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A diffuse interface model

Hydrodynamic system modeling the deformation of vesicle membranes
in incompressible viscous fluids.

The system consists of the Navier-Stokes equations coupled with a
fourth order phase-field equation.
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Sharp interface equilibrium model

The equilibrium configurations of vesicle membranes can be
characterized by the Helfrich bending elasticity energy of the surface
[W. Helfrich 73, Elastic properties of lipid bilayers: theory and possible
experiments]
such that they are minimizers of the bending energy under possible
constraints like prescribed surface area (incompressibility of the
membrane) and bulk volume (the change in volume is normally a much
slower process in comparison with the shape change).
Let Γ be a smooth, surface representing the membrane of the vesicle.
The most simplified form of the interfacial energy is

Eelastic =

∫
Γ

k
2

(H − H0)2ds

where H is the mean curvature of Γ, k is the bending rigidity and H0 is
the spontaneous curvature that describes certain physical/chemical
difference between the inside and the outside of the membrane.
For the simplicity, we assume that k is a positive constant and H0 = 0.
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Diffuse interface model

φ takes the value 1 inside of the vesicle membrane and −1 outside.

The phase-field approximation of the Helfrich bending elasticity energy is
given by a modified Willmore Bending energy:

Eε(φ) =
1
2ε

∫
Ω

(
−ε∆φ+

1
ε

f (φ)

)2

dx with f (φ) = (φ2 − 1)φ

ε > 0 is a small positive parameter (compared to the vesicle size) that
characterizes the transition layer of the phase function.
[Du, Liu, Wang 04], [Wang 08]

Convergence of the phase-field model to the original sharp interface
model as the transition width of the diffuse interface ε→ 0
[Du, Liu, Ryham, Wang 05], [Wang 08]

Diffuse interface models simplify numerical approximations because it
suffices to consider a fixed computational grid rather than tracking the
position of the interface
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Dynamics model

Model: Interaction of a vesicle membrane with the fluid field, which describes
the evolution of vesicles immersed in an incompressible, Newtonian fluid.
PDE system (Navier-Stokes + Allen-Cahn): For ν, λ, γ > 0 (constants):

∂tu + (u · ∇)u − ν∆u +∇p − λ
(
δEε
δφ

)
∇φ = 0,

∇ · u = 0,

∂tφ+ u · ∇φ = −γ
(
δEε
δφ

)
.

System can be obtained via an energetic variation approach
[Yue, Feng, Liu, Shen 04], [Hyon, Kwak, Liu 10]
Energy law (Lyapunov functional): Calling Etot (u, φ) = Ekin(u) + λEε(φ):

d
dt

Etot (u, φ) + ν‖∇u‖2
L2(Ω) + λγ

∥∥∥∥δEεδφ
∥∥∥∥2

L2(Ω)

= 0.

For simplicity, we take ν, λ, γ = 1
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Two global constraints of conservation for the vesicle volume and surface
area:

A(φ) =

∫
Ω

φ dx and B(φ) =

∫
Ω

(
ε

2
|∇φ|2 +

1
ε

F (φ)

)
dx ,

where F (φ) = 1
4 (φ2 − 1)2 (Note that f (φ) = F ′(φ))

Introducing the auxiliary variable

ω = −ε∆φ+
1
ε

f (φ),

then
Eε(φ) = Eε(ω) =

1
2ε

∫
Ω

ω2dx

Some variational computations gives:

δA
δφ

= 1,
δB
δφ

= ω

and
δEε
δφ

= −∆ω +
1
ε2ω f ′(φ)
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The problem
Linear and unconditionally energy-stable scheme.

Lagrange multiplier problem

Idea: Modify the generic model to enforce the two physical constraints by
Lagrange multipliers ( λ1(t), λ2(t)) and introduce an extra unknown z:

∂tu −∆u + (u · ∇)u +∇p − z∇φ = 0,

∇ · u = 0,

∂tφ+ u · ∇φ+ z = 0,

A(φ) = α (= A(φ0)), B(φ) = β (= B(φ0)),

+ I.C. and B.C.

where

z =
δEε
δφ

+ λ1(t)
δA
δφ

+ λ2(t)
δB
δφ

= −∆ω +
1
ε2ω f ′(φ) + λ1(t) + λ2(t)ω,
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The problem
Linear and unconditionally energy-stable scheme.

Reformulation of the model (I): time derivatives

Taking the time derivative of the ω-equation:
∂tω = −ε∆∂tφ+

1
ε

f ′(φ)∂tφ, t ∈ (0,T ),

ω|t=0 = ω0 := −ε∆φ0 +
1
ε

f (φ0)

Taking the time derivative of the two constraints:
∫

Ω

∂tφ = 0,
∫

Ω

ω ∂tφ = 0, t ∈ (0,T ),

A(φ0) = α, B(φ0) = β
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The problem
Linear and unconditionally energy-stable scheme.

Reformulation of the model (II): dissipation of free energy

Then 

∂tu −∆u + (u · ∇)u +∇p − z∇φ = 0, u

∇ · u = 0, p

∂tφ+ u · ∇φ+ z = 0, z

−∆ω +
1
ε2ω f ′(φ) + λ1(t) + λ2(t)ω − z = 0, ∂tφ

1
ε
∂tω = −∆∂tφ+

1
ε2 f ′(φ)∂tφ, ω∫

Ω

∂tφ = 0,
∫

Ω

ω ∂tφ = 0,

+ I.C. and B.C.

Modified Energy Law:

d
dt

Etot (u, ω) + ‖∇u‖2
L2 + ‖z‖2

L2 = 0,

with Etot (u, ω) = Ekin(u) + Eε(ω).
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The problem
Linear and unconditionally energy-stable scheme.

First order, linear and unconditionally energy-stable scheme.

Given un, φn, ωn, find un+1, pn+1, φn+1, ωn+1, λn+1
1 , λn+1

2 s.t.



(
δtun+1, ū

)
+ c(un,un+1, ū) + (∇un+1,∇ū)

−(pn+1,∇ · ū)−
(
zn+1∇φn,u

)
= 0, un+1

(∇ · un+1, p) = 0, pn+1(
δtφ

n+1, z̄
)

+ (un+1 · ∇φn, z̄) + (zn+1, z̄) = 0, zn+1

(∇ωn+1,∇φ̄) +
1
ε2 (f ′(φn)ωn+1, φ̄)+λn+1

1 (1, φ̄) + λn+1
2 (ωn, φ̄)

−(zn+1, φ̄) = 0, δtφ
n+1

1
ε

(
δtω

n+1, ω̄
)
−
(
∇δtφ

n+1,∇ω̄
)
− 1
ε2

(
f ′(φn)δtφ

n+1, ω̄
)

= 0, ωn+1∫
Ω

δtφ
n+1 = 0 and

∫
Ω

ωnδtφ
n+1 = 0.
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The problem
Linear and unconditionally energy-stable scheme.

Unconditional energy-stability,

δtEtot (un+1, ωn+1) + ‖∇un+1‖2
L2 + ‖zn+1‖2

L2 + NDn+1 = 0,

where
NDn+1 =

k
2
‖δtun+1‖2

L2 +
k
2ε
‖δtω

n+1‖2
L2≥ 0

Moreover, this scheme is well-defined.
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The problem
Nonlinear unconditionally energy-stable scheme

Vesicle membranes. Penalized problem.

Adding two penalty terms to the elastic bending energy Eε(φ) to approximate
the volume and surface area constraints.

The modified energy reads

Êε,η(ω, φ) = Eε(ω) +
1
2η

[A(φ)− α]2 +
1
2η

[B(φ)− β]2

where η > 0 is a penalization parameter.

Consider the new unknown

ẑ =
δÊε,η(ω(φ), φ)

δφ
= −∆ω +

1
ε2 f ′(φ)ω +

1
η

(A(φ)− α) +
1
η

(B(φ)− β)ω,
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The problem
Nonlinear unconditionally energy-stable scheme

we get the following reformulation:

∂tu + u · ∇u +∇p −∆u − ẑ∇φ = 0, u
∇ · u = 0, p
∂tφ+ u · ∇φ+ ẑ = 0, ẑ

−∆ω +
1
ε2 f ′(φ)ω +

1
η

(A(φ)− α) +
1
η

(B(φ)− β)ω − ẑ = 0, ∂tφ

1
ε
∂tω −∆∂tφ+

1
ε2 f ′(φ)∂tφ = 0. ω

Energy Law:
d
dt

Êtot (u, ω) + ‖∇u‖2
L2 + ‖ẑ‖2

L2 = 0,

where Êtot (u, ω, φ) = Ekin(u) + Êε,η(ω, φ).

RK: Since the expression of ω in function of φ has been derivate in time, in
order to get this energy law, this expression must be written explicitly in the
term

(B(φ)− β)ω = (B(φ)− β)(−ε∆φ+
1
ε

f (φ))
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The problem
Nonlinear unconditionally energy-stable scheme

First order, nonlinear and unconditionally energy-stable scheme.



(
δtun+1, ū

)
+ c(un,un+1, ū) + (∇un+1,∇ū)

−(pn+1,∇ · ū)−
(
∇φnẑn+1, ū

)
= 0, un+1

(∇ · un+1, p̄) = 0, pn+1(
δtφ

n+1, z̄
)

+ (un+1 · ∇φn, z̄) + (ẑn+1, z̄) = 0, ẑn+1

(∇ωn+1,∇φ̄) +
1
ε2 (f ′(φn)ωn+1, φ̄)+

1
η

(A(φn+1)− α)(1, φ̄)

+
1
η

(
B(φn+1)− β

) [
ε(∇φn+1,∇φ̄) +

1
ε

(f k (φn+1, φn), φ̄)
]
− (ẑn+1, φ̄) = 0, δtφ

n+1

1
ε

(δtω
n+1, ω̄)−

(
∇δtφ

n+1,∇ω̄
)
− 1
ε2

(
f ′(φn)δtφ

n+1, ω̄
)

= 0. ωn+1

where f k (φn+1, φn) will be an adequate approx. of f (φ(tn+1)).
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The problem
Nonlinear unconditionally energy-stable scheme

Energy-stability.

Discrete Energy Law:

δt Êtot (un+1, ωn+1, φn+1) + ‖∇un+1‖2
L2 + ‖ẑn+1‖2

L2 + N̂D
n+1

= 0

where N̂D
n+1

is the numerical residual:

N̂D
n+1

=
k
2
‖δtun+1‖2

L2 +
k
2ε
‖δtω

n+1‖2
L2 +

k
2η

(δtA(φn+1))2

+
k
2η

(δtB(φn+1))2−1
η

(B(φn+1)− β)(NDn+1
philic + NDn+1

phobic)

with
NDn+1

philic = k
ε

2η
‖δt∇φn+1‖2

L2

NDn+1
phobic =

∫
Ω

f k (φn+1, φn)δtφ
n+1 − δt

∫
Ω

F (φn+1).
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The problem
Nonlinear unconditionally energy-stable scheme

Since B(φn+1)− β has no sign, the scheme is unconditional energy-stable if

NDn+1
philic = 0 and NDn+1

phobic = 0

It can be reached by using the mid-point approximation. That is, to change[
ε(∇φn+1,∇φ̄) +

1
ε

(f k (φn+1, φn), φ̄)
]

by [
ε(∇

(
φn+1 + φn

2

)
,∇φ̄) +

1
ε

(
F (φn+1)− F (φn)

φn+1 − φn , φ̄)
]
.
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2D Numerical simulations.
A celular membrane through a strangulation zone

Penalized problem

Parameters: ν = 1,0, λ = 0,01, γ = 0,01, ε = 0,01, η = 10000.

Splitting fluid/phase-field and linearized scheme (taking A(φ), B(φ) in φn

Potencial approximacion OD2 [F-GG& G.Tierra 12]

Initial Condition u = 0

Time step ∆t = 0,00001

Continuous Finite element approx.: velocity P1b and others P1
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Conclusions and Future work.

Conclusions

1 Two models and two energy-stable first-order fully discrete schemes.
2 Lagrange multipliers model let us to define linear stable schemes

Future work

1 Splitting in time stable schemes
2 Second order stable schemes
3 Introduce a well-defined and convergent iterative scheme convergent

towards the nonlinear scheme
4 Numerical simulations
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