}\right| \neq 0 \\ & \\ & \end{aligned}$
The first component is called the level while the second component is the phase.

OMP: Grünbaum and Dette-Reuther-Studden-Zygmunt (2007):
Introducing the matrix polynomials $\left(Q_{n}\right)_{n}$ by the conditions $Q_{-1}(x)=0$, $Q_{0}(x)=I$ and the recursion relation

$$
x Q_{n}(x)=A_{n} Q_{n+1}(x)+B_{n} Q_{n}(x)+C_{n} Q_{n-1}(x), \quad n=0,1, \ldots
$$

and under certain technical conditions over A_{n}, B_{n}, C_{n}, there exists an unique weight matrix $\mathrm{d} W(x)$ supported in $[-1,1]$ such that $\left(Q_{n}\right)_{n}$ are orthogonal w.r.t d $W(x)$.
\square

Non-null vector with non-negative components
such that $\pi P=\pi$ where $e_{N}=(1, \ldots, 1)^{T}$ and

OMP: Grünbaum and Dette-Reuther-Studden-Zygmunt (2007):
Introducing the matrix polynomials $\left(Q_{n}\right)_{n}$ by the conditions $Q_{-1}(x)=0$, $Q_{0}(x)=I$ and the recursion relation

$$
x Q_{n}(x)=A_{n} Q_{n+1}(x)+B_{n} Q_{n}(x)+C_{n} Q_{n-1}(x), \quad n=0,1, \ldots
$$

and under certain technical conditions over A_{n}, B_{n}, C_{n}, there exists an unique weight matrix $\mathrm{d} W(x)$ supported in $[-1,1]$ such that $\left(Q_{n}\right)_{n}$ are orthogonal w.r.t dW (x).

Karlin-McGregor formula

$$
P_{i j}^{n}=\left(\int_{-1}^{1} x^{n} Q_{i}(x) \mathrm{d} W(x) Q_{j}^{*}(x)\right)\left(\int_{-1}^{1} Q_{j}(x) \mathrm{d} W(x) Q_{j}^{*}(x)\right)^{-1}
$$

Non-nul vector with non-negative components
\square

OMP: Grünbaum and Dette-Reuther-Studden-Zygmunt (2007):
Introducing the matrix polynomials $\left(Q_{n}\right)_{n}$ by the conditions $Q_{-1}(x)=0$, $Q_{0}(x)=I$ and the recursion relation

$$
x Q_{n}(x)=A_{n} Q_{n+1}(x)+B_{n} Q_{n}(x)+C_{n} Q_{n-1}(x), \quad n=0,1, \ldots
$$

and under certain technical conditions over A_{n}, B_{n}, C_{n}, there exists an unique weight matrix $\mathrm{d} W(x)$ supported in $[-1,1]$ such that $\left(Q_{n}\right)_{n}$ are orthogonal w.r.t dW(x).

Karlin-McGregor formula

$$
P_{i j}^{n}=\left(\int_{-1}^{1} x^{n} Q_{i}(x) \mathrm{d} W(x) Q_{j}^{*}(x)\right)\left(\int_{-1}^{1} Q_{j}(x) \mathrm{d} W(x) Q_{j}^{*}(x)\right)^{-1}
$$

Invariant measure or distribution (MdI, 2010)

Non-null vector with non-negative components

$$
\boldsymbol{\pi}=\left(\pi^{0} ; \boldsymbol{\pi}^{1} ; \cdots\right) \equiv\left(\Pi_{0} e_{N} ; \Pi_{1} e_{N} ; \cdots\right)
$$

such that $\pi P=\pi$ where $e_{N}=(1, \ldots, 1)^{T}$ and

$$
\Pi_{n}=\left(C_{1}^{T} \cdots C_{n}^{T}\right)^{-1} \Pi_{0}\left(A_{0} \cdots A_{n-1}\right)=\left(\int_{-1}^{1} Q_{n}(x) \mathrm{d} W(x) Q_{n}^{*}(x)\right)^{-1}
$$

An example

Conjugation

$$
W(x)=T^{*} \widetilde{W}(x) T
$$

where

$$
T=\left(\begin{array}{cc}
1 & 1 \\
0 & -\frac{\alpha+\beta-k+2}{\beta-k+1}
\end{array}\right)
$$

Grünbaum-MdI (2008)

$$
\begin{aligned}
& \widetilde{W}(x)=x^{\alpha}(1-x)^{\beta}\left(\begin{array}{cc}
k x+\beta-k+1 & (1-x)(\beta-k+1) \\
(1-x)(\beta-k+1) & (1-x)^{2}(\beta-k+1)
\end{array}\right) \\
& x \in(0,1), \alpha, \beta>-1,0<k<\beta+1 \\
& \text { Pacharoni-Tirao }(2006)
\end{aligned}
$$

We consider the family of OMP $\left(Q_{n}(x)\right)_{n}$ such that

- Three term recurrence relation

$$
x Q_{n}(x)=A_{n} Q_{n+1}(x)+B_{n} Q_{n}(x)+C_{n} Q_{n-1}(x), \quad n=0,1, \ldots
$$

where the Jacobi matrix is stochastic

- Moreover, the corresponding norms are diagonal matrices:

We consider the family of OMP $\left(Q_{n}(x)\right)_{n}$ such that

- Three term recurrence relation

$$
x Q_{n}(x)=A_{n} Q_{n+1}(x)+B_{n} Q_{n}(x)+C_{n} Q_{n-1}(x), \quad n=0,1, \ldots
$$

where the Jacobi matrix is stochastic

- Choosing $Q_{0}(x)=I$ the leading coefficient of Q_{n} is

$$
\frac{\Gamma(\beta+2) \Gamma(\alpha+\beta+2 n+2)}{\Gamma(\alpha+\beta+n+2) \Gamma(\beta+n+2)}\left(\begin{array}{cc}
\frac{k+n}{k} & -\frac{n(\alpha+\beta+2 n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \\
0 & \frac{(n+\alpha+\beta-k+2)(\alpha+\beta+2 n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)}
\end{array}\right)
$$

- Moreover, the corresponding norms are diagonal matrices:

We consider the family of $\operatorname{OMP}\left(Q_{n}(x)\right)_{n}$ such that

- Three term recurrence relation

$$
x Q_{n}(x)=A_{n} Q_{n+1}(x)+B_{n} Q_{n}(x)+C_{n} Q_{n-1}(x), \quad n=0,1, \ldots
$$

where the Jacobi matrix is stochastic

- Choosing $Q_{0}(x)=I$ the leading coefficient of Q_{n} is

$$
\frac{\Gamma(\beta+2) \Gamma(\alpha+\beta+2 n+2)}{\Gamma(\alpha+\beta+n+2) \Gamma(\beta+n+2)}\left(\begin{array}{cc}
\frac{k+n}{k} & -\frac{n(\alpha+\beta+2 n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)} \\
0 & \frac{(n+\alpha+\beta-k+2)(\alpha+\beta+2 n+2)}{(\alpha+\beta+n+2)(\alpha+\beta-k+2)}
\end{array}\right)
$$

- Moreover, the corresponding norms are diagonal matrices:

$$
\begin{array}{r}
\left\|Q_{n}\right\|_{W}^{2}=\frac{\Gamma(n+\alpha+1) \Gamma(n+1) \Gamma(\beta+2)^{2}(n+\alpha+\beta-k+2)}{\Gamma(n+\alpha+\beta+2) \Gamma(n+\beta+2)} \times \\
\left(\begin{array}{cc}
\frac{n+k}{k(2 n+\alpha+\beta+2)} & 0 \\
0 & \frac{(n+\alpha+1)(n+k+1)}{(\beta-k+1)(2 n+\alpha+\beta+3)(n+\alpha+\beta+2)}
\end{array}\right)
\end{array}
$$

Pentadiagonal Jacobi matrix

Particular case $\alpha=\beta=0, k=1 / 2$:
\Rightarrow Discrete time quasi-birth-and-death process with 2 phases

Invariant measure

INVARIANT MEASURE

The row vector

$$
\boldsymbol{\pi}=\left(\boldsymbol{\pi}^{0} ; \boldsymbol{\pi}^{1} ; \cdots\right)
$$

$$
\boldsymbol{\pi}^{n}=\left(\frac{1}{\left(\left\|Q_{n}\right\|_{W}^{2}\right)_{1,1}}, \frac{1}{\left(\left\|Q_{n}\right\|_{W}^{2}\right)_{2,2}}, \cdots, \frac{1}{\left(\left\|Q_{n}\right\|_{W}^{2}\right)_{N, N}}\right), \quad n \geq 0
$$

is an invariant measure of P
Particular case $N=2, \alpha=\beta=0, k=1 / 2$:

Invariant measure

Invariant measure

The row vector

$$
\boldsymbol{\pi}=\left(\boldsymbol{\pi}^{0} ; \boldsymbol{\pi}^{1} ; \cdots\right)
$$

$$
\pi^{n}=\left(\frac{1}{\left(\left\|Q_{n}\right\|_{W}^{2}\right)_{1,1}}, \frac{1}{\left(\left\|Q_{n}\right\|_{W}^{2}\right)_{2,2}}, \cdots, \frac{1}{\left(\left\|Q_{n}\right\|_{W}^{2}\right)_{N, N}}\right), \quad n \geq 0
$$

is an invariant measure of P
Particular case $N=2, \alpha=\beta=0, k=1 / 2$:

$$
\begin{gathered}
\pi^{n}=\left(\frac{2(n+1)^{3}}{(2 n+3)(2 n+1)}, \frac{(n+1)(n+2)}{2 n+3}\right), \quad n \geq 0 \\
\pi=\left(\frac{2}{3}, \frac{2}{3} ; \frac{16}{15}, \frac{6}{5} ; \frac{54}{35}, \frac{12}{7} ; \frac{128}{63}, \frac{20}{9} ; \frac{250}{99}, \frac{30}{11} ; \frac{432}{143}, \frac{42}{13} ; \frac{686}{195}, \frac{56}{15} ; \cdots\right)
\end{gathered}
$$

OTHER APPLICATIONS

QuANTUM MECHANICS

[Durán-Grünbaum] P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation, J. Phys. A: Math. Gen. (2006)

TIME-AND-BAND LIMITING
[Durán-Grünbaum] A survey on orthogonal matrix polynomials satisfying second order differential equations, J. Comput. Appl. Math. (2005)

OTHER APPLICATIONS

Quantum mechanics

[Durán-Grünbaum] P A Mirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation, J. Phys. A: Math. Gen. (2006)

Time-And-BAND Limiting

[Durán-Grünbaum] A survey on orthogonal matrix polynomials satisfying second order differential equations, J. Comput. Appl. Math. (2005)

