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Abstract. These Notes deal with the control of systems governed by some

PDEs. I will mainly consider time-dependent problems. The aim is to present
some fundamental results, some applications and some open problems related

to the optimal control and the controllability properties of these systems.

In Chapter 1, I will review part of the existing theory for the optimal
control of partial differential systems. This is a very broad subject and there

have been so many contributions in this field over the last years that we will

have to limit considerably the scope. In fact, I will only analyze a few questions
concerning some very particular PDEs. We shall focus on the Laplace, the

stationary Navier-Stokes and the heat equations. Of course, the existing theory

allows to handle much more complex situations.
Chapter 2 is devoted to the controllability of some systems governed by

linear time-dependent PDEs. I will consider the heat and the wave equations.
I will try to explain which is the meaning of controllability and which kind

of controllability properties can be expected to be satisfied by each of these

PDEs. The main related results, together with the main ideas in their proofs,
will be recalled.

Finally, Chapter 3 is devoted to present some controllability results for

other time-dependent, mainly nonlinear, parabolic systems of PDEs. First, we
will revisit the heat equation and some extensions. Then, some controllability

results will be presented for systems governed by stochastic PDEs. Finally, I

will consider several nonlinear systems from fluid mechanics: Burgers, Navier-
Stokes, Boussinesq, micropolar, etc.

Along these Notes, a set of questions (some of them easy, some of them

more intrincate or even difficult) will be stated. Also, several open problems
will be mentioned. I hope that all this will help to understand the underlying

basic concepts and results and to motivate research on the subject.
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CHAPTER 1

Optimal control of systems governed by PDEs

In this Lecture, I will review part of the existing theory for the optimal control
of partial differential systems. This is a very broad subject and there have been
so many contributions in this field over the last years that we will have to limit
considerably the scope. In fact, I will only analyze a few questions concerning some
very particular PDEs. We shall focus on the Laplace, the stationary Navier-Stokes
and the heat equations. Of course, the existing theory allows to handle much more
complex situations. The optimal control of (elliptic, parabolic and hyperbolic)
partial differential systems was addressed in [76]. Many other details can be found
for instance in [32, 59, 72, 75] and the references therein. Along the text, several
questions have been stated. They are of different nature and level of difficulty and
it is highly recommended to the interested reader to try to answer them.

1.1. Some examples

It will be assumed that Ω ⊂ RN is a bounded, regular and connected open set,
with boundary Γ = ∂Ω.

The first example concerns the optimal control of a capacitor.
Let ω ⊂⊂ Ω be a non-empty open set. For each u ∈ L2(ω), we consider the

state system

(1.1)

{
−∆y = 1ωu in Ω,
y = 0 on Γ,

where 1ω is the characteristic function of ω.
The solution y = y(x) to (1.1) can be interpreted as the electric potential of a

capacitor to which a density of charge 1ωv is applied; E = −∇y is the associated
electric field.

In practice, it may be important to know how to choose v in a subset Uad ⊂
L2(ω) in order to obtain a potential y as close as possible to a prescribed function
yd without too much effort. For instance, Uad can be a ball in L2(ω). It can also
be a set of the form

(1.2) Uad = {u ∈ L2(ω) : u ≤ u(x) ≤ u a.e. },

where u, u ∈ R.
Thus, let us fix yd ∈ L2(Ω) and let us introduce the cost functional J , with

(1.3) J(u) =
a

2

∫
Ω

|y − yd|2 dx+
b

2

∫
ω

|u|2 dx

where a, b > 0. The optimal control problem we want to solve is then:

1
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PROBLEM P1: To find û ∈ Uad such that J(û) ≤ J(u) for all
u ∈ Uad , where J is given by (1.3).

We will see below that this problem can be solved. We will also see the way the
solution (the optimal control) can be characterized by an appropriate optimality
system. Additionally, we will present some generalizations and variants.

In our second problem, the control is performed through the coefficients of the
system.

Assume that Ω is composed of two dielectric materials whose properties and
prices are different. We want to build a nonhomogeneous plate with these two
materials in such an optimal way. Here, the word optimal means that, under an
applied density of charge (fixed and known), the associated potential is as close as
possible to a prescribed state yd .

Let α and β be the permeability coefficients of the first and the second material,
respectively. We assume that 0 < α < β. Let {G1, G2} be a partition of Ω (G1 and
G2 are measurable sets) and set

(1.4) a(x) =

{
α if x ∈ G1 ,
β if x ∈ G2 .

Then the electrostatic potential y = y(x) corresponding to this distribution of the
materials is the solution of the system

(1.5)

{
−∇ · (a(x)∇y) = f(x) in Ω,
y = 0 on Γ,

where f ∈ H−1(Ω) (for instance) is given. In this example, the coefficient a = a(x)
is the control and y is the state.

Let us put

(1.6) j(a) =
1

2

∫
Ω

|y − yd|2 dx ∀a ∈ Aad ,

where yd ∈ L2(Ω) and, by definition, we have

(1.7) Aad = { a ∈ L∞(Ω) : a(x) = α or a(x) = β a.e. }

The second problem we want to consider in this Section is then:

PROBLEM P2: To find â ∈ Aad such that j(â) ≤ j(a) for all
a ∈ Aad , where j is given by (1.6).

It is well known that, in general, this problem has no solution and a “general-
ized” or “relaxed” version has to be introduced in order to describe the limitting
behavior of the minimizing sequences. This is in fact typical in control problems
where the control enters in the system through its coefficients and, specially, in
the principal part of the operator. Phenomena of this kind have led to a very rich
development of the theory. We will see later what can be done and which is the
physical interpretation of the “generalized” or “relaxed solution”.

The third example is an optimal design problem.
We will assume that Ω is filled with a viscous incompressible fluid and we

will try to find the optimal shape of a body travelling at constant velocity in Ω.
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Thus, assume that B ⊂ Ω is a non-empty closed subset whose shape is in principle
unknown. We will assume that B is the closure of a connected open set and ∂B is
piecewise Lipschitz-continuous. Let us choose a reference system fixed with respect
to B. We will consider the following Navier-Stokes system in Ω \B:

(1.8)

 −ν∆y + (y · ∇)y +∇π = 0, ∇ · y = 0 in Ω \B,
y = y∞ on Γ,
y = 0 on ∂B.

Here, (y, π) is the state (the velocity field and the pressure of the fluid). The
positive coefficient ν is the viscosity of the fluid. We have assumed that the velocity
of the fluid particles on the exterior boundary Γ, that is, far from the body, is y∞ (a
constant vector). We have also imposed the usual no-slip condition on ∂B. These
boundary conditions in mean that the body travels with velocity −y∞ and the fluid
particles on ∂B adhere to the body.

For each B in a family Bad of admissible bodies, the state system (1.8) possesses
at least one weak solution (y, π), with y ∈ H1(Ω;R2) and π ∈ L2(Ω). Now, we can
associate to each solution the quantity

(1.9) T (B, y) = 2ν

∫
Ω

|Dy|2 dx,

where

Dy =
1

2
(∇y +∇yt)

is the symmetric part of the gradient ∇y. It can be seen that T (B, y) is in fact the
hydrodynamical drag of the fluid, that is

T (B, y) = −y∞ ·
∫
∂B

(
− π I + νD(y)

)
· nds

(the projection in the direction of the velocity of the body of the force exerted by
the fluid particles).

Our third problem is the following:

PROBLEM P3: To find B̂ ∈ Bad such that the corresponding sys-
tem (1.8) possesses a solution (ŷ, π̂) satisfying T (B̂, ŷ) ≤ T (B, y)
whenever (y, π) is a solution to (1.8) and B ∈ Bad.

We will see below that, unless the family Bad satisfies particular and in some
sense artificial conditions, it is not possible to prove an existence result for Problem
P3.

Besides existence, another interesting question is to analyze the way T (B, y)
depends on B. In fact, we will show that, at least when y∞ is small, the mapping
B 7→ T (B, y) is well-defined and in some sense of class C∞. We will also indicate
how to compute its “derivative”.

We will now consider an optimal control problem for a parabolic system with
origin in biomedical science. As shown below, the control is oriented to the deter-
mination of cancer therapy strategies.
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The state system is nonlinear and reads:

(1.10)



ct −∇ · (D(x)∇c) = f(c)− F (c, β) in Q = Ω× (0, T ),

βt − µ∆β = −h(β)−H(c, β) + v1ω in Q = Ω× (0, T ),

c = 0 on Σ = ∂Ω× (0, T ),

β = 0 on Σ = ∂Ω× (0, T ),

c(x, 0) = c0(x) in Ω,

β(x, 0) = β0(x) in Ω.

We assume that Ω is an organ, where we find a population of cancer cells
with density c = c(x, t) and a distribution of inhibitors (or antibodies), of density
β = β(x, t). The antibodies are generated through a therapy process, determined by
the control v and localized in a small open set ω ⊂ Ω. This can be used to model the
evolution of a glioblastoma, i.e. a brain tumor, under radiotherapy, see [103, 104].

The functions f and h define the proliferation and death rates of c and β,
respectively. On the other hand, F and H determine the way c and β interact. In
the simplest cases we just take

(1.11) f(c) = ρc, h(β) = −mβ, F (c, β) = Rcβ, H(c, β) = Mcβ,

for some positive constants ρ, m, R and M .
For a large family of functions f , h, F and H, for any v ∈ L2(ω× (0, T )) there

exists at least one solution (c, β) to (1.10).
Obviously, in order to make the problem realistic, we have to impose constraints

on v. Thus, we will assume that v ∈ Vad, where Vad is a bounded, closed and convex
set of L2(ω × (0, T )). A natural choice is the following:

Vad = { v ∈ L2(ω × (0, T )) : 0 ≤ v ≤ A,
∫ T

0

v dt ≤ B, v = 0 for t 6∈ I },

where I is a (small) closed set of times where the therapy is applied.
There are different possible choices for the cost function. A reasonable (but

maybe nor the best) choice is the following:

(1.12) K(c, β, v) =
a

2

∫
Ω

|c(x, T )|2 dx+
b

2

∫
ω×(0,T )

|v|2 dx dt.

The fourth considered problem is then:

PROBLEM P4: To find v̂ ∈ Vad such that the corresponding

system (1.10) possesses a solution (ĉ, β̂) satisfying K(ĉ, β̂, v̂) ≤
K(c, β, v) whenever (c, β) is a solution to (1.10) and v ∈ Vad.

Under very general conditions, we will give below an existence result for Prob-
lem P4. We will also find the optimality system for this problem.

1.2. Existence, uniqueness and optimality results

Our first result is the following:

Theorem 1.1. Assume that Uad is a non-empty closed convex set of L2(ω).
Then, Problem P1 possesses exactly one solution.
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Proof: For the proof we only have to check that u 7→ J(u) is a strictly convex,
coercive and weakly lower semicontinuous function on L2(ω).

But this is very easy to verify. In fact, u 7→ J(u) can be written in the form

(1.13) J(u) =
1

2
a0(u, u) + a1(u) + a2 ∀u ∈ Uad ,

where a0(· , ·) is a continuous and coercive bilinear form on L2(ω), a1(·) is a con-
tinuous linear form on L2(ω) and a2 ∈ R.

The forms a0(· , ·) and a1(·) are given as follows:

a0(u, v) = a

∫
Ω

yz dx+ b

∫
ω

uv dx

and

a1(u) = −a
∫

Ω

ydy dx,

where y (resp. z) is the solution to (1.1) (resp. (1.1) with u replaced by v). On the
other hand,

a3 =
a

2

∫
Ω

|yd|2 dx.

Hence, the usual arguments of the direct method of the Calculus of Variations
lead to the existence and uniqueness of solution, as assserted. �

QUESTION 1: What can be said if, in (1.3), we assume that b = 0? Which
interpretation can be given to the corresponding optimal control problem?

We will now be concerned with the computation of J ′(u) and the obtention of
an optimality system. Our result is the following:

Theorem 1.2. Assume that Uad ⊂ L2(ω) is a non-empty closed convex set
and let û be the solution to Problem P1. Then there exists ŷ and p̂ such that the
following optimality system is satisfied:

(1.14)

{
−∆ŷ = û1ω in Ω,
ŷ = 0 on Γ,

(1.15)

{
−∆p̂ = ŷ − yd in Ω,
p̂ = 0 on Γ,

(1.16)

∫
ω

(ap̂+ bû)(u− û) dx ≥ 0 ∀u ∈ Uad .

Proof: For the proof, we argue as follows. Since û is the solution to Problem P1,
we must have

(1.17) 〈J ′(û), u− û〉 ≥ 0 ∀u ∈ Uad , û ∈ Uad .

Here, 〈· , ·〉 denotes the scalar product in L2(ω). Taking into account (1.13), this
can be written as follows:

a0(û, u− û) + a1(u− û) ≥ 0
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that is to say,

(1.18) a

∫
Ω

(ŷ − yd)(y − ŷ) dx+ b

∫
ω

û (u− û) dx ≥ 0

for all u ∈ Uad. Of course, in (1.18) y is the solution to (1.1) and ŷ is the solution
to (1.1) with u replaced by û.

Let p̂ be the solution to (1.15), the adjoint system. It is then clear that∫
Ω

(ŷ − yd)(y − ŷ) dx =

∫
Ω

∇p̂ · ∇(y − ŷ) dx =

∫
ω

p̂ (u− û) dx.

Consequently, (1.18) is equivalent to (1.16). This proves that the optimality system
(1.14)− (1.16) must hold. �

Remark 1.3. In this particular case, we also have the reciprocal or theorem 1.2:
If û ∈ Uad and there exist ŷ and p̂ such that (1.14) − (1.16) holds, then û is the
unique solution to Problem P1. �

It is usual to say that p̂ is the adjoint state associate to the optimal control û.
In fact, in view of the previous argument, for each u ∈ Uad , we have

(1.19) 〈J ′(u), v〉 =

∫
ω

(ap+ bu) v dx ∀v ∈ Uad ,

where p is the adjoint state associate to u, i.e. the solution to

(1.20)

{
−∆p = y − yd in Ω,
p = 0 on Γ.

This provides a very useful technique to compute the derivative J ′(u) for a
given u. From the practical viewpoint this is very important, since a method to
compute J ′(u) permits the use of descent methods in order to determine the optimal
control û.

QUESTION 2: The optimality system in theorem 1.2 suggests the following iterative
method for the computation of û:

(1.21)

{
−∆yn = un−11ω in Ω,
yn = 0 on Γ,

(1.22)

{
−∆pn = yn − yd in Ω,
pn = 0 on Γ,

(1.23)

∫
ω

(apn + bun)(u− un) dx ≥ 0 ∀u ∈ Uad.

What can be said on the convergence of these iterates?

QUESTION 3: In view of (1.19) − (1.20), how can we apply (for instance) the
fixed-step gradient method to produce a sequence {un} of controls converging to the
optimal control û? What about the optimal-step gradient method? What about the
fixed-step and optimal-step conjugate gradient methods?
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The previous ideas can be generalized in several directions. We will present
a generalization involving nonlinear elliptic state systems and nonquadratic cost
functionals.

Thus, let us introduce the system

(1.24)

{
Ay + f(y) = 1ωu in Ω,
y = 0 on Γ,

where A is a linear second order partial differential operator given by

(1.25) Ay = −
2∑

i,j=1

∂

∂xi

(
aij(x)

∂y

∂xj

)
+

2∑
j=1

bj(x)
∂y

∂xj
+ c(x)y

and f : R 7→ R is (for instance) a nondecreasing C1 function satisfying

(1.26) |f(s)| ≤ C(1 + |s|) ∀s ∈ R.
We will assume that the coefficients aij , bi and c satisfy:

(1.27)

aij , bi , c ∈ L∞(Ω), c ≥ 0,
2∑

i,j=1

aij(x)ξiξj ≥ α|ξ|2 ∀ξ ∈ R2 a.e. in Ω, α > 0.

For each u ∈ L2(ω), the corresponding system (1.24) possesses exactly one
solution y ∈ H1

0 (Ω). Let Uad ⊂ L2(ω) be a family of admissible controls. We will
now set

(1.28) J(u) =

∫
Ω

F (x, y(x), u(x)) dx ∀u ∈ Uad ,

where F = F (x, s, v) is assumed to be a Carathéodory function, defined for (x, s, v) ∈
Ω× R× R. We consider the following generalization of Problem P1:

PROBLEM P1′: To find û ∈ Uad such that J(û) ≤ J(u) for all
u ∈ Uad , where J is given by (1.24),(1.28).

Among all possible results that can be established in this context, let us indicate
the following, that has been taken from [16]:

Theorem 1.4. Assume that Uad is a closed convex subset of L2(ω). Also,
assume that F is of the form

F (x, s, v) = F0(x, s) + F1(x, v) 1ω(x),

where F0 and F1 are Carathéodory functions satisfying:

(1.29)


|F0(x, s)| ≤ C(1 + |s|2) ∀(x, s) ∈ Ω× R,
a|v|2 ≤ F1(x, v) ≤ C(1 + |v|2) ∀(x, v) ∈ ω × R, a > 0,

F1(x, ·) is convex for each x ∈ ω.

Then Problem P1′ possesses at least one solution û.

The proof relies on arguments similar to those above but technically more
involved. It will not be given here; see [16] for the details.

QUESTION 4: What can be said if, in (1.29), we have a = 0?



“EFC-Control” — 2011/11/30 — 16:37 — page 8 — #12

8 1. OPTIMAL CONTROL OF SYSTEMS GOVERNED BY PDES

Notice that, in the previous result, the convexity hypothesis on F1(x, ·) is es-
sential. Indeed, let us consider the particular case in which the state system is

(1.30)

{
−∆y = u in Ω,
y = 0 on Γ,

the set Uad is

(1.31) Uad = {u ∈ L2(Ω) : |u| ≤ 1 a.e. in Ω }
and the cost functional is given by

(1.32) J(u) =

∫
Ω

(
|u|2 − 1

)2
dx+

1

2

∫
Ω

|y|2 dx ∀u ∈ Uad .

Then, it can be shown that
inf

u∈Uad
J(u) = 0

and however
J(u) > 0 ∀u ∈ Uad ,

whence the optimal control problem associate to (1.30), (1.31) and (1.32) has no
solution.

To end this Subsection, let us recall a result concerning the optimality system
for Problem P1′. We will need the adjoint operator A∗, which is given as follows:

(1.33) A∗p = −
2∑

i,j=1

∂

∂xj

(
aij(x)

∂p

∂xi
+ bj(x)p

)
+ c(x)p.

Then, one has:

Theorem 1.5. Assume that F is as above, that F0 and F1 possess bounded
partial derivatives and, also, that (1.29) is satisfied. Let û be a solution to Problem
P1′. Then there exist ŷ and p̂ such that the following optimality system is satisfied:

(1.34)

{
Aŷ + f(ŷ) = û1ω in Ω,
ŷ = 0 on Γ,

(1.35)

 A∗p̂+ f ′(ŷ)p̂ =
∂F0

∂s
(x, ŷ) in Ω,

p̂ = 0 on Γ,

(1.36)

∫
ω

(
p̂+

∂F1

∂v
(x, û)

)
(u− û) dx ≥ 0 ∀u ∈ Uad .

As before, the method of proof of this result provides an expression for the
derivative J ′(u) of J at each u. More precisely, one finds that

(1.37) 〈J ′(u), v〉 =

∫
ω

(
p+

∂F1

∂v
(x, u)

)
v dx ∀v ∈ Uad ,

where p is the adjoint state associate to u, i.e. the solution to

(1.38)

 A∗p+ f ′(y)p =
∂F0

∂s
(x, y) in Ω,

p = 0 on Γ

and y is the state, i.e. the solution to (1.24).
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For other similar results, see for instance [14] and [17].

QUESTION 5: Is there a way to use the optimality system in theorem 1.5 to prove
a uniqueness result?

QUESTION 6: The optimality system in theorem 1.5 also suggests a “natural”
iterative method for the computation of û. Which one? What can be said on the
convergence of the iterates?

QUESTION 7: In view of (1.37) − (1.38), how can we apply gradient and conju-
gate gradient method to produce a sequence of controls that converge to an optimal
control?

1.3. Control on the coefficients, nonexistence and relaxation

In this Section we assume for simplicity that N = 2 and we consider Prob-
lem P2.

We will try to show the complexity of the problems in which the control is
applied through coefficients in the principal part of the operator. We will first see
that, in general, there exists no solution to this problem.

The following notation is needed. For given α and β with α, β > 0, let us
denote by A(α, β) the family of 2 × 2 matrices A with components Aij ∈ L∞(Ω)
such that

(1.39) A(x)ξ · ξ ≥ α|ξ|2, (A(x))−1ξ · ξ ≥ 1

β
|ξ|2 ∀ξ ∈ R2, x a.e. in Ω.

It will be useful to recall the concept of H-convergence, which was introduced by
F. Murat in 1978 (see [84],[85] and [88]):

Definition 1.6. Assume that An ∈ A(α, β) for each n ≥ 1 and that A0 ∈
A(α, β). It will be said that An H-converges to A0 in Ω if, for any non-empty open
set O ⊂ Ω and any g ∈ H−1(O), the solution yn of the elliptic problem

(1.40)

{
−∇ · (An(x)∇y) = g in O,
y = 0 on ∂O,

satisfies

yn → y0 weakly in H1
0 (O)

and

An∇yn → A0∇y0 weakly in L2(O),

where y0 is the unique solution of the problem

(1.41)

{
−∇ · (A0(x)∇y) = g in O,
y = 0 on ∂O.

It can be seen that the family A(α, β) is closed for the H-convergence. The
following is also true:

Theorem 1.7. The family A(α, β) is compact for the H-convergence. In other
words, any sequence in A(α, β) possesses subsequences that H-converge in A(α, β).
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A key point is that we can have all the An of the form

An = anI ∀n ≥ 1,

while the H-limit A0 can have extra-diagonal terms. In fact, explicit examples can
be constructed and, in particular, we can find A0 ∈ A(α, β) and f0 ∈ H−1(Ω) with
the following two properties:

(a) A0 is the H-limit of a sequence of the form anI, with an(x) = α or
an(x) = β a.e.

(b) Let y0 be the solution to (1.41) with g replaced by f0. Then there is no
function a with a(x) = α or a(x) = β a.e. such that y0 solves (1.5) with
f replaced by f0.

We are now ready to prove that Problem P2 has no solution in general. Let us
take f = f0 and yd = y0, where y0 is the solution of (1.41) with g replaced by f0.
In view of the properties of A0, it is clear that

inf
a∈Aad

j(a) = 0

(recall that Aad is given by (1.7)). However, in view of the properties of f0, we also
have

j(a) > 0 ∀a ∈ Aad .

As a consequence, we must modify the definition of optimal material. Note
that minimizing sequences do exist and that, in fact, they “describe” the optimal
behavior. Consequently, it seems natural to adopt a new formulation in which
the limits of minimizing sequences are distinguished material configurations. A
satisfactory strategy consists of introducing a relaxed problem.

Relaxation is a useful tool in Optimization. Roughly speaking, to relax an
extremal problem, say (P), is to introduce a second one, denoted by (Q), satisfying
the following three conditions:

(a) (Q) possesses at least one solution.
(b) Any solution to (Q) can be written as the limit (in some sense) of a

minimizing sequence for (P).
(c) Conversely, any minimizing sequence for (P) contains a subsequence that

converges (in the same sense) to a solution of (Q).

For an overview on the role of the notion of relaxation in control problems,
see [67] and [93]. We will only present here an intuitive and very simple argument
which leads to a relaxed problem for P2.

The main point is to determine the “closure” in A(α, β) of the family formed
by the matrices of the form aI, with a ∈ Aad . The answer is given by the following
result:

Theorem 1.8. Let Ãad be the family of all A ∈ A(α, β) with the following two
properties:

(a) A(x) is symmetric for x a.e. in Ω.
(b) For almost all x, the eigenvalues λ1(x) and λ2(x) of the matrix A(x)

satisfy:

(1.42) α ≤ λ1(x) ≤ λ2(x) ≤ β, αβ

α+ β − λ2(x)
≤ λ1(x).
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Then, if A is given in A(α, β), one has A ∈ Ãad if and only if A can be written
as the H-limit of a sequence of matrices of the form anI, with an ∈ Aad for all n.

This is proved in [106] (see also [88]). At this respect, it is worth mentioning
that, in a similar N -dimensional situation with N ≥ 3, the determination of the
set of H-limits of the matrices of the form aI with a ∈ Aad is an open problem.

The previous result permits to introduce a new control problem which is nothing
but the relaxation of Problem P2.

Namely, for each A ∈ Ãad , let us consider the (relaxed) state system

(1.43)

{
−∇ · (A(x)∇Y ) = f(x) in Ω,
Y = 0 on Γ

and let us set

(1.44) k(A) =
1

2

∫
Ω

|Y − yd|2 dx ∀A ∈ Ãad .

The relaxed problem is then:

PROBLEM P2′: To find Â ∈ Ãad such that k(Â) ≤ k(A) for all

A ∈ Ãad , where j̃ is given by (1.44).

Indeed, the following can be proved:

Theorem 1.9. Assume that f ∈ H−1(Ω) and yd ∈ L2(Ω) are given. Then,

there exists at least one solution Â to Problem P2′. This can be written as the
H-limit of a minimizing sequence for Problem P2. Furthermore, any minimizing
sequence for Problem P2 contains a subsequence that H-converges to a solution of
Problem P2′.

The proof of this result is not difficult, taking into account the definition of
H-convergence and the fact that Ãad is the H-closure of Aad .

From a physical viewpoint, we see that the “generalized” solution to the original
problem is a composite material. In general, it is anisotropic, i.e. Âij(x) may be
6= 0 for i 6= j.

QUESTION 8: Is it possible to deduce an optimality system for the solutions
to Problem P2′? Which one? Does this optimality system lead to convergent it-
erates?

QUESTION 9: Is it possible to compute k′(A) easily and use this computation to
apply gradient and/or conjugate gradient methods in the context of Problem P2′?

The reader is referred to [82] and the references therein for more details on
the control of coefficients, the generation of composite materials and other related
topics.

1.4. Optimal design and domain variations

We will now consider Problem P3.
This is an optimal design problem. The feature is that, now, the control is a

geometric datum in (1.8) (the set B). Accordingly, we have to minimize a function
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over a set Bad where there is no vector structure at our disposal. It is thus reasonable
to expect a higher level of difficulty than for other optimal control problems.

As mentioned above, the existence of a solution to Problem P3 is not clear at
all. To simplify our arguments, let us introduce two non-empty open sets D0 and
D1 , with

D0 ⊂⊂ D1 ⊂⊂ Ω

and let us first assume that Bad is the family of the non-empty closed sets B with
piecewise Lipschitz-continuous boundary that satisfy

(1.45) D0 ⊂ B ⊂ D1 .

Also, assume that |y∞| is small enough (depending on ν and Ω). Then, for each
B ∈ Bad , the state system (1.8) possesses exactly one solution (y, π) (the pressure
π is unique up to an additive constant). Consequently, we can assign to B a drag
D(B) = T (B, y), given by (1.9).

In other words, in this case the function B 7→ D(B) is well-defined and Problem
P3 reads:

To find B̂ ∈ Bad such that D(B̂) ≤ D(B) for all B ∈ Bad .

Let {Bn} be a minimizing sequence. For each n ≥ 1, let us denote by yn

the velocity field associated to Bn by (1.8). Then, it is clear that yn is uniformly
bounded in the H1-norm. More precisely, the extensions-by-zero of yn to the whole
domain Ω, that we denote by ỹ n, are uniformly bounded in H1(Ω;R2). We can
thus assume that ỹ n converges weakly in H1(Ω;R2), strongly in L2(Ω;R2) and
a.e. to a function ỹ 0. This is a consequence of the compactness of the embedding
H1(Ω) ↪→ L2(Ω); see for instance [1].

On the other hand, since {Bn} is a sequence of closed sets of Ω, we can also
assume that Bn converges in the sense of the Haussdorf distance dH to a closed
set B0. This is a consequence of the fact that the family of closed subsets of Ω is
compact for dH ; see [25].

At this respect, recall that, when B and B′ closed sets in R2, the Haussdorf
distance dH(B,B′) is given by

dH(B,B′) = max {ρ(B,B′), ρ(B′, B)},
where

ρ(B,B′) = sup
x∈B

d(x,B′) and d(x,B′) = inf
x′∈B′

|x− x′| for all B and B′

and a similar definition holds for ρ(B′, B).
The set B0 satisfies (1.45). However, the uniform bound in the H1 norm does

not give enough regularity for B0 and it is not clear whether the restriction of ỹ 0 to
the limit set Ω\B0 is, together with some π0, the solution of (1.8) with B replaced
by B0.

We can overcome this difficulty by introducing a more restrictive family Bad .
For instance, let us now assume that Bad is the family of the non-empty closed

sets B satisfying (1.45) whose boundaries are uniformly Lipschitz-continuous with
constant L > 0. By this we mean that the boundary ∂B of any B ∈ Bad can be
written in the form

(1.46) ∂B = {x(θ) : θ ∈ [0, 1] },
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where the function θ 7→ x(θ) satisfies x(0) = x(1) and is Lipschitz-continuous on
[0, 1] with Lipschitz constant L. Obviously, Bad is non-empty if L is large enough.

It is clear that we can argue as before and find a limit set B0 and a vector field
ỹ 0, defined in Ω. In this particular case, the set B0 belongs to Bad , that is, its
boundary is also of the form (1.46), see [21]. In view of this regularity property for
B0, it can also be proved that the restriction of ỹ0 to Ω \ B0 is, together with an
appropriate π0, the solution of (1.8) with B = B0.

QUESTION 10: How can this be proved?

Unfortunately, this new definition of the admissible set Bad can be too restric-
tive.

Actually, this is a common fact for optimal design problems: either we choose
the apparently natural definition of Bad (and then existence is not known) or we
make it more restrictive (and then the problem can become unrealistic). For more
details on these and other similar results, see [95, 96, 60].

We will now study the behavior of the function B 7→ D(B). Let B̂ be a reference
shape for the body (arbitrary in Bad but fixed). The body variations are described
by a field u = u(x) and we search for a formula of the kind

(1.47) D(B̂ + u) = D(B̂) +D′(B̂;u) + o(u),

where the modified fluid domain is

(Ω \ B̂) + u = Ω \ (B̂ + u) = {x ∈ R2 : x = (I + u)(ξ), ξ ∈ Ω \ B̂ }

and

o(u)‖u‖−1
W 1,∞ → 0 as ‖u‖W 1,∞ → 0.

We are thus led to an analysis of the differentiability of the function u 7→ D(B̂+u).
A lot of work has been made for the definition and computation of the variations

with respect to a domain of functionals defined through the solutions to boundary
value problems. The reader is referred to [102] and the references therein.

We will recall briefly a variant of a general method introduced by F. Murat
and J. Simon in [86] and [87]1. This is taken from [10]. Notice that some formal
computations of the derivative were previously carried out by O. Pironneau in [94]
(see also [96]), using “normal” variations.

We will choose fields u ∈ W 1,∞(R2;R2) such that u = 0 on Γ. This includes

many interesting situations in which ∂(Ω \ (B̂ + u)) possesses “corner” points.
Furthermore, the equality u = 0 on Γ expresses the fact that the outer boundary
limiting the fluid is fixed.

We will also assume that ‖u‖W 1,∞ ≤ η, with η being small enough to ensure

that the boundary of Ω \ (B̂ + u) is Lipschitz-continuous and also that B̂ + u is
included in a fixed open set D2 satisfying

B̂ ⊂⊂ D2 ⊂⊂ Ω

1The general method in [86] and [87] cannot be directly applied to the Stokes and Navier-
Stokes cases. This is due to the incompressibility condition.
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(such a constant η > 0 exists, see [10] for a proof).
For the sequel, we introduce

W = {u ∈W 1,∞(R2;R2) : ‖u‖W 1,∞ ≤ η, u = 0 on ∂Ω }.

Now, we choose g satisfying

∇ · g = 0, g = y∞ in a neighborhood of ∂Ω, g = 0 in a neighborhood of D2

(such a function g always exists; see for instance [51]). If u ∈ W, one has g = 0 in

a neighborhood of ∂B̂ + u. After normalization of the pressure, the Navier-Stokes
problem in Ω \ (B̂ + u) can be written as follows:
(1.48)

−ν∆y(u) + (y(u) · ∇)y(u) + π(u) = 0, ∇ · y(u) = 0 in Ω \ (B̂ + u),

y(u)− g ∈ H1
0 (Ω \ (B̂ + u);R2),

π(u) ∈ L2(Ω \ (B̂ + u)),

∫
Ω\B̂

π(u) ◦ (I + u) dx = 0.

The drag associated to B̂ + u can be defined and is given by

(1.49) D(B̂ + u) = T (B̂ + u, y(u)) = 2ν

∫
Ω\(B̂+u)

|Dy(u)|2 dx,

where Dy(u) = 1
2 (∇y(u) +∇y(u)t).

Under these conditions, it is proved in [10] that the equality (1.47) is satisfied,

with the first order term D′(B̂;u) given by

D′(B̂;u) = 4ν

∫
Ω\B̂

Dy ·
(
Dẏ(u)− E(u, y) +

1

2
(∇ · u)Dy

)
dx.

Here, we have introduced the following notation:

(a) (ẏ(u), π̇(u)) is the unique solution to the linear problem
−ν∆ẏ(u)+(y ·∇)ẏ(u) + (ẏ(u)·∇)y + π̇(u) = G(u, y, π), ∇·ẏ(u) = 0 in Ω \ B̂,
ẏ(u) ∈ H1

0 (Ω \ B̂;R2),

π̇(u) ∈ L2(Ω \ B̂),

∫
Ω\B̂

π̇(u) dx = 0,

where

G(u, y, π) = −ν∆((u · ∇)y) +
(
((u · ∇)y) · ∇

)
y + (y · ∇)((u · ∇)y) +∇(u · ∇π).

(b) E(u, y) is the 2× 2 tensor whose (i, j)-th component is given by

Eij(u, y) =
1

2

∑
k

(
∂uk
∂xi

∂yj
∂xk

+
∂uk
∂xj

∂yi
∂xk

)
.

(c) y = y(0) and π = π(0), i.e. (y, π) is the solution to (1.48) for u = 0.

It can also be proved that, ifB and Ω areW 2,∞ domains and u ∈W 2,∞(R2;R2),
then y ∈ H2(Ω;R2), π ∈ H1(Ω) and

(1.50) D′(B̂;u) =

∫
∂B̂

(
∂w

∂n
− ∂y

∂n

)
· ∂y
∂n

(u · n) dσ,
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with (w, q) being the unique solution to the “adjoint” problem
(1.51)

−ν∆wi+
∑
j ∂iyj wj−

∑
jyj∂jwi+∂iq=−2ν∆yi (1 ≤ i ≤ 2), ∇·w=0,

w ∈ H1
0 (Ω \ B̂;R2) ∩H2(Ω \ B̂;R2),

q ∈ H1(Ω \ B̂),

∫
Ω\B̂

q dx = 0,

Notice that, in order to compute the derivative of the drag in several direc-
tions u, it is interesting to use the identity (1.50). Indeed, it suffices to solve (1.8)

and (1.51) only once. Then, to determine D′(B̂;u) for a given u, we will only have

to compute one integral on ∂B̂.

QUESTION 11: Assume that Bad is the family of the non-empty closed sets B sat-
isfying (1.45) whose boundaries are uniformly Lipschitz-continuous with Lipschitz
constant L. How can (1.50) be used to produce a sequence {Bn} “converging” to a
solution to Problem P3?

To end this Section, let us state another result from [10]:

Theorem 1.10. There exists α > 0 such that, if |y∞| ≤ αν, then u 7→ D(B̂+u)
is a C∞ mapping in the set W.

One can also obtain expressions for the derivatives of higher orders. This
must be made with caution; indeed, D′′(B̂; ·, ·) (i.e. the second derivative at 0 of

u 7→ D(B̂ + u)) does not coincide with (D′(B̂; ·)′; ·) (i.e. the derivative at 0 of the

mapping u 7→ D′(B̂ + u; ·)), see [101].

1.5. Optimal control for a system modelling tumor growth

This Section deals with Problem P4. For simplicity, we will assume that the
functions f , h, F and H are given by (1.11), where ρ, m, R and M are positive
constants. We will also assume that the initial data in (1.10) satisfy:

c0 , β0 ∈ L∞(Ω) ∩H1
0 (Ω), c0 , β0 ≥ 0.

For each v ∈ L2(ω × (0, T )) with v ≥ 0, there exists at least one solution (c, β)
to (1.10), with

c ∈ L∞(Q), ct ,
∂c

∂xi
,

∂2c

∂xi∂xj
∈ L2(Q)

and the same properties for β.

QUESTION 12: Why is this true? What about uniqueness?

Then the following results can be proved:

Theorem 1.11. Assume that Vad is a non-empty closed convex set of L2(ω)
and all v ∈ Vad satisfy v ≥ 0. Then Problem P4 possesses at least one solution.
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Theorem 1.12. Let the assumptions of theorem 1.11 be satisfied and let û be

a solution to Problem P4. Then there exists (ĉ, β̂) and (p̂, η̂) such that

(1.52)



ĉt −∇ · (D(x)∇ĉ) = ρĉ−Rĉβ̂ in Q = Ω× (0, T ),

β̂t − µ∆β̂ = −mβ̂ −Mĉβ̂ + v1ω in Q = Ω× (0, T ),

ĉ = 0 on Σ = ∂Ω× (0, T ),

β̂ = 0 on Σ = ∂Ω× (0, T ),

ĉ(x, 0) = c0(x) in Ω,

β̂(x, 0) = β0(x) in Ω,

(1.53)



−p̂t −∇ · (D(x)∇p̂) = ρp̂−Rβ̂p̂−Mβ̂η̂ in Q = Ω× (0, T ),

−η̂t − µ∆η̂ = −mη̂ −Rĉp̂−Mĉη̂ in Q = Ω× (0, T ),

p̂ = 0 on Σ = ∂Ω× (0, T ),

η̂ = 0 on Σ = ∂Ω× (0, T ),

p̂(x, T ) = ĉ(x, T ) in Ω,

η̂(x, T ) = 0 in Ω,

(1.54)

∫∫
ω×(0,T )

(ap̂+ bû)(u− û) dx dt ≥ 0 ∀u ∈ Vad.

For the proofs, the arguments are not too different from those in Section 1.2.
Again, it is common to say that (p̂, η̂) is the adjoint state associate to the

optimal control û. Also,

(1.55) 〈J ′(u), v〉 =

∫∫
ω×(0,T )

(ap+ bu) v dx dt ∀v ∈ Vad ,

where (p, η) is the adjoint state associate to u, i.e. the solution to

−pt −∇ · (D(x)∇p) = ρp−Rβp−Mβη in Q = Ω× (0, T ),

−ηt − µ∆η = −mη −Rcp−Mcη in Q = Ω× (0, T ),

p = 0 on Σ = ∂Ω× (0, T ),

η = 0 on Σ = ∂Ω× (0, T ),

p(x, T ) = c(x, T ) in Ω,

η(x, T ) = 0 in Ω.

Once more, this provides very useful techniques to compute, for any control u,
the associate J ′(u).

QUESTION 13: Can the optimality system in theorem 1.12 be used to prove a
uniqueness result for Problem P4?

QUESTION 14: Again, a “natural” iterative method for the computation of û is
suggested by the optimality system in theorem 1.12. Which is this method? What
can be said on the convergence of the iterates?
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QUESTION 15: How can we apply gradient and conjugate gradient method to pro-
duce a sequence of controls that converge to an optimal control in he context of Prob-
lem P4?

This optimal control problem has been solved numerically in [28]; more results
will be given in a forthcoming paper.
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CHAPTER 2

Controllability of the linear heat and wave PDEs

This Lecture is devoted to the controllability of some systems governed by linear
time-dependent PDEs. I will consider the heat and the wave equations. I will try
to explain which is the meaning of controllability and which kind of controllability
properties can be expected to be satisfied by each of these PDEs. The main related
results, together with the main ideas in their proofs, will be recalled.

2.1. Introduction

Let us first make some very general considerations on the following abstract
problem:

(2.1)

{
yt −Ay = Bv, t ∈ (0, T ),
y(0) = y0,

where A and B are linear operators, v = v(t) is the control and y = y(t) is the
state.

For fixed T > 0, we choose y0 and y1 in the space of states (the space where y
“lives”) and we try to answer the following question:

Can one find a control v such that the solution y associated to v
and y0 takes the value y1 at t = T ?

This is an exact controllability problem. The control requirement y(T ) = y1

can be relaxed in various ways, leading to other notions of controllability.
Of course, the solvability of problems of this kind depends very much on the

nature of the system under consideration; in particular, the following features may
play a crucial role: time reversibility, regularity of the state, structure of the set of
admissible controls, etc.

The controllability of partial differential equations has been the object of in-
tensive research since more than 30 years. However, the subject is older than that.
In 1978, D.L. Russell [99] made a rather complete survey of the most relevant re-
sults that were available in the literature at that time. In that paper, the author
described a number of different tools that were developed to address controllability
problems, often inspired and related to other subjects concerning partial differential
equations: multipliers, moment problems, nonharmonic Fourier series, etc. More
recently, J.-L. Lions introduced the so called Hilbert Uniqueness Method (H.U.M.;
see [77, 78]). That was the starting point of a fruitful period for this subject.

It would be impossible to present here all the important results that have been
proved in this area. I will thus only consider some model examples where the most
interesting difficulties are found.

19
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Several important related topics, like numerical computation and simulation in
controllability problems, stabilizability, connections with finite dimensional control-
lability theory, etc. have been left out. However, some useful references for these
issues have been included; see [23, 24, 57, 58, 59, 111].

2.2. Basic results for the linear heat equation

Let Ω ⊂ RN be a bounded domain (N ≥ 1), with boundary Γ of class C2.
Let ω be an open and non-empty subset of Ω. Let T > 0 and consider the linear
controlled heat equation in the cylinder Q = Ω× (0, T ):

(2.2)

 yt −∆y = v1ω in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω.

In (2.2), Σ = Γ × (0, T ) is the lateral boundary of Q, 1ω is the characteristic
function of the set ω, y = y(x, t) is the state and v = v(x, t) is the control. Since v
is multiplied by 1ω , the action of the control is limitted to ω × (0, T ).

We assume that y0 ∈ L2(Ω) and v ∈ L2(ω × (0, T )), so that (2.2) admits a
unique solution

y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)).

We will set R(T ; y0) = { y(·, T ) : v ∈ L2(ω × (0, T )) }. Then:

(a) It is said that system (2.2) is approximately controllable (at time T ) if
R(T ; y0) is dense in L2(Ω) for all y0 ∈ L2(Ω).

(b) It is said that (2.2) is exactly controllable if R(T ; y0) = L2(Ω) for all
y0 ∈ L2(Ω).

(c) Finally, it is said that (2.2) is null controllable if 0 ∈ R(T ; y0) for all
y0 ∈ L2(Ω).

It will be seen below that approximate and null controllability hold for every
non-empty open set ω ⊂ Ω and every T > 0.

On the other hand, it is clear that exact controllability cannot hold, except
possibly in the case in which ω = Ω. Indeed, due to the regularizing effect of the
heat equation, the solutions of (2.2) at time t = T are smooth in Ω \ ω. Therefore,
if ω 6= Ω, R(T ; y0) is strictly contained in L2(Ω) for all y0 ∈ L2(Ω).

Our first remark is that null controllability implies that the whole range of
the semigroup generated by the heat equation is reachable too. Let us make this
statement more precise.

Let us denote by S(t) the semigroup generated by the heat equation (2.2)
without control, i.e. with v = 0. Then, if null controllability holds, it follows that
for any y0 ∈ L2(Ω) and any y1 ∈ S(T )(L2(Ω)) there exists v ∈ L2(ω × (0, T )) such
that the solution of (2.2) satisfies y(x, T ) ≡ y1(x). In other words,

S(T )(L2(Ω)) ⊂ R(T ; y0) ∀y0 ∈ L2(Ω).

QUESTION 1: Why is this true?
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The space S(T )(L2(Ω)) is dense in L2(Ω). Therefore, null controllability implies
approximate controllability. Observe however that the reachable states we obtain
by this argument are smooth, due to the regularizing effect of the heat equation.

Notice that proving that null controllability implies approximate controllability
requires the use of the density of S(T )(L2(Ω)) in L2(Ω). In the case of the linear
heat equation this is easy to check developing solutions in Fourier series. However,
if the equation contains time or space-time dependent coefficients, this is true but
not so immediate. In those cases, the density of the range of the “semigroup”, can
be reduced by duality to a backward uniqueness property, in the spirit of J.-L. Lions
and B. Malgrange [81].

Our first main result is the following:

Theorem 2.1. System (2.2) is approximately controllable for any non-empty
open set ω ⊂ Ω and any T > 0.

Proof: This is an easy consequence of Hahn-Banach theorem. For completeness,
we will reproduce the argument here.

Let us fix ω and T > 0. Then, it is clear that (2.2) is approximately controllable
if and only if R(T ; 0) is dense in L2(Ω). But this is true if and only if any ϕ0 in the
orthogonal complement R(T ; 0)⊥ is necessarily zero.

Let ϕ0 ∈ L2(Ω) be given and assume that it belongs to R(T ; 0)⊥. Let us
introduce the following backwards in time system:

(2.3)

 −ϕt −∆ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(x, T ) = ϕ0(x) in Ω.

Then, if v ∈ L2(ω × (0, T )) is given and y is the solution to (2.2) with y0 = 0, we
have ∫∫

ω×(0,T )

ϕv dx dt =

∫
Ω

ϕ0(x)y(x, T ) dx = 0.

Consequently, approximate controllability holds if and only if the following unique-
ness property is true:

If ϕ solves (2.3) and ϕ = 0 in ω× (0, T ), then necessarily ϕ ≡ 0,
i.e. ϕ0 = 0.

But this is a well known uniqueness property for the heat equation, a conse-
quence of the fact that the solutions to (2.3) are analytic in space.

This proves that approximate controllability holds for (2.2). �

Following the variational approach in [80], we can also determine the way the
“good” control can be constructed. First of all, observe that it is sufficient to
consider the particular case y0 = 0. Then, let us fix y1 ∈ L2(Ω) and ε > 0 and let
us introduce the following functional on L2(Ω):

(2.4) Jε(ϕ
0) =

1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+ ε‖ϕ0‖L2 −
∫

Ω

ϕ0y1 dx,

where for each ϕ0 we have denoted by ϕ the solution to the corresponding problem
(2.3).
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The functional Jε is continuous and strictly convex in L2(Ω). On the other
hand, in view of the unique continuation property above, it can be proved that

(2.5) lim inf
‖ϕ0‖L2→∞

Jε(ϕ
0)

‖ϕ0‖L2

≥ ε.

Hence, Jε admits a unique minimizer ϕ̂0 in L2(Ω). The control u = ϕ̂|ω×(0,T ) ,

where ϕ̂ solves (2.3) with ϕ̂0 as final data is such that the solution of (2.2) (with
y0 = 0) satisfies

(2.6) ‖y(·, T )− y1‖L2 ≤ ε.

QUESTION 2: Why is (2.5) true? How can we prove (2.6) for this control?

With a slight change in the definition of Jε , we are also able to build bang-bang
controls. Indeed, it suffices to consider the new functional

(2.7) J̃ε(ϕ
0) =

1

2

(∫∫
ω×(0,T )

|ϕ| dx dt

)2

+ ε‖ϕ0‖L2 −
∫

Ω

ϕ0y1 dx.

Then J̃ε is continuous and convex in L2(Ω) and satisfies the coercivity property
(2.5) too.

Let ϕ̂0 be a minimizer of J̃ε in L2(Ω) and let ϕ̂ be the corresponding solution
of (2.3). Let us set

(2.8) u =

(∫∫
ω×(0,T )

|ϕ̂| dx dt

)
sgn(ϕ̂)|ω×(0,T ) ,

where sgn is the multivalued sign function: sgn(s) = 1 if s > 0, sgn(0) = [−1, 1]
and sgn(s) = −1 when s < 0. Again, the control u given by (2.8) is such that the
solution to (2.2) with zero initial data satisfies (2.6).

Due to the regularizing effect of the heat equation, the zero set of nontrivial
solutions of (2.3) is of zero (n + 1)−dimensional Lebesgue measure. Thus, the
control u in (2.8) belongs to L∞(Q) and is of bang-bang form, i.e. u = ±λ a.e. in
ω × (0, T ), where

λ =

∫∫
ω×(0,T )

|ϕ̂| dx dt.

In fact, it can be proved that u minimizes the L∞-norm in the set of all controls
such that (2.6) is satisfied (we refer to [31] for a proof of this assertion).

Following [110], we can improve the previous argument and show that, for
any ω, any T > 0 and any finite-dimensional subspace E ⊂ L2(Ω), (2.2) is E-
approximate controllable. This means that, for arbitrary y0, y1 ∈ L2(Ω) and any
ε > 0, there exists a control v ∈ L2(ω×(0, T )) such that the corresponding solution
to (2.2) satisfies:

(2.9) ‖y(·, T )− y1‖L2 ≤ ε, πE(y(·, T )) = πE(y1).

Here, πE : L2(Ω) 7→ E stands for the usual orthogonal projector on E.
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Indeed, it suffices to modify Jε (or J̃ε) and use instead the functional JEε , where

(2.10) JEε (ϕ0) =
1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+ ε‖(I − πE)ϕ0‖L2 −
∫

Ω

ϕ0y1 dx.

As before, JEε is continuous, strictly convex and coercive in L2(Ω). Once again,
let us denote by ϕ̂0 its unique minimizer and let us set u = ϕ̂|ω×(0,T ) . Then the
associate state satisfies (2.9).

QUESTION 3: Which is in this case the argument leading to (2.9)? Is the hypothesis
“E is finite-dimensional” essential?

Let us now analyze the null controllability of (2.2).
The null controllability property for system (2.2), together with a L2- estimate

of the control, is equivalent to the following observability inequality for the adjoint
system (2.3):

(2.11) ‖ϕ(·, 0)‖2L2 ≤ C
∫∫

ω×(0,T )

|ϕ|2 dx dt ∀ϕ0 ∈ L2(Ω).

QUESTION 4: Which is the proof of this assertion?

Due to the regularizing effect of the heat equation, the norm in the left hand
side of (2.11) is very weak. However, the irreversibility of the system makes (2.11)
difficult to prove. For instance, multiplier methods do not apply in this context.

Thus, we see that the approximate (resp. null) controllability of (2.2) is related
to the unique continuation property (resp. the observability) of (2.3).

Historically, it seems that the first null controllability results established for
the heat equation involved boundary controls. They were given in [99] in the
one-dimensional case, using moment problems and classical results on the linear
independence in L2(0, T ) of families of real exponentials. Later, in [100], a deep
general result was proved. Roughly speaking, the following was shown:

If the wave equation is controllable for some T > 0 with controls
supported in ω, then the heat equation (2.2) is null controllable
for every T > 0 with controls supported in ω.

In view of the controllability results in Section 2.3, according to this principle,
it follows that the heat equation (2.2) is null controllable for all T > 0 provided ω
satisfies a specific geometric control condition. However, this geometric condition
does not seem to be natural in the context of the heat equation and, therefore, this
result is not completely satisfactory.

More recently, the following was shown by G. Lebeau and L. Robbiano [70]:

Theorem 2.2. System (2.2) is null controllable for any non-empty open set
ω ⊂ Ω and any T > 0.

Sketch of the proof: A slightly simplified proof of this result was given in [74].
The main ingredient is an observability estimate for the eigenfunctions of the
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Dirichlet-Laplace operator:

(2.12)

{
−∆wj = λjwj in Ω,
wj = 0 on ∂Ω.

Recall that the eigenvalues {λj} form a nondecreasing sequence of positive
numbers such that λj →∞ as j →∞ and the associated eigenfunctions {wj} form
an orthonormal basis in L2(Ω).

The following holds:

Let Ω ⊂ RN be a bounded smooth domain. For any open set
ω ⊂ Ω, there exist positive constants C1, C2 > 0 such that

(2.13)
∑
λj≤µ

|aj |2 ≤ C1e
C2
√
µ

∫
ω

∣∣∣∑
λj≤µ

ajwj(x)
∣∣∣2 dx

whenever {aj} ∈ `2 and µ > 0.

This result was implicitly used in [70] and is proved in [74]. A consequence is
that the observability inequality (2.11) holds for the solutions to (2.3) with initial
data in

Eµ = span{ϕj : λj ≤ µ },
the constant being of the order of exp

(
C
√
µ
)
.

This shows that the projection on Eµ of the solution of (2.3) can be controlled
to zero with a control of size exp

(
C
√
µ
)
. Thus, when controlling the frequencies

λj ≤ µ, one increases the L2-norm of the high frequencies λj > µ by a multiplicative
factor of the order of exp

(
C
√
µ
)
.

However, it was observed in [70] that any solution of the heat equation (2.2)
with v = 0 such that the projection on Eµ of y(·, 0) vanishes decays in L2(Ω) at a
rate of the order of exp(−µt).

Consequently, if we divide the time interval [0, T ] in two parts [0, T/2] and
[T/2, T ], we control to zero the frequencies λj ≤ µ in the interval [0, T/2] and then
allow the equation to evolve without control in the interval [T/2, T ], it follows that,
at time t = T , the projection of the solution y over Eµ vanishes and the norm of
the high frequencies does not exceed the norm of the initial data.

This argument allows to control to zero the projection over Eµ for any µ > 0,
but not the whole solution. To do that, an iterative argument is needed. Thus,
we decompose the interval [0, T ) in disjoint subintervals of the form [Tj , Tj+1) for
j ∈ N, with a suitable choice of the sequence {Tj}. In each interval [Tj , Tj+1], we
control to zero the frequencies λk ≤ 2j. By letting j → ∞, we obtain a control
v ∈ L2(ω × (0, T )) such that the solution of (2.2) satisfies

(2.14) y(x, T ) ≡ 0.

�

Once it is known that (2.2) is null controllable, one can obtain the control with
minimal L2-norm satisfying (2.14). It suffices to minimize the functional

J(ϕ0) =
1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+

∫
Ω

ϕ(x, 0)y0(x) dx
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over the Hilbert space

H = {ϕ0 : the solution ϕ of (2.3) satisfies

∫∫
ω×(0,T )

|ϕ|2 dx dt <∞}.

As a consequence of this theorem, we also have the null boundary controlla-
bility of the heat equation, with controls in an arbitrarily small open subset of the
boundary. See [70] for more details.

QUESTION 5: Why does theorem 2.2 imply null boundary controllability?

The previous controllability results also hold for linear parabolic equations with
lower order terms depending on time and space.

For instance, the following system can be considered:

(2.15)

 yt −∆y + a(x, t)y = v1ω in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω.

Here, we assume that a ∈ L∞(Q). In this case, the adjoint system is

(2.16)

 −ϕt −∆ϕ+ a(x, t)ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(x, T ) = ϕ0(x) in Ω.

Again, the null controllability of (2.15), together with a L2- estimate of the
control, is equivalent to an observability inequality. Hence, in order to obtain a null
controllability result for (2.15), what we have to do is to prove the estimate (2.11)
for the solutions to (2.16).

The controllability properties of systems of this kind have been analyzed by sev-
eral authors. Among them, let us mention the work of A.V. Fursikov and O.Yu. Ima-
nuvilov (for instance, see [19, 45, 48, 46, 47, 64]; more complicate linear heat
equations involving first-order terms of the form B(x, t) · ∇y have recently been
considered in [66]). Their approach to the controllability problem is different and
more general than the previous one and relies on appropriate (global) Carleman
inequalities.

A general global Carleman inequality is an estimate of the form

(2.17)

∫∫
Ω×(0,T )

ρ−2 |ϕ|2 dx dt ≤ C
∫∫

ω×(0,T )

ρ−2 |ϕ|2 dx dt,

where ρ = ρ(x, t) is continuous, strictly positive and bounded from below. For an
appropriate ρ that depends on Ω, ω, T and ‖a‖L∞(Q) , it is possible to deduce (2.17)
and, consequently, also estimates of the form

(2.18)

∫∫
Ω×(T/4,3T/4)

|ϕ|2 dx dt ≤ C
∫∫

ω×(0,T )

|ϕ|2 dx dt.

This, together with the properties of the solutions of (2.16), leads to (2.11) and,
therefore, implies the null controllability property for (2.15); see also [66, 43, 26]
for some improved estimates.

QUESTION 6: How can (2.11) be proved from (2.18)?



“EFC-Control” — 2011/11/30 — 16:37 — page 26 — #30

26 2. CONTROLLABILITY OF THE LINEAR HEAT AND WAVE PDES

Thus, at present we can affirm that, as in the case of the classical heat equation,
(2.15) is both approximately and null controllable for any ω and any T > 0. Once
more, null controllability implies approximate controllability for (2.15); this has
been shown in [43].

An interesting question analyzed in [43] deals with explicit estimates of the
cost in L2(Q) of the approximate, E-approximate (E is a finite-dimensional space)
and null controllability of (2.15).

For instance, let us recall the results concerning the costs of approximate and
null controllability. In the remainder of this Section, it will be assumed that C is a
generic positive constant that only depends on Ω and ω.

Let us consider the linear state equation (2.15), where a ∈ L∞(Q). For each
y0 ∈ L2(Ω), y1 ∈ L2(Ω) and ε > 0, let us introduce the corresponding set of
admissible controls

(2.19) Uad(y0, y1; ε) := { v ∈ L2(Q) : the solution of (2.15) satisfies (2.6) }

and the following quantity, which measures the cost of approximate controllability
or, more precisely, the cost of achieving (2.6):

(2.20) C(y0, y1; ε) := inf
v∈Uad(y0,y1;ε)

‖v‖L2(Q) .

Then, the question is: can we obtain “explicit” upper bounds for C(y0, y1; ε)?
Taking into account that system (2.15) is linear, one can assume, without loss

of generality, that y0 = 0. Indeed,

(2.21) C(y0, y1; ε) = C(0, z1; ε) ,

where z1 = y1 − z(·, T ) and z is the solution of (2.15) with v ≡ 0.
Let us denote by ‖·‖∞ the usual norm in L∞(Q). Then the following is satisfied:

Theorem 2.3. For any y1 ∈ H2(Ω) ∩ H1
0 (Ω), ε > 0, T > 0 and a ∈ L∞(Q),

one has:
(2.22)

C(0, y1; ε)≤exp

[
C

[
1+

1

T
+T‖a‖∞+‖a‖2/3∞ +

‖a‖∞‖y1‖L2 +‖∆y1‖L2

ε

]]
‖y1‖L2 .

Notice that (2.22) is only of interest when

‖∆y1‖L2

λ1
> ε ,

with λ1 being the first eigenvalue of the Dirichlet Laplacian −∆. Otherwise, we
would have ‖y1‖L2 ≤ ε and then, taking v ≡ 0 in (2.15) for y0 = 0, we would
trivially obtain y ≡ 0 and

‖y(·, T )− y1‖L2 ≤ ε .
In other words,

C(0, y1; ε) = 0 if
‖∆y1‖L2

λ1
≤ ε .
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Furthermore, if instead of assuming y1 ∈ D(−∆) = H1
0 (Ω)∩H2(Ω) we assume

that y1 ∈ D((−∆)γ/2) with 0 < γ ≤ 2, other estimates similar to (2.22) can be
established. See [43] for the details.

For the proof of (2.22), we first have to obtain sharp bounds on the cost of
controlling to zero. Recall that (2.16) is the adjoint system of (2.15). Then we have
the following explicit observability estimate:

Lemma 2.4. For any solution of (2.16) and for any a ∈ L∞(Q), one has

(2.23) ‖ϕ(·, 0)‖2L2 ≤ exp

(
C

(
1 +

1

T
+ T‖a‖∞ + ‖a‖2/3∞

))∫∫
ω×(0,T )

|ϕ|2 dx dt .

The proof of (2.23) relies on global Carleman inequalities as in [47], but paying
special attention to the constants arising in the integrations by parts. Once (2.23)
is known, (2.22) can be proved easily.

QUESTION 7: How can (2.22) be proved from (2.23)?

As we have already seen, (2.23) implies the null controllability of (2.15). But it
also provides an estimate for the associated cost C(y0, 0). More precisely, one has:

Theorem 2.5. For each y0 ∈ L2(Ω), the set Uad(y0, 0) is non-empty. More-
over, the associated cost C(y0, 0) satisifes:

(2.24) C(y0, 0) ≤ exp

(
C

(
1 +

1

T
+ T‖a‖∞ + ‖a‖2/3∞

))
‖y0‖L2 .

QUESTION 8: How can (2.24) be proved from (2.23)?

In the particular case in which a ≡ Const, (2.22) can be improved. More
precisely, we can obtain a bound of the cost of approximate controllability of the
order of exp(1/

√
ε). Furthermore, it can be proved that this estimate is optimal in

an appropriate sense; see [43] for the details.

Remark 2.6. We can be more explicit on the way the constants C in (2.22)
and (2.24) depend on Ω and ω: there exist “universal” constants C0 > 0 and m ≥ 1
such that C can be taken of the form

C = exp (C0‖ψ‖mC2) ,

where ψ ∈ C2(Ω) is any function satisfying ψ > 0 in Ω, ψ = 0 on ∂Ω and ∇ψ 6= 0
in Ω \ω. All this is a consequence of the particular form that must have ρ in order
to ensure (2.17). �

The results of this Section can be extended to more general equations of the
form

(2.25)

 yt −∆y +∇ · (yB(x, t)) + a(x, t)y = v1ω in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω,

where a ∈ L∞(Q) and B ∈ L∞(Q;RN ).
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To do that, it is sufficient to obtain suitable observability estimates for the
solutions of adjoint systems of the form

(2.26)

 −ϕt −∆ϕ−B(x, t) · ∇ϕ+ a(x, t)ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(x, T ) = ϕ0(x) in Ω.

More precisely, we can deduce that
(2.27)

‖ϕ(·, 0)‖2L2≤exp

(
C

(
1+

1

T
+T‖a‖∞+‖a‖2/3∞ +T 2‖B‖2∞

))∫∫
ω×(0,T )

|ϕ|2 dx dt

for any solution of (2.26) and for all a ∈ L∞(Q), B ∈ L∞(Q;RN ). Then, arguments
similar to those above lead to an estimate of the cost of approximate controllability.

The situation is more complicate when the state equation is of the form

(2.28)

 yt −∆y +B(x, t) · ∇y + a(x, t)y = 0 in Q
y = 0 on Σ
y(x, 0) = y0(x) in Ω .

Indeed, if B is only assumed to be in L∞(Q;RN ), the adjoint systems take the form

(2.29)

 −ϕt −∆ϕ−∇ · (ϕB(x, t)) + a(x, t)ϕ = 0 in Q
ϕ = 0 on Σ,
ϕ(x, T ) = ϕ0(x) in Ω

and, therefore, the usual Carleman inequalities do not suffice. These questions have
been considered and solved in [26], using some ideas from [66]. We omit the details.

To end this Section, let us make some comments on the convergence rate of
algorithms devised to construct “good” controls.

It is rather natural to build approximate controls by penalizing a suitable opti-
mal control problem. This has been done systematically, for instance, in the works
by R. Glowinski [55] and R. Glowinski et al. [56]. This method has also been
used to prove the approximate controllability for some linear and semilinear heat
equations in [79] and [33], respectively.

Let us briefly describe the procedure in the case of the linear heat equation.
First of all, without loss of generality, we set y0 = 0. Given y1 ∈ L2(Ω), we
introduce the functional Fk , with

(2.30) Fk(v) =
1

2

∫∫
ω×(0,T )

|v|2 dx dt+
k

2
‖y(·, T )− y1‖2L2 ∀v ∈ L2(ω × (0, T )),

where y is the solution of (2.2) with y0 = 0.
It was proved in [79] that Fk has a unique minimizer vk ∈ L2(ω × (0, T )) for

all k > 0 and that the associated states yk satisfy

(2.31) yk(·, T )→ y1 in L2(Ω) as k →∞.

In view of (2.31), in order to compute a control satisfying (2.6), it suffices to
take v = vk for a sufficiently large k = k(ε).

Using the results above, it is easy to get explicit estimates of the rate of con-
vergence in (2.31) (we refer to [43] for the details of the proof):
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Theorem 2.7. Under the previous conditions, there exists C > 0 such that

(2.32) ‖yk(·, T )− y1‖ ≤ C

log k

and

(2.33) ‖vk‖L2(Q) ≤
C
√
k

log k

as k →∞.

QUESTION 9: How can (2.32) and (2.33) be proved?

Notice that (2.32) provides logarithmic (and therefore very slow) convergence
rates. This fact agrees with the extremely high cost (exponentially depending on
1/ε) of approximate controllability.

The methods of this Section can also be applied to obtain estimates on the cost
of controllability when the control acts on a non-empty open subset of ∂Ω.

2.3. Basic results for the linear wave equation

Let us now consider the linear controlled wave equation

(2.34)

 ytt −∆y = v1ω in Q,
y = 0 on Σ,
y(x, 0) = y0(x), yt(x, 0) = y1(x) in Ω.

In (2.34), we have used the same notation as in Section 2.2. Again, y = y(x, t)
is the state and v = v(x, t) is the control. For any (y0, y1) ∈ H1

0 (Ω) × L2(Ω) and
any v ∈ L2(ω×(0, T )), (2.34) possesses exactly one solution y ∈ C0([0, T ];H1

0 (Ω))∩
C1([0, T ];L2(Ω)).

Roughly speaking, the controllability problem for (2.34) consists on describing
the set of reachable final states

R(T ; y0, y1) := { (y(·, T ), yt(·, T )) : v ∈ L2(ω × (0, T )) }.
As in the case of the heat equation, we may distinguish several degrees of

controllability:

(a) It is said that (2.34) is approximately controllable at time T if R(T ; y0, y1)
is dense in H1

0 (Ω)× L2(Ω) for every (y0, y1) ∈ H1
0 (Ω)× L2(Ω).

(b) It is said that (2.34) is exactly controllable at time T if R(T ; y0, y1) =
H1

0 (Ω)× L2(Ω) for every (y0, y1) ∈ H1
0 (Ω)× L2(Ω).

(c) Finally, it is said that (2.34) is null controllable at time T if (0, 0) ∈
R(T ; (y0, y1)) for every (y0, y1) ∈ H1

0 (Ω)× L2(Ω).

The previous controllability properties can also be formulated in other function
spaces in which the wave equation is well posed.

Since we are now dealing with solutions to the wave equation, for any of these
properties to hold, the control time T has to be sufficiently large, due to the finite
speed of propagation. On the other hand, since (2.34) is linear and reversible in
time, null and exact controllability are equivalent notions. As we have seen, the
situation is completely different in the case of the heat equation.
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QUESTION 10: Why do we need large T for any kind of controllability of the
wave equation? Why are null controllability and exact controllability equivalent
properties?

Clearly, every exactly controllable system is approximately controllable too.
However, (2.34) may be approximately but not exactly controllable.

Let us now briefly discuss the approximate controllability problem for the wave
equation.

Again, it is easy to see that approximate controllability is equivalent to a specific
unique continuation property. More precisely, let us introduce the adjoint system

(2.35)

 ϕtt −∆ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(x, T ) = ϕ0(x), ϕt(x, T ) = ϕ1(x) in Ω.

Then, (2.34) is approximately controllable with controls that depend continously
on the data if and only if the following unique continuation property is fulfilled:

If ϕ solves (2.35) and ϕ = 0 in ω×(0, T ), then necessarily ϕ ≡ 0,
i.e. (ϕ0, ϕ1) = (0, 0).

In fact, that the previous uniqueness property implies approximate controlla-
bility can be checked at least in two ways:

(a) Applying the Hahn-Banach theorem; see [78].
(b) Using the variational approach developed in [80].

Both approaches have been considered in the context of the heat equation.
They will not be revisited here, for reasons of space.

QUESTION 11: Which are the detailed arguments?

In view of a well known consequence of Holmgren’s uniqueness theorem, it
can be easily seen that, for any non-empty open set ω ⊂ Ω, the previous unique
continuation property holds if T is large enough (depending on Ω and ω). We refer
to Chapter 1 in [78] and [18] for a discussion on this problem.

Therefore, the following result holds:

Theorem 2.8. Let ω ⊂ Ω be a non-empty open set. There exists T1 > 0,
only depending on Ω and ω, such that, for any T > T1, the linear system (2.34) is
approximately controllable at time T .

When approximate controllability holds, the following (apparently stronger)
property is also satisfied:

Let E be a finite dimensional subspace of H1
0 (Ω) × L2(Ω) and

let us denote by πE : H1
0 (Ω) × L2(Ω) 7→ E the corresponding

orthogonal projector. Then, for any (y0, y1), (z0, z1) ∈ H1
0 (Ω)×

L2(Ω) and any ε > 0, there exists v ∈ L2(ω × (0, T )) such that
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the solution of (2.34) satisfies

(2.36) ‖(y(·, T )− z0, yt(·, T )− z1)‖H1
0×L2≤ε, πE(y(·, T ), yt(·, T ))=πE(z0, z1).

In other words, if T > 0 is large enough to ensure approximate controllability,
for any finite dimensional subspace E ⊂ H1

0 (Ω)×L2(Ω) we also have E-approximate
controllability.

QUESTION 12: Why does approximate controllability imply E-approximate con-
trollability for any finite-dimensional space E ⊂ H1

0 (Ω)× L2(Ω)?

The previous results hold for wave equations with analytic coefficients too.
However, the problem is not completely solved in the frame of the wave equation
with lower order potentials a ∈ L∞(Q) of the form

ytt −∆y + a(x, t)y = v1ω in Q.

We refer to [3, 105, 98] for some deep results in this direction.

Let us now consider the exact controllability problem.
It was shown by J.-L. Lions in [78] using the so called H.U.M. that exact

controllability holds (with controls v ∈ L2(ω × (0, T ))) if and only if

(2.37) ‖(ϕ(·, 0), ϕt(·, 0))‖2L2×H−1 ≤ C
∫∫

ω×(0,T )

|ϕ|2 dx dt

for any solution ϕ to the adjoint system (2.35).
This is an observability inequality, playing in this context the role played

by (2.11) in Section 2.2. It provides an estimate of the total energy of the solution
(2.35) by means of a measurement in the control region ω × (0, T ).

Notice that the energy

E(t) = ‖(ϕ(·, t), ϕt(·, t))‖2L2×H−1

of any solution to (2.35) is conserved. Thus, (2.37) is equivalent to the so called
inverse inequality

(2.38) ‖(ϕ0, ϕ1)‖2L2×H−1 ≤ C
∫∫

ω×(0,T )

|ϕ|2 dx dt.

QUESTION 13: Why is (2.37) equivalent to the exact controlability of (2.34)?

When (2.37) holds, one can minimize the functional W , with

(2.39) W (ϕ0, ϕ1) =
1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+ 〈(ϕ(·, 0), ϕt(·, 0)), (y1,−y0)〉,

in the space L2(Ω)×H−1(Ω). Indeed, the following result is easy to prove:

Lemma 2.9. Assume that (2.37) holds and (y0, y1) ∈ H1
0 (Ω)× L2(Ω) is given.

Then W possesses a unique minimizer (ϕ̂0, ϕ̂1) in L2(Ω) × H−1(Ω). The control
v = ϕ̂1ω , where ϕ̂ is the solution to (2.35) corresponding to the final data (ϕ̂0, ϕ̂1),
is such that the associated state satisfies

(2.40) y(x, T ) ≡ yt(x, T ) ≡ 0.
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QUESTION 14: How can we prove lemma 2.9?

As a consequence, the exact controllability problem is reduced to the analysis
of the inequality (2.38). Let us now indicate what is known about this inequality:

• Using multipliers techniques in the spirit of C. Morawetz, L.F. Ho proved
in [63] that, for any subset of Γ of the form

Γ(x0) = {x ∈ Γ : (x− x0) · n(x) > 0 }

with x0 ∈ RN (n(x) is the outward unit normal to Ω at x ∈ Γ) and any sufficiently
large T , the following boundary observability inequality holds:

(2.41) ‖(ϕ(·, 0), ϕt(·, 0))‖2H1
0×L2 ≤ C

∫∫
Γ(x0)×(0,T )

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dΓ dt

for every couple (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω).

This is the observability inequality that is required to solve a boundary con-
trollability problem similar to the one we are considering here.

Later, (2.41) was proved in [77, 78] for any

(2.42) T > T (x0) = 2‖x− x0‖L∞ .

In fact, this is the optimal observability time that one may obtain by means of
multipliers.

Proceeding as in Vol. 1 of [78], one can easily prove that (2.41) implies (2.37)
when ω is a neighborhood of Γ(x0) in Ω and T > T (x0). Consequently, the following
result holds:

Theorem 2.10. Assume that x0 ∈ RN , ω is a neighborhood of Γ(x0) in Ω and
(2.42) is satisfied. Then (2.34) is exactly controllable at time T .

More recently, A. Osses has introduced in [89] a new multiplier which is essen-
tially a rotation of the one in [78]. In this way, he proved that the class of subsets
of the boundary for which observability holds is considerably larger.

• C. Bardos, G. Lebeau and J. Rauch [9] proved that, in the class of C∞

domains, the observability inequality (2.37) holds if and only if the couple (ω, T )
satisfies the following geometric control condition in Ω:

Every ray of geometric optics that begins to propagate in Ω at
time t = 0 and is reflected on its boundary Γ enters ω at a time
t < T .

This result was proved with microlocal analysis techniques. Recently, the mi-
crolocal approach has been greatly simplified by N. Burq [15] by using the microlo-
cal defect measures introduced by P. Gerard [50]. In [15], the geometric control
condition was shown to be sufficient for exact controllability for domains Ω of class
C3 and equations with C2 coefficients.

Therefore, one has:
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Theorem 2.11. Let Ω be of class C3, let ω ⊂ Ω be a non-empty open set and
let us assume that the couple (ω, T ) satisfies the previous geometric condition. Then
(2.34) is exactly controllable at time T .

• Let us finally indicate that other methods have also been developed to ad-
dress controllability problems for wave equations: Moment problems, the use of
fundamental solutions, controllability via stabilization, Carleman estimates, etc.
We will not present them here; for more details, we refer to the survey paper by
D.L. Russell [99] and also to the works of J.-P. Puel [97] and X. Zhang [107].

As in the case of the heat equation, it is also natural to study the cost of the
approximate controllability of the wave equation or, in other words, the minimal
size of a control needed to reach the ε-neighborhood of a final state. The same can
be said in the context of null controllability. These questions were considered by
G. Lebeau in [69], with techniques which are not the same we used in Section 2.2.
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CHAPTER 3

Controllability results for other time-dependent
PDEs

This Lecture is devoted to present some controllability results for several time-
dependent, mainly nonlinear, parabolic systems of PDEs. First, we will revisit
the heat equation and some extensions. Then, some controllability results will be
presented for systems governed by stochastic PDEs. Finally, we will consider sev-
eral nonlinear systems from fluid mechanics: Burgers, Navier-Stokes, Boussinesq,
micropolar, etc. Along this Lecture, several open questions will be stated.

3.1. Introduction. Recalling general ideas

Let us first recall some general ideas, many of them already mentioned in the
previous Lecture.

Suppose that we are considering an abstract state equation of the form

(3.1)

{
yt −A(y) = Bv, t ∈ (0, T ),
y(0) = y0,

which governs the behavior of a physical system. It is assumed that

• y : [0, T ] 7→ H is the state, i. e. the variable that serves to identify the
physical properties of the system,

• v : [0, T ] 7→ U is the control, i.e. the variable we can choose (for simplicity,
we assume that U and H are Hilbert spaces),

• A : D(A) ⊂ H 7→ H is a (generally nonlinear) operator with A(0) = 0,
B ∈ L(U ;H) and y0 ∈ H.

Suppose that (3.1) is well-posed in the sense that, for each y0 ∈ H and each
v ∈ L2(0, T ;U), it possesses exactly one solution. Then the null controllability
problem for (3.1) can be stated as follows:

For each y0 ∈ H, find v ∈ L2(0, T ;U) such that the correspond-
ing solution of (3.1) satisfies y(T ) = 0.

More generally, the exact controllability to the trajectories problem for (3.1) is
the following:

For each free trajectory y : [0, T ] 7→ H and each y0 ∈ H, find
v ∈ L2(0, T ;U) such that the corresponding solution of (3.1)
satisfies y(T ) = y(T ).

Here, by a free or uncontrolled trajectory we mean any (sufficiently regular)
function y : [0, T ] 7→ H satisfying y(t) ∈ D(A) for all t and

yt −A(y) = 0, t ∈ (0, T ).

35
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Notice that the exact controllability to the trajectories is a very useful property
from the viewpoint of applications: if we can find a control such that y(T ) = y(T ),
then after time T we can switch off the control and let the system follow the “ideal”
trajectory y.

For each system of the form (3.1), these problems lead to several interesting
questions. Among them, let us indicate the following:

• First, are there controls v such that y(T ) = 0 and/or y(T ) = y(T )?
• Then, if this is the case, which is the cost we have to pay to drive y to

zero and/or y(T )? In other words, which is the minimal norm of a control
v ∈ L2(0, T ;U) satisfying these properties?

• How can these controls be computed?

As indicated in Lecture 2, the controllability of differential systems is a very
relevant area of research and has been the subject of a lot of work the last years.
In particular, in the context of PDEs, the null controllability problem was first
analyzed in [99, 100, 77, 78, 64, 70]. For semilinear systems of this kind, the
first contributions have been given in [68, 109, 30, 47].

In this Lecture, I will consider several linear and nonlinear parabolic PDEs.
First, we will recall the results satisfied by the classical heat equation in a bounded
N -dimensional domain, complemented with appropriate initial and boundary-value
conditions. Secondly, we will deal with similar stochastic PDEs. We will then
consider the viscous Burgers equation. We will see that, for this PDE, the null
controllability problem (with distributed and locally supported control) is well un-
derstood.1 We will also consider the Navier-Stokes and Boussinesq equations and
some other systems from mechanics.

3.2. The heat equation. Observability and Carleman estimates

Let us consider the following control system for the heat equation:

(3.2)

 yt −∆y = v1ω, (x, t) ∈ Ω× (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω.

Here, we conserve the notation of Lecture 2. In particular, Ω ⊂ RN is a
nonempty regular and bounded domain, ω ⊂⊂ Ω is a (small) nonempty open subset
(1ω is the characteristic function of ω) and y0 ∈ L2(Ω).

It is well known that, for every y0 ∈ L2(Ω) and every v ∈ L2(ω× (0, T )), there
exists a unique solution y to (3.2), with y ∈ L2(0, T ;H1

0 (Ω)) ∩ C0([0, T ];L2(Ω)).
In view of the results in Lecture 2, (3.2) is approximately, E-approximately

and null controllable.
Also, if we introduce for each ϕ0 ∈ L2(Ω) the adjoint system

(3.3)

 −ϕt −∆ϕ = 0, (x, t) ∈ Ω× (0, T ),
ϕ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
ϕ(x, T ) = ϕ0(x), x ∈ Ω,

1More precisely, let us denote by T ∗(r) the minimal time needed to drive any initial state

with L2 norm ≤ r to zero. Then we will show that T ∗(r) > 0, with explicit sharp estimates from
above and from below.
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we know that the null controllability of (3.2) is equivalent to the observability of
(3.3), that is, to the following estimate:

(3.4) ‖ϕ(·, 0)‖2L2 ≤ C
∫∫
ω×(0,T )

|ϕ|2 dx dt ∀ϕ0 ∈ L2(Ω)

(where C only depends on Ω, ω and T ).
We have already seen that the estimates (3.4) are implied by the so called

global Carleman inequalities. These have been introduced in the context of the
controllability of PDEs by Fursikov and Imanuvilov; see [64, 47]. When they are
applied to the solutions to the adjoint system (3.3), they take the form

(3.5)

∫∫
Ω×(0,T )

ρ−2 |ϕ|2 dx dt ≤ K
∫∫
ω×(0,T )

ρ−2 |ϕ|2 dx dt ∀ϕ0 ∈ L2(Ω),

where ρ = ρ(x, t) is an appropriate weight depending on Ω, ω and T and the
constant K only depends on Ω and ω.2 Combining (3.5) and the dissipativity of
the backwards heat equation (3.3), it is not difficult to deduce (3.4) for some C
only depending on Ω, ω and T .

Since (3.2) is linear, null controllability is equivalent in this case to exact con-
trollability to the trajectories. This means that, for any uncontrolled solution y and
any y0 ∈ L2(Ω), there exists v ∈ L2(ω × (0, T )) such that the associated state y
satisfies

y(x, T ) = y(x, T ) in Ω.

Remark 3.1. Notice that the null controllability of (3.2) holds for any ω and T .
This is a consequence of the fact that, in a parabolic equation, the transmission
of information is instantaneous. Recall that this was not the case for the wave
equation. Again, this is not the case for the transport equation. Thus, let us
consider the control system

(3.6)

 yt + yx = v1ω, (x, t) ∈ (0, L)× (0, T ),
y(0, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, L),

with ω = (a, b) ⊂⊂ (0, L). Then, if 0 < T < a, null controllability does not hold,
since the solution always satisfies

y(x, T ) = y0(x− T ) ∀x ∈ (T, a),

independently of the choice of v; see [23] for more details and similar results con-
cerning other control systems for the wave, Schrödinger and Korteweg-De Vries
equations. �

There are many generalizations and variants of the previous argument that
provide the null controllability of other similar linear (parabolic) state equations:

• Time-space dependent (and sufficiently regular) coefficients can appear in
the equation, other boundary conditions can be used, boundary control
(instead of distributed control) can be imposed, etc.; see [47]; see also [36]
for a review of related results.

2In order to prove (3.5), we have to use a weight ρ that blows up as t→ 0 and also as t→ T ,
for instance exponentially.
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• The null controllability of Stokes-like systems of the form

(3.7) yt −∆y + (a · ∇)y + (y · ∇)b+∇p = v1ω, ∇ · y = 0,

where a and b are regular enough, can also be analyzed with these tech-
niques. See for instance [39]; see also [29] for other controllability prop-
erties. We will come back in Section 3.5 to systems of this kind.

• Other linear parabolic (non-scalar) systems can also be considered, etc.

However, there are several interesting problems related to the controllability of
linear parabolic systems that remain open. Let us mention some of them.

First, let us consider the controlled system

(3.8)

 yt −∇ · (a(x)∇y) = v1ω, (x, t) ∈ Ω× (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω,

where y0 and v are as before and the coefficient a is assumed to satisfy

(3.9) a ∈ L∞(Ω), 0 < a0 ≤ a(x) ≤ a1 < +∞ a.e.

It is natural to consider the null controllability problem for (3.8). Of course,
this is equivalent to the observability of the associated adjoint system

(3.10)

 −ϕt −∇ · (a(x)∇ϕ) = 0, (x, t) ∈ Ω× (0, T ),
ϕ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
yϕ(x, T ) = ϕ1(x), x ∈ Ω,

that is to say, to the fact that an inequality like (3.4) holds for the solutions to (3.10).
To our knowledge, it is at present unknown whether (3.8) is null controllable.

In fact, it is also unknown whether approximate controllability holds.
Recently, some partial results have been obtained in this context.
Thus, when N = 1, the null controllability of (3.8) has been established in [2]

for general a satisfying (3.9). The techniques in the proof rely on the theory of
quasi-conformal complex mappings and can be applied only to the one-dimensional
case, with a independent of t. Furthermore, they only serve to apply directly the
Lebeau-Robbiano method (recall the proof of theorem 2.2 in Lecture 2), that is,
they do not lead to a Carleman estimate of the form (3.5).

When N ≥ 2, it is known that (3.8) is null controllable under the following
assumption

(3.11) ∃ smooth open set Ω0 ⊂⊂ Ω such that a is C1 in Ω0 and Ω \ Ω0.

This has been proved in [73]. A slight improvement has been performed in [13],
where Ω0 is allowed to touch the boundary of Ω. Again, the proofs use that a is
independent of t in an essential way and do not clarify whether (3.5) holds.

In fact, it is an open question whether a Carleman estimate like (3.5) holds for
the solutions to (3.10) even if N = 1 or (3.11) holds.

In order to have (3.5), we apparently need more regularity for a; see [12] for a
proof when N = 1, a satisfies (3.9) and

(3.12) a ∈ BV (Ω);

see also [27] for a proof when N ≥ 2, a is piecewise C1 and satisfies (3.9) and some
additional “sign” conditions.
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At present, the following questions are open:

• Is (3.8) is null controllable when N ≥ 2 and a satisfies (3.9) and (3.12)?
Is (3.5) satisfied in this case?

• Is (3.5) satisfied when N = 1 and a only satisfies (3.9)?

QUESTION 1: Assume that N = 1 and a is piecewise constant and satisfies (3.9).
Is (3.8) approximately controllable?

A similar question can be asked when N ≥ 2. Which is the rigorous question
and which is the answer?

Let us now consider the non-scalar system

(3.13)

 yt −D∆y = My +Bv1ω, (x, t) ∈ Ω× (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω,

where y = (y1, . . . , yn) is the state, v = (v1, . . . , vm) is the control and D, M and B
are constant matrices, with D,M ∈ L(Rn;Rn) and B ∈ L(Rm;Rn). It is assumed
that n ≥ 2 and D is definite positive, that is,

(3.14) Dξ · ξ ≥ d0|ξ|2 ∀ξ ∈ Rn, d0 > 0.

When D is diagonal (or similar to a diagonal matrix), the null controllability
problem for (3.13) is well understood. In view of the results in [4], (3.13) is null
controllable if and only if

(3.15) rank [(−λiD +M);B] = n ∀i ≥ 1,

where the λi are the eigenvalues of the Dirichlet-Laplace operator and, for any
matrix H ∈ L(Rn;Rn), [H;B] stands for the n× nm matrix

[H;B] := [B|HB| · · · |Hn−1B].

Therefore, it is natural to search for (algebraic) conditions on D, M and B that
ensure the null controllability of (3.13) in the general case. But, to our knowledge,
this is unknown.

The results in [4] have been extended recently to the case of any D having no
eigenvalue of geometric multiplicity > 4; see [35].

QUESTION 2: Under which conditions the system

(3.16)

 yt −D∆y = M(x, t)y +Bv1ω, (x, t) ∈ Ω× (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω,

where D is a diagonal matrix satisfying (3.14), M ∈ L∞(Q;L(Rn;Rn)) and B ∈
L(Rm;Rn), is null controllable?

Remark 3.2. As we have said, global Carleman estimates are the main tool we
can use to establish the observability property (3.4). These open questions can be
viewed, at least in part, as a confirmation of the limitations of Carleman estimates:
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first, they need sufficiently regular coefficients; then, they are actually well-suited
only for scalar equations. �

3.3. Some remarks on the controllability of stochastic PDEs

In this Section, we deal briefly with a system governed by a linear stochastic
partial differential equation:

(3.17)

 yt −∆y = v1ω +B(t) ẇt in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω.

Here, v is again the control and ẇt is a Gaussian random field (white noise in
time). For instance, it can be regarded as the distributional time derivative of a
Wiener process wt . The equations are required to be satisfied P−a.e., i.e. P -almost
surely, in a given probability space {Λ,F , P}.

In the sequel, we are going to see that, for general y0, y1 and B = B(t), one
can obtain final states y(·, T ) arbitrarily close to y1 in quadratic mean by choosing
v appropriately (an approximate controllability result). We will also see that, if
B is not random and in some sense small, then one can also choose v such that
y(·, T ) = 0 (amnull controllability result).

3.3.1. Some basic results from probability calculus. In order to present
the results without too much ambiguity, we will first recall some basic definitions
and results.

Thus, assume that a complete probability space {Λ,F , P} is given. If X is a
Banach space and f ∈ L1(Λ,F ;X), we will denote by Ef the expectation of f :

Ef =

∫
Λ

f(λ) dP (λ).

Assume that a separable Hilbert space K and a Wiener process wt on {Λ,F , P}
with values in K are given. This means that

wt =

∞∑
k=1

βkt ek ∀t ≥ 0,

where {ek} is an orthonormal basis in K and the βkt are mutually independent real
Wiener processes satisfying

(3.18) E|βkt |2 = µ2
kt,

∞∑
k=1

µ2
k < +∞.

A normalized real Wiener process βt is a measurable function (λ, t) 7→ βt(λ)
which is defined P − a.s. in Λ for all t ∈ R+ and satisfies the following:

(a) β0 = 0,
(b) For each t, βt is normally distributed, with mean 0 and variance t, i.e.

Eβt = 0, E|βt|2 = t.

(c) E(βt βs) =
√
t
√
s for all t, s ≥ 0.
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For other equivalent definitions and basic properties of real Wiener processes,
see [6]. Recall that, in particular, the real processes βkt and the K-valued process
wt have Hölder-continuous sample paths t 7→ βkt (λ) and t 7→ wt(λ).

In the sequel, we put

Ft := σ(ws, 0 ≤ s ≤ t )

(Ft is the σ-algebra spanned by ws for 0 ≤ s ≤ t, completed with the negligeable
sets in F). Obviously, {Ft} is an increasing family of sub σ-algebras of F and,
among other things, one has:

(3.19) Ft = σ

(⋃
s<t

Fs

)
∀t > 0.

Let H be a Hilbert space. For any f ∈ L1(Λ,F ;H), we denote by E[f |Ft]
the conditional expectation of f with respect to Ft , i.e. the unique element in
L1(Λ,Ft;H) such that∫

A

E[f |Ft] dP =

∫
A

f dP ∀A ∈ Ft .

The existence and uniqueness of E[f |Ft] is implied by the celebrated Radon-
Nykodim theorem. For the main properties of the conditional expectation, see
for instance [91]. In particular, recall that, if f ∈ L2(Λ,F ;H), then E[f |Ft] ∈
L2(Λ,Ft;H) and icoincides with the orthogonal projection of f in L2(Λ,Ft;H).

Let X be a Banach space. We denote by I2(0, T ;X) the space formed by all
stochastic processes Φ ∈ L2(Λ × (0, T ), dP ⊗ dt;X) which are Ft-adapted a.e. in
(0, T ), i.e. such that

λ 7→ Φ(λ, t) is Ft-measurable for almost all t ∈ (0, T )

In the case X = L(K;H), measurability will be understood in the strong sense,
i.e. the measurability of λ 7→ Φ(λ, t)w for each w ∈ K. Then, I2(0, T ;X) is a
closed subspace of L2(Λ× (0, T ), dP ⊗ dt;X).

Recall that, for any b ∈ I2(0, T ;R), any real-valued Wiener process βt and any
fixed t ∈ [0, T ], we can introduce a random variable It(f) : Λ 7→ R known as the
Ito stochastic integral in [0, t]:

It(f) =

∫ t

0

f(s) dβs .

The stochastic process (λ, t) 7→ It(f)(λ) again belongs to I2(0, T ;R) and, among
other properties, satisfies the following:

E

∫ t

0

f(s) dβs = 0

and

E

∣∣∣∣∫ t

0

f(s) dβs

∣∣∣∣2 =

∫ t

0

E|f(s)|2 ds

for all t ∈ [0, T ].
Now, assume that a stochastic process B is given, with

(3.20) B ∈ I2(0, T ;L(K;H))
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(H is a Hilbert space). Then the stochastic integral of B with respect to wt is
defined by the formula∫ t

0

B(s) dws =

∞∑
k=1

∫ t

0

B(s)ek dβ
k
s ∀t ∈ [0, T ].

Here, the convergence of the series is understood in the sense of L2(Λ,Ft;H).
The stochastic integrals in the right hand side are defined by the equalities

(

∫ t

0

B(s)ek dβ
k
s , h) =

∫ t

0

(B(s)ek, h) dβks ∀h ∈ H,

where the latter are usual Ito stochastic integrals with respect to the real-valued
processes βkt ; see [6] for more details.

3.3.2. The controllability results. In the remainder of this Section, H and
V will denote the Hilbert spaces L2(Ω) and H1

0 (Ω), respectively.
Assume we are given an arbitrary but fixed initial state

(3.21) y0 ∈ H,

a Wiener process wt with values in the separable Hilbert space K and a stochastic
process B ∈ I2(0, T ;L(K;H)). Let A = −∆ be the usual Laplace-Dirichlet opera-
tor in Ω, with domain D(A) = H1

0 (Ω) ∩H2(Ω). For each control v ∈ I2(0, T ;H),
there exists exactly one solution y to the state system
(3.22)

y ∈ I2(0, T ;V ) ∩ L2(Λ;C0([0, T ];H)),

y(·, t) = y0 +

∫ t

0

{−Ay(·, s) + 1ωv(·, s)} ds+

∫ t

0

B(s) dws ∀t ∈ [0, T ].

In (3.22), the equalities have to be understood P − a.s. in V ′.
Notice that we choose Ft-adapted controls to govern the state system. This is

a natural assumption from the stochastic viewpoint since, once wt is given, only
Ft-adapted processes can be regarded as statistically observable.

Let S(t) be the semigroup generated in H by A. Then, in accordance with the
results in [24, 90], one has:

(3.23)

 y(·, t) = S(t)y0 +

∫ t

0

S(t− s)(1ωv(·, s)) ds+

∫ t

0

S(t− s)B(s) dws

∀t ∈ [0, T ]

Our first result deals with approximate controllability:

Theorem 3.3. The linear manifold YT = { y(·, T ) : v ∈ I2(0, T ;H) } is dense
in L2(Λ,FT ;H). In other words: for any y1 ∈ L2(Λ,FT ;H) and any ε > 0, there
exists a control v ∈ I2(0, T ;H) such that the associated solution to (3.22) satisfies:

E‖y(·, T )− y1‖2L2 ≤ ε.

Accordingly, it is said that (3.22) is approximately controllable in quadratic mean.
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Proof: We will argue as in the deterministic case. In view of (3.23), it will suffice
to check that, if f ∈ L2(Λ,FT ;H) and

(3.24) E(

∫ T

0

S(T − s)(1ωv(·, s)) ds, f)L2 = 0 ∀v ∈ I2(0, T ;H),

then necessarily f = 0.
Let f be a function in L2(Λ,FT ;H) satisfying (3.24) and assume that φ ∈

I2(0, T ;H) is defined pathwise by −φt +Aφ = 0 in Q,
φ = 0 on Σ,
φ(x, T ) = f(x) in Ω,

i.e. φ(·, t) = S(T − t)f for all t. It will be sufficient to prove that

(3.25) E[φ(·, t)|Ft] = 0 ∀t ∈ (0, T ).

Indeed, this and the continuity property (3.19) of the family {Ft} clearly imply
that

f = E[φ(·, T )|FT ] = 0.

QUESTION 3: Why do (3.25) and (3.19) imply that f = 0?

We know that

E

∫ T

0

(v(·, s), 1ωφ(·, s))L2 ds = 0 ∀v ∈ I2(0, T ;H).

Thus, 1ωE[φ(·, t)|Ft] is a stochastic process in I2(0, T ;H) such that

E

∫ T

0

(v(·, s), 1ωE[φ(·, s)|Fs]) ds =

∫ T

0

E(v(·, s), 1ωφ(·, s)) ds = 0

for all v ∈ I2(0, T ;H) and, consequently,

(3.26) 1ωE[φ(·, t)|Ft] = 0.

For each t ∈ (0, T ), E[φ(·, t)|Ft] = S(T − t)E[f |Ft] is real analytic in the
variable x ∈ Ω. Hence, one must necessarily have E[φ(·, t)|Ft] = 0 for all t ∈ (0, T )
and the result is proved. �

A consequence of this theorem is that, for any y1 ∈ L2(Λ,FT ;H), ε > 0 and
δ > 0, a control v can be found such that

P{ ‖y(·, T )− y1‖L2 < ε } ≥ 1− δ.

However, the existence of a control v ∈ I2(0, T ;H) such that P{ ‖y(·, T )− y1‖L2 <
ε } = 1 is an interesting open question.

The approximate controllability in quadratic mean remains true for systems
governed by more general linear equations. More precisely, the following result is
proved in [42]:
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Theorem 3.4. Assume that, in (3.22), A is an operator of the form

(3.27) Ay = −
N∑

i,j=1

∂

∂xi

(
aij

∂y

∂xj

)
+

N∑
j=1

bj
∂y

∂xj
+ cy,

where the coefficients satisfy

aij ∈ C1(Ω), bj , c ∈ L∞(Ω)

and the usual ellipticity condition

N∑
i,j=1

aij(x)ξjξi ≥ α|ξ|2 ∀λ ∈ RN , ∀x ∈ Ω, α > 0.

Then the corresponding YT = { y(·, T ) : v ∈ I2(0, T ;H) } is dense in L2(Λ,FT ;H).

We will now recall a null controllability result for (3.22) from [42]. Again, this
is the analog of a deterministic result.

Theorem 3.5. Let us set γ(t) := t(T − t). Assume that B is not random,
B ∈ C1([0, T ];L(K;H)) and, also, that the support of B(t)w does not intersect ω
for any t and w ∈ K. Then there exists a positive function β = β(x) such that, if

(3.28)

∫∫
Q

t
(
γ(t)−1‖B‖2L(K;H) + γ(t)3‖Bt‖2L(K;H)

)
e2β(x)/γ(t) dx dt < +∞,

for each y0 ∈ H there exists v ∈ I2(0, T ;H) satisfying y(x, T ) ≡ 0, i.e. (3.22) is
null controllable.

As in the deterministic case, the proof relies on an observability estimate for
the solution of the adjoint system.

The situation is more complicate in the case of a multiplicative noise, that is,
for systems of the form
(3.29)

y ∈ I2(0, T ;V ) ∩ L2(Ω;C0([0, T ], H)),

y(·, t) = y0 +

∫ t

0

{−Ay(·, s) + 1ωv(·, s)} ds+

∫ t

0

By(·, s) dws ∀t ∈ [0, T ].

Here, B is given by (By)(x) = b(x)y(x) for some b ∈W 1,∞(Ω) and (for simplicity)
wt is a real Wiener process.

From the theory of stochastic partial differential equations, it follows in par-
ticular that, for each v ∈ I2(0, T ;H), there exists exactly one solution y to (3.29),
see [90].

The approximate controllability in quadratic mean of (3.29) is equivalent to
the unique continuation property for the following backward (adjoint) stochastic
system:

(3.30)


p ∈ I2(0, T ;V ) ∩ L2(Ω;C0([0, T ];H)), q ∈ I2(0, T ;H),

p(·, t) = f +

∫ T

t

{A∗p(·, s) +Bq(·, s)} ds−
∫ T

t

q(·, s) dws ∀t ∈ [0, T ].
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In [8], a global Carleman estimate has been established for this system when
A = −∆ and b ∈ C2(Ω). Of course, this implies unique continuation for (3.30)
and, consequently, approximate controllability in quadratic mean for (3.29) in this
particular case.

On the other hand, an appropriate unique continuation property for (3.30) has
been proved in [34] in a more general case. As a consequence, one has approxi-
mate controllability in quadratic mean for (3.29). In fact, when b is a constant,
and Γ is of class C∞, we can also prove approximate controllability in all spaces
Lr(Λ,FT ;Lq(O)) with 1 ≤ r, q < +∞.

The previous analysis can also be made for stochastic Stokes systems; see [41].
For more results concerning the approximate and null controllability of sto-

chastic PDEs, see the recent paper [108].

3.4. Positive and negative results for the Burgers equation

In this Section, we will be concerned with the null controllability of the following
system for the viscous Burgers equation:

(3.31)


yt − yxx + yyx = v1ω , (x, t) ∈ (0, 1)× (0, T ),

y(0, t) = y(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1).

Recall that some controllability properties of (3.31) have been studied in [47]
(see Chapter 1, theorems 6.3 and 6.4). There, it is shown that, in general, a
stationary solution of (3.31) with large L2-norm cannot be reached (not even ap-
proximately) at any time T . In other words, with the help of one control, the
solutions of the Burgers equation cannot go anywhere at any time.

For each y0 ∈ L2(0, 1), let us introduce

T (y0) = inf{T > 0 : (3.31) is null controllable at time T }.
Then, for each r > 0, let us define the quantity

T ∗(r) = sup{T (y0) : ‖y0‖L2 ≤ r }.
Our main purpose is to show that T ∗(r) > 0, with explicit sharp estimates from
above and from below. In particular, this will imply that (global) null controllability
at any positive time does not hold for (3.31).

More precisely, let us set φ(r) = (log 1
r )−1. We have the following result

from [37]:

Theorem 3.6. One has

(3.32) C0φ(r) ≤ T ∗(r) ≤ C1φ(r) as r → 0,

for some positive constants C0 and C1 not depending of r.

Remark 3.7. The same estimates hold when the control v acts on system
(3.31) through the boundary only at x = 1 (or only at x = 0). Indeed, it is easy to
transform the boundary controlled system

(3.33)


yt − yxx + yyx = 0, (x, t) ∈ (0, 1)× (0, T ),

y(0, t) = 0, y(1, t) = w(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1)
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into a system of the kind (3.31). The boundary controllability of the Burgers
equation with two controls (at x = 0 and x = 1) has been analyzed in [54]. There,
it is shown that even in this more favorable situation null controllability does not
hold for small time. It is also proved in that paper that exact controllability does
not hold for large time.3 �

Remark 3.8. It is proved in [20] that the Burgers equation is globally null
controllable when we act on the system through two boundary controls and an
additional right hand side only depending on t. In other words, for any y0 ∈
L2(0, 1), there exist w1 , w2 and h in L2(0, T ) such that the soution to

(3.34)


yt − yxx + yyx = h(t), (x, t) ∈ (0, 1)× (0, T ),

y(0, t) = w1(t), y(1, t) = w2(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1)

satisfies

y(x, T ) = 0 in (0, 1).

However, it is unknown whether this global property is conserved when one of the
boundary controls w1 or w2 is eliminated. �

The proof of the estimate from above in (3.32) can be obtained by solving
the null controllability problem for (3.31) via a (more or less) standard fixed point
argument, using global Carleman inequalities to estimate the control and energy
inequalities to estimate the state and being very careful with the role of T in these
inequalities.

The proof of the estimate from below is inspired by the arguments in [5] and
is implied by the following property: there exist positive constants C0 and C ′0 such
that, for any sufficiently small r > 0, we can find initial data y0 and associated
states y satisfying ‖y0‖L2 ≤ r and

|y(x, t)| ≥ C ′0r for some x ∈ (0, 1) and any t satisfying 0 < t < C0φ(r).

For more details, see [37].

3.5. The Navier-Stokes and Boussinesq systems

There is a lot of more realistic nonlinear equations and systems from mechanics
that can also be considered in this context. First, we have the well known Navier-
Stokes equations:

(3.35)


yt + (y · ∇)y −∆y +∇p = v1ω, ∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω.

Here and below, N = 2 or N = 3 and (again) ω ⊂ Ω is a nonempty open set.
In (3.35), (y, p) is the state (the velocity field and the pressure distribution) and

v is the control (a field of external forces applied to the fluid particles located at
ω). To our knowledge, the best results concerning the controllability of this system

3Let us remark that the results in [54] do not allow to estimate T (r); in fact, the proofs are
based in contradiction arguments.
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have been given in [39] and [40].4 Essentially, these results establish the local exact
controllability of the solutions of (3.35) to bounded uncontrolled trajectories.

In order to be more specific, let us recall the definition of some usual spaces in
the context of Navier-Stokes equations:

V :=
{
y ∈ H1

0 (Ω)N : ∇ · y = 0 in Ω
}

and

H := {y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω}.

Of course, it will be said that (3.35) is exactly controllable to the trajectories if, for
any trajectory (y, p), i.e. any solution of the uncontrolled Navier-Stokes system

(3.36)

{
yt + (y · ∇)y −∆y +∇p = 0, ∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ

and any y0 ∈ H, there exist controls v ∈ L2(ω × (0, T ))N and associated solutions
(y, p) such that

(3.37) y(x, T ) = y(x, T ) in Ω.

At present, we do not know any global result concerning exact controllability
to the trajectories for (3.35). However, the following local result holds:

Theorem 3.9. Let (y, p) be a strong solution of (3.36), with

(3.38) y ∈ L∞(Q)N , y(· , 0) ∈ V.

Then, there exists δ > 0 such that, for any y0 ∈ H ∩ L2N−2(Ω)N satisfying ‖y0 −
y0‖L2N−2 ≤ δ, we can find a control v ∈ L2(ω× (0, T ))N and an associated solution
(y, p) to (3.35) such that (3.37) holds.

In other words, the local exact controllability to the trajectories holds for (3.35)
in the space X = L2N−2(Ω)N ∩ H Similar questions were addressed (and solved)
in [46] and [45]. The fact that we consider here Dirichlet boundary conditions and
locally supported distributed control increases a lot the mathematical difficulty of
the control problem.

Remark 3.10. It is clear that we cannot expect exact controllability for the
Navier-Stokes equations with an arbitrary target function, because of the dissipa-
tive and irreversible properties of the system. On the other hand, approximate
controllability is still an open question for this system. Some results in this di-
rection have been obtained in [22] for different boundary conditions (Navier slip
boundary conditions) and in [29] with a different nonlinearity. However, the notion
of approximate controllability does not appear to be optimal from a practical view-
point. Indeed, even if we could reach an arbitrary neighborhood of a given target
y1 at time T by the action of a control, the question of what to do afterwards to
stay in the same neighbourhood would remain open. �

4The main ideas come from [49, 65]; some similar results have been given more recently
in [52].
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The proof of theorem 3.9 can be obtained as an application of Liusternik’s
inverse mapping theorem in an appropriate framework.

A key point in the proof is a related null controllability result for the linearized
Navier-Stokes system at (y, p), that is to say:

(3.39)


yt + (y · ∇)y + (y · ∇)y −∆y +∇p = v1ω, (x, t) ∈ Q,
∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω.

This is implied by a global Carleman inequality of the kind (3.5) that can be
established for the solutions to the adjoint of (3.39), which is the following:

(3.40)


−ϕt − (∇ϕ+∇ϕt) y −∆ϕ+∇π = g, (x, t) ∈ Q,
∇ · ϕ = 0, (x, t) ∈ Q,
ϕ = 0, (x, t) ∈ Σ,

ϕ(x, T ) = ϕ0(x), x ∈ Ω.

The details can be found in [39].
Similar results have been given in [53] for the Boussinesq equations

(3.41)


yt + (y · ∇)y −∆y +∇p = v1ω + θ eN , ∇ · y = 0 (x, t) ∈ Q,
θt + y · ∇θ −∆θ = h1ω, (x, t) ∈ Q,
y = 0, θ = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x), x ∈ Ω.

Here, the state is the triplet (y, p, θ) (θ is interpreted as a temperature distri-
bution) and the control is (v, h) (as before, v is a field of external forces; h is an
external heat source).

QUESTION 4: Can we deduce from theorem 3.9 a null controllability result for
(3.35) for large T? What about (3.41)?

QUESTION 5: Does local null controllability imply local exact controllability to the
trajectories in the context of (3.35)? What about (3.41)?

An interesting question concerning both (3.35) and (3.41) is whether we can
still get local exact controllability to the trajectories with a reduced number of
scalar controls. This is partially answered in [40], where the following results are
proved:

Theorem 3.11. Assume that the following property is satisfied:

(3.42) ∃x0 ∈ ∂Ω, ∃ε > 0 such that ω ∩ ∂Ω ⊃ B(x0; ε) ∩ ∂Ω.

Here, B(x0; ε) is the ball centered at x0 of radius ε. Then, for any T > 0, (3.35)
is locally exactly controllable at time T to the trajectories satisfying (3.38) with
controls v ∈ L2(ω × (0, T ))N having one component identically zero.
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Theorem 3.12. Assume that ω satisfies (3.42) with nk(x0) 6= 0 for some k <
N . Then, for any T > 0, (3.41) is locally exactly controllable at time T to the
trajectories (y, p, θ) satisfying (3.38) and

(3.43) θ ∈ L∞(Q), θ(· , 0) ∈ H1
0 (Ω),

with controls v ∈ L2(ω × (0, T ))N and h ∈ L2(ω × (0, T )) such that vk ≡ vN ≡ 0.
In particular, if N = 2, we have local exact controllability to these trajectories with
controls v ≡ 0 and h ∈ L2(ω × (0, T )).

The proofs of theorems 3.11 and 3.12 are similar to the proof of theorem 3.9.
We have again to rewrite the controllability property as a nonlinear equation in a
Hilbert space. Then, we have to check that the hypotheses of Liusternik’s theorem
are fulfilled.

Again, a crucial point is to prove the null controllability of certain linearized
systems, this time with modified controls. For instance, when dealing with (3.35),
the task is reduced to prove that, for some appropriate weights ρ, ρ0 and some
K > 0, the solutions to (3.40) satisfy the following Carleman-like estimates:

(3.44)

∫∫
Ω×(0,T )

ρ−2|ϕ|2 dx dt ≤ K
∫∫
ω×(0,T )

ρ−2
0 (|ϕ1|2 + |ϕ2|2) dx dt ∀ϕ0 ∈ H.

This inequality can be proved using the assumption (3.42) and the incompress-
ibility identity ∇ · ϕ = 0; see [40].

3.6. Some other nonlinear systems from mechanics

The previous arguments can be applied to other similar partial differential
systems arising in mechanics. For instance, this is done in [38] in the context of
micropolar fluids.

To fix ideas, let us assume that N = 3. The behavior of a micropolar three-
dimensional fluid is governed by a system which has the form

(3.45)


yt −∆y + (y · ∇)y +∇p = ∇× w + v1ω, ∇ · y = 0, (x, t) ∈ Q,
wt + (y · ∇)w −∆w −∇(∇ · w) = ∇× y + u1ω, (x, t) ∈ Q,
y = 0, w = 0 (x, t) ∈ Σ,

y(x, 0) = y0(x), w(x, 0) = w0(x) x ∈ Ω.

Here, the state is (y, p, w) and the control is (v, u). As usual, y and p stand for
the velocity field and pressure and w is the microscopic velocity of rotation of the
fluid particles.

The following result holds:

Theorem 3.13. Let (y, p, w) be such that

(3.46) y, w ∈ L∞(Q) ∩ L2(0, T ;H2(Ω)), yt, wt ∈ L2(Q)

and

(3.47)


yt −∆y + (y · ∇)y +∇p = ∇× w, ∇ · y = 0, (x, t) ∈ Q,
wt + (y · ∇)w −∆w −∇(∇ · w) = ∇× y, (x, t) ∈ Q,
y = 0, w = 0 (x, t) ∈ Σ.
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Then, for each T > 0, (3.45) is locally exactly controllable to (y, p, w) at time T . In
other words, there exists δ > 0 such that, for any initial data (y0, w0) ∈ (H2(Ω) ∩
V )×H1

0 (Ω) satisfying

(3.48) ‖(y0, w0)− (y(· , 0), w(· , 0))‖H2×H1
0
≤ δ,

there exist L2 controls u and v and associated solutions (y, p, w) satisfying

(3.49) y(x, T ) = y(x, T ), w(x, T ) = w(x, T ) in Ω.

Notice that this case involves a nontrivial difficulty. Indeed, w is a non-scalar
variable and the equations satisfied by its components wi are coupled through
the second-order terms ∂i(∇ · w). This is a serious inconvenient. An appropriate
strategy has to be applied in order to deduce the required Carleman estimates.

Let us also mention [7, 61, 62], where the controllability of the MHD and
other related equations has been analyzed.

For all these systems, the proof of the controllability can be achieved arguing
as in the first part of the proof of theorem 3.9. This is the general structure of the
argument:

• First, rewrite the original controllability problem as a nonlinear equation
in a space of admissible “state-control” variables.

• Then, prove an appropriate global Carleman inequality and a regularity
result and deduce that the linearized equation possesses at least one solu-
tion. This provides a controllability result for a related linear problem.

• Fianlly, check that the hypotheses of a suitable implicit function theorem
are satisfied and deduce a local result.

Remark 3.14. Recall that an alternative strategy was introduced in [109] in
the context of the semilinear wave equation:

• First, consider a linearized similar problem and rewrite the original con-
trollability problem in terms of a fixed point equation.

• Then, prove a global Carleman inequality and deduce an observability es-
timate for the adjoint system and a controllability result for the linearized
problem.

• Finally, prove appropriate estimates for the control and the state (this
usually needs some kind of smallness of the data), prove an appropriate
compactness property of the state and deduce that there exists at least
one fixed point.

This method has been used in [30] and [44] in the context of semilinear heat
equations and in [52] to prove a result similar to theorem 3.9. �

Remark 3.15. Observe that all these results are positive, in the sense that they
provide local controllability properties. At present, no negative result is known to
hold for these nonlinear systems (except for the already considered one-dimensional
Burgers equation). �

To end this Section, let us mention two systems from fluid mechanics, appar-
ently not much more complex than (3.35), for which local controllability to the
trajectories is an open question.
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The first system is the following:

(3.50)


yt + (y · ∇)y −∇ · (ν(|Dy|)Dy) +∇p = v1ω , (x, t) ∈ Q,
∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω.

Here, Dy = 1
2 (∇y +∇yt) and ν : R+ 7→ R+ is a regular function (for example, we

can take ν(s) ≡ a + bsr−1 for some a, b > 0 and some r > 1). This models the
behavior of a quasi-Newtonian fluid; for a mathematical analysis, see [11, 83].

In view of the new nonlinear diffusion term ∇·(ν(|Dy|)Dy), the control proper-
ties of (3.51) are much more difficult to analyze than for (3.35). In particular, it is
unknown whether the local approximate and the local null controllability properties
hold for (3.50).

For the second system, we suppose that N = 2. It reads:

(3.51)


θt + (y · ∇)θ −∆θ = v1ω , (x, t) ∈ Q,
y = ∇×

(
(−∆)−aθ

)
, (x, t) ∈ Q,

θ = 0, (x, t) ∈ Σ,

θ(x, 0) = θ0(x), x ∈ Ω,

where a ∈ [1/2, 1]. We are now modelling the behavior of a quasi-geostrophic fluid.
The state variables θ and y may be viewed as a generalized vorticity and velocity
field, respectively (notice that, for a = 1, we find again the Navier-Stokes system
written in terms of y and ∇× y; see for instance [92]).

It is possible to prove a local null controllability result for (3.51). However, to
our knowledge, the local approximate controllability and the local exact controlla-
bility to the trajectories are open problems.
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