Methods and new phenomena of orthogonal matrix polynomials satisfying differential equations ${ }^{1}$

Manuel Domínguez de la Iglesia

Courant Institute of Mathematical Sciences, New York University

13th International Conference on Approximation Theory San Antonio, March 7-10, 2010
${ }^{1}$ joint work with F. A. Grünbaum and A. Martínez-Finkelshtein

Outline

(1) Preliminaries

(2) Methods and new phenomena

(3) Applications

Outline

(1) Preliminaries

(2) Methods and new phenomena

(3) Applications

Preliminaries

A $N \times N$ matrix polynomial on the real line is

$$
P(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}, \quad x \in \mathbb{R}, \quad A_{i} \in \mathbb{C}^{N \times N}
$$

Krein (1949): Orthogonal matrix polynomials (OMP)
Let W be a $N \times N$ self adjoint positive definite weight matrix
We can construct a family $\left(P_{n}\right)_{n}$ of OMP with respect to the inner product

$$
(P, Q)_{W}=\int_{a}^{b} P(x) W(x) Q^{*}(x) d x \in \mathbb{C}^{N \times N}
$$

such that

Preliminaries

A $N \times N$ matrix polynomial on the real line is

$$
P(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}, \quad x \in \mathbb{R}, \quad A_{i} \in \mathbb{C}^{N \times N}
$$

Krein (1949): Orthogonal matrix polynomials (OMP)
Let W be a $N \times N$ self adjoint positive definite weight matrix
We can construct a family $\left(P_{n}\right)_{n}$ of OMP with respect to the inner product

such that

Preliminaries

A $N \times N$ matrix polynomial on the real line is

$$
P(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}, \quad x \in \mathbb{R}, \quad A_{i} \in \mathbb{C}^{N \times N}
$$

Krein (1949): Orthogonal matrix polynomials (OMP)
Let W be a $N \times N$ self adjoint positive definite weight matrix
We can construct a family $\left(P_{n}\right)_{n}$ of OMP with respect to the inner product

such that

Preliminaries

A $N \times N$ matrix polynomial on the real line is

$$
P(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{0}, \quad x \in \mathbb{R}, \quad A_{i} \in \mathbb{C}^{N \times N}
$$

Krein (1949): Orthogonal matrix polynomials (OMP)
Let W be a $N \times N$ self adjoint positive definite weight matrix
We can construct a family $\left(P_{n}\right)_{n}$ of OMP with respect to the inner product

$$
(P, Q)_{W}=\int_{a}^{b} P(x) W(x) Q^{*}(x) d x \in \mathbb{C}^{N \times N}
$$

such that

$$
\begin{aligned}
\left(P_{n}, P_{m}\right) w= & \int_{a}^{b} P_{n}(x) W(x) P_{m}^{*}(x) d x=\delta_{n, m} l, \quad n, m \geq 0 \\
& P_{n}(x)=\kappa_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\kappa_{n} \widehat{P}_{n}(x)
\end{aligned}
$$

Three-term recurrence relation

Orthonormality of $\left(P_{n}\right)_{n}$ is equivalent to a three term recurrence relation

$$
\begin{aligned}
& x P_{n}(x)=A_{n+1} P_{n+1}(x)+B_{n} P_{n}(x)+A_{n}^{*} P_{n-1}(x), \quad n \geq 0 \\
& \operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
\end{aligned}
$$

Jacobi operator (block tridiagonal)

Or equivalently for the monic family

Three-term recurrence relation

Orthonormality of $\left(P_{n}\right)_{n}$ is equivalent to a three term recurrence relation

$$
\begin{aligned}
& x P_{n}(x)=A_{n+1} P_{n+1}(x)+B_{n} P_{n}(x)+A_{n}^{*} P_{n-1}(x), \quad n \geq 0 \\
& \operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
\end{aligned}
$$

Jacobi operator (block tridiagonal)

$$
x\left(\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
P_{2}(x) \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccc}
B_{0} & A_{1} & & & \\
A_{1}^{*} & B_{1} & A_{2} & & \\
& A_{2}^{*} & B_{2} & A_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
P_{2}(x) \\
\vdots
\end{array}\right)
$$

Or equivalently for the monic family

Three-term recurrence relation

Orthonormality of $\left(P_{n}\right)_{n}$ is equivalent to a three term recurrence relation

$$
\begin{aligned}
& x P_{n}(x)=A_{n+1} P_{n+1}(x)+B_{n} P_{n}(x)+A_{n}^{*} P_{n-1}(x), \quad n \geq 0 \\
& \operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
\end{aligned}
$$

Jacobi operator (block tridiagonal)

$$
x\left(\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
P_{2}(x) \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccc}
B_{0} & A_{1} & & & \\
A_{1}^{*} & B_{1} & A_{2} & & \\
& A_{2}^{*} & B_{2} & A_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
P_{2}(x) \\
\vdots
\end{array}\right)
$$

Or equivalently for the monic family

$$
x \widehat{P}_{n}(x)=\widehat{P}_{n+1}(x)+\alpha_{n} \widehat{P}_{n}(x)+\beta_{n} \widehat{P}_{n-1}(x), \quad n \geq 0
$$

Second-order differential equations

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying second-order differential equations of Sturm-Liouville (hypergeometric) type

$$
\begin{aligned}
& P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \\
& \operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \text { Hermitian }
\end{aligned}
$$

Equivalent to the symmetry (i.e. $\left.(P D, Q)_{w}=(P, Q D)_{W}\right)$ of

$$
D=\partial^{2} F_{2}(x)+\partial^{1} F_{1}(x)+\partial^{1} F_{0}, \quad \partial=\frac{d}{d x}
$$

Scalar case: Bochner (1929): Hermite, Laguerre and Jacobi
New matrix examples (2003): Durán, Grünhaum, Pacharoni and Tirao. Typically the weight matrices are of the form $W=\omega T T^{*}$

Second-order differential equations

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying second-order differential equations of Sturm-Liouville (hypergeometric) type

$$
P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geq 0
$$

$\operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \quad$ Hermitian

Second-order differential equations

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying second-order differential equations of Sturm-Liouville (hypergeometric) type

$$
P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geq 0
$$

$\operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \quad$ Hermitian
Equivalent to the symmetry (i.e. $\left.(P D, Q)_{w}=(P, Q D)_{w}\right)$ of

$$
D=\partial^{2} F_{2}(x)+\partial^{1} F_{1}(x)+\partial^{1} F_{0}, \quad \partial=\frac{d}{d x}
$$

Scalar case: Bochner (1929): Hermite, Laguerre and Jacobi
New matrix examples (2003): Durán, Grünbaum, Pacharoni and Tirao Typically the weight matrices are of the form

Second-order differential equations

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying second-order differential equations of Sturm-Liouville (hypergeometric) type

$$
\begin{aligned}
& P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geq 0 \\
& \operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \quad \text { Hermitian }
\end{aligned}
$$

Equivalent to the symmetry (i.e. $\left.(P D, Q)_{w}=(P, Q D)_{w}\right)$ of

$$
D=\partial^{2} F_{2}(x)+\partial^{1} F_{1}(x)+\partial^{1} F_{0}, \quad \partial=\frac{d}{d x}
$$

Scalar case: Bochner (1929): Hermite, Laguerre and Jacobi
New matrix examples (2003): Durán, Grünbaum, Pacharoni and Tirao Typically the weight matrices are of the form $W=\omega T^{*}$

Second-order differential equations

Durán (1997): characterize orthonormal $\left(P_{n}\right)_{n}$ satisfying second-order differential equations of Sturm-Liouville (hypergeometric) type

$$
\begin{aligned}
& P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geq 0 \\
& \operatorname{grad} F_{i} \leq i, \quad \Lambda_{n} \quad \text { Hermitian }
\end{aligned}
$$

Equivalent to the symmetry (i.e. $\left.(P D, Q)_{w}=(P, Q D)_{w}\right)$ of

$$
D=\partial^{2} F_{2}(x)+\partial^{1} F_{1}(x)+\partial^{1} F_{0}, \quad \partial=\frac{d}{d x}
$$

Scalar case: Bochner (1929): Hermite, Laguerre and Jacobi New matrix examples (2003): Durán, Grünbaum, Pacharoni and Tirao. Typically the weight matrices are of the form $W=\omega T T^{*}$

Outline

(1) Preliminaries

(2) Methods and new phenomena

(3) Applications

Methods and new phenomena

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$ Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

New phenomena

- For a fixed family of OMP there exist several linearly independent second-order differential operators having them as eigenfunctions
- OMP satisfying odd-order differential equations
- For a fixed second-order differential operator, there can be more than one family of lin. ind. OMP having them as eigenfunctions

Methods and new phenomena

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$ Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

New phenomena

- For a fixed family of OMP there exist several linearly independent second-order differential operators having them as eigenfunctions
- OMP satisfying odd-order differential equations
- For a fixed second-order differential operator, there can be more than one family of lin. ind. OMP having them as eigenfunctions

Methods and new phenomena

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$ Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

New phenomena

- For a fixed family of OMP there exist several linearly independent second-order differential operators having them as eigenfunctions
> - OMP satisfying odd-order differential equations
> - For a fixed second-order differential operator, there can be more than one family of lin. ind. OMP having them as eigenfunctions

Methods and new phenomena

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$ Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

New phenomena

- For a fixed family of OMP there exist several linearly independent second-order differential operators having them as eigenfunctions
- OMP satisfying odd-order differential equations
- For a fixed second-order differential operator, there can be more than one family of lin. ind. OMP having them as eigenfunctions

Methods and new phenomena

Methods

- Matrix spherical functions associated with $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$ Grünbaum-Pacharoni-Tirao (2003)
- Durán-Grünbaum (2004): Symmetry equations

New phenomena

- For a fixed family of OMP there exist several linearly independent second-order differential operators having them as eigenfunctions
- OMP satisfying odd-order differential equations
- For a fixed second-order differential operator, there can be more than one family of lin. ind. OMP having them as eigenfunctions

The Riemann-Hilbert problem

The Riemann-Hilbert problem (RHP) for orthogonal polynomials was introduced by Fokas-Its-Kitaev (1990)

Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$

when $x \in \mathbb{R}$

Advantages

The Riemann-Hilbert problem

The Riemann-Hilbert problem (RHP) for orthogonal polynomials was introduced by Fokas-Its-Kitaev (1990) For a given ω with $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$ we try to find $Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ s.t.
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(3) $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$

The Riemann-Hilbert problem

The Riemann-Hilbert problem (RHP) for orthogonal polynomials was introduced by Fokas-Its-Kitaev (1990) For a given ω with $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$ we try to find $Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ s.t.
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(3) $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$

Advantages

(1) Algebraic properties: three term recurrence relation, ladder operators, second order differential equation
(2) Uniform asymptotics: steepest descent analysis for RHP (Deift-Zhou,1993) Very useful for functions which do not have an integral representation form

The Riemann-Hilbert problem

The Riemann-Hilbert problem (RHP) for orthogonal polynomials was introduced by Fokas-Its-Kitaev (1990) For a given ω with $x^{i} \omega, x^{j} \omega^{\prime} \in L^{1}(\mathbb{R})$ we try to find $Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 \times 2}$ s.t.
(1) Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}1 & \omega(x) \\ 0 & 1\end{array}\right)$ when $x \in \mathbb{R}$
(3) $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$

Advantages

(1) Algebraic properties: three term recurrence relation, ladder operators, second order differential equation
(2) Uniform asymptotics: steepest descent analysis for RHP (Deift-Zhou,1993). Very useful for functions which do not have an integral representation form

The RHP for OMP

The unique solution of the RHP for OMP is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{P}_{n}(z) & C\left(\widehat{P}_{n} W\right)(z) \\
-2 \pi i \gamma_{n-1} \widehat{P}_{n-1}(z) & -2 \pi i \gamma_{n-1} C\left(\widehat{P}_{n-1} W\right)(z)
\end{array}\right), \quad n \geq 1
$$

where $\gamma_{n}=\kappa_{n}^{*} \kappa_{n}$ and $C(F)(z)=\frac{1}{2 \pi i} \int_{a}^{b} \frac{F(t)}{t-z} d t$
$Y^{n}(z)$ satisfies the following pair of first-order difference-differential relations (also known as Lax pair)

$$
Y^{n+1}(z)=E_{n}(z) Y^{n}(z), \quad \frac{d}{d z} Y^{n}(z)=F_{n}(z) Y^{n}(z)
$$

Cross-differentiation gives compatibility conditions (or string equations)

$$
\Sigma_{n}^{\prime}(z)+\Sigma_{n}(z) \Gamma_{n}(z)=\Gamma_{n+1}(z) \Sigma_{n}(z)
$$

The RHP for OMP

The unique solution of the RHP for OMP is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{P}_{n}(z) & C\left(\widehat{P}_{n} W\right)(z) \\
-2 \pi i \gamma_{n-1} \widehat{P}_{n-1}(z) & -2 \pi i \gamma_{n-1} C\left(\widehat{P}_{n-1} W\right)(z)
\end{array}\right), \quad n \geq 1
$$

where $\gamma_{n}=\kappa_{n}^{*} \kappa_{n}$ and $C(F)(z)=\frac{1}{2 \pi i} \int_{a}^{b} \frac{F(t)}{t-z} d t$
$Y^{n}(z)$ satisfies the following pair of first-order difference-differential relations (also known as Lax pair)

$$
Y^{n+1}(z)=E_{n}(z) Y^{n}(z), \quad \frac{d}{d z} Y^{n}(z)=F_{n}(z) Y^{n}(z)
$$

Cross-differentiation gives compatibility conditions (or string equations)

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

The RHP for OMP

The unique solution of the RHP for OMP is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{P}_{n}(z) & C\left(\widehat{P}_{n} W\right)(z) \\
-2 \pi i \gamma_{n-1} \widehat{P}_{n-1}(z) & -2 \pi i \gamma_{n-1} C\left(\widehat{P}_{n-1} W\right)(z)
\end{array}\right), \quad n \geq 1
$$

where $\gamma_{n}=\kappa_{n}^{*} \kappa_{n}$ and $C(F)(z)=\frac{1}{2 \pi i} \int_{a}^{b} \frac{F(t)}{t-z} d t$
$Y^{n}(z)$ satisfies the following pair of first-order difference-differential relations (also known as Lax pair)

$$
Y^{n+1}(z)=E_{n}(z) Y^{n}(z), \quad \frac{d}{d z} Y^{n}(z)=F_{n}(z) Y^{n}(z)
$$

Cross-differentiation gives compatibility conditions (or string equations)

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

The RHP for OMP

The unique solution of the RHP for OMP is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{P}_{n}(z) & C\left(\widehat{P}_{n} W\right)(z) \\
-2 \pi i \gamma_{n-1} \widehat{P}_{n-1}(z) & -2 \pi i \gamma_{n-1} C\left(\widehat{P}_{n-1} W\right)(z)
\end{array}\right), \quad n \geq 1
$$

where $\gamma_{n}=\kappa_{n}^{*} \kappa_{n}$ and $C(F)(z)=\frac{1}{2 \pi i} \int_{a}^{b} \frac{F(t)}{t-z} d t$
$Y^{n}(z)$ satisfies the following pair of first-order difference-differential relations (also known as Lax pair)

$$
Y^{n+1}(z)=E_{n}(z) Y^{n}(z), \quad \frac{d}{d z} Y^{n}(z)=F_{n}(z) Y^{n}(z)
$$

Cross-differentiation gives compatibility conditions (or string equations)

$$
E_{n}^{\prime}(z)+E_{n}(z) F_{n}(z)=F_{n+1}(z) E_{n}(z)
$$

Problem: get explicit expression of $F_{n}(z)$

Transformation of the RHP

Let $W(x)=T(x) T^{*}(x), \quad x \in \mathbb{R}$ and consider

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
T(z) & 0 \\
0 & T^{-*}(\bar{z})
\end{array}\right)
$$

Therefore we have a class of Lax pairs

$$
X^{n+1}(z)=E_{n}^{S}(z) X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=F_{n}^{S}(z) X^{n}(z)
$$

And a class of compatibility conditions

$$
E_{n}^{S}(z)^{\prime}+E_{n}^{S}(z) F_{n}^{S}(z)=F_{n+1}^{S}(z) E_{n}^{S}(z)
$$

Transformation of the RHP

Let $W(x)=T(x) \underbrace{S(x) S^{*}(x)}_{1} T^{*}(x), x \in \mathbb{R}$ and consider

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
T(z) S(z) & 0 \\
0 & T^{-*}(\bar{z}) S(z)
\end{array}\right)
$$

Therefore we have a class of Lax pairs

And a class of compatibility conditions

$$
E_{n}^{S}(z)^{\prime}+E_{n}^{S}(z) F_{n}^{S}(z)=F_{n+1}^{S}(z) E_{n}^{S}(z)
$$

Transformation of the RHP

Let $W(x)=T(x) \underbrace{S(x) S^{*}(x)}_{1} T^{*}(x), x \in \mathbb{R}$ and consider

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
T(z) S(z) & 0 \\
0 & T^{-*}(\bar{z}) S(z)
\end{array}\right)
$$

Therefore we have a class of Lax pairs

$$
X^{n+1}(z)=E_{n}^{S}(z) X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=F_{n}^{S}(z) X^{n}(z)
$$

And a class of compatibility conditions

$$
E_{n}^{S}(z)^{\prime}+E_{n}^{S}(z) F_{n}^{S}(z)=F_{n+1}^{S}(z) E_{n}^{S}(z)
$$

Transformation of the RHP

Let $W(x)=T(x) \underbrace{S(x) S^{*}(x)}_{1} T^{*}(x), x \in \mathbb{R}$ and consider

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
T(z) S(z) & 0 \\
0 & T^{-*}(\bar{z}) S(z)
\end{array}\right)
$$

Therefore we have a class of Lax pairs

$$
X^{n+1}(z)=E_{n}^{S}(z) X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=F_{n}^{S}(z) X^{n}(z)
$$

And a class of compatibility conditions

$$
E_{n}^{S}(z)^{\prime}+E_{n}^{S}(z) F_{n}^{S}(z)=F_{n+1}^{S}(z) E_{n}^{S}(z)
$$

Example

Let us consider $(S=I)$

$$
W(x)=e^{-x^{2}} e^{A x} e^{A^{*} x}, \quad x \in \mathbb{R}
$$

for any $A \in \mathbb{C}^{N \times N}$ (Durán-Grünbaum, 2004)

Lax pair
$X^{n+1}(z)=\left(\begin{array}{cc}z l-\alpha_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\ -2 \pi i \gamma_{n} & 0\end{array}\right) X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z l+A & -\frac{1}{\pi i} \gamma_{n}^{-1} \\ 4 \pi i \gamma_{n-1} & z l-A^{*}\end{array}\right) X^{n}(z)$

Compatibility conditions

$\alpha_{n}=\left(\Lambda+\gamma_{n}^{-1} \Lambda^{*} \gamma_{n}\right) / 2, \quad 2\left(\beta_{n+1}-\beta_{n}\right)=A \alpha_{n}-\alpha_{n} A+1$

Example

Let us consider $(S=I)$

$$
W(x)=e^{-x^{2}} e^{A x} e^{A^{*} x}, \quad x \in \mathbb{R}
$$

for any $A \in \mathbb{C}^{N \times N}$ (Durán-Grünbaum, 2004)

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

Example

Let us consider $(S=I)$

$$
W(x)=e^{-x^{2}} e^{A x} e^{A^{*} x}, \quad x \in \mathbb{R}
$$

for any $A \in \mathbb{C}^{N \times N}$ (Durán-Grünbaum, 2004)

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

Lax pair

$$
X^{n+1}(z)=\left(\begin{array}{cc}
z I-\alpha_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}
-z I+A & -\frac{1}{\pi i} \gamma_{n}^{-1} \\
4 \pi i \gamma_{n-1} & z I-A^{*}
\end{array}\right) X^{n}(z)
$$

Example

Let us consider $(S=I)$

$$
W(x)=e^{-x^{2}} e^{A x} e^{A^{*} x}, \quad x \in \mathbb{R}
$$

for any $A \in \mathbb{C}^{N \times N}$ (Durán-Grünbaum, 2004)

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

Lax pair

$$
X^{n+1}(z)=\left(\begin{array}{cc}
z l-\alpha_{n} & \frac{1}{2 \pi i} \gamma_{n}^{-1} \\
-2 \pi i \gamma_{n} & 0
\end{array}\right) X^{n}(z), \quad \frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}
-z I+A & -\frac{1}{\pi i} \gamma_{n}^{-1} \\
4 \pi i \gamma_{n-1} & z I-A^{*}
\end{array}\right) X^{n}(z)
$$

Compatibility conditions

$$
\alpha_{n}=\left(A+\gamma_{n}^{-1} A^{*} \gamma_{n}\right) / 2, \quad 2\left(\beta_{n+1}-\beta_{n}\right)=A \alpha_{n}-\alpha_{n} A+I
$$

From block entries $(1,1)$ and $(2,1)$ of $\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z l+A & -\frac{1}{\pi i} \gamma_{n}^{-1} \\ 4 \pi i \gamma_{n-1} & z l-A^{*}\end{array}\right) X^{n}(z)$ we get ladder operators

Ladder operators

$$
\begin{gathered}
\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)=2 \beta_{n} \widehat{P}_{n-1}(z) \\
-\widehat{P}_{n}^{\prime}(z)+2\left(z-\alpha_{n}\right) \widehat{P}_{n}(z)+A \widehat{P}_{n}(z)-\widehat{P}_{n}(z) A=2 \widehat{P}_{n+1}(z)
\end{gathered}
$$

Combining them we get a second order differential equation

Second order differential equation

From block entries $(1,1)$ and $(2,1)$ of $\frac{d}{d z} X^{n}(z)=\left(\begin{array}{cc}-z l+A & -\frac{1}{\pi i} \gamma_{n}^{-1} \\ 4 \pi i \gamma_{n-1} & z l-A^{*}\end{array}\right) X^{n}(z)$ we get ladder operators

Ladder operators

$$
\begin{gathered}
\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)=2 \beta_{n} \widehat{P}_{n-1}(z) \\
-\widehat{P}_{n}^{\prime}(z)+2\left(z-\alpha_{n}\right) \widehat{P}_{n}(z)+A \widehat{P}_{n}(z)-\widehat{P}_{n}(z) A=2 \widehat{P}_{n+1}(z)
\end{gathered}
$$

Combining them we get a second order differential equation
Second order differential equation

$$
\begin{aligned}
\widehat{P}_{n}^{\prime \prime}(z) & +2 \widehat{P}_{n}^{\prime}(z)(A-z l)+\widehat{P}_{n}(z) A^{2}-A^{2} \widehat{P}_{n}(z)+4 \beta_{n} \widehat{P}_{n}(z)= \\
& -2 z\left(\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right)+2\left(\alpha_{n}-A\right)\left(\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right)
\end{aligned}
$$

Let us now consider the special case of

$$
W(x)=e^{-x^{2}} e^{\mathcal{A} x} e^{i J x} e^{-i J x} e^{\mathcal{A}^{*} x}, \quad x \in \mathbb{R}
$$

where $\mathcal{A}=\sum_{i=1}^{N} \nu_{i} E_{i, i+1}, \nu_{i} \in \mathbb{C} \backslash\{0\}$, and $J=\sum_{i=1}^{N}(N-i) E_{i, i}$
New compatibility conditions

New ladder operators (0-th order)

$\widehat{P}_{n} J-J \widehat{P}_{n}-x\left(\widehat{P}_{n} \mathcal{A}-\mathcal{A} \widehat{P}_{n}\right)+2 \beta_{n} \widehat{P}_{n}-n \widehat{P}_{n}=2\left(\mathcal{A}-\alpha_{n}\right) \beta_{n} \widehat{P}_{n-1}$
$\widehat{P}_{n}(J-x \mathcal{A})-\gamma_{n}^{-1}\left(J-x \mathcal{A}^{*}\right) \gamma_{n} \widehat{P}_{n}+2 \beta_{n+1} \widehat{P}_{n}-(n+1) \widehat{P}_{n}=2\left(\alpha_{n}-\mathcal{A}\right) \widehat{P}_{n+1}$

Let us now consider the special case of

$$
W(x)=e^{-x^{2}} e^{\mathcal{A} x} e^{i J x} e^{-i J x} e^{\mathcal{A}^{*} x}, \quad x \in \mathbb{R}
$$

where $\mathcal{A}=\sum_{i=1}^{N} \nu_{i} E_{i, i+1}, \nu_{i} \in \mathbb{C} \backslash\{0\}$, and $J=\sum_{i=1}^{N}(N-i) E_{i, i}$

New compatibility conditions

$$
\begin{aligned}
J \alpha_{n}-\alpha_{n} J+\alpha_{n} & =\mathcal{A}+\frac{1}{2}\left(\mathcal{A}^{2} \alpha_{n}-\alpha_{n} \mathcal{A}^{2}\right) \\
J-\gamma_{n}^{-1} J \gamma_{n} & =\mathcal{A} \alpha_{n}+\alpha_{n} \mathcal{A}-2 \alpha_{n}^{2}
\end{aligned}
$$

Let us now consider the special case of

$$
W(x)=e^{-x^{2}} e^{\mathcal{A} x} e^{i J x} e^{-i J x} e^{\mathcal{A}^{*} x}, \quad x \in \mathbb{R}
$$

where $\mathcal{A}=\sum_{i=1}^{N} \nu_{i} E_{i, i+1}, \nu_{i} \in \mathbb{C} \backslash\{0\}$, and $J=\sum_{i=1}^{N}(N-i) E_{i, i}$

New compatibility conditions

$$
\begin{aligned}
J \alpha_{n}-\alpha_{n} J+\alpha_{n} & =\mathcal{A}+\frac{1}{2}\left(\mathcal{A}^{2} \alpha_{n}-\alpha_{n} \mathcal{A}^{2}\right) \\
J-\gamma_{n}^{-1} J \gamma_{n} & =\mathcal{A} \alpha_{n}+\alpha_{n} \mathcal{A}-2 \alpha_{n}^{2}
\end{aligned}
$$

New ladder operators (0-th order)

$$
\begin{gathered}
\widehat{P}_{n} J-J \widehat{P}_{n}-x\left(\widehat{P}_{n} \mathcal{A}-\mathcal{A} \widehat{P}_{n}\right)+2 \beta_{n} \widehat{P}_{n}-n \widehat{P}_{n}=2\left(\mathcal{A}-\alpha_{n}\right) \beta_{n} \widehat{P}_{n-1} \\
\widehat{P}_{n}(J-x \mathcal{A})-\gamma_{n}^{-1}\left(J-x \mathcal{A}^{*}\right) \gamma_{n} \widehat{P}_{n}+2 \beta_{n+1} \widehat{P}_{n}-(n+1) \widehat{P}_{n}=2\left(\alpha_{n}-\mathcal{A}\right) \widehat{P}_{n+1}
\end{gathered}
$$

Let us now consider the special case of

$$
W(x)=e^{-x^{2}} e^{\mathcal{A} x} e^{i J x} e^{-i J x} e^{\mathcal{A}^{*} x}, \quad x \in \mathbb{R}
$$

where $\mathcal{A}=\sum_{i=1}^{N} \nu_{i} E_{i, i+1}, \nu_{i} \in \mathbb{C} \backslash\{0\}$, and $J=\sum_{i=1}^{N}(N-i) E_{i, i}$

New compatibility conditions

$$
\begin{aligned}
J \alpha_{n}-\alpha_{n} J+\alpha_{n} & =\mathcal{A}+\frac{1}{2}\left(\mathcal{A}^{2} \alpha_{n}-\alpha_{n} \mathcal{A}^{2}\right) \\
J-\gamma_{n}^{-1} J \gamma_{n} & =\mathcal{A} \alpha_{n}+\alpha_{n} \mathcal{A}-2 \alpha_{n}^{2}
\end{aligned}
$$

New ladder operators (0-th order)

$$
\begin{gathered}
\widehat{P}_{n} J-J \widehat{P}_{n}-x\left(\widehat{P}_{n} \mathcal{A}-\mathcal{A} \widehat{P}_{n}\right)+2 \beta_{n} \widehat{P}_{n}-n \widehat{P}_{n}=2\left(\mathcal{A}-\alpha_{n}\right) \beta_{n} \widehat{P}_{n-1} \\
\widehat{P}_{n}(J-x \mathcal{A})-\gamma_{n}^{-1}\left(J-x \mathcal{A}^{*}\right) \gamma_{n} \widehat{P}_{n}+2 \beta_{n+1} \widehat{P}_{n}-(n+1) \widehat{P}_{n}=2\left(\alpha_{n}-\mathcal{A}\right) \widehat{P}_{n+1}
\end{gathered}
$$

First-order differential equation

$$
\left(\mathcal{A}-\alpha_{n}\right) \widehat{P}_{n}^{\prime}+\left(\mathcal{A}-\alpha_{n}+x I\right)\left(\widehat{P}_{n} \mathcal{A}-\mathcal{A} \widehat{P}_{n}\right)-2 \beta_{n} \widehat{P}_{n}=\widehat{P}_{n} J-J \widehat{P}_{n}-n \widehat{P}_{n}
$$

Sturm-Liouville type differential equation

Finally, something remarkable happens. Combining the second and the first order differential equation will give surprisingly

Sturm-Liouville type differential equation

$$
\widehat{P}_{n}^{\prime \prime}(x)+\widehat{P}_{n}^{\prime}(x)(2 \mathcal{A}-2 x I)+\widehat{P}_{n}(x)\left(\mathcal{A}^{2}-2 J\right)=\left(-2 n I+\mathcal{A}^{2}-2 J\right) \widehat{P}_{n}(x)
$$

This is a second-order differential equation of Sturm-Liouville type satisfied by the OMP, already given by Durán-Grünbaum (2004)

Sturm-Liouville type differential equation

Finally, something remarkable happens. Combining the second and the first order differential equation will give surprisingly

Sturm-Liouville type differential equation

$$
\widehat{P}_{n}^{\prime \prime}(x)+\widehat{P}_{n}^{\prime}(x)(2 \mathcal{A}-2 x I)+\widehat{P}_{n}(x)\left(\mathcal{A}^{2}-2 J\right)=\left(-2 n I+\mathcal{A}^{2}-2 J\right) \widehat{P}_{n}(x)
$$

This is a second-order differential equation of Sturm-Liouville type satisfied by the OMP, already given by Durán-Grünbaum (2004)

Conclusions

(1) The ladder operators method gives more insight about the differential properties of OMP and new phenomena
> (3) This method works for every weight matrix W . The corresponding OMP satisfy differential equations, but not necessarily of Sturm-Liouville type

Sturm-Liouville type differential equation

Finally, something remarkable happens. Combining the second and the first order differential equation will give surprisingly

Sturm-Liouville type differential equation

$$
\widehat{P}_{n}^{\prime \prime}(x)+\widehat{P}_{n}^{\prime}(x)(2 \mathcal{A}-2 x I)+\widehat{P}_{n}(x)\left(\mathcal{A}^{2}-2 J\right)=\left(-2 n I+\mathcal{A}^{2}-2 J\right) \widehat{P}_{n}(x)
$$

This is a second-order differential equation of Sturm-Liouville type satisfied by the OMP, already given by Durán-Grünbaum (2004)

Conclusions

(1) The ladder operators method gives more insight about the differential properties of OMP and new phenomena
(2) This method works for every weight matrix W. The corresponding OMP satisfy differential equations, but not necessarily of Sturm-Liouville type

Outline

(1) Preliminaries

(2) Methods and new phenomena

(3) Applications

New applications

Quantum mechanics

[Durán-Grünbaum] P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation, J. Phys. A: Math. Gen. (2006)
[Durán-Grünbaum] A survey on orthogonal matrix polynomials satisfyingsecond order differential equations, J. Comput. Appl. Math. (2005)
Quasi-birth-and-death processes
[Grünbaum-M Md'] Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes, SIMAX (2008)

New applications

Quantum mechanics

[Durán-Grünbaum] P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation, J. Phys. A: Math. Gen. (2006)

Time-and-band limiting

[Durán-Grünbaum] A survey on orthogonal matrix polynomials satisfying second order differential equations, J. Comput. Appl. Math. (2005)
> [Grünbaum-MdI] Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes, SIMAX (2008)

New applications

Quantum mechanics

[Durán-Grünbaum] P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation, J. Phys. A: Math. Gen. (2006)

Time-and-band limiting

[Durán-Grünbaum] A survey on orthogonal matrix polynomials satisfying second order differential equations, J. Comput. Appl. Math. (2005)

Quasi-birth-and-death processes

[Grünbaum-MdI] Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes, SIMAX (2008)

