
Theoretical and Numerical Results on Modeling of Oceanic Turbulent Mixing Layers

Theoretical and Numerical Results
on Modeling of

Oceanic Turbulent Mixing Layers

T. Chacón Rebollo, M. Gómez Mármol, S. Rubino
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Introduction

Outline

1 Introduction of the mean features of oceanic turbulent mixing
layers.

2 Introduction of turbulent mixing-layer models, based on the
gradient Richardson number.

3 Some results on the mathematical analysis of the proposed
models.

4 Comparison with a more general model, based on the
Primitive Equations.

5 Numerical tests.
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Introduction

Oceanic Turbulent Mixing Layers

The right computation of the Sea Surface Temperature
(SST) is needed to predict different aspects related to oceanic
biosystems and global climate changes.

This problem shows its importance especially in tropical
regions, where the high temperatures generate well-developed
surface mixing layers.

Many physical oceanographers started to study this problem
during the 80’s, formulating the so-called ”standard models”.

Turbulent mixing-layer models are usually vertical first-order
closure models, and they do not include pressure gradients.
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Introduction

Structure of Mixing Layer

The wind-stress generates strong mixing phenomena in a layer
located below the ocean surface: the mixing layer.
The mixing layer is divided in two sections: the mixed layer
and the pycnocline.
Mixed layer: almost constant density.
Pycnocline: remarkable gradient of density.
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Modeling of the Problem

Turbulence Models for Oceanic Mixing-Layer Flows

Mathematical Formulation

1 Physically, vertical fluxes strongly dominate the mixing layer.
⇒ We assume velocity and density horizontally homogeneous.

2 We set:

U = (u(z , t), v(z , t), 0), ρ = ρ(z , t).

3 We neglect the Coriolis force, that is a good approximation for
equatorial regions.

4 In tropical seas:

ρ = ρ(Temperature) −→ (state equation)
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Modeling of the Problem

Turbulence Models for Oceanic Mixing-Layer Flows

Mathematical Formulation

The variables u, v , ρ satisfy the Reynolds-averaged equations:
∂tu − a1∂zzu = −∂z〈u′ w ′〉 − D1

∂tv − a1∂zzv = −∂z〈v ′ w ′〉 − D2

∂tρ− a2∂zzρ = −∂z〈ρ′ w ′〉
(1)

(a1, a2) = laminar viscosity and diffusion

(D1,D2) = ∇Hp = imposed horizontal pressure gradient

To close the problem, we use the concept of eddy viscosity and
diffusion.

⇒ Application of a turbulence model based on the gradient
Richardson number.
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Modeling of the Problem

Turbulence Models for Oceanic Mixing-Layer Flows

Richardson number-based Model

We set:
−〈u′ w ′〉 = νT1∂zu, (2)

−〈v ′ w ′〉 = νT1∂zv , (3)

−〈ρ′ w ′〉 = νT2∂zρ. (4)

The eddy coefficients νT1 and νT2 are expressed as functions of
the gradient Richardson number R, defined as:

R = − g

ρr

∂zρ

(∂zu)2 + (∂zv)2
. (5)

Case R < 0 (∂zρ > 0):

Unstable density configurations.
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Modeling of the Problem

Turbulence Models for Oceanic Mixing-Layer Flows

Richardson number-based Model

IBVP for the analysis of the Mixing Layer



∂tu − ∂z (ν1∂zu) = −D1,
∂tv − ∂z (ν1∂zv) = −D2,
∂tρ− ∂z (ν2∂zρ) = 0, for t ≥ 0 and − h ≤ z ≤ 0,
u = ub(t), v = vb(t), ρ = ρb(t), for z = −h,
ν1∂zu = (ρa/ρr )Vx (t), ν1∂zv = (ρa/ρr )Vy (t), ν2∂zρ = Q(t), for z = 0,
u = u0(z), v = v0(z), ρ = ρ0(z), for t = 0.

(6)

ν1 = a1 + νT1, ν2 = a2 + νT2;

(Vx (t),Vy (t)) = CD |Ua(t)|Ua(t), (7)

Ua(t) = (ua(t), va(t)) = air velocity, CD(= 1.2 · 10−3) = friction coef. (8)

A. C. Bennis, T. Chacón Rebollo, M. Gómez Mármol, R. Lewandowski,

Numerical modelling of algebraic closure models of oceanic turbulent mixing

layers, (2010).
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Modeling of the Problem

Turbulence Models for Oceanic Mixing-Layer Flows

Several Models for the Turbulent Coefficients

We set:
ν1 = f1(R), ν2 = f2(R)

Pacanowski-Philander

f1(R) = a1 +
b1

(1 + 5R)2
, f2(R) = a2 +

f1(R)

1 + 5R
(9)

Gent

f1(R) = a1 +
b1

(1 + 10R)2
, f2(R) = a2 +

b2

(1 + 5R)3
(10)

Non-standard model

f1(R) = a1 +
b1

(1 + 5R)2
, f2(R) = a2 +

f1(R)

(1 + 5R)2
(11)
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Modeling of the Problem

Analysis of Equilibrium States

Equilibrium Solutions

Steady Problem: 
∂z(f1(Re)∂zu

e) = D1

∂z(f1(Re)∂zv
e) = D2

∂z(f2(Re)∂zρ
e) = 0

(12)

Integrating (12) with respect to z , we obtain:
∂zu

e = (D1z + V e
x ρa/ρr ) /f1(Re)

∂zv
e =

(
D2z + V e

y ρa/ρr
)
/f1(Re)

∂zρ
e = Qe/f2(Re)

(13)

By definition of R, we deduce the implicit equation for Re :

R = G (z)
[f1(R)]2

f2(R)
, (14)

G (z) = − g

ρr

Qe

(D1z + V e
x ρa/ρr )2 +

(
D2z + V e

y ρa/ρr
)2
. (15)
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Modeling of the Problem

Analysis of Equilibrium States

Equilibrium Solutions

Integrating (13) with respect to z , we deduce the equilibrium
solutions:

ue(z) = ue
b + D1

∫ z

−h

s

f1(Re(s))
ds +

V e
x ρa
ρ0

∫ z

−h

1

f1(Re(s))
ds

v e(z) = v e
b + D2

∫ z

−h

s

f1(Re(s))
ds +

V e
y ρa

ρ0

∫ z

−h

1

f1(Re(s))
ds

ρe(z) = ρeb + Qe

∫ z

−h

1

f2(Re(s))
ds

(16)

D1 = D2 = 0
Linear profiles for velocity and density.
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Modeling of the Problem

Analysis of Equilibrium States

Existence of Unsteady Solutions

Theorem

If C = (Vx ,Vy ,Q)(t) ∈ [L2(0,T )]3,Ub = (ub, vb, ρb)(t) ∈
[C 0(0,T )]3,U0 = (u0, v0, ρ0)(z) ∈ [H1(I )]3, and these quantities
are close enough to the corresponding quantities at the
equilibrium, problem (6) with smoothly extended viscosities ν1, ν2

admits a unique solution U in an open neighborhood of the
equilibrium Ue , satisfying the estimate:

||U−Ue ||L2(0,T ;[H2(I )]3) + ||∂t(U−Ue)||L2(0,T ;[L2(I )]3) ≤

C (||C− Ce ||L2(0,T ) + ||Ub −Ue
b||L∞(0,T ) + ||U0 −Ue ||H1(I )) (17)

where C is a positive constant independent of U.

Sketch of the Proof: Inverse Function Theorem (Banach Spaces).



Theoretical and Numerical Results on Modeling of Oceanic Turbulent Mixing Layers

Modeling of the Problem

Analysis of Equilibrium States

Non-linear Stability of Continuous Equilibria

Theorem

Under the hypotheses of the existence theorem, and for small
enough data, the equilibrium solutions of problem (6) with
smoothly extended viscosities ν1, ν2 are non-linearly exponentially
asymptotically stable, in the sense that:

||U′(t)||L2(I ) ≤ e−λt ||U′0||L2(I ),

for some λ > 0, where U′ = U−Ue .

Sketch of the Proof: Standard Inequalities and Grönwall Lemma.
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Modeling of the Problem

Numerical Discretization

Conservative Finite Difference Scheme

Assume that the interval [−h, 0] is divided into N subintervals of
lenght ∆z = h/N, with nodes zi = −h + i∆z , i = 0, . . . ,N, and
construct the FE space:

V∆ =
{
w∆ ∈ C0([−h, 0]) s.t. w∆|]zi−1,zi [

is affine, i = 1, . . . ,N; w∆(−h) = 0
}
.

(18)

Eq. for u (Semi-Implicit Method): Obtain u∆ ∈ ub + V∆ s.t.∫ 0

−h

un+1
∆ − un∆

∆t
w∆ +

∫ 0

−h
f1(Rn

∆)∂zu
n+1
∆ ∂zw∆ =

ρa

ρr
Vxw∆(0)−D1

∫ 0

−h
w∆. (19)

FD Scheme for u: For i = 1, . . . ,N − 1,

un+1
i − uni

∆t
−
f1(Rn

i−1/2
)un+1

i−1 −
[
f1(Rn

i−1/2
) + f1(Rn

i+1/2
)
]
un+1
i + f1(Rn

i+1/2
)un+1

i+1

(∆z)2
= −D1,

(20)

f1(Rn
N−1/2)

un+1
N − un+1

N−1

∆z
=
ρa

ρr
Vx . (21)
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Modeling of the Problem

Numerical Discretization

Analysis of the Numerical Scheme

Hypothesis:

f1, f2 ∈W 1,∞(R3) ∩ C 1(R3), ∃ 0 < ν ≤ M s.t. ν ≤ f1(R), f2(R) ≤ M, ∀R ∈ R.
(22)

Stability result:

Lemma

Under Hypothesis (22), the discrete unsteady solution U∆ (in its semi-implicit
and implicit version) satisfy:

‖U∆‖L∞(L2) + ‖U∆‖L2(H1) + ‖∂tU∆‖L2(H−1) ≤ C ,

where C is a positive constant that only depends on the data (and not on ∆z
and ∆t).

Discrete maximum principle:

Lemma

Under Hypothesis (22), if u0, ub and Vx are positive, and D1 ≤ 0, then u∆ is
positive in [−h, 0]× [0,+∞).
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Modeling of the Problem

Numerical Discretization

Analysis of Discrete Equilibria

Existence and uniqueness:

Theorem

Under Hypothesis (22), for small enough data, the steady version of the
discrete problem admits a unique solution that satisfies:

C1 ≤ |∂zu∆|, |∂zv∆|, |∂zρ∆| ≤ C2.

Convergence and non-linear stability:

Theorem

Under Hypothesis (22), for small enough data:

{(u∆, v∆, ρ∆)}∆z>0 −→ (ue , v e , ρe) in [H1(I )]3,

lim sup
n→+∞

||Un
∆ − Π∆U

e ||L2(I ) ≤ C∆z .
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Modeling of the Problem

Numerical Test

Initial Conditions with Unstable Density Profile
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Modeling of the Problem

Numerical Test

Formation of the Mixing Layer

T = 48h.
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Modeling of the Problem

Numerical Test

Equilibrium Solutions

T = 10000h.
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Bidimensional Model of the Problem

Mathematical Formulation

Primitive Equations of the Ocean

The Primitive Equations govern the behavior of oceanic
flows for large time and horizontal spatial scales.

Physical basic model to analyze global climate changes and
oceanic biosystems.

Reduced formulation→PDEs for horizontal velocity, surface
pressure and density.
(Boussinesq Equations + Hydrostatic Approximation)
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Bidimensional Model of the Problem

Mathematical Formulation

Setting of the Model

1 We consider the rigid-surface domain of the flow:

ω = (0, L), L > 0.

2 We define the 2D domain of the flow:

Ω =
{

(x , z) ∈ R2 s.t. x ∈ ω, −h < z < 0
}
.

3 We set:

U = (u(x , z , t),w(x , z , t)), ρ = ρ(x , z , t), p = p(x , z , t).

4 We neglect the Coriolis force.

The anisotropy of the domain (L >> h) permits to apply the
hydrostatic approximation:

∂zp = − ρ

ρr
g .
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Bidimensional Model of the Problem

Mathematical Formulation

Setting of the Model

The set of 2D Primitive Equations governing the mixing layer
becomes :

∇ ·U = 0,
∂tu + (U · ∇)u − a1∆u + ∂xp = −∇ · 〈U′ u′〉,
∂zp = − ρ

ρr
g ,

∂tρ+ (U · ∇)ρ− a2∆ρ = −∇ · 〈U′ ρ′〉.

(23)

We set:
−〈U′ u′〉 = (νth ∂xu, ν

t
v ∂zu), (24)

−〈U′ ρ′〉 = (kth ∂xρ, k
t
v ∂zρ), (25)

where:

(i) νth = (Cs ∆x)2 |∂xu|, k t
h = a2

a1
νth (Smagorinsky),

(ii) νtv = b1
(1+5R)2 , k t

v = a1
(1+5R)2 +

νtv
(1+5R)2 , R = − g

ρr

∂zρ
(∂zu)2 (Richardson).
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Bidimensional Model of the Problem

Mathematical Formulation

Reduced Formulation

∂Ω = boundary of Ω = Γb ∪ Γs ∪ Γ`1 ∪ Γ`2.

Vertical integration of the hydrostatic pressure:∫ 0

z
∂sp = − g

ρr

∫ 0

z
ρ⇒ p(x , z , t) = ps(x , t) +

g

ρr

∫ 0

z
ρ

∂xp = ∂xps+
g

ρr
∂x

∫ 0

z
ρ = ∇H(Surf. Pres.)+Baroclinic Contr.
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Bidimensional Model of the Problem

Mathematical Formulation

Reduced Formulation

IBVP for the analysis of the Mixing Layer



(a) ∂tu + (U · ∇)u − ∂x (νh∂xu)− ∂z (νv∂zu) + ∂xps + (g/ρr )∂x

∫ 0

z
ρ = 0 in Ω×]0,T [,

(b) ∂tρ + (U · ∇)ρ− ∂x (kh∂xρ)− ∂z (kv∂zρ) = 0 in Ω×]0,T [,

(c) ∂zw = −∂xu in Ω×]0,T [,

(d) u|Γb
= ub, ρ|Γb

= ρb in [0,T ],

(e) w|Γb
= w|Γs

= 0 in [0,T ],

(f ) u|Γ`1
= u|Γ`2

, ρ|Γ`1
= ρ|Γ`2

in [0,T ],

(g) νv∂zu|Γs
= (ρa/ρr ) Vx , kv∂zρ|Γs

= Q in [0,T ],

(h) u(0) = û0, ρ(0) = ρ̂0 in Ω.

(26)

1 Spatial discretization: Galerkin FEM.
2 Temporal discretization: Semi-Implicit Euler Scheme.
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Bidimensional Model of the Problem

Numerical Test

Initial Velocity and Density Profiles
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Bidimensional Model of the Problem

Numerical Test

Comparison between Models 2D and 1D
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Bidimensional Model of the Problem

Numerical Test

Final Fluid Flow 2D
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Bidimensional Model of the Problem

Numerical Test

Final Density 2D
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Bidimensional Model of the Problem

Numerical Test

Final Surface Pressure
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Conclusions

Observations:

The 2D model justifies the assumptions leading to the 1D
model (lower computational cost).

The introduction of an imposed pressure gradient in the 1D
model permits to improve the accuracy in the computation of
the velocity, if the initial conditions are not 1D.

References:
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