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Abstract. This paper presents the use of P systems and π-calculus to
model interacting molecular entities and how they are translated into a
probabilistic and symbolic model checker called PRISM.

1 Introduction

The complexity of bio-molecular cell systems is currently the focus of intensive 
experimental research, nevertheless the enormous amount of data about the 
func-tion, activity, and interactions of such systems makes necessary the 
development of models able to provide a better understanding of the dynamics 
and properties of the systems. A model, an abstraction of the real-world onto 
a mathemati-cal/computational domain, highlights some key features while 
ignoring others that are assumed to be not relevant. A good model should 
have (at least the following) four properties: relevance, computability, 
understandability and ex-tensibility, [20]. A model must be relevant capturing 
the essential properties of the phenomenon investigated; and computable so it 
can allow the simulation of its dynamic behavior, and the qualitative and 
quantitative reasoning about its properties. An understandable model will 
correspond well to the informal con-cepts and ideas of molecular biology. 
Finally, a good model should be extensible to higher levels of organizations, like 
tissues, organs, organisms, etc., in which molecular systems play a key role.



In this paper we will deal with models developed within the framework of
membrane computing. Membrane computing is an emergent branch of natural
computing introduced by G. Păun in [15]. This new model of computation starts
from the assumption that the processes taking place in the compartmental struc-
ture of a living cell can be interpreted as computations. The devices of this model
are called P systems. Roughly speaking, a P system consists of a cell-like mem-
brane structure, in the compartments of which one places multisets of objects
which evolve according to given rules.

Although most research in P systems concentrates on the computational
power of the devices involved, lately they have been used to model biological
phenomena within the framework of computational systems biology. In this case
P systems are not used as a computing paradigm, but rather as a formalism
for describing the behavior of the system to be modeled. In this respect several
P systems models have been proposed to describe oscillatory systems [8], sig-
nal transduction [17], gene regulation control [16], quorum sensing [12,18,21] and
metapopulations [19]. These models differ in the type of the rewriting rules, mem-
brane structure and the strategy applied to run the rules in the compartments
defined by membranes. Some of these models using the metabolic algorithm [5],
the dynamical probabilistic P systems [19], and (multicompartmental) Gillespie
Algorithm [17] were applied in certain case studies.

As P systems are inspired from the structure and functioning of the living cell,
it is natural to consider them as modeling tools for biological systems, within the
framework of systems biology, being an alternative to more classical approaches
like ordinary differential equations (ODEs) and to some recent approaches like
Petri nets and π-calculus. Differential equations have been used successfully to
model kinetics of conventional macroscopic chemical reactions where the main
focus is on the average evolution of the concentration of chemical substances
across the whole system. Nevertheless, there is an implicit assumption of contin-
uously varying chemical concentration and deterministic dynamics. Two critical
characteristics of this approach are that the number of molecules of each type
in the reaction mix is large and that for each type of reaction in the system, the
number of reactions is large within each observation interval, that is reactions
are fast.

When the number of particles of the reacting species is small and reactions
are slow, which is frequently the case in some biological systems, both previ-
ous assumptions are questionable and the deterministic continuous approach to
chemical kinetics should be complemented by an alternative approach. In this
respect, one has to recognize that the individual chemical reaction steps occur
discretely and are separated by time intervals of random length. Stochastic and
discrete approaches like the ones used with Petri nets [11], π-calculus [20] and
P systems [17,19] are more accurate in this situation. Nevertheless, these for-
malisms differ in some essential features that will be discussed briefly in this
paper.



Most research in systems biology focuses on the development of models of
different biological systems in order to be able to simulate them, accurately
enough such as to be able to reveal new properties that can be difficult or
impossible to discover through direct experiments. One key question is what one
can do with a model, other than just simulate trajectories? This question has
been considered in detail for deterministic models, but less for stochastic models.
Stochastic systems defy conventional intuition and consequently are harder to
conceive. The field is widely open for theoretical advances that help us to reason
about systems in a greater detail and with a finer precision.

An attempt in this direction consists in using model checking tools to analyze
in an automatic way various properties of the model. There are previous studies
investigating the use of model checking for P system specifications [2,7].

Our current attempt uses a probabilistic symbolic model checking approach
based on PRISM (Probabilistic and Symbolic Model Checker) [22] and investi-
gates continuous time P systems with Gillespie dynamics using protein-protein
interaction rules.

Systems consisting of interacting molecular entities have been modeled by
using π-calculus formalism [20] explaining the principles of transforming the
biological system into a π-calculus model in a coherent way.

In this paper it is shown how π-calculus and P systems can model systems
consisting of reactions with biochemical entities. The specification is translated
into PRISM and various properties are studied. Some simulations obtained using
the PRISM simulator as well as a P system simulator with Gillespie dynamics
are presented.

The paper is organized as follows: in Section 2 a brief overview of PRISM
is presented; Section 3 deals with P system specifications in PRISM, Section 4
presents a case study representing the cell cycle in eukaryotes described using a
P system specification and a π-calculus definition; both are then translated into
PRISM and contrasted in Section 5; conclusions are drawn in Section 6.

2 PRISM

Probabilistic model checking is a formal verification technique. It is based on the
construction of a precise mathematical model of a system which is to be analyzed.
Properties of this system are then expressed formally using temporal logic and
analyzed against the constructed model by a probabilistic model checker.

PRISM, the probabilistic and symbolic model checker in this study, sup-
ports three different types of probabilistic models, discrete time Markov chains
(DTMC), Markov decision processes (MDP), and continuous time Markov chains
(CTMC). PRISM supports systems specifications through two temporal logics,
PCTL (probabilistic computation tree logic) for DTMC and MDP and CSL
(continuous stochastic logic) for CTMC.

In order to construct and analyze a model with PRISM, it must be specified
in the PRISM language, a simple, high level, state-based language based on the
Reactive Modules formalism of [1].



Here we describe some aspects of the PRISM language through the following
illustrative example taken from [22].

// N-place queue + server

ctmc

const int N = 10;
const double mu = 1/10;
const double lambda = 1/2;
const double gamma = 1/3;

module queue
q : [0 .. N] init 0;

[] q < N -> mu : (q’ = q + 1);
[] q = N -> mu : (q’ = q);
[serve] q > 0 -> lambda : (q’ = q - 1);

endmodule

module server
s : [0 .. 1] init 0;

[serve] s = 0 -> 1 : (s’ = 1 );
[] s = 1 -> gamma : (s’ = 0);

endmodule

The fundamental components of the PRISM language are modules, variables
and commands. A model is composed of a number of modules which can interact
with each other. A module contains a number of local variables and commands.

The previous example consists of two modules; the first one represents a queue
and the second one represents a server.

A module is specified as:

module 〈name〉

endmodule

Note that, in the example above, there are only two local variables, q in the
queue module representing the size of the queue, and s in the server module
which represents whether or not the server is busy. In the declaration of a variable
its initial value and range must be specified. A variable declaration looks like:

name : [ lower-bound .. upper-bound ] init value;



The values of these variables at any given time constitute the states of the
module. The space of reachable states is computed using the range of each vari-
able and its initial value. The global state of the whole model is determined by
the local state of all modules.

The behavior of each module is described by a set of commands. A command
takes the form:

[ action ] g → λ1 : u1 + · · · + λn : un;

The guard g is a predicate over all the variables of the model. Each update ui

describes the new values of the variables in the module specifying a transition
of the module. The expressions λi are used to assign probabilistic information,
rates, to transitions.

The label action placed inside the square brackets are used to synchronize
the application of different commands in different modules. This forces two or
more modules to make transitions simultaneously. The rate of this transition is
equal to the product of the individual rates, since the processes are assumed to
be independent.

In our example, in the queue module there are three commands; the first one
allows a new client to join the queue with probability mu if the maximal size,
N, has not been reached yet; otherwise the second command maintains the size
of the queue constant with probability mu. The third command is synchronized
with the first command of the server module and describes the situation when
there are clients in the queue and the server is free; in this case with rate lambda
the server is set to busy and one client is removed from the queue. Observe that
the rate of this transition is equal to the product of the two individual rates (1 ×
lambda = lambda), this is a common technique, an action is passive with rate 1
and the other action active which actually defines the rate for the synchronized
transition.

PRISM supports many other features like constants, expressions, process al-
gebra operators, etc. For a detailed description of the tool we refer to [22].

3 Transforming P System Specification into PRISM

The main components of a P system are a membrane structure consisting of a
number of membranes that can interact with each other, an alphabet of objects,
and a set of rules associated to each membrane. These components can easily be
mapped into the components of the PRISM language using modules to represent
membranes, variables to describe the alphabet and commands to specify the
rules.

A P system is a construct

Π = (Σ, L, μ, M1, M2, . . . , Mn, R1, . . . , Rn)



where:

– Σ is a finite alphabet of symbols representing objects;
– L is a finite alphabet of symbols representing labels for the compartments1;
– μ is a membrane structure containing n ≥ 1 membranes labeled with ele-

ments from L;
– Mi = (li, wi), for each 1 ≤ i ≤ n, is the initial configuration of membrane i

with li ∈ L and wi ∈ Σ∗ a finite multiset of objects;
– Ri, for each 1 ≤ i ≤ n, is a finite set of rules in membrane i of the form

specified below with objects in Σ and labels in L.

The types of rules we will consider in this paper are those referred in the
literature as protein-protein interaction rules.

− Transformation, complex formation and dissociation rules:

[ a ]l
c→ [ b ]l

[ a, b ]l
c→ [ e ]l where a, b, e ∈ Σ and l ∈ L

[ a ]l
c→ [ b, e ]l

These rules are used to specify chemical reactions taking place inside a com-
partment of type l ∈ L, more specifically they represent the transformation
of a into b, the formation of a complex e from the interaction of a and b,
and the dissociation of a complex a into b and e respectively. These types of
rules are used for example in [5] to describe oscillations as a consequence of
the interactions between different objects inside a single compartment.

− Diffusing in and out:

[ a ]l
c→ a [ ]l

where a ∈ Σ and l ∈ L

a [ ]l
c→ [ a ]l

When chemical substances move or diffuse freely from one compartment
to another one we use these types of rules, where a moves from or to a
compartment of type l.

These rules are also used to model metapopulations [19] where individuals
can move from one compartment to another one or signal molecules occurring
in bacteria [17] using population P systems [4] as a model.

1 Two membranes with the same label will be considered of the same type.



− Binding and debinding rules:

a [ b ]l
c→ [ e ]l

where a, b, e ∈ Σ and l ∈ L

[ a ]l
c→ b [ e ]l

Using rules of the first type we can specify reactions expressing the binding
of a ligand swimming in one compartment to a receptor placed on the mem-
brane surface of another compartment. The reverse reaction, debinding of a
substance from a receptor, can also be described by using the second rule.
These rules were used to model signalling at the cell surface in [17].

− Recruitment and releasing rules:

a [ b ]l
c→ e [ ]l

where a, b, e ∈ Σ and l ∈ L

e [ ]l
c→ a [ b ]l

With these rules we represent the interaction between two chemicals in dif-
ferent compartments whereby one of them is recruited from its compartment
by a chemical on the other compartment, and then the new complex remains
in the latter compartment. In a releasing rule a complex, e, located in one
compartment can dissociate into a and b, with a remaining in the same com-
partment as e, and b being released into the other compartment. In [17], these
rules were used to describe the signal transduction between environmental
concentrations of signal molecules and the cytoplasmic concentrations of dif-
ferent kinases.

Here, in order to capture the features of all these rules, we consider generic rules
of the form:

u [ v ]l
c→ u′ [ v′ ]l (1)

with u, v, u′, v′ some finite multisets of objects and l the label of a membrane.
These rules are multiset rewriting rules that operate on both sides of the mem-
branes, that is, a multiset u placed outside a membrane labeled by l and a
multiset v placed inside the same membrane can be simultaneously replaced by
a multiset u′ and a multiset v′ respectively. In this way, we are able to capture
in a concise way the features of both communication rules (diffusion, binding,
debinding etc . . . ) and transformation rules considered before. This generic type
of rules was referred as boundary rules in [3].

We also associate to each rule a stochastic constant, c, which will be used
to compute the probability of applying a rule in a given configuration, see [17].
This is necessary to characterize the reality of the phenomenon to be modeled.
The necessity of taking into account these quantitative aspects has been made
clear in a few recent studies regarding the use of P systems to model biological
systems.



In what follows we will describe how to specify P systems models in the
PRISM language.

First of all, since we work with continuous time P systems with Gillespie dy-
namics our model will be declared as a CTMC using the key word stochastic.
The membranes occurring in the membrane structure will be represented us-
ing modules and the topology according to which membranes communicate or
interact will be coded in the commands of each module.

Each module will describe the behavior of one membrane by representing the
rules associated to it using commands and the objects placed in it using local
variables.

More specifically, given Π = (Σ, L, μ, M1, M2, . . . , Mn, R1, . . . , Rn) a P sys-
tem as before, each membrane in μ will be uniquely identified with an identifier
i, 1 ≤ i ≤ n.

– Each membrane i will be specified using a module which will be called
compartment_i.

– For each object o ∈ Σ that can be present inside the compartment defined by
membrane i a local variable o_i will be declared in module compartment_i.
The initial value of the variable will be given by the corresponding initial
multiset wi; its value range will be determined experimentally or it will be
derived from the literature.

A constant o_i_bound representing the upper bound of the object o_i
will be declared to specify the value range.

– To describe the rules in Ri commands will be used. We will focus on the
generic type of rule in (1). In general, these rules need two membranes to
interact in a synchronized way to exchange objects. In this case the two
modules representing the corresponding membranes will synchronize the ap-
plication of two different commands by using the label rule_k, where k is
the index of the rule being specified.

Therefore, assuming that compartment i is contained in compartment j
and given a rule of the form

a1, . . . , ap [ b1, . . . , br ]i
c→ c1, . . . , cs[ d1, . . . , dt ]i

The command in module compartment_j will be:
[rule_k] a1_j > 0 & ... & ap_j > 0 &

c1_j < c1_j_bound & ... & cs_j < cs_j_bound ->
c * a1_j * ... *ap_j :
(a1_j’ = a1_j - 1) & ... & (ap_j’ = ap_j - 1) &
(c1_j’ = c1_j + 1) & ... & (cs_j’ = cs_j + 1);

The command in module compartment_i will be:
[rule_k] b1_i > 0 & ... & br_i > 0 &

d1_i < d1_i_bound & ... & dt_i < dt_i_bound ->
b1_i * ... * br_i :
(b1_i’ = b1_i - 1) & ... & (br_i’ = br_i - 1) &
(d1_i’ = d1_i + 1) & ... & (dt_i’ = dt_i + 1);



Observe that these two commands are applied when the guards hold, that is,
if and only if there are some reactants in the corresponding membranes and
the products have not reached the upper bounds determined experimentally.
Also note that the rate of this transition is the product of the individual rates:

(c * a1_j * ... * ap_j) * ( b1_i * ... * br_i)

Here we assume that the objects a’s and b’s are different, if we have an object
with multiplicity greater than one present on the left hand side of the rule
the rate associated to the command will be different and it will be computed
as it is explained in [10].

When this transition is performed the local variables representing the
reactants are decreased by one and the variables representing the products
are increased by one.

Finally, note that although the rules of the general form in (1) require
synchronization between two modules representing membranes, in the par-
ticular case of transformation, complex formation and dissociation rules only
one membrane is involved and no synchronization is needed. Given a rule of
type:

[ a1, . . . , ap ]l
c→ [ b1, . . . , br ]l (2)

the PRISM specification will be as follows:
[] a1_i > 0 & ... & ap_i > 0 &

b1_i < b1_i_bound & ... & br_i < br_i_bound ->
c * a1_i * ... * ap_i :
(a1_i’ = a1_i - 1) & ... & (ap_i’ = ap_i - 1) &
(b1_i’ = b1_i + 1) & ... & (br_i’ = br_i + 1);

4 Cell Cycle in Eukaryotes – A Case Study

In this section two different models of the cell cycle in eukaryotes will be pre-
sented and contrasted using PRISM and our simulator of P systems with Gille-
spie dynamics available from [25]. The first model is expressed using a P system
specification with a single compartment whereas the second one [13] uses a π-
calculus approach.

The cell division cycle in eukaryotes is a coordinated set of processes whereby
a cell replicates all its components and divides into two nearly identical daugh-
ter cells. These processes are controlled by a complex network consisting of
cyclin-dependent kinase (CDK) and its corresponding cyclin. Kinases, cdc14,
and phosphatases, cdh1, regulate CDK activity. There are also stoichiometric
inhibitors (CKI), that sequester cyclin-CDK dimers inhibiting their activity.

4.1 A P System Model

Our P system model is given by,

Π = (Σ, {1}, [ ], (1, w), R)



where:

– Σ contains all the protein and complexes of proteins involved in the system:
Σ = {cdk, cyclin, cdk.cyclin, cdk.degc, cki, cdk.cyclin.cki, cdh1,

cdh1off, cdc14, cdc14off}
– the membrane structure has only one component that will be labeled by 1.
– w is the initial multiset of objects (molecules) which determines the initial

configuration of the system,

w = cdk100 cyclin200 cki100 cdh1100 cdc14200

– the rules of R describe the interactions taking place in the cell cycle control2:
r1 : [ cdk, cyclin ]1

c1→ [ cdk.cyclin ]1 c1 = 0.5
cdk is activated upon binding with its corresponding cyclin producing the
dimer cdk.cyclin.
r2 : [ cdh1, cdk.cyclin ]1

c2→ [ cdh1, cdk.degc ]1 c2 = 0.005
r3 : [ cdk.degc ]1

c3→ [ cdk ]1 c3 = 0.001
These two rules describe how cdh1 regulates the activity of the dimers
cdk.cyclin by degrading the bound cyclin.
r4 : [ cdk.cyclin, cki ]1

c4→ [ cdk.cyclin.cki ]1 c4 = 0.003
r5 : [ cdk.cyclin.cki ]1

c5→ [ cdk.cyclin, cki ]1 c5 = 0.3
cki also inhibits the activity of the dimers cdk.cyclin by forming the triplets
cdk.cyclin.cki.
r6 : [ cdh1, cdk.cyclin ]1

c6→ [ cdh1off, cdk.cyclin ]1 c6 = 0.005
cdh1 can also be inhibited by cdk.cyclin dimers.
r7 : [ cdh1off, cdc14 ]1

c7→ [ cdh1, cdc14off ]1 c7 = 0.009
r8 : [ cdh1, cdc14off ]1

c8→ [ cdh1, cdc14 ]1 c8 = 0.009
cdh1 and cdc14 regulate each other activity by inhibition and activation.

Now we will specify the previous P system in the PRISM language using the
algorithm described in section 3. Since Π is a continuous time P system with
Gillespie dynamics, our model will be declared as being stochastic.

The PRISM model will have a single module, compartment, representing the
only membrane present in the membrane structure of Π .
module compartment

...
endmodule

In this module we will describe the alphabet Σ and the initial multiset w using
local variables. For example, cdk, cyclin and the dimer cdk.cyclin are specified
as follows:

cdk_1 : [ 0 .. cdk_1_bound ] init 100;
cyclin_1 : [ 0 .. cyclin_1_bound ] init 200;
cdk.cyclin_1 : [ 0 .. cdk.cyclin_1_bound] init 0;

2 The time units of the stochastic constants associated with the rules are minutes.



Finally the rules from R will be described using commands. We observe that
since the model consists only of rules of the form in (2) no synchronization is
required in this case study.

[cdk, cyclin]1
c1→ [cdk.cyclin]1 c1 = 0.5

[] cdk_1 > 0 & cyclin_1 > 0 &
cdk.cyclin_1 < cdk.cyclin_1_bound ->

c1*cdk_1*cyclin_1 :
(cdk_1’ = cdk_1 - 1) & (cyclin_1’ = cyclin_1 - 1) &
(cdk.cyclin_1’ = cdk.cyclin_1 + 1);

[cdk.cyclin.cki]1
c5→ [cdk.cyclin, cki]1 c5 = 0.3

[] cdk.cyclin.cki_1 > 0 &
cdk.cyclin_1 < cdk.cyclin_1_bound & cki_1 < cki_1_ bound ->

c5*cdk.cyclin.cki_1 :
(cdk.cyclin.cki_1’ = cdk.cyclin.cki_1 - 1) &
(cki_1’ = cki_1 + 1) &
(cdk.cyclin_1’ = cdk.cyclin_1 + 1);

We have run simulations of the previous P system and PRISM specifications
using our simulator of P system with Gillespie dynamics and the PRISM simu-
lator. In Figure 1 we depict the evolution of the number of objects representing
the dimer cdk.cyclin, cdh1 and cdc14.

Observe that, although both simulators use the same strategy for the evolution
of the two different models, the simulations are not exactly the same. This is
due to the fact that we are dealing with stochastic approaches.

Nonetheless, both runs show a sudden increase of the dimer cdk.cyclin reach-
ing a peak of almost 100 molecules in less than a minute, then the number of
dimers decay steadily to zero. The evolution of cdh1 and cdc14 is similar, at
the beginning both decay slightly and then they increase reaching a number of
molecules approximately equal to the initial one.

4.2 A π-Calculus Model

Within the framework of π-calculus a system of interacting molecular entities
is described and modeled by a system of concurrent communicating processes.
Communication occurs on complementary channels, that are identified by spe-
cific names. Each molecule in the molecular system is described by a process and
modifications due to chemical interactions are represented using communication
and message passing between different processes through different channels, [20].

In what follows we comment on some fragments of a π-calculus specification
of the same network of the cell cycle specified before using P systems. These
fragments were taken from [13].
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Fig. 1. Simulations using the PRISM simulator (first graph) and our simulator of P
systems with Gillespie dynamics (second graph)

1. SYSTEM ::= CYCLIN | CDK | CDH1 | CDC14 | CKI
First the molecular population is specified as a system of concurrent pro-
cesses each one representing a molecule; CYCLIN, CDK, CDH1, CDC14 and CKI.



The following two fragments are examples of how chemical interactions are
specified in π-calculus.

2. CYCLIN ::= (v bb) BINDING-SITE
BINDING-SITE ::= (lb〈bb〉, R4), CYCLIN-BOUND
CDK ::= (lb(cbb), R4). CDK-CATALYTIC

The process CYCLIN is defined as another process BINDING-SITE with com-
munication channel bb. The process CDK has the complementary channel to
BINDING-SITE, lb〈bb〉, and so they can communicate, with rate R4, to pro-
duce two new processes CYCLIN-BOUND and
CDK-CATALYTIC. This fragment correspond to rule r1 of the P system speci-
fication.

3. CKI ::= DEGRCKI + BINDCYC
BINDCYC ::= (bind(x),R11).0
CYC-CDK-CKI ::= (bind〈bb〉, R11).TRIM

This fragment is similar to the previous one. CKI can be replaced either by
the process DEGRCKI or BINDCYC nondeterministically. The process BINDCYC
can communicate with CYC-CDK-CKI to produce TRIM, process representing
the trimer. This fragment correspond to rule r4 of the P system specification.

The above π-calculus specification may be translated into PRISM [22]. In the
next page the parts corresponding to the fragments of the specification presented
before are given. The π-calculus specification was mapped into PRISM using
modules to describe processes, labels of commands correspond to communication
channels, values of variables represent the number of different processes and
commands specify the effect of a communication.

module cyclin
cyclin : [0..CYCLIN] init CYCLIN;
cyclin_bound : [0..CYCLIN] init 0;
trim : [0..CYCLIN] init 0;
[lb] cyclin>0 & cyclin_bound<CYCLIN

-> cyclin : (cyclin_bound’=cyclin_bound+1) &
(cyclin’=cyclin-1);

[bind] cyclin_bound>0 & trim<CYCLIN
-> cyclin_bound : (trim’=trim+1) &

(cyclin_bound’=cyclin_bound-1);
endmodule

The module above describes the processes representing molecules of type cy-
clin. The variables cyclin, cyclin_bound and trim represent the number of
processes CYCLIN, CYCLIN_BOUND and TRIM of the previous π-calculus specifi-
cation. Below the modules describing the molecules of type cdk and cki are
presented.

Observe that the command labels lb and bind specify the communication
channels and the effect of these communications are described in the



corresponding commands. For example, the label lb synchronise the first com-
mands in modules cyclin and cdk, where the number of processes of type cyclin
is decreased by one and the number of processes of type cyclin_bound and
cdk_cat are increased by one representing the removal of a process CYCLIN and
the creation of two new processes CYCLIN_BOUND and CDK-CATALYTIC.

module cdk
cdk : [0..CDK] init CDK;
cdk_cat : [0..CDK] init 0;
[lb] cdk>0 & cdk_cat<CDK

-> cdk : (cdk_cat’=cdk_cat+1) & (cdk’=cdk-1);
endmodule

The fragment 3 of the π-calculus specification is described in the next module
and the creation of a process TRIM is represented using the commands labelled
by bind which decrease by one the variable cki representing the number of CKI
processes whereas in the module cyclin the variable trim is increased by one.

module cki
cki : [0..CKI] init CKI;
[bind] cki>0 -> cki : (cki’=cki-1);

endmodule

Using the PRISM simulator simulations of the previous π-calculus model can
be obtained [22]. The evolution of the number of processes CYCLIN, CDH1 and
CDC14 is depicted below. Note the similarity between this graph and the ones in
Figure 1.
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Fig. 2. A Simulation of the π-calculus model



5 Some Results and Discussions

We deal with systems of interacting biochemical entities. In this section we will
show how these systems are modeled using π-calculus and P systems formalism
and how these are represented in PRISM.

From the previous case study modeled by using π-calculus and P systems
approaches we can identify some general principles of representing, in the for-
malisms, different aspects of the modeling process.

In P systems, molecules are represented using objects from a finite alpha-
bet and therefore the molecular population present in the system is specified
by multisets of objects. In π-calculus a concurrent and communicating process
abstracts the behavior of a molecule and the whole molecular system is specified
as a system of concurrent and communicating processes.

Compartments are explicitly specified in P systems as regions delimited by
membranes. Although in π-calculus there is no component that corresponds di-
rectly with a biological compartment, processes representing molecules in the
same compartment share certain exclusive communication capabilities (private
communication channels), that are inaccessible to processes representing
molecules in other compartments.

Regarding biochemical reactions, in P systems they are specified using rewrit-
ing rules according to which objects representing reactants are replaced with
objects representing products. In the π-calculus approach different processes
representing molecules interact through complementary communication chan-
nels; this communication and the changes triggered by it describe a chemical
interaction between the molecules represented using these processes.

The translocation of a molecule from one compartment to another one is
modeled in P system using a particular type of rewriting rule, called boundary
rule, where the compartments involved in the movement are specified. In the case
of π-calculus mobile communication in which communication channel names
are sent as messages is used to describe the movement of a process from one
compartment to another using the extrusion of a private channel’s scope.

In the following two tables we sum up how biomolecular systems are specified
in P systems and in π-calculus and how these specifications can be mapped into
PRISM so that we can perform probabilistic model checking on them.

Biomolecular entity P system entity π-calculus entity

Molecule Object Process
Molecular Multiset of System of
Population objects concurrent processes

Compartment Region defined Private Communication
by a membrane channels

Biochemical Re-writing rule Communication
Transformation through channels
Compartment Boundary rule Extrusion of a
Translocation private channel’s scope



Biomolecular entity P system PRISM π-calculus PRISM

Molecule Variable Module
Molecular Variable values Variables
Population in modules

Compartment Module Command
Labels

Biochemical Command Synchronization
Transformation between commands
Compartment Synchronization Synchronization
Translocation between commands between commands

One of the key features of our approach is the explicit stochastic behavior
of our models. As mentioned before stochastic systems defy conventional intu-
ition and consequently are harder to conceive. The main stream methodology
to get the statistics of a stochastic system is the simulation of many trajecto-
ries. Nevertheless, simulation is the exploration of finite behaviors over given
time intervals, whereas probabilistic model checking allows us to investigate the
truth or otherwise of temporal queries expressed in temporal logics over possibly
infinite sets of behaviors over possibly unbounded time intervals [6].

In what follows we use CSL (Continuous Stochastic Logic) and PRISM to for-
mulate and check three temporal biological queries against our model of the cell
cycle in eukaryotes in order to illustrate what kind of properties may be checked.

First, we study the expected number of molecules of cdk.cyclin, cdh1 and
cdc14. For this we associate to each state a reward representing the value of the
variable which specifies the corresponding protein. Then we formulate the query
regarding the expected value of that reward at the time instant T:

R = ? [ I = T ]

In figure 3 we have plotted these expected values as T varies.
Observe that the expected number of molecules of dimers cyclin.cdk decreases

steadily to low numbers whereas cdh1 and cdc14 decrease slightly during the first
two minutes to start increasing gradually afterwards to reach approximately the
initial number of molecules.

In order to get a finer grain analysis of the monotonic decrease of cyclin.cdk
we investigate the probability that the dimers cdk.cyclin at time T is greater
than a given threshold t. This property is specified by the CSL formula:

P = ? [ true U[T,T] cdk.cyclin >= t ]

In Figure 4 it is depicted the probability that the number of dimers cdk.cyclin
is greater than 90, 80 and 70 as time varies for the P system specification.

Besides transient analysis we can also study steady state properties using the
operator S. In order to verify that cdh1 and cdc14 return to their initial values
in the long term we have verified the following temporal queries:

S >= 0.9 [ cdh1 = 100 ]
S >= 0.9 [ cdc14 = 200 ]
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Fig. 3. Expected evolution of the P system specification
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Fig. 4. Probability that the number of dimers cdk.cyclin is greater than a given thresh-
old in the P system specification



6 Conclusions and Future Work

In this paper we have discussed how P systems and π-calculus can model systems
of interacting biochemical entities. A simple case study regarding the cell cycle
has been used to illustrate the different methodologies. We have also shown how
P systems and π-calculus specifications can be translated into PRISM allowing
us to perform probabilistic model checking; in this respect specific questions were
addressed for the P system specification.

Future work will aim to compare through more complex case studies some
differences between P system specifications and other modeling paradigms - Petri
nets, cellular automata, ambient calculus, in order to understand advantages and
limitations offered by these methods and their suitability for different problems.
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Junta de Andalućıa, by project of Excellence TIC 581, and by a FPU fellowship
from the Ministerio de Ciencia y Tecnoloǵıa of Spain.
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