# Numerical solution of some geometric inverse problems 

Anna DOUBOVA<br>Dpto. E.D.A.N. - Univ. of Sevilla

joint work with
E. FERNÁNDEZ-CARA - Dpto. E.D.A.N. - Univ. of Sevilla

Numerical Resolution for Inverse Problems
BCAM, Bilbao, 8-9 January 2015
(1) Motivation: Elastography
(2) Wave equation
(3) Elasticity systems
4. Reconstruction and numerical algorithms
(5) Numerical results

- 2D wave equation
- 2D Lamé system
- 3D wave equation
- 3D Lamé system

6 Work in progress

We consider:

- Geometric inverse problems
- Wave equation and Lamé systems
- Motivation: Elastrography

A non-invasive method of tumor detection: when a mechanical compression or vibration is applied, the tumor deforms less than the surrounding tissue

A technique to detect elastic properties of tissue from acoustic wave generators (applications in Medicine)

Classical detection methods in mammography:


Figure: Palpation


Figure: $x$-rays

Elastography ("imaging palpation") is better suited than palpation and $x$-rays techniques:

- Tumors can be far from the surface
- or small
— or may have properties indistinguishable through palpation or $x$-rays


Figure: Stiffness is represented by a color spectrum, ranging from dark red (very stiff) through orange, yellow, and green, to blue (very soft).
(a) Direct problem:

Data: $\Omega, T>0, \varphi, D$ and $\gamma \subset \partial \Omega$
Result: the solution $u$
(1) $\begin{cases}u_{t t}-\Delta u=0 & \text { in }(\Omega \backslash \bar{D}) \times(0, T) \\ u=\varphi & \text { on }(\partial \Omega) \times(0, T) \\ u=0 & \text { on }(\partial D) \times(0, T) \\ u(x, 0)=u_{0}, \quad u_{t}(x, 0)=u_{1} & \text { in } \Omega\end{cases}$

Information:
(2)

$$
\alpha=\frac{\partial u}{\partial n} \text { on } \gamma \times(0, T)
$$

(b) Inverse problem:
(Partial) data: $\Omega, T, \varphi$ and $\gamma \subset \partial \Omega$
(Additional) information: $\alpha$
Goal: Find $D$ such that the solution to (1) satisfies (2)

$$
\begin{cases}u_{t t}^{i}-\Delta u^{i}=0 & \text { in } \Omega \backslash \overline{D^{i}} \times(0, T), \quad i=0,1 \\ u^{i}=\varphi & \text { in } \partial \Omega \times(0, T) \\ u^{i}=0 & \text { in } \partial D^{i} \times(0, T) \\ u^{i}(x, 0)=0, \quad u_{t}^{i}(x, 0)=0 & \text { in } \Omega \backslash \overline{D^{i}}\end{cases}
$$

## Theorem

$$
\left.\begin{array}{l}
T>T_{*}(\Omega, \gamma), \quad D^{0}, D^{1} \text { are convex, } \quad \varphi \neq 0 \\
\frac{\partial u^{0}}{\partial n}=\frac{\partial u^{1}}{\partial n} \quad \text { on } \quad \gamma \times(0, T)
\end{array}\right\} \quad \Longrightarrow \quad D^{0}=D^{1}
$$

Fundamental results: Hörmander, Lions
Attention: Weaker than the geometric condition (Only uniqueness, not observability!)

$$
\begin{cases}u_{t t}-\nabla \cdot\left(\mu(x)\left(\nabla u+\nabla u^{t}\right)+\lambda(x)(\nabla \cdot u) \text { Id. }\right)=0 & \text { in } \Omega \backslash \bar{D} \times(0, T) \\ u=\varphi & \text { on } \partial \Omega \times(0, T) \\ u=0 & \text { on } \partial D \times(0, T) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1} & \text { in } \Omega \backslash \bar{D}\end{cases}
$$

Observation: $\sigma(u) \cdot n:=\left(\mu(x)\left(\nabla u+\nabla u^{t}\right)+\lambda(x)(\nabla \cdot u)\right.$ ld. $) \cdot n$ on $\gamma \times(0, T)$

## Explanations:

- $u=\left(u_{1}, u_{2}, u_{3}\right)$ is the displacement vector
- Small displacements. Hence, linear elasticity
- Isotropy assumptions. The tissue is described by $\lambda$ and $\mu$

$$
\begin{cases}\left.u_{t t}^{i}-\nabla \cdot\left(\mu(x)\left(\nabla u^{i}+\nabla\right)\left(u^{i}\right)^{t}\right)+\lambda(x)\left(\nabla \cdot u^{i}\right) \mathbf{l d} .\right)=0 & \text { in } \Omega \backslash \overline{D^{i}} \times(0, T) \\ u^{i}=\varphi & \text { on } \partial \Omega \times(0, T) \\ u^{i}=0 & \text { on } \partial D^{i} \times(0, T) \\ u^{i}(0)=0, \quad u_{t}^{i}(0)=0 & \text { in } \Omega \backslash \overline{D^{i}}\end{cases}
$$

## Theorem (Constant coefficients)

$$
\left.\begin{array}{l}
T>T_{*}(\Omega, \gamma), \quad D^{0}, D^{1} \text { are convex, } \quad \varphi \neq 0 \\
\sigma\left(u^{0}\right) \cdot n=\sigma\left(u^{1}\right) \cdot n \quad \text { on } \quad \gamma \times(0, T)
\end{array}\right\} \quad \Longrightarrow \quad D^{0}=D^{1}
$$

For uniqueness, the key point is Unique continuation property (Imanuvilov-Yamamoto, 2008, complex conditions on $\mu, \lambda$ )

AD, E. Fernández-Cara, work in progress
( $\exists$ Other unique continuation results for stationary problems:
Lin-Wang, 2005; Escauriaza, 2005; Alessandrini-Morasi, 2001;
Nakamura-Wang, 2006; Imanuvilov-Yamamoto, 2012)

Resolution of an optimization problem

## Optimization problem: case of a ball

Given: $\widetilde{\alpha}=\widetilde{\alpha}(x, t)$.
Find $x_{0}, y_{0}$ and $r$ such that $\left(x_{0}, y_{0}, r\right) \in X_{b}$ and

$$
J\left(x_{0}, y_{0}, r\right) \leq J\left(x_{0}^{\prime}, y_{0}^{\prime}, r^{\prime}\right) \quad \forall\left(x_{0}^{\prime}, y_{0}^{\prime}, r^{\prime}\right) \in X_{b}
$$

the function $J: X_{b} \mapsto \mathbb{R}$ is defined by

$$
J\left(x_{0}, y_{0}, r\right):=\frac{1}{2} \iint_{\gamma \times(0, T)}\left|\alpha\left[x_{0}, y_{0}, r\right]-\widetilde{\alpha}\right|^{2} d s d t
$$

with

$$
\alpha\left[x_{0}, y_{0} ; r\right]:=\frac{\partial u}{\partial n} \quad \text { on } \gamma \times(0, T)
$$

and

$$
X_{b}:=\left\{\left(x_{0}, y_{0}, r\right) \in \mathbb{R}^{3}: \bar{B}\left(x_{0}, y_{0} ; r\right) \subset \Omega\right\}
$$

The problem formulation contains inequality constraints

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Minimize } f(x) \\
\text { Subject to } x \in X_{0} ; \quad c_{i}(x) \geq 0,1 \leq i \leq 1
\end{array}\right. \\
& x_{0}=\left\{x \in \mathbb{R}^{m}: \underline{x}_{j} \leq x_{j} \leq \bar{x}_{j}, \quad 1 \leq j \leq m\right\}
\end{aligned}
$$

## Optimization problem

$\left\{\right.$ Minimize $\mathcal{L}_{A}\left(x, \lambda^{k} ; \mu_{k}\right):=f(x)-\sum_{i=1}^{l} \lambda_{i}^{k}\left(c_{i}(x)-s_{i}\right)+\frac{1}{2 \mu_{k}} \sum_{i=1}^{l}\left(c_{i}(x)-s_{i}\right)^{2}$
Subject to $x \in X_{0} ; s_{i} \geq 0,1 \leq i \leq 1$
$\lambda_{i}^{k}$ : multipliers, $\quad \mu_{k}:$ penalty parameters

## Algorithm (Augmented Lagrangian: inequality constraints)

(a) Fix $\mu_{1}$ and starting points $x^{0}$ and $\lambda^{1}$;
(b) The, for given $k \geq 1, \mu_{k}, x^{k-1}, \lambda^{k}$ :
(b.1) Unconstrained optimization: Find an approximate minimizer $x^{k}$ of $\mathcal{L}_{A}\left(\cdot, \lambda^{k} ; \mu_{k}\right)$, starting at $x^{k-1}$ :

$$
\left\{\begin{array}{l}
\text { Minimize } \mathcal{L}_{A}\left(x, \lambda^{k} ; \mu_{k}\right) \\
\text { Subject to } x \in X_{0}
\end{array}\right.
$$

(b.2) Update the Lagrange multipliers:

$$
\lambda_{i}^{k+1}=\max \left(\lambda_{i}^{k}-\frac{c_{i}\left(x_{k}\right)}{\mu_{k}}, 0\right), \quad 1 \leq i \leq 1
$$

(b.3) Choose a new parameter and check whether a stopping convergence test is satisfied:

$$
\mu_{k+1} \in\left(0, \mu_{k}\right)
$$

Subsidiary optimization algorithms for (b.1) (among others):

- CRS2 is a gradient-free algorithm a version of Controlled Random Search (CRS) for global optimization
- DIRECTNoScal is variant of the Dlviding RECTangles algorithm for global optimization

$$
\left\{\begin{array}{l}
\text { Minimize } f(x)  \tag{1}\\
\text { Subject to } x \in G
\end{array}\right.
$$

where $G \subset \mathbb{R}^{m}$ is either a box or some other region easy to sample and $f: G \subset \mathbb{R}^{m} \mapsto \mathbb{R}$ is continuous.

## CRS2: Main ideas

(1) Large initial sample of random points
(2) At each step:

- The current worst point $x_{h}$ is replaced by a new trial point $\widetilde{x}$ (generates from the current best point $x_{\ell}$ and other random points)
- A stopping condition $f_{h}-f_{\ell} \leq \varepsilon$ is checked


## DIRECT: Main ideas

(a) Normalize the domain to be the unit hyper-cube with center $c^{1}$

Find $f\left(c^{1}\right)$; set $f_{\text {min }}=f\left(c^{1}\right), i=0, k=1$
Evaluate $f\left(c^{1} \pm \frac{1}{3} e^{i}\right), 1 \leq i \leq m$, and divide the hyper-cube: $c^{1} \pm \frac{1}{3} e^{i}$ are the centers of the new hyper-rectangles (see Figure)
(b) Then, for given $k \geq 1$ :
(b.1) Identify the set $S$ of all potentially optimal rectangles
(b.2) For each rectangle in $S$, identify the longest side(s), evaluate $f$ at the center, divide in smaller rectangles and update $f_{\text {min }}$

Potentially optimal means:

- Best value at the center if the size is the same
- Optimal value at the center if the size is minimal


## AUGLAG - DIRECT - DIRECTNoScal II Dlviding RECTangles algorithm



Figure: Some interactions of DIRECT algorithm

## Numerical results: 2-D wave equation I

Test 1: $T=5, \quad u_{0}=10 x, \quad u_{1}=0, \quad \varphi=10 x$

$$
\begin{array}{lll}
\text { x0des }=-3, & \text { y0des }=0, & \text { rdes }=0.4 \\
\text { x0ini }=0, & \text { y0ini }=0, & \text { rini }=0.6
\end{array}
$$

NLopt (AUGLAG + CRS2), $\mathrm{N}^{\circ}$ Iter $=1007$, FreeFem++:
$x 0 c a l=-2.998645439, y 0 c a l=0.000425214708$
rcal $=0.4001667063$
nditial Mese


Figure: Initial mesh: triangles 992, vertices 526
oescrvamoinathmal thas


Figure: The desired center and radius of the ball


Figure: Computed center and radius: AUGALG + CRS2
$x 0 c a l=-2.998645439, y 0 c a l=0.000425214708, \quad$ rcal $=0.4001667063$


Figure: Evolution of $J$ during the first 500 iterations of CRS2


Figure: The functional $J$ with respect to the variable $r$


Figure: The functional $J$ with respect to the variables $x_{0}$ and $y_{0}$

Test 2: $T=5, \quad u_{0}=10 x, \quad u_{1}=0, \quad \varphi=10 x$

$$
\begin{array}{lll}
x 0 d e s=-3, & \text { y0des }=0, & \text { rdes }=0.4 \\
x 0 i n i=0, & \text { y0ini }=0, & \text { rini }=0.6
\end{array}
$$

NLopt (AUGLAG + DIRECT) , $\mathrm{N}^{\circ}$ Iter $=1001$, FreeFem++:

$$
\begin{aligned}
\mathrm{x0cal} & =-2.962962963 \\
\mathrm{y} 0 \mathrm{cal} & =-0.01219326322 \\
\text { rcal } & =0.4220164609
\end{aligned}
$$

## Numerical results: 2-D wave equation VII

Case of a ball


Figure: Some experiences with AUGLAG and DIRECT


| IsoValue |
| :---: |
| -4.93537 |
| -4.70685 |
| -4.47833 |
| -4.2498 |
| -4.02128 |
| - |
| -3.562724 |
| -3.39572 |
| -3.10719 |
| -2.87867 |
| -2.65015 |
| -2.42163 |
| -2.1931 |
| -1.96458 |
| -1.73606 |
| -1.50754 |
| -1.27902 |
| -1.05049 |
| -0.821971 |
| -0.593449 |
| -0.364926 |
| -0.136404 |
| 0.0921182 |
| 0.32064 |
| 0.549163 |
| 0.777685 |
| 1.00621 |
| 1 |

Figure: Desired and computed radius and centers of the ball

## Optimization problem: case of an ellipse

Given: $\widetilde{\alpha}=\widetilde{\alpha}(x, t)$.
Find $x_{0}, y_{0}$ and $\theta$ and $a, b$ such that $\left(x_{0}, y_{0}, \theta, a, b\right) \in X_{e}$ and

$$
\begin{equation*}
J\left(x_{0}, y_{0}, \theta, a, b\right) \leq J\left(x_{0}^{\prime}, y_{0}^{\prime}, \theta^{\prime}, a^{\prime}, b^{\prime}\right) \quad \forall\left(x_{0}^{\prime}, y_{0}^{\prime}, \theta^{\prime}, a^{\prime}, b^{\prime}\right) \in X_{e} \tag{2}
\end{equation*}
$$

the function $J: X_{e} \mapsto \mathbb{R}$ is defined by

$$
J\left(x_{0}, y_{0}, \theta, a, b\right):=\frac{1}{2} \iint_{\gamma \times(0, T)}\left|\alpha\left[x_{0}, y_{0}, \theta, a, b\right]-\widetilde{\alpha}\right|^{2} d s d t
$$

with

$$
\begin{gathered}
\alpha\left[x_{0}, y_{0}, \theta, a, b\right]=\frac{\partial u}{\partial n} \quad \text { on } \gamma \times(0, T) \\
X_{e}:=\left\{\left(x_{0}, y_{0}, \theta, a, b\right) \in \mathbb{R}^{5}: \bar{E}\left(x_{0}, y_{0}, \theta, a, b\right) \subset \Omega\right\}
\end{gathered}
$$

Resolution of an optimization problem. Now, $J=J\left(x_{0}, y_{0}, \theta, a, b\right)$
Test 3: $T=5, \quad u_{0}=10 x, \quad u_{1}=0, \quad \varphi=10 x$
$x 0$ des $=-3, y 0$ des $=-3$, sin $($ thetades $)=0$, ades $=0.8$, bdes $=0.4$
$x 0$ ini $=-1, y 0 i n i=-1$, sin $($ thetaini $)=0$, aini $=0.5$, bini $=0.5$
NLopt (AUGLAG + DIRECTNoScal), $N^{\circ}$ Iter $=2001$, FreeFem++

$$
\begin{aligned}
\mathrm{x} 0 \mathrm{cal} & =-2.963301665 \\
\mathrm{y} 0 \mathrm{cal} & =-3.035106437 \\
\text { sin(thetacal) } & =0.112178021 \\
\text { acal } & =0.8446502058 \\
\mathrm{bcal} & =0.4166666667
\end{aligned}
$$



Figure: Computed center, radius, angle and semi-axis

$$
\begin{gathered}
\begin{cases}u_{t t}-\nabla \cdot \sigma(u)=0 & \text { in } \Omega \backslash \bar{D} \times(0, T) \\
u=\varphi & \text { on } \partial \Omega \times(0, T) \\
u=0 & \text { on } \partial D \times(0, T) \\
u(0)=u_{0}, \quad u_{t}(0)=u_{1} & \text { in } \Omega \backslash \bar{D}\end{cases} \\
\sigma(u) \cdot n:=\left(\mu(x)\left(\nabla u+\nabla u^{t}\right)+\lambda(x)(\nabla \cdot u) \text { ld. }\right) \cdot n=\widetilde{\sigma} \quad \text { on } \quad \gamma \times(0, T)
\end{gathered}
$$

## Optimization problem

Given: $\widetilde{\sigma}=\widetilde{\sigma}(x, t)$
Find $x_{0}, y_{0}$ and $r\left(x_{0}, y_{0}, r\right) \in X_{b}$ and

$$
\begin{equation*}
J\left(x_{0}, y_{0}, r\right) \leq J\left(x_{0}^{\prime}, y_{0}^{\prime}, r^{\prime}\right) \quad \forall\left(x_{0}^{\prime}, y_{0}^{\prime}, r^{\prime}\right) \in X_{b} \tag{3}
\end{equation*}
$$

the function $J: X_{b} \mapsto \mathbb{R}$ is defined by

$$
J\left(x_{0}, y_{0}, r\right):=\frac{1}{2} \iint_{\gamma \times(0, T)}\left|\sigma\left[x_{0}, y_{0}, r\right]-\widetilde{\sigma}\right|^{2} d s d t
$$

Test 4: $T=5, \quad u 01=10 x, \quad u 02=10 y, \quad u 11=0, \quad u 12=0$, $\varphi_{1}=10 x, \quad \varphi_{2}=10 y$
$x 0$ des $=-3, \quad y 0$ des $=0, \quad r d e s=0.4$
$x 0 i n i=0, \quad y 0 i n i=0, \quad$ rini $=0.6$
NLopt (AUGLAG + DIRECTNoScal), $\mathrm{N}^{\circ}$ Iter = 1000, FreeFem++

$$
\begin{aligned}
\mathrm{x} 0 \mathrm{cal} & =-3.000224338 \\
\mathrm{y} 0 \mathrm{cal} & =-0.0005268693985 \\
\text { rcal } & =0.4000228624
\end{aligned}
$$



Figure: Computed center and radius

Test 5: $T=5, \quad u 01=10 x, \quad u 02=10 y, \quad u 11=0, \quad u 12=0$, $\varphi_{1}=10 x, \quad \varphi_{2}=10 y$

$$
\begin{aligned}
& x 0 \text { des }=-3, \quad y 0 d e s=0, \quad \sin (\text { thetades })=0, \quad \text { ades }=0.8, \quad \text { bdes }=0.4 \\
& x 0 \text { in } i=-1, y 0 \text { ini }=-1, \\
& \sin (\text { thetaini })=0, ~ a i n i=0.5, ~ b i n i=0.5
\end{aligned}
$$

NLopt (AUGLAG + DIRECTNoScal), $\mathrm{N}^{\circ}$ Iter $=2001$, FreeFem++:

$$
\begin{aligned}
\mathrm{x} 0 \mathrm{cal} & =-3.002591068 \\
\mathrm{y} 0 \mathrm{cal} & =-3.001574963 \\
\text { sin(thetacal) } & =0.00548696845 \\
\text { acal } & =0.8036351166 \\
\mathrm{bcal} & =0.400617284
\end{aligned}
$$

Numerical results: 2-D Lamé system II
Case of an ellipse


Figure: Computed center, angle and semi-axis


Figure: Computed solution at the final time

Test 6: $T=5, \quad u_{0}=10 x, \quad u_{1}=0, \quad \varphi=10 x$

$$
\begin{array}{llll}
x 0 \text { des }=-2, & \text { y0des }=-2, & z 0 d e s=-2, & \text { rdes }=1 \\
x 0 \text { ini }=0, & \text { y0ini }=0, & z 0 d e s=0, & \text { rini }=0.6
\end{array}
$$

NLopt (AUGLAG + DIRECTNoScal), $\mathrm{N}^{\circ}$ Iter $=438$, FreeFem++

$$
\begin{aligned}
\mathrm{x0cal} & =-1.975308642 \\
\text { y0cal } & =-2.232383275 \\
\text { z0cal } & =-2.305542854 \\
\text { rcal } & =1.05
\end{aligned}
$$



Figure: Initial mesh. Points: 829, tetrahedra: 4023, faces: 8406, edges: 5210, boundary faces: 720, boundary edges: 1080


Figure: Desired configuration

## Numerical results: 3-D wave equation IV



Figure: Computed observation and mesh

Figure: Solution of the wave equation corresponding to computed data

$$
\left.\begin{array}{ll}
u 01=10 x, & u 02=10 y, \\
\text { Test 7: } T=5, & u 11=0, \quad u=10 z \\
\varphi_{1}=10 x, & u 12=0, \\
\varphi_{2}=10 y, & u 13=0 \\
\varphi_{3}=10 z
\end{array}\right] \quad \begin{aligned}
& \text { x0des }=-2, \quad \text { y0des }=-2, \quad \text { z0des }=-2, \quad \text { rdes }=1 \\
& \text { x0ini }=0, \quad \text { y0ini }=0, \quad \text { z0des }=0, \quad \text { rini }=0.6
\end{aligned}
$$

NLopt (AUGLAG + DIRECTNoScal), $\mathrm{N}^{\circ}$ Iter $=444$, FreeFem++:

$$
\begin{aligned}
\text { x0cal } & =-1.981405274 \\
\text { y0cal } & =-2.225232904 \\
\text { z0cal } & =-2.148084171 \\
\text { rcal } & =0.9504115226
\end{aligned}
$$



Figure: Initial mesh. Points: 829, tetrahedra: 4023, faces: 8406, edges: 5210, boundary faces: 720, boundary edges: 1080


Figure: Desired configuration

Numerical results: 3-D Lamé system IV
Case of a sphere

COMPUTED OBS AT T, 1st COMPONENT


Numerical results: 3-D Lamé system VI
Case of a sphere

COMPUTED OBS AT T, 3xdCOMPONENT


Numerical results: 3-D Lamé system VII
Case of a sphere
$\mathrm{t}=4.75$


## A. Doubova

Work in progress:
(1) Evolution elasticity system:

$$
\left.\begin{array}{c} 
\begin{cases}-u_{t t}-\nabla \cdot \sigma(u)=0 & \text { in } \Omega \backslash \bar{D} \times(0, T) \\
u=\varphi & \text { on } \partial \Omega \times(0, T) \\
u=0 & \text { on } \partial D \times(0, T) \\
u(0)=u_{0}, \quad u_{t}(0)=u_{1} & \text { in } \Omega \backslash \bar{D}\end{cases} \\
\sigma_{k l}(u)=\sum_{i, j=1}^{3} a_{i j k l \varepsilon_{i j}}(u), \quad \varepsilon_{k l}(u)=\frac{1}{2}\left(\partial_{k} u_{l}+\partial_{l} u_{k}\right)
\end{array}\right\} \begin{aligned}
& a_{i j k l}=\lambda(x) \delta_{i j} \delta_{k l}+\mu(x)\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta j k\right), \quad 1 \leq i, j, k, I \leq 3
\end{aligned}
$$

— Numerical results ?
(2) Ellipsoids, other more complicated geometries
(3) Internal observations ?: At present: new (emerging) techniques detect internal waves via non-invasive techniques (a very precise description)

AD，E．Fernández－Cara，Some geometric inverse problems for the linear wave equation，to appear in Inverse Problems and Imaging
（ AD，E．Fernández－Cara，Geometric inverse problems concerning the Lamé system，work in progress
國 J．Nocedal，S．J．Wright，Numerical Optimization，Springer， 1999
围 J．Ophir，I．Cespedes，H．Ponnekanti，Y．Yazdi X．Li，Elastography：A quantitative method for imaging the elasticity of biological tissues， Ultrasonic Imaging， 13 （1991）， 111 －134
囯 W．L．Price，A controlled random search procedure for global optimisation，The Computer Journal， 20 （1977），367－370．
樯
D．E．Finkel，Direct optimization algorithm user guide，Center for Research in Scientific Computation，North Carolina State University， 2.

