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Preliminaries

A N × N matrix polynomial on the real line is

P(x) = Anxn + An−1xn−1 + · · ·+ A0, x ∈ R, Ai ∈ CN×N

Krein (1949): Orthogonal matrix polynomials (OMP)
Let W be a N × N self adjoint positive definite weight matrix
We can construct a family (Pn)n of OMP with respect to the inner product

(P,Q)W =

∫ b

a
P(x)W (x)Q∗(x)dx ∈ CN×N

such that

(Pn,Pm)W =

∫ b

a
Pn(x)W (x)P∗m(x)dx = δn,mI , n,m ≥ 0

Pn(x) = κn(xn + an,n−1xn−1 + · · · ) = κnP̂n(x)
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Three-term recurrence relation

Orthonormality of (Pn)n is equivalent to a three term recurrence relation

xPn(x) = An+1Pn+1(x) + BnPn(x) + A∗nPn−1(x), n ≥ 0

det(An+1) 6= 0, Bn = B∗n

Jacobi operator (block tridiagonal)

x


P0(x)
P1(x)
P2(x)

...

 =


B0 A1

A∗1 B1 A2

A∗2 B2 A3

. . .
. . .

. . .




P0(x)
P1(x)
P2(x)

...


Or equivalently for the monic family

xP̂n(x) = P̂n+1(x) + αnP̂n(x) + βnP̂n−1(x), n ≥ 0
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Second-order differential equations

Durán (1997): characterize orthonormal (Pn)n satisfying second-order
differential equations of Sturm-Liouville (hypergeometric) type

P ′′n (x)F2(x) + P ′n(x)F1(x) + Pn(x)F0(x) = ΛnPn(x), n ≥ 0

grad Fi ≤ i , Λn Hermitian

Equivalent to the symmetry (i.e. (PD,Q)W = (P,QD)W ) of

D = ∂2F2(x) + ∂1F1(x) + ∂1F0, ∂ =
d

dx

Scalar case: Bochner (1929): Hermite, Laguerre and Jacobi

New matrix examples (2003): Durán, Grünbaum, Pacharoni and Tirao.
Typically the weight matrices are of the form W = ωTT ∗
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Matrix spherical functions associated with Pn(C) = SU(n + 1)/U(n)
Grünbaum-Pacharoni-Tirao (2003)

Durán-Grünbaum (2004): Symmetry equations

New phenomena

For a fixed family of OMP there exist several linearly independent
second-order differential operators having them as eigenfunctions

OMP satisfying odd-order differential equations

For a fixed second-order differential operator, there can be more than
one family of lin. ind. OMP having them as eigenfunctions
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Manuel Doḿınguez de la Iglesia OMP satisfying differential equations



Preliminaries
Methods and new phenomena

Applications

Methods and new phenomena

Methods

Matrix spherical functions associated with Pn(C) = SU(n + 1)/U(n)
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The Riemann-Hilbert problem

The Riemann-Hilbert problem (RHP) for orthogonal polynomials was introduced
by Fokas-Its-Kitaev (1990)
For a given ω with x iω, x jω′ ∈ L1(R) we try to find Y n : C→ C2×2 s.t.

1 Y n is analytic in C \ R

2 Y n
+(x) = Y n

−(x)

(
1 ω(x)
0 1

)
when x ∈ R

3 Y n(z) = (I +O(1/z))

(
zn 0
0 z−n

)
as z →∞

Advantages

1 Algebraic properties: three term recurrence relation, ladder operators,
second order differential equation

2 Uniform asymptotics: steepest descent analysis for RHP (Deift-Zhou,1993).
Very useful for functions which do not have an integral representation form
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The RHP for OMP

The unique solution of the RHP for OMP is given by

Y n(z) =

(
P̂n(z) C (P̂nW )(z)

−2πiγn−1P̂n−1(z) −2πiγn−1C (P̂n−1W )(z)

)
, n ≥ 1

where γn = κ∗nκn and C (F )(z) = 1
2πi

∫ b
a

F (t)
t−z dt

Y n(z) satisfies the following pair of first-order difference-differential
relations (also known as Lax pair)

Y n+1(z) = En(z)Y n(z),
d

dz
Y n(z) = Fn(z)Y n(z)

Cross-differentiation gives compatibility conditions (or string equations)

E ′n(z) + En(z)Fn(z) = Fn+1(z)En(z)

Problem: get explicit expression of Fn(z)
Manuel Doḿınguez de la Iglesia OMP satisfying differential equations
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Transformation of the RHP

Let W (x) = T (x)T ∗(x), x ∈ R and consider

X n(z) = Y n(z)

(
T (z) 0

0 T−∗(z̄)

)
Therefore we have a class of Lax pairs

X n+1(z) = ES
n (z)X n(z),

d

dz
X n(z) = F S

n (z)X n(z)

And a class of compatibility conditions

ES
n (z)′ + ES

n (z)F S
n (z) = F S

n+1(z)ES
n (z)
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Manuel Doḿınguez de la Iglesia OMP satisfying differential equations



Preliminaries
Methods and new phenomena

Applications

Transformation of the RHP

Let W (x) = T (x) S(x)S∗(x)︸ ︷︷ ︸
I

T ∗(x), x ∈ R and consider

X n(z) = Y n(z)

(
T (z)S(z) 0

0 T−∗(z̄)S(z)

)
Therefore we have a class of Lax pairs

X n+1(z) = ES
n (z)X n(z),

d

dz
X n(z) = F S

n (z)X n(z)

And a class of compatibility conditions

ES
n (z)′ + ES

n (z)F S
n (z) = F S

n+1(z)ES
n (z)
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Example

Let us consider (S = I )

W (x) = e−x2

eAxeA∗x , x ∈ R

for any A ∈ CN×N (Durán-Grünbaum, 2004)

X n(z) = Y n(z)

(
e−z2/2eAz 0

0 ez2/2e−A∗z

)

Lax pair

X n+1(z) =

(
zI − αn

1
2πi γ

−1
n

−2πiγn 0

)
X n(z),

d

dz
X n(z) =

(
−zI + A − 1

πi γ
−1
n

4πiγn−1 zI − A∗

)
X n(z)

Compatibility conditions

αn = (A + γ−1
n A∗γn)/2, 2(βn+1 − βn) = Aαn − αnA + I

Manuel Doḿınguez de la Iglesia OMP satisfying differential equations
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From block entries (1, 1) and (2, 1) of

d
dz X n(z) =

(
−zI + A − 1

πi γ
−1
n

4πiγn−1 zI − A∗

)
X n(z) we get ladder operators

Ladder operators

P̂ ′n(z) + P̂n(z)A− AP̂n(z) = 2βnP̂n−1(z)

−P̂ ′n(z) + 2(z − αn)P̂n(z) + AP̂n(z)− P̂n(z)A = 2P̂n+1(z)

Combining them we get a second order differential equation

Second order differential equation

P̂ ′′n (z) + 2P̂ ′n(z)(A− zI ) + P̂n(z)A2 − A2P̂n(z) + 4βnP̂n(z) =

− 2z(P̂n(z)A− AP̂n(z)) + 2(αn − A)(P̂ ′n(z) + P̂n(z)A− AP̂n(z))

Manuel Doḿınguez de la Iglesia OMP satisfying differential equations



Preliminaries
Methods and new phenomena

Applications

From block entries (1, 1) and (2, 1) of

d
dz X n(z) =

(
−zI + A − 1

πi γ
−1
n

4πiγn−1 zI − A∗

)
X n(z) we get ladder operators

Ladder operators

P̂ ′n(z) + P̂n(z)A− AP̂n(z) = 2βnP̂n−1(z)

−P̂ ′n(z) + 2(z − αn)P̂n(z) + AP̂n(z)− P̂n(z)A = 2P̂n+1(z)

Combining them we get a second order differential equation

Second order differential equation

P̂ ′′n (z) + 2P̂ ′n(z)(A− zI ) + P̂n(z)A2 − A2P̂n(z) + 4βnP̂n(z) =

− 2z(P̂n(z)A− AP̂n(z)) + 2(αn − A)(P̂ ′n(z) + P̂n(z)A− AP̂n(z))
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Let us now consider the special case of

W (x) = e−x2

eAxe iJxe−iJxeA
∗x , x ∈ R

where A =
∑N

i=1 νiEi,i+1, νi ∈ C \ {0}, and J =
∑N

i=1(N − i)Ei,i

New compatibility conditions

Jαn − αnJ + αn = A+
1

2
(A2αn − αnA2)

J − γ−1
n Jγn = Aαn + αnA− 2α2

n

New ladder operators (0-th order)

P̂nJ − JP̂n − x(P̂nA−AP̂n) + 2βnP̂n − nP̂n = 2(A− αn)βnP̂n−1

P̂n(J − xA)− γ−1
n (J − xA∗)γnP̂n + 2βn+1P̂n − (n + 1)P̂n = 2(αn −A)P̂n+1

First-order differential equation

(A− αn)P̂ ′n + (A− αn + xI )(P̂nA−AP̂n)− 2βnP̂n = P̂nJ − JP̂n − nP̂n
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Sturm-Liouville type differential equation

Finally, something remarkable happens. Combining the second and the
first order differential equation will give surprisingly

Sturm-Liouville type differential equation

P̂ ′′n (x) + P̂ ′n(x)(2A− 2xI ) + P̂n(x)(A2 − 2J) = (−2nI +A2 − 2J)P̂n(x)

This is a second-order differential equation of Sturm-Liouville type satisfied
by the OMP, already given by Durán-Grünbaum (2004)

Conclusions
1 The ladder operators method gives more insight about the differential

properties of OMP and new phenomena

2 This method works for every weight matrix W . The corresponding
OMP satisfy differential equations, but not necessarily of
Sturm-Liouville type
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New applications

Quantum mechanics

[Durán–Grünbaum] P A M Dirac meets M G Krein: matrix orthogonal
polynomials and Dirac´s equation, J. Phys. A: Math. Gen. (2006)

Time-and-band limiting

[Durán–Grünbaum] A survey on orthogonal matrix polynomials satisfying
second order differential equations, J. Comput. Appl. Math. (2005)

Quasi-birth-and-death processes

[Grünbaum–MdI] Matrix valued orthogonal polynomials arising from group
representation theory and a family of quasi-birth-and-death processes,
SIMAX (2008)
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