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Abstract. In this paper we present P systems as a reliable computa-
tional modelling tool for Systems Biology that takes into account the
discrete character of the quantity of components of biological systems,
the inherently randomness in biological phenomena and the key role
played by membranes in the function of living cells. We will introduce
two different strategies for the evolution of P systems, namely, Multi-

compartmental Gillespie’s Algorithm based on the well known Gillespie’s
Algorithm but running on more than one compartment; and Determin-

istic Waiting Times Algorithm, an exact deterministic method. In order
to illustrate these two strategies we have modelled two biological sys-
tems: the EGFR Signalling Cascade and the Quorum Sensing System in
the bacterium Vibrio Fischeri. Our simulations results show that for the
former system a deterministic approach is valid whereas for the latter
a stochastic approach like Multi-compartmental Gillespie’s Algorithm is
necessary.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing introduced
by G. Păun in [15]. Since then it has received important attention from the
scientific community. In fact, Membrane Computing has been selected by the
Institute for Scientific Information, USA, as a fast Emerging Research Front in
Computer Science, and [14] was mentioned in [22] as a highly cited paper in
October 2003.

This new model of computation starts from the assumption that the processes
taking place in the compartmental structure of a living cell can be interpreted as
computations. The devices of this model are called P systems. Roughly speaking,
a P system consists of a cell-like membrane structure, in the compartments of
which one places multisets of objects which evolve according to given rules.

Most variants of membrane systems have been proved to be computationally
complete, that is equivalent in power to Turing machines, and computationally
efficient, that is able to solve computationally hard problems in polynomial time.
Although most research in P systems concentrates on computational powers,
lately they have been used to model biological phenomena [2, 3, 5].



As P systems are inspired from the functioning of the living cell, it is natural
to consider them as modelling tools for biological systems, within the framework
of systems biology, being an alternative to more classical approaches like ODEs.
Differential equations have been used successfully to model kinetics of conven-
tional macroscopic coupled chemical reactions. Nevertheless there is an implicit
assumption of continuously varying chemical concentration and deterministic
dynamics. Two critical characteristics of this approach are that the number of
molecules of each type in the reaction mix is large compared to thermal fluc-
tuations in concentration and that for each type of reaction in the system, the
number of reactions is large within each observation interval, that is reaction
rates are fast.

When concentrations of the reacting species are low and reaction rates are
slow, which is frequently the case in genetic circuits, both of the previous pre-
sumptions are invalid and the deterministic continuous approach to chemical
kinetics breaks down. Instead one has to recognise that the individual chemical
reaction steps occur discretely and are separated by time intervals of random
length.

In contrast to differential equations, P systems are an unconventional model
of computation which takes into consideration the discrete character of the quan-
tity of components and the inherently randomness in biological phenomena. Be-
sides, the key feature of P systems is the so called membrane structure which
represents the heterogeneity of the structural organisation of the cells, and where
one can take into account the role played by membranes in the functioning of
the system, for example the fluctuation effects caused by diffusion.

In this paper we will present P systems as a reliable tool for Systems Biology.
We will discuss two different strategies for their evolution. The first strategy is
based on the well known Gillespie’s Algorithm but running on more that one
compartment and so it will be called Multi-compartmental Gillespie Algorithm.
The second one will be a deterministic strategy called Deterministic Waiting
Times which consists in an exact deterministic method in the sense that we do
not approximate infinitesimal intervals of time by ∆t as it is the case in ODEs,
but we will associate a waiting time, computed in a deterministic way, to each
reaction and will use them to determine the order in which the reactions take
place.

In order to illustrate these strategies two different biological systems will be
modelled; the Epidermal Growth Factor Receptor Signalling Cascade and the
Quorum Sensing System in the marine bacterium Vibrio Fischeri. The former
system is known to play a key role in tumour cell proliferation, angiogenesis and
metastasis, being a key biological target for the development of novel anticancer
therapies. Whereas the latter phenomenon is one of the best known quorum
sensing systems; it consists in a gene regulation system that allows an entire
population of bacterial cells to communicate in order to regulate the expression of
specific genes involved in the production of light in a coordinated way depending
on the size of the population.



The paper is organised as follows. In the next section we introduce P systems.
In section 3 two strategies for the evolution of P systems are discussed. A study of
EGFR Signalling Cascade and of the Quorum Sensing System in Vibrio Fischeri
are given in sections 4 and 5. Finally, conclusions are presented in the last section.

2 P systems as a Computational Modelling Tool for

Systems Biology

A P system is usually defined as a hierarchical arrangement of a number of
membranes identifying a corresponding number of regions inside the system,
and with these regions having associated a finite multiset of objects and a finite
set of rules. In what follows we give a precise definition of the main ingredients
of a P system.

Definition 1 (membrane structure).
A membrane structure is a hierarchical arrangement of membranes where

all the membranes but one must be included in a unique main membrane, which
defines the boundary of the system with respect to the external environment. This
particular membrane is called skin membrane. The membrane structure can be
represented formally, as a rooted tree, where the nodes are called membranes, the
root is called skin, and the relationship of membrane being inside another one is
represented by the relationship of the node being the descendent of another one.

Informally we can represent a membrane structure using Venn diagrams.

Fig. 1. A membrane structure represented using a Venn Diagram and a rooted tree

Rules of many different forms have been considered for P systems in order
to encode the operation of modifying the objects inside the membrane, moving
objects from one region to the other, dissolving, creating, dividing membranes
etc. Here, in order to capture the features of most of these rules, we consider
rules of the form:

u [ v ]l → u′ [ v′ ]l (1)

with u, v, u′, v′ some finite multisets of objects and l the label of a membrane.
These rules are multiset rewriting rules that operate on both sides of the mem-
branes, that is, a multiset u placed outside a membrane labelled by l and a
multiset v placed inside the same membrane can be simultaneously replaced by



a multiset u′ and a multiset v′ respectively. In this way, we are able to capture
in a concise way the features of both the communication rules and the transfor-
mation rules considered in [4]. Moreover, rules like (1) allow us to express any
sort of interactions occurring at the membrane level, and, in particular, they are
useful to model the binding of a signal molecule to its corresponding receptor
that occurs at the cell-surface level.

We generalise this concept by associating to each rule a boolean predicate
π expressing a generic property over the objects contained inside a membrane
and the objects contained in the surrounding region or in one of the regions that
exists inside the current one. Such a predicate π is meant to specify a condition
that need to be satisfied to make the rule applicable inside a given membrane.
Finally, we associate to each rule a finite set of attributes which are meant to
capture the quantitative aspects that are often necessary to characterise the
reality of the phenomenon to be modelled. The necessity of taking into account
these quantitative aspects has been made clear in a few recent application of P
systems to the modelling of biological systems [3, 5–7].

Therefore, we introduce the following notion of program as the basic feature
describing a generic process occurring inside a membrane.

Definition 2 (program). Let O be an alphabet for the objects and let L be an
alphabet of labels. A program is a construct

〈π >> u [ v ]l → u′ [ v′ ]l, A〉
with u, v, u′, v′ ∈ O∗ some finite multisets of objects, π a generic boolean pred-
icate, l is a label from L and A a finite set of attributes associated with the
rule.

The predicate π is used to express a condition that needs to be satisfied in
order to make the rule applicable inside a membrane. The set of attributes in A

can instead be used to associate to each rule a kinetic constant [3, 6], a probability
[2, 5], or a more general function returning the number of occurrences of the
multisets u, v to be consumed and the number of occurrences of the multisets
u′, v′ to be produced. As well as this, the attributes might be used to associate to
a rule some side-effect in order to alter other properties of the membrane where
the rule is applied.

Our notion of program bears some similarities with, and is somehow inspired
by, the notion of attribute grammars used for syntax-directed language trans-
lation and automatic code generation [1], as well as the notion of parametric
L systems augmented with C code used for modelling plant growth and de-
velopment [10]. In a sense, our programs also resemble the concept of guarded
commands for non-deterministic programming introduced by Dijkstra in 1975
which has then led to CCS, CSP and the modern theory of concurrent systems
based on π-calculus [12].

Now, we can define a P system by simply associating a finite multiset of
objects to each membrane in a given membrane structure and by considering a
finite set of programs to make these objects evolve from one configuration to the
other.



Definition 3 (P system). A P system is a construct

Π = (O,L, µ,M1,M2, . . . ,Mn, R1, . . . , Rn)

where:

– O is a finite alphabet of symbols representing objects;
– L is a finite alphabet of symbols representing labels for the compartments;
– µ is a membrane structure containing n ≥ 1 membranes labelled with ele-

ments from L;
– Mi = (wi, li), for each 1 ≤ i ≤ n, is the initial configuration of membrane i

with li ∈ L and wi ∈ O∗ a finite multiset of objects;
– Ri, for each 1 ≤ i ≤ n, is a finite set of programs in membrane i of the form

specified in Definition 2 with objects in O and labels in L.

Thus, the initial configuration of each membrane i, with 1 ≤ i ≤ n, is given by
a finite multiset of objects from O and by a label from L. A program consists of a
rule of the form u [ v ]li → u′ [ v′ ]li , with li the label of membrane i; this program
may be either associated with the membrane labelled with li or in the membrane
surrounding it. Moreover, we can now precisely say that the evaluation of the
predicate π in such a program must be done by considering both the content of
membrane i and the content of the membrane upper(µ, i) (i.e., the membrane
that directly contains membrane i). The evaluation of the predicate π, which has
to be done before the application of the rule inside membrane i, is then denoted
by π(i, upper(µ, i)).

P systems are usually considered as being distributed maximal parallel mul-
tiset rewriting systems [16]. That is, in each step, for each membrane, a maximal
set of programs to be applied is non-deterministically selected by making sure
that no further programs can be applied to the objects left inside the mem-
branes. On the other hand, a few recent works, [3, 5–7], have addressed the issue
of introducing new strategies for the application of the programs where the set of
programs to be applied in any step is not maximal, but it is somehow bounded.
The reasons for the introduction of new derivation/evolution strategies may be
different, but, in the context of modelling biological systems, one can say that
restrictions to maximal parallelism are often required in order to close the gap
between the abstractness of the model and the reality of the phenomenon to be
modelled. In this work we present two novel strategies for the evolution of P
systems substantially different from the ones previously introduced.

3 Two Strategies for the Evolution of P systems

At the microscopic level of functioning of cellular processes the interactions be-
tween molecules follow the laws of physics. A fundamental result of theoretical
statistical physics is the famous

√
n law [11], which says that randomness or fluc-

tuations in a system is inversely proportional to the square root of the number
of particles. As a result systems with low number of molecules show high fluctu-
ations; whereas the evolution of systems with high concentrations of reactants



are more deterministic. Having this in mind we introduce two strategies for the
evolution of P systems, a stochastic strategy based on Gillespie’s Algorithm and
a deterministic strategy which will be valid for systems with high number of
particles.

Gillespie’s algorithm [9] (see also [8] for some recent improvements) pro-
vides an exact method for the stochastic simulation of systems of bio-chemical
reactions; the validity of the method is rigorously proved and it has been al-
ready successfully used to simulate various biochemical processes [11]. As well
as this, the Gillespie’s algorithm is used in the implementation of stochastic π-
calculus [18, 25], and in its application to the modelling of biological systems
[19]. Here we present an extension of the classical Gillespie’s algorithm called
Multi-compartmental Gillespie Algorithm. This method is developed by taking
into account the fact that, with respect to the original algorithm where only one
volume is studied, in P systems we have a membrane structure delimiting differ-
ent regions or compartments, each one can be seen as a volume with its own set
of rules, besides the application of a rule inside a compartment can also affect
the content of another one; for example the application of a communication rule.
Specifically, let Π = (O,Lab, µ,M1,M2, . . . ,Mn, R1, . . . , Rn) be a P system as
specified in Definition 3 with the membranes Mi = (wi, Li) and the programs
Ri, 1 ≤ i ≤ n. The set Ri of programs that are active inside membrane contains
elements of the form (j, πj , rj , pj , kj) where:

– j is the index of a program from Ri;

– πj is the predicate; in this section this will be always true and will be omitted;

– rj is the boundary rule contained in the program j;

– pj is the probability of the rule contained in the program j to be applied
in the next step of evolution; this probability is computed by multiplying a
stochastic constant kj , specifically associated with program j, by the number
of possible combinations of the objects present on the left-side of the rules
with respect to the multiset wi (or the multiset wi′ , with i′ = upper(µ, i)) -
the current content of membrane i (i′).

First, each membrane i will be considered to be a compartment enclosing a
volume, therefore the index of the next program to be used inside membrane i

and its waiting time will be computed using the classical Gillespie’s algorithm
which we recall below:

1. calculate a0 =
∑

pj , for all (j, rj , pj , kj) ∈ Ri;

2. generate two random numbers r1 and r2 uniformly distributed over the unit
interval (0, 1);

3. calculate the waiting time for the next reaction as τi =
1

a0

ln(
1

r1

);

4. take the index j, of the program such that

j−1∑

k=1

pk < r2a0 ≤
j∑

k=1

pk;

5. return the triple (τi, j, i).



Notice that the larger the stochastic constant of a rule and the number of oc-
currences of the objects placed on the left-side of the rule inside a membrane
are, the greater the chance that a given rule will be applied in the next step of
the simulation. There is no constant time-step in the simulation. The time-step
is determined in every iteration and it takes different values depending on the
configuration of the system.

Next, the Multi-compartmental Gillespie’s Algorithm is described in detail:

• Initialisation
◦ set time of the simulation t = 0;
◦ for each membrane i in µ compute a triple (τi, j, i) by using the procedure

described above; construct a list containing all such triples;
◦ sort the list of triple (τi, j, i) according to τi;

• Iteration
◦ extract the first triple, (τm, j,m) from the list;
◦ set time of the simulation t = t + τm;
◦ update the waiting time for the rest of the triples in the list by subtract-

ing τm;
◦ apply the rule contained in the program j only once changing the number

of objects in the membranes affected by the application of the rule;
◦ for each membrane m′ affected by the application of the rule remove the

corresponding triple (τ ′

m′ , j′,m′) from the list;
◦ for each membrane m′ affected by the application of the rule j re-run the

Gillespie algorithm for the new context in m′ to obtain (τ ′′

m′ , j′′,m′), the
next program j′′, to be used inside membrane m′ and its waiting time
τ ′′

m′ ;
◦ add the new triples (τ ′′

m′ , j′′,m′) in the list and sort this list according
to each waiting time and iterate the process.

• Termination
◦ Terminate simulation when time of the simulation t reaches or exceeds

a preset maximal time of simulation.

Therefore, in this approach, the waiting time computed by the Gillespie’s algo-
rithm is used to select the membranes which are allowed to evolve in the next
step of computation. Specifically, in each step, the membranes associated to pro-
grams with the same minimal waiting time are selected to evolve by means of
the corresponding rules. Moreover, since the application of a rule can affect more
than one membrane at the same time (e.g., some objects may be moved from
one place to another), we need to reconsider a new program for each one of these
membranes by taking into account the new distribution of objects inside them.

As mentioned before in systems with high concentration of chemical sub-
stances deterministic approaches are valid; in what follows we present a deter-
ministic exact strategy for the execution of the programs, that we will refer to
as Deterministic Waiting Times Algorithm.

Given a P system, in this strategy, using mass action law, we associate a
velocity, vi, to every program i in each membrane j by multiplying the kinetic
constant ki by the multiplicities of the reactants. Then we compute the waiting



time for the first execution of the program as τi = 1

vi

and return the triple
(τi, i, j).

Below we give a detailed description of the Deterministic Waiting Times
Algorithm:

• Initialisation
◦ set time of the simulation t = 0;
◦ for every program i associated with a membrane j in µ compute the

triple (τi, i, j) by using the procedure described before; construct a list
containing all such triples;

◦ sort the list of triple (τi, i, j) according to τi;
• Iteration

◦ extract the first triple, (τj , j,m) from the list;
◦ set time of the simulation t = t + τj ;
◦ update the waiting time for the rest of the triples in the list by subtract-

ing τj ;
◦ apply the rule contained in the program j only once changing the number

of objects in the membranes affected by the application of the rule;
◦ for each membrane m′ affected by the application of the rule remove the

corresponding all the triples (τ ′

j′ , j′,m′) from the list;
◦ for each membrane m′ affected by the application of the rule j re-run

the Gillespie algorithm for the new context in m′ to obtain a triple
(τ ′′

j′ , j′,m′) for all the programs j′ associated with the membrane m′;
◦ add the new triples (τ ′′

j′ , j′,m′) in the list and sort this list according to
each waiting time and iterate the process.

• Termination
◦ Terminate simulation when time of the simulation t reaches or exceeds

a preset maximal time of simulation.

Note that in this algorithm instead of associating a waiting time to a single
program in each membrane (as it is the case in the Multi-compartmental Gille-
spie’s Algorithm) every program in each membrane has a waiting time computed
in a deterministic way that is used to determine the order in which the programs
are executed. Also highlight that this is an exact method in the sense that we do
not approximate infinitesimal intervals of time by ∆t as it is the case in ODEs,
but the time step varies across the evolution of the system and it is computed
in each step depending on the current state of the system.

These two strategies have been implemented using Scilab, a scientific soft-
ware package for numerical computations providing a powerful open computing
environment for engineering and scientific applications [26].

In the following two sections we provide two biological systems to illustrate
these strategies. In section 4 we study the EGFR Signalling Cascade where the
Deterministic Waiting Times Algorithm is suitable for describing its evolution;
and in section 5 the Quorum Sensing System in the bacterium Vibrio Fischeri
is used as an example where stochastic approaches like the Multi-compartmental
Gillespie’s Algorithm are necessary.



4 EGFR Signalling Cascade

The epidermal growth factor receptor (EGFR) belongs to the tyrosine kinase
family of receptors. Binding of the epidermal growth factor (EGF) to the extra-
cellular domain of EGFR induces receptor dimerisation and autophosphoryla-
tion of intracellular domains. Then a multitude of proteins are recruited starting
a complex signalling cascade and the receptor follows a process of internalisa-
tion and degradation in endosomals. Two principal pathways lead to activation
of Ras-GTP by hydrolisation of Ras-GDP. One of these pathways depends on
the Src homology and collagen domain protein (Shc) and the other one is Shc-
independent. Ras-GTP acts like a switch that stimulates the Mitogen Activated
Protein (MAP) kinase cascade by phosphorylating the proteins Raf, MEK and
ERK. Subsequently phosphorylated MEK and ERK regulates several cellular
proteins and nuclear transcription factors. Disregulated EGFR expression, lig-
and production and signalling have been proved to have a strong association with
tumourgenesis. As a result of this, EGFR has been identified as a key biological
target for the development of novel anticancer therapies.

Below it is shown a detailed graphical representation of the signalling cascade.



We have developed a model of the signalling cascade described on the previous
page using the following P system:

ΠEGF = (O, {e, s, c}, µ, (w1, e), (w2, s), (w3, c),Re,Rs,Rc)

Our model consists of more that 60 proteins and complexes of proteins and
160 chemical reactions. Due to the limitation of space we will not give all the
details of the model. A complete description of ΠEGF with some supplementary
information is available from the web page www.gcn.us.es/egfr.pdf. In what
follows we give an outline of our model.
• Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade. Some of the objects from the
alphabet and the chemical compounds that they represent are listed below.

Object Protein or Complex
EGF Epidermal Growth Factor

EGFR EGF Receptor
EGFR-EGF Receptor and EGF complex
EGFR-EGF2 Dimerazated Receptor
EGFR-EGF∗

2 Phosphorylated Receptor
Shc Src homology protein

EGFR-EGF∗

2-Shc EGFR-EGF∗

2 and Shc complex
...

...
MEK Mitogenic external regulated kinase
ERK External regulated Kinase

• Membrane Structure: In the EGFR Signalling Cascade there are three
relevant regions, namely the environment, the cell surface and the cytoplasm.
We represent them in the membrane structure as the membranes labelled with:
e for the environment, s for the cell surface and c for the cytoplasm. A Venn
diagram representation of the membrane structure can be seen below:



• Initial Multisets: In the initial multisets we represent the initial number of
molecules (nM) of the chemical substances in the environment, the cell surface
and the cytoplasm. These estimations has been obtained from [13, 20].

w1 = {EGF 200}
w2 = {EGFR250, Ras-GDP 200}
w3 = {Shc250, PLC150

γ , P I3K50, SOS40, Grb280, TP 100
1 , TP 450

2 , TP 450
3 , TP 125

4 ,

Raf80,MEK400, ERK400, P 80
1 , P 80

2 , P 300
3 }

• Programs: In the programs we model the 160 chemical reactions which form
the signalling cascade. Due to the limitation of space only a few programs rep-
resenting some of the reactions will be presented in this paper. For a detailed
enumeration of all the programs, their attributes and the references from where
these parameters were taken see the supplementary information available from
www.gcn.us.es/egfr.pdf.

As it can be seen in the initial multisets specified before, in the system
of the EGFR Signalling Cascade the number of molecules is quite large, as a
consequence of the

√
n law important fluctuations and stochastic behaviour are

not expected in the evolution of the system. Because of this we have chosen the
Deterministic Waiting Times Algorithm as the strategy for the evolution of the
P system ΠEGF .

In what follows we show two examples of programs from the set of programs
associated with each membrane.

The set of programs associated with the environment, Re, consists only of one
program which models the binding of the signal, EGF , to the receptor EGFR.

EGF [EGFR ]s → [EGF -EGFR ]s, k = 0.003

We assume that the previous program is applicable when there are signals
and receptors available and so, the predicate π is omitted. The meaning of the
previous rule is the following: the object EGF in the membrane containing the
membrane with label s (the environment), and the object EGFR inside the
membrane with label s (the cell surface) are replaced with the object EGFR-
EGF in the membrane with label s; this object represents the complex receptor-
signal on the cell surface. As attributes we associate the kinetic constant k, which
measures the affinity between the signal and the receptor.

The Deterministic Waiting Times Algorithm is used in the evolution of the
system and the waiting time associated to this program will be computed using
the next formula:

τ =
1

0.003|EGF ||EGFR|
One example from the set of programs Rs associated to the cell surface is

the dimerisation of the receptor, that is the formation of a complex consisting
of two receptors:

[EGFR, EGFR ]s → [EGFR2 ]s, k = 0.011



When this program is executed two objects EGFR representing receptors
are replaced with one object EGFR2, representing a complex formed with two
receptors, in the membrane with label s, the cell surface. The kinetic constant
k is used to computed the waiting time:

τ =
1

0.011|EGFR|2
Using the software mentioned in the previous section and developed in Scilab

we run some experiments; in what follows we present some of the results ob-
tained.

Below it is depicted the evolution of the number of autophosphorylated re-
ceptors and the number of doubled phosphorylated MEK (Mitogen External
Kinase), one of the target proteins of the signalling cascade that regulates some
nuclear transcription factors involved in the cell division.
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Note that the activation of the receptor is very fast reaching its maximum within
the first 5 seconds and then it decays fast to very low levels; on the other hand



the number of doubled phosphorylated MEK is more sustained around 3 nM.
These results agree well with empirical observations, see [13, 20].

In tumours it has been reported an overexpression of signals EGF in the
environment and of receptors, EGFR, on the cell surface of cancerous cells. Here
we investigate the effect of different EGF concentrations and number of receptors
on the signalling cascade.

First, we study the effect on the evolution of the number of autophospho-
rylated receptors and double phosphorylated MEK of a range of signals, EGF,
from 100 nM to 2000 nM.
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It can be seen that the receptor autophosphorylation is clearly concentra-
tion dependent showing different peaks for different number of signals in the
environment. According to the variance in the receptor activation it is intuitive
to expect different cell responses to different EGF concentrations. Here we will
show that this is not the case.
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Observe, in the graph depicted on the previous page, that the number of
doubled phosphorylated MEK does not depend on the number of signals in
the environment. This shows the surprising robustness of the signalling cascade
with regard to the number of signals from outside due to EGF concentration.
The signal is either attenuated or amplified to get the same concentration of one
of the most relevant kinases in the signalling cascade, MEK. Note that after 100
seconds, when the response gets sustained, the lines representing the response
to different external EGF concentrations are identical.

Now we analyse the effect on the dynamics of the signalling cascade of dif-
ferent numbers of receptors on the cell surface.
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Above it is shown the evolution of the number of doubled phosphorylated
MEK when there is 100 nM and 1000 nM of receptors on the cell surface. Note
that now the response is considerably different, being the number of activated
MEK greater when there is an overexpression of receptors on the cell surface.
As a consequence of this high number of activated MEK the cells will undergo
an uncontrolled process of proliferation.

The key role played by the overexpression of EGFR on the uncontrolled
growth of tumours has been reported before, as a consequence of this, EGFR
is one of the main biological targets for the development of novel anticancer
therapies.

Finally, stress that for this system we have used a deterministic approach
obtaining results that map well experimental data. This is not always the case,
in the next section we analyse a system where a stochastic approach is necessary
to describe properly its behaviour.

5 Quorum Sensing System in the Bacterium Vibrio

Fischeri

Quorum sensing is a cell density dependent gene regulation system that allows
an entire population of bacterial cells to communicate in order to regulate the



expression of certain or specific genes in a coordinated way depending on the
size of the population. In this section we present a model of the Quorum Sensing
System in the marine bacterium Vibrio fischeri using P systems. In this frame-
work each bacterium and the environment are represented by membranes. This
allows us to examine the individual behaviour of each bacterium as an agent as
well as the behaviour of the colony as a whole and the processes of swarming
and recruitment.

The marine bacterium Vibrio fischeri exists naturally either in a free-living
planktonic state or as a symbiont of certain luminescent squid. The bacteria
colonise specialised light organs in the squid, which cause it to luminesce. Lumi-
nescence in the squid is thought to be involved in the attraction of prey, camou-
flage and communication between different individuals. The source of the lumi-
nescence is the bacteria themselves. The bacteria only luminesce when colonising
the light organs and do not emit light when in the free-living state.

The Quorum Sensing System in Vibrio Fischeri relies on the synthesis, accu-
mulation and subsequent sensing of a signal molecule, 3-oxo-C6-HSL, an N-acyl
homoserine lactone or AHL (we will call it OHHL). When only a small number of
bacteria are present the signal is produced by the bacteria at a low level. OHHL
diffuses out of the bacterial cells and into the surrounding environment. At high
cell density the signal accumulates in the area surrounding the bacteria and can
also diffuse to the inside of the bacterial cells. The signal is able to interact with
the LuxR protein to form the complex LuxR-OHHL. This complex binds to a
region of DNA called the Lux Box causing the transcription of the luminescence
genes, a small cluster of 5 genes, luxCDABE. Adjacent to this cluster are two
regulatory genes for the transcription of LuxR and OHHL. In this sense OHHL
and LuxR are said to be autoinducer because they activate their own synthesis.

The bacteria are effectively communicating, as a single bacterium is able
to detect and respond to signals produced by the surrounding bacteria. Bacte-
ria sense their cell density by measuring the amount of signal present; quorum
sensing can therefore explain why the bacteria are dark when in the free living
planktonic state at low cell density and light when colonising the light organ of
squid at high cell density. A large number of Gram negative bacteria have been
found to have AHL-based quorum sensing systems similar to Vibrio fischeri.

In what follows we present a model of the Quorum Sensing System in Vibrio
fischeri using a parametric P system, ΠV f (N); where N represents the number
of bacteria in the colony. We will study the behaviour of such colony placed inside
a single environment by examining the evolution of the following P system:

ΠV f (N) = (O, {e, b}, µ, (w1, e), (w2, b) . . . , (wN+1, b),Rb,Re) where:



(1) Alphabet: In the alphabet we represent the signal OHHL, the protein LuxR,
the complex protein-signal, the regulatory region LuxBox and the regulatory
region occupied by the complex.

O = {OHHL,LuxR,LuxR-OHHL,LuxBox,LuxBox-LuxR-OHHL}

(2) Membrane Structure and Labels: In the Quorum Sensing System of
Vibrio fischeri there are two relevant regions, namely the environment and
the bacteria. The environment will be represented by the membrane labelled
with e and each bacterium is represented by a membrane with label b. We
can represent the membrane structure µ as a Venn diagram as follows:

(3) Initial Multisets: In the initial multisets we represent the initial conditions
of the system. We are interested in examining how bacteria communicate to
coordinate their behaviours and how the system moves from a downregulated
state, where the protein and the signal are produced at basal rates, to an
upregulated state, where the bacteria produce light. Therefore, in the initial
multisets we will suppose that there is nothing in the environment and in
the bacteria we will only have the genome (LuxBox) to start the production
of the signal and protein at basal rates.

w1 = ∅, wi = {LuxBox} 2 ≤ i ≤ N + 1

(4) Programs: In the programs we model the chemical reactions forming the
Quorum Sensing System. Next we specify the set of programs associated with
the bacteria, Rb, and with the environment, Re; we also describe briefly the
chemical reactions they represent.

• Set of programs associated with the bacteria, Rb:
In an unstressed bacterium the transcription of the signal OHHL and
the protein LuxR takes place at basal rates.

r1 : [ LuxBox ]b
k1→ [ LuxBox , OHHL ]b

r2 : [ LuxBox ]b
k2→ [ LuxBox , LuxR ]b



The protein LuxR acts as a receptor and OHHL as its ligand. Both
together form the complex LuxR-OHHL which in turn can dissociate
into OHHL and LuxR again.

r3 : [ LuxR , OHHL ]b
k3→ [ LuxR-OHHL ]b

r4 : [ LuxR-OHHL ]b
k4→ [ LuxR , OHHL ]b

The complex LuxR-OHHL acts as a transcription factor binding to the
regulatory region of the bacterium DNA called LuxBox. The complex
LuxR-OHHL can also dissociate from the LuxBox.

r5 : [ LuxBox , LuxR-OHHL ]b
k5→ [ LuxBox-LuxR-OHHL ]b

r6 : [ LuxBox-LuxR-OHHL ]b
k6→ [ LuxBox , LuxR-OHHL ]b

The binding of the complex LuxR-OHHL to the LuxBox produce a mas-
sive increase in the transcription of the signal OHHL and of the protein
LuxR.

r7 : [ LuxBox-LuxR-OHHL ]b
k7→ [ LuxBox-LuxR-OHHL , OHHL ]b

r8 : [ LuxBox-LuxR-OHHL ]b
k8→ [ LuxBox-LuxR-OHHL , LuxR ]b

OHHL can diffuse outside the bacterium and accumulate in the environ-
ment.

r9 : [ OHHL ]b
k9→ OHHL [ ]b

OHHL, LuxR and the complex LuxR-OHHL undergo a process of degra-
dation in the bacterium.

r10 : [ OHHL ]b
k10→ [ ]b

r11 : [ LuxR ]b
k11→ [ ]b

r12 : [ LuxR-OHHL ]b
k12→ [ ]b

• Set of programs associated with the environmet, Re:
The signal OHHL in the environment can diffuse inside the bacteria and
undergo a process of degradation.

r13 : OHHL [ ]b
k13→ [ OHHL ]b

r14 : [ OHHL ]e
k10→ [ ]e

In order to implement our model we have chosen the following set of para-
meters, k1 = 2, k2 = 2, k3 = 9, k4 = 1, k5 = 10, k6 = 2, k7 = 250, k8 = 200, k9 =
1, k10 = 50, k11 = 30, k12 = 15, k13 = 20, k14 = 20, these parameters has been
taken or suggested by the literature listed in [21].

As it can be seen in the initial multisets, the Quorum Sensing System has
a very small number of molecules. At the beginning of the evolution there is
only a single molecule in each bacterium representing its genome. Therefore as
a consequence of the

√
n law stochastic behaviour is expected. To check if this

is true we have used the two strategies introduced in section 3 for the evolution
of the P system ΠV f (N).

First, we use the Multi-compartmental Gillespie’s Algorithm. We have studied
the behaviour of the system for two populations of different size to examine how



bacteria can sense the number of bacteria in the population and produce light
only when the number of individuals is big enough.

To start with we have considered a population of 300 bacteria. We examine
the evolution over time of the number of quorated bacteria 1 (right) and the
number of signals (OHHL) in the environment (left).
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Observe that the signal, OHHL, accumulates in the environment until satu-
ration and then, when this threshold is reached, bacteria are able to detect that
the size of the population is big enough. At the beginning, a few bacteria get
quorated and then they accelerate a process of recruitment that makes the whole
population behave in a coordinated way.

There exists a correlation between the number of signal in the environment
and the number of quorated bacteria such that, when the number of signal in
the environment drops, so does the number of quorated bacteria and when the
signal goes up it produces a recruitment of more bacteria.

In our approach the behaviour of each individual in the colony can be tracked.
Below, for one bacterium it is shown the correlation between the number of signal
inside the bacterium (left) and the occupation of the LuxBox by the complex
(right), which represents that the bacterium has been quorated.
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Above it can be seen that the number of signal molecules inside the bacterium
has to exceed a threshold of approximately 6 molecules in order to recruit the

1 We will say that a bacterium is quorated if the LuxBox in this bacterium is oc-
cupied by the complex producing the transcription of the enzymes involved in the
production of light.



bacterium. Observe that when the number of molecules is greater than 6 the
LuxBox is occupied, that is, the bacterium is quorated or upregulated but when
there is less than six signals the bacterium switches off the system and stops
producing light.

Now, in order to study how bacteria can sense the number of individuals in
the colony and get quorated only when the size of the colony is big enough we
have examine the behaviour of a population of only 10 bacteria.
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In this case the signal does not accumulate in the environment and no recruit-
ment process takes place. Only one of the bacteria guessed wrong the size of the
population and got upregulated. But then, after sensing that the signal does not
accumulate in the environment, it switched off its systems.

Finally, in order to show the inherently random character of this system, we
will show the results obtained using the Deterministic Waiting Times Algorithm
with the same set of parameters.
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Above it is depicted the number of signals (left) and the number of quorated
bacteria (right) for a population of 300 bacteria. Note that using the Determin-
istic Waiting Times Algorithm the signal does not accumulate and not even a
single bacterium got quorated. These results do not agree with empirical results
which show that at high cell densities the signal saturates the environment and
the colony of bacteria produces light. Therefore here we have an example of a
system with intrinsic random behaviour where stochastic approaches like the
Multicompartmental Gillespie’s Algorithm are necessary.



6 Conclusions

In this paper we have presented P systems as a new computational modelling
tool for systems biology; stressing their main characteristics, consideration of
the key role played by membranes in the structure and functioning of the cells
and the representation of the discrete character of the quantity of components
in bio-systems. P systems are also general specification of the biological phe-
nomena that can be evolved using different strategies/algorithms. In this work
two novel strategies have been introduced; Multi-compartmental Gillespie’s Al-
gorithm based on the well known Gillespie’s Algorithm but running on more
than one compartment; and Deterministic Waiting Times Algorithm, an exact
deterministic method.

Two different biological phenomena have been used two illustrate these strate-
gies. First, in the EGFR Signalling Cascade the Deterministic Waiting Times
Algorithm was used and second in the Quorum Sensing System in the bacterium
Vibrio Fischeri the Multi-compartmental Gillespie’s Algorithm was necessary in
order to obtain results in accordance with empirical observations.

The fact that our results agree well with previously formulated hypothesis
shows the reliability of P systems as computational modelling tools to produce
postdiction and perhaps as the field evolves they will be able to produce plausible
predictions.
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