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ingrávidos y gentiles

como pompas de jabón.

Me gusta verlos pintarse

de sol y grana, volar

bajo el cielo azul, temblar

súbitamente y quebrarse.

Antonio Machado





Resumen de la tesis doctoral:

D-módulos algebraicos y cohomoloǵıa de familias de Dwork

Una familia de Dwork es una deformación monomial uniparamétrica de una hipersu-

perficie de Fermat. Debido a su conexión con las funciones L de sumas de Kloosterman

y la simetŕıa espejo, entre otras aplicaciones, resultaŕıa deseable calcular algebraica y

p-ádicamente la parte invariante por la acción de cierto grupo de automorfismos de su

cohomoloǵıa de Gauss-Manin.

Como paso previo, en esta tesis se lleva a cabo dicho cálculo sobre un cuerpo al-

gebraicamente cerrado de caracteŕıstica cero, usando de un modo puramente algebraico

aspectos diversos de la teoŕıa de D-módulos, como los formalismos de las seis opera-

ciones de Grothendieck, los D-módulos de Hodge mixtos o la transformada de Fourier,

destacando importantes resultados debidos principalmente a Katz sobre D-módulos en

dimensión uno e hipergeométricos.

Probamos también algunos resultados complementarios; los principales son la pre-

sentación de una relación entre los exponentes de un complejo de cohomoloǵıa de Gauss-

Manin y la aciclicidad de un complejo de Koszul, y la existencia de dos sucesiones es-

pectrales de tipo Mayer-Vietoris para la localización de un complejo de D-módulos, fi-

nalizando con el cálculo de la cohomoloǵıa del complemento abierto de un arreglo de

hiperplanos arbitrario.

Doctoral thesis’ abstract:

D-módulos algebraicos y cohomoloǵıa de familias de Dwork

(Algebraic D-modules and cohomology of Dwork families)

A Dwork family is a one-parameter monomial deformation of a Fermat hypersurface.

Due to its connection with L-functions of Kloosterman sums and mirror symmetry, among

other applications, it would be desirable to compute algebraically and p-adically the in-

variant part of their Gauss-Manin cohomology under the action of certain subgroup of

automorphisms.

As a previous step, in this thesis we perform such calculation over an algebraically

closed field of characteristic zero, by using in a purely algebraic way several topics of

D-module theory, such as the formalisms of Grothendieck’s six operations, mixed Hodge

modules or Fourier transform, highlighting some important results mainly due to Katz

about D-modules in dimension one and hypergeometric ones.

We also prove some complementary results; the main ones are the presentation of a re-

lation between the exponents of a Gauss-Manin cohomology complex and the acyclicity of

a Koszul complex, and the existence of two Mayer-Vietoris-like spectral sequences for the

localization of a complex of D-modules, finishing with the calculation of the cohomology

of the open complement of an arbitrary arrangement of hyperplanes.
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quién es el Dwork ese y por qué me interesa su familia, en mis abuelos, que a sus ochenta y pico

primaveras, la que menos, muestran un conocimiento de la vida y de este trabajo tan profundo

que parece que fueran catedráticos.
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Introducción

Pero tú lo has dispuesto todo

con medida, número y peso.

Sab 11, 20b

Un poco de historia

Esta tesis doctoral pertenece a las ramas más antiguas de las matemáticas, la geometŕıa y la

teoŕıa de números. Sin embargo, pronto debemos retirar este velo de solemnidad o tradición, pues

observaremos dichas disciplinas clásicas desde un punto de vista algebraico. El texto presente

en las siguientes páginas es parte de un proyecto en geometŕıa aritmética, esto es, trabajar con

problemas u objetos de naturaleza aritmética desde la geometŕıa algebraica. En esta sección

bosquejaremos su motivación histórica.

Un objeto conocido en la teoŕıa de números son las sumas de Kloosterman. Se definieron

originalmente en un contexto anaĺıtico, pero recuérdese que esta tesis pertenece al ámbito de los

métodos algebraicos, por lo que aśı trataremos cualquier concepto que aparezca. Fijemos una

potencia q de un primo p, y un entero positivo n. Sea w = (w0, . . . , wn) una (n + 1)-upla de

enteros positivos tales que mcd(w0, . . . , wn) = 1, y definamos Hm,w, para cada m ≥ 1, como el

subgrupo de
(
F∗qm

)n+1
de vectores (x0, . . . , xn) cumpliendo que xw0

0 · . . . · xwnn = 1. Sean ahora

ψ un carácter aditivo de Fq y α = (α0, . . . , αn) otra (n+ 1)-upla, esta vez de elementos de F∗qm .

Una suma de Kloosterman generalizada será para nosotros una suma exponencial de la forma

Sm(w,ψ, α) =
∑

x∈Hw,m

ψ ◦ TrFqm/Fq

(
n∑
i=0

αixi

)
.

Hendrik Kloosterman solamente definió estas sumas para q = p, m = 1, n = 1 y wi = 1

(cf. [KlH]), e incluso en este caso bastante más simple resultaron ser de utilidad al estudiar la

representabilidad de los enteros mediante formas cuadráticas. A lo largo de los años se han

hallado muchas aplicaciones de ellas, y se han convertido en una herramienta esencial de la

teoŕıa anaĺıtica de números.

Cualquier teórico de números algebraico sabe que una manera muy fruct́ıfera de entender el

comportamiento de una suma exponencial, inspirándose en la formulación de las conjeturas de

Weil en [We], es definir la función L asociada a dicha suma e intentar estudiarla mediante una

teoŕıa de cohomoloǵıa apropiada, llamada cohomoloǵıa de Weil. Aśı se llama a una cohomoloǵıa

que satisfaga ciertos axiomas provenientes de la topoloǵıa algebraica y la cohomoloǵıa singular,

1
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como la dimensión finita, la dualidad de Poincaré o la existencia de una fórmula del punto fijo de

Lefschetz, entre otros. La función L es simplemente la función generatriz asociada a la familia

en m de sumas exponenciales Sm(w,ψ, α)

L(w,ψ, α, T ) = exp

( ∞∑
m=1

Sm(w,ψ, α)
Tm

m

)
.

Ya podemos presentar otro de los protagonistas de esta introducción: las familias de Dwork.

A lo largo de esta tesis trabajaremos sobre un cuerpo de caracteŕıstica cero k, aśı que fijémoslo

ahora para el resto del texto. Consideremos de nuevo la (n+1)-upla w de los anteriores párrafos,

y llamemos dn =
∑

iwi. Una familia de Dwork es una familia de ecuación, parametrizada por

λ,

Xn,w : xdn0 + . . .+ xdnn − λx
w0
0 · . . . · x

wn
n = 0 ⊂ Pn × A1.

Bernard Dwork las introdujo, Xn,1 en particular, durante su estudio p-ádico de la función zeta

de una hipersuperficie proyectiva sobre un cuerpo finito, pues eran bastante útiles al intentar

entender el efecto de una deformación en la función zeta (cf. [Dw]). Por ejemplo, nótese que

cuando n = 2 y todos los wi son uno, recuperamos la familia hessiana de curvas eĺıpticas, siempre

y cuando λ3 6= 27.

Otra manera de entender el comportamiento de la familia con respecto a dicha deformación

es calcular la cohomoloǵıa de Gauss-Manin de Xn,w, que no es más que la cohomoloǵıa relativa

con respecto a la variedad de parámetros, A1 en nuestro caso. Al comienzo de los años setenta

del siglo pasado, Nicholas Katz probó en [Ka2] que las clases de la cohomoloǵıa de grado medio

verificaban una ecuación diferencial hipergeométrica.

De nuevo Katz ([Ka3]) hace que volvamos a las sumas de Kloosterman. Sea G el cociente

por el grupo diagonal µdn(1, . . . , 1) del subgrupo de automorfismos de Xn,w dado por{
(ζ0, . . . , ζn) ∈ µn+1

dn
|
n∏
i=0

ζwii = 1

}
,

actuando sobre Pn mediante el producto componente a componente. Si k es ahora un cuerpo

local p-ádico cuyo cuerpo residual sea Fq, el cociente de Xn,w bajo la acción de G, que es la

clausura proyectiva en Pn ×A1 de otra familia denotada por Yn,w, es una elevación a k de Hw,1

y tenemos que

L(w,ψ, α, T ) =
∏
k

(
det
(

1− σkT |HkGM(Ȳn,w)
))(−1)k+1

.

En la fórmula, los σi son ciertas elevaciones del endomorfismo de Frobenius de Fq y HGM

representa la cohomoloǵıa de Gauss-Manin usando una cohomoloǵıa de Weil (torcida de manera

apropiada en función de ψ). En los tiempos de este avance espectacular, la única cohomoloǵıa

de Weil conocida era la cohomoloǵıa `-ádica.

La cohomoloǵıa `-ádica ha demostrado siempre ser una teoŕıa muy potente al lidiar con este

tipo de problemas aritméticos, siendo por ejemplo el contexto en el que se demostraron por

primera vez todas las conjeturas de Weil, por Pierre Deligne en [De2]. Sin embargo, algunos

objetos, como el poĺıgono de Newton p-ádico de la función L, son invisibles a este enfoque y seŕıa

deseable contar con una buena teoŕıa de cohomoloǵıa de Weil p-ádica, extendiendo el trabajo
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pionero de Dwork de la década de los sesenta del siglo pasado. Desde entonces hasta ahora, han

aparecido varias teoŕıas p-ádicas, pero o bien ninguna es capaz de cumplir todos los axiomas

requeridos o bien no son tan universales como seŕıa deseable con respecto a la categoŕıa de

variedades a la que se deben aplicar. No fue hasta 2006 cuando Kiran Kedlaya en [Ke] demostró

las conjeturas de Weil de manera puramente p-ádica, usando la cohomoloǵıa ŕıgida.

La cohomoloǵıa ŕıgida parećıa ser la tan esperada teoŕıa con la que podŕıamos trabajar en

condiciones. Sin embargo, solo funciona bien globalmente, es decir, tomando imágenes directas

sobre un punto, y necesitamos una cohomoloǵıa que cumpla el formalismo de las seis operaciones

de Grothendieck: imágenes directas e inversas usuales y extraordinarias, productos tensoriales

y funtores hom, todo ello junto con la dualidad, y si es posible, con una teoŕıa de pesos como

la de la cohomoloǵıa `-ádica. La idea es trabajar con D-módulos definidos sobre un cuerpo p-

ádico, de una manera parecida a la teoŕıa anaĺıtica de D∞-módulos complejos, pero con métodos

algebraicos.

Hay dos aproximaciones, distintas en cierto modo, a esta teoŕıa. La primera es el formalismo

de los D-módulos aritméticos de Pierre Berthelot, introducido en [Be]. Esta teoŕıa, partiendo

de la cohomoloǵıa ŕıgida, se ha desarrollado en los últimos años principalmente debido a Daniel

Caro, ofreciendo y prometiendo importantes resultados (cf. [Hu, CT, Car, AC]). La otra idea,

de Zoghman Mebkhout y Luis Narváez Macarro, presentada en [MN1], se trata de considerar

D†
X†

-módulos sobre esquemas formales débiles. Recibió un gran empuje en dimensión uno por

parte del trabajo de Gilles Christol y Mebkhout sobre el teorema del ı́ndice de las ecuaciones

diferenciales p-ádicas que culminó en [CM], y en un contexto más general, ha sido estudiada en

profundidad por Alberto Arabia y Mebkhout, dando lugar a la teoŕıa de D†
X†

-módulos especiales

(cf. [MN2,Me4,AM,Me5]).

Volveremos a los D-módulos, pero comentemos antes la historia reciente de las familias de

Dwork. Desde el hallazgo de la conexión con las sumas de Kloosterman, poco más se avanzó con

ellas hasta la incursión de la f́ısica teórica. El cálculo de los puntos racionales o la cohomoloǵıa

de Gauss-Manin de ciertas variedades de Calabi-Yau con buenas propiedades, como algunas

familias de Dwork, interesa a los f́ısicos especialistas en teoŕıa de cuerdas y simetŕıa espejo

(cf. [CDR]). Debido a ese nuevo interés en ellas, muchos redescubrieron las familias de Dwork

como una buena herramienta para trabajar en otros problemas. Podemos citar, por ejemplo,

el trabajo [Ba] de Sergey Barannikov, generalizado posteriormente por Antoine Douai y Claude

Sabbah en [DS], en el que la cohomoloǵıa de Gauss-Manin de Yn,w aparece como la cohomoloǵıa

cuántica de los espacios proyectivos ponderados n-dimensionales, mediante su estructura de

Frobenius. Otro trabajo importante es [HST], en el que Michael Harris, Nick Shepherd-Barron

y Richard Taylor demuestran la conjetura de Sato-Tate en toda su generalidad, entre otros

impresionantes resultados, estudiando las familias de Dwork originales Xn,1.

El problema de calcular la cohomoloǵıa de Gauss-Manin, tanto del cociente Yn,w de la famila

de Dwork Xn,w como de toda ella, también se ha afrontado en numerosas ocasiones. Podemos

dividir los trabajos por su contexto aritmético y la estrategia utilizada. Desde el punto de vista

`-ádico, Katz calcula en [Ka7] toda la cohomoloǵıa de Xn,w usando la potencia de la maquinaria

étale. Antonio Rojas León y Daqing Wan usan las mismas técnicas en [RW], como v́ıa para

hallar las funciones zeta de momentos de la familia de Dwork original y su cociente. Estos

trabajos son bastante completos y exprimen el formalismo `-ádico.
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Ahora podemos movernos a los p-ádicos y observar un panorama mucho más interesante.

Debido a la ausencia de una buena teoŕıa de cohomoloǵıa que satisfaga las seis operaciones de

Grothendieck, una parte significativa del trabajo se remite a Dwork, usando los métodos clásicos

del análisis p-ádico. Citamos, por ejemplo, el trabajo [KlR] de Remke Kloosterman en el que

se da la expresión de la matriz de la conexión integrable de Gauss-Manin que uno obtiene al

evitar los puntos singulares dependiendo de funciones hipergeométricas p-ádicas, usando una

interesante mezcla entre las cohomoloǵıas de Dwork y ŕıgida. O el art́ıculo [Yu] de Jeng-Daw

Yu que estudia la variación de la ráız unidad de la familia de Dwork original, también mediante

técnicas provenientes de Dwork con un toque de cohomoloǵıa cristalina.

Sobre los complejos la situación es similar a la del párrafo anterior. Un enfoque distinto,

computacional, pero aún aśı a la Dwork-Katz, es el de Adriana Salerno, que en [Sal] proporciona

un algoritmo para calcular la matriz de la conexión de Gauss-Manin. También Yu y Katz, en

sus art́ıculos mencionados arriba, trabajan en el contexto complejo, respectivamente, hallando

una sección horizontal de la conexión, y expresando la cohomoloǵıa de Gauss-Manin de Ȳn,w en

función de D-módulos hipergeométricos usando métodos anaĺıticos trascendentes.

Se podŕıa decir que no queda nada por probar, y sin falta de razón en cierto sentido. Sin em-

bargo, recuérdese que queŕıamos hallar una manera p-ádica algebraica de conocer la cohomoloǵıa

de gauss-Manin de la familia de Dwork Xn,w o de su cociente Yn,w. Ninguna de las dos aproxi-

maciones a una buena teoŕıa p-ádica de cohomoloǵıa o D-módulos constituye una herramienta

plenamente operativa, aśı que como un primer paso en aquella dirección, se debeŕıa realizar este

proyecto, al que pertenece esta tesis, usando D-módulos de manera puramente algebraica, y eso

es lo que se lleva a cabo aqúı. Más concretamente, damos una expresión de la cohomoloǵıa

de Gauss-Manin de Yn,w sobre cualquier cuerpo algebraicamente cerrado de caracteŕıstica cero

usando la teoŕıa algebraica de D-módulos. Debemos notar además que a pesar de que nuestra

idea inicial era realizar el cálculo de la cohomoloǵıa de Gauss-Manin de Yn,w tanto algebraica

como p-ádicamente, este paso con D-módulos algebraicos tradicionales requirió más esfuerzo del

planeado y pensamos seguir adelante en esa dirección. (Ver la última sección, “Open questions

and further projects”, para más información.)

Resultados principales y contenido

Al final de la anterior sección hemos mencionado que hemos trabajado con D-módulos alge-

braicos. ¿A qué se debe este uso? Hemos dicho antes que las clases de cohomoloǵıa se pueden

derivar con respecto a la variable que representa el parámetro, y además, que satisfacen ciertas

ecuaciones diferenciales, apareciendo la cohomoloǵıa de Gauss-Manin de Yn,w de manera natural

como la imagen directa por la proyección sobre la variedad de parámetros del haz de estructura

OYn,w . En segundo lugar, podemos utilizar las seis operaciones de Grothendieck, tal y como las

formula Mebkhout en [Me1], una transformada de Fourier como en el trabajo [DE] de Andrea

D’Agnolo y Michael Eastwood y una teoŕıa de pesos, los módulos de Hodge mixtos de Morihiko

Saito (cf. [Sa]). Los D-módulos también ofrecen la posibilidad de enunciar resultados topológicos

o trascendentes en términos algebraicos análogos. Es más, contrariamente al contexto `-ádico,

más abstracto, podemos realizar cálculos expĺıcitos y usar la existencia de un algoritmo de di-

visión para operadores diferenciales gracias a Francisco Castro Jiménez (cf. [Ca]). Por último,
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pero no por ello menos importante, existe una buena teoŕıa de D-módulos en dimensión uno, e

hipergeométricos en particular, desarrollada por Katz en [Ka5]. No es nuestra intención devaluar

el resto de teoŕıas o construcciones mencionadas antes, pues son formalismos muy profundos y

útiles, pero el punto realmente interesante de esta tesis es el uso del trabajo de Katz.

Enunciemos ahora los resultados principales de esta tesis. Cada variedad que hemos presen-

tado es una familia dentro de Pn × A1, y denotaremos por pn las restricciones a cualquiera de

aquellas de la segunda proyección canónica.

Teorema. Sea K̄n = pn,+OYn,w . Existe un morphismo canónico de complejos de DA1-módulos(
pn,+OXn,w

)G −→ K̄n tal que las cohomoloǵıas de su cono son todas sumas directas de copias

del haz de estructura OA1.

El siguiente teorema nos da una expresión detallada de K̄n y utiliza en su enunciado D-

módulos de Kummer e hipergeométricos, denotados respectivamente por Kα y Hγ(αi;βj). Se

definen en las secciones 1.3 y 1.4, y aparecerán por todo el texto.

Teorema. Existe un complejo de DGm-módulos Kn tal que, llamando j a la inclusión canónica

Gm ↪→ A1 e ιn al endomorphismo de Gm dado por z 7→ z−dn, tenemos que j+K̄n
∼= ι+nKn. Este

complejo verifica lo siguiente: Hi(Kn) = 0 si i /∈ {−(n − 1), . . . , 0}, Hi(Kn) ∼= O
( n
i+n−1)

Gm para

todo −(n− 1) ≤ i ≤ −1, y en grado cero tenemos la sucesión exacta

0 −→ Gn −→ H0(Kn) −→ OnGm −→ 0,

siendo Gn un DGm-módulo cuya semisimplificación es

Gssn =
⊕

α∈Aa,bn −{1}

Kα ⊕Fn.

Los parámetros a, b son enteros en {1, . . . , dn} y

Aa,bn =

{
1

w0
+

b

dn
, . . . ,

w0

w0
+

b

dn
, . . . ,

wn
wn

+
b

dn

}
∩
{

1

dn
, . . . ,

dn
dn

}
−
{
a+ b

dn

}
,

que es el conjunto de fracciones (k+b)/dn con k 6= a tales que existen i = 0, . . . , n y j = 1, . . . , wi

cumpliendo que j/wi = k/dn.

En la semisimplificación de Gn, el módulo Fn es el DGm-módulo hipergeométrico irreducible

Kb/dn ⊗OGm Hγn
(

cancel

(
1

w0
, . . . ,

w0

w0
, . . . ,

1

wn
, . . . ,

wn
wn

;
1

dn
, . . . ,

dn
dn

))
.

La imagen inversa por ιn se deshace de la incertidumbre en la elección de b, pero no de

a. Aún aśı, cada D-módulo de Kummer en la semisimplificación de Gn pasa a ser un haz

de estructura, por lo que en cualquier caso podemos caracterizar la parte no constante de(
pn,+OXn,w

)G
como j!+ι

+
nFn, tomando b = dn. Este es el principal resultado que han obtenido

otros cuando han calculado la expresión de la cohomoloǵıa de Gauss-Manin de Yn,w. Aun

resolviendo nuestro principal objetivo, nos gustaŕıa conocer con exactitud el complejo Kn, que a

pesar de ser auxiliar, es bastante interesante de por śı. Por ello nos gustaŕıa poder afirmar que

a = b = dn incondicionalmente. Hablaremos de esto más detalladamente en el último caṕıtulo

de conclusiones, pero creemos firmemente que podremos evitar la mención a esos parámetros

que perturban la belleza del enunciado. De momento lo que podemos afirmar es:
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Teorema. En las condiciones del teorema anterior, si existe un ı́ndice i tal que wi = 1, entonces

a = b = dn, y si cada wi es primo con dn, se tiene que a = dn.

Nótese que cuando n = 1, por asunción tenemos que mcd(w0, w1) = 1, aśı que en este caso

los dos wi son primos con d1 y entonces a = d1.

Esta tesis requiere del lector que esté familiarizado con el lenguaje de las categoŕıas derivadas

y que posea una base de geometŕıa algebraica y algunas nociones de D-módulos. Expliquemos

el contenido de cada caṕıtulo.

El primer caṕıtulo contiene la mayoŕıa de las nociones de teoŕıa de D-módulos necesarias

para los siguientes. Como acabamos de decir, esperamos del lector cierto conocimiento de

la teoŕıa algebraica de D-módulos. No obstante, en la primera sección recordamos algunos

conceptos básicos de dicha teoŕıa e incluimos resultados elementales y útiles, como la existencia

del triángulo de escisión, el teorema del cambio liso de base o las fórmulas relativas de Künneth

y de la proyección.

Continuamos definiendo, en la siguiente sección, el concepto de extensión intermedia y carac-

teŕıstica de Euler-Poincaré de un complejo de D-módulos coherentes (visto siempre como ele-

mento de la correspondiente categoŕıa derivada). Esta sección se centra especialmente en el caso

unidimensional, pero damos algunos resultados en un contexto general. El objetivo de la sección

es caracterizar las extensiones intermedias por su ausencia de subobjetos o cocientes puntuales y

proporcionar dos fórmulas para el cálculo de la caracteŕıstica de Euler-Poincaré de un D-módulo

sin cocientes puntuales (o una extensión intermedia, en particular), inspiradas en el trabajo de

Deligne sobre conexiones integrables con singularidades regulares [De1].

La próxima sección trata de manera algebraica un concepto inspirado en la topoloǵıa: la

monodromı́a. Se exponen varios resultados sobre los exponentes de un D-módulo en una sin-

gularidad, junto con otros sobre la existencia de algunos exponentes en un complejo de coho-

moloǵıa de Gauss-Manin relacionada con la sobreyectividad de cierto morfismo, y nociones que

necesitaremos posteriormente, cuando intentemos hallar los exponentes de Kn.

Terminamos el caṕıtulo con su sección más importante; aquella en la que estudiamos D-

módulos de caracteŕıstica de Euler-Poincaré 0 y−1, presentamos losD-módulos hipergeométricos,

estudiando sus propiedades básicas y clases de isomorf́ıa, terminando por caracterizarlos medi-

ante ellas. Este caṕıtulo está basado fundamentalmente en el trabajo de Katz en [Ka5], in-

cluyendo un importante resultado, debido a François Loeser y Sabbah, de su art́ıculo [LS].

El segundo caṕıtulo contiene gran parte de nuestro problema principal. En la primera sección

sentamos las bases del cálculo de la cohomoloǵıa de Gauss-Manin de Yn,w, explicando en mu-

cho mayor detalle las construcciones geométricas comentadas en los párrafos históricos de esta

introducción. Probamos también el primero de nuestros teoremas principales y presentamos la

estrategia inductiva que nos servirá de ayuda para probar las primeras afirmaciones del segundo

de nuestros teoremas principales, empezando por el caso inicial en el que n = 1.

Gracias a los resultados del primer caṕıtulo podemos caracterizar un D-módulo hiper-

geométrico por medio de algunas de sus propiedades algebraicas, tales como su rango genérico,

su caracteŕıstica de Euler-Poincaré, su regularidad o los exponentes en sus singularidades, y

casi todo esto se trata en la segunda sección. Primero exploramos las consecuencias del proceso

inductivo, describiendo expĺıcitamente parte del triángulo distinguido que nos acompaña a lo
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largo de la sección. Después hallamos la parte constante de Kn y describimos las propiedades

de Gn, excepto sus exponentes en el origen e infinito. Las herramientas usadas en estas pruebas

son bastante variadas en cuanto a su naturaleza, pero todas ellas pertenecen o bien a lo que

asumimos que el lector conoce, o bien a lo comentado en el primer caṕıtulo. Al final usamos en

gran medida el potencial de los D-módulos que enumeramos al justificar su uso, pero no todo.

Y si no es todo, es porque en el tercer caṕıtulo lidiamos en detalle con la transformada de

Fourier de complejos de D-módulos, desde el punto de vista funtorial. Gracias a Katz podemos

relacionarla con la operación de convolución, motivada por el contexto aritmético. También estu-

diamos en la primera sección el comportamiento de ciertos tipos de D-módulos hipergeométricos

al tomar la convolución de ellos con otros D-módulos, para llegar a un resultado que nos permite

expresar la transformada de Fourier de ciertas extensiones de la imagen inversa por la r-ésima

potencia en Gm de un D-módulo hipergeométrico irreducible en función de otro hipergeométrico.

Las pruebas de estos resultados y las de las secciones 1.2 a 1.4 se incluyen porque de manera

opuesta a las referencias que hemos encontrado en la literatura a la parte `-ádica de [Ka5], no

hemos hallado muchas a su trabajo con D-módulos.

Estos últimos resultados nos son enormemente útiles para terminar la prueba de nuestro

segundo teorema principal. Calculamos primero la transformada de Fourier de K̄n, gracias a

una sugerencia de Sabbah, como Douai y él en [DS]. Luego discutimos los posibles valores de

los exponentes de Gn, incluyéndose a continuación una manera alternativa de hallar la parte

no constante de K̄n, siguiendo otra sugerencia de Sabbah. También demostramos los casos

particulares en los que mcd(dn, wi) = 1 para todo i = 0, . . . , n, o que algún wi es igual a uno.

Este último caso ocupa la mitad de la seción, y es una aplicación de los resultados de la segunda

parte de la sección 1.3. Debeŕıamos añadir que aunque el caṕıtulo se llama “monodromy”,

“monodromı́a” en español, no se hace ninguna mención seria a ella en todo el texto, sino que

pretende ser un sinónimo de “exponentes”.

En el cuarto caṕıtulo proporcionamos algunos complementos a nuestros teoremas principales.

No son muy importantes, pero ayudan a completar el estudio de los objetos tratados en esta

tesis. En la primera sección discutimos la variación de la cohomoloǵıa de Gauss-Manin de

Yn,w al considerar deformaciones monomiales uniparamétricas cualesquiera, esto es, al evitar

asumir condición alguna sobre los números wi, como mcd(w0, . . . , wn) = 1 o wi > 0 para todo

i = 0, . . . , n. Estas asunciones resultan ser bastante interesantes, puesto que en cuanto una

de ellas no se cumple, la cohomoloǵıa de Gauss-Manin de Yn,w se simplifica extremadamente,

siendo sólo o bien la suma directa de componentes irreducibles relacionadas con el caso en el que

los wi no comparten un divisor, o bien un grupo de copias del haz de estructura OGm . También

nos preguntamos cuándo son enteros los exponentes en el origen o en el infinito de Kn o K̄n,

respectivamente, y caracterizamos estos fenómenos en función de la divisibilidad de los wi.

En la segunda sección demostramos una relación inductiva entre los distintos D-módulos

hipergeométricos Fn siguiendo el estilo del proceso inductivo general.

Por último, en la tercera sección incluimos algunos cálculos expĺıcitos de las extensiones de

la imagen inversa por una potencia d-ésima de un D-módulo hipergeométrico de exponentes

racionales. Esto nos permite hallar una expresión cercana a lo expĺıcito para la extensión inter-

media de ι+nFn.



8

Finalmente, en el apéndice presentamos un interesante subproducto del objetivo de esta tesis.

En un momento dado necesitábamos una prueba algebraica usando D-módulos de un resultado

que calculara la cohomoloǵıa global de de Rham de un arreglo de hiperplanos. Aunque este

hecho es de sobra conocido, no encontramos un enfoque como deseábamos. Esto evolucionó en

el art́ıculo independiente [Cas], en el que presentamos dos sucesiones espectrales de tipo Mayer-

Vietoris para la localización de ciertos OX - o DX -módulos, siendo X una variedad algebraica,

sobre el abierto complementario de una subvariedad cerrada Y =
⋃
i Yi de X. Después de

una pequeña introducción al apéndice, la primera sección contiene los resultados básicos sobre

sucesiones espectrales que necesitamos después.

En la segunda sección podemos encontrar más definiciones y un resultado vital para probar la

existencia de las dos sucesiones espectrales, estando la primera de ella en esta sección también.

Esta trata con OX -módulos casi-coherentes, pero la segunda, en la tercera sección, se define

solamente para DX -módulos, al usar el funtor imagen directa para conseguir tener un enunciado

relativo, independiente de la variedad de partida.

En la cuarta sección del apéndice demostramos de manera puramente algebraica la fórmula

de Orlik y Solomon para el polinomio de Poincaré de la cohomoloǵıa de de Rham global del

complementario de un arreglo de hiperplanos en función de su conjunto parcialmente ordenado

de intersección, en virtud de la sucesión espectral de la sección anterior.



Introduction

But you have disposed all things

by measure and number and weight.

Wisd 11:20b

A bit of history

This dissertation can be seen as part of the oldest branches of mathematics, geometry and

number theory. However, we soon have to move this veil of solemnity or tradition away, since

we are going to look at those ancient disciplines from an algebraic point of view. The text in

the following pages belongs to a project in arithmetic geometry, that is to say, approaching to

arithmetic problems or objects from the side of algebraic geometry. In this section we cast a

glance over its historical motivation.

A well-known concept in number theory is that of Kloosterman sums. They were originally

defined in an analytic context, but recall that this thesis belongs to the realm of algebraic

methods, so we will treat in that way every notion appearing here. Fix a prime power q, say of

p, and a positive integer n. Let w = (w0, . . . , wn) be an (n + 1)-uple of positive integers such

that gcd(w0, . . . , wn) = 1, and define Hw,m, for every m ≥ 1, as the subgroup of
(
F∗qm

)n+1
of

vectors (x0, . . . , xn) satisfying xw0
0 · . . . · xwnn = 1. Let now ψ be an additive character of Fq and

α = (α0, . . . , αn) be another (n + 1)-uple, this time of elements of F∗qm . For us, a generalized

Kloosterman sum is an exponential sum of the form

Sm(w,ψ, α) =
∑

x∈Hw,m

ψ ◦ TrFqm/Fq

(
n∑
i=0

αixi

)
.

Hendrik Kloosterman only defined those sums for q = p, m = 1, n = 1 and wi = 1 (cf. [KlH]), and

even in that quite simplified case, they turned out to be of use when studying the representability

of integers by quadratic forms. Over the years many applications of them have been found, and

they have become an essential tool of analytic number theory.

Every algebraic arithmetician knows that a very fruitful way to understand exponential sums,

inspired by the formulation of Weil conjectures in [We], is to define the L-function associated

with such a sum, and try to study it by means of a suitable cohomology theory, named Weil

cohomology, which is a cohomology satisfying some axioms coming from algebraic topology

and singular cohomology, such as finite dimensionality, Poincaré duality or the existence of a

9
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Lefschetz fixed point formula, among others. The L-function is just the generating function

derived from the family in m of exponential sums Sm(w,ψ, α)

L(w,ψ, α, T ) = exp

( ∞∑
m=1

Sm(w,ψ, α)
Tm

m

)
.

Now we can introduce another main character of this introduction: Dwork families. Through-

out all this dissertation we will work over a fixed field of characteristic zero k, so fix it once and

for all. Recover the (n+ 1)-uple w of the previous paragraphs, and take dn =
∑

iwi. A Dwork

family is a family with equation, parameterized by λ,

Xn,w : xdn0 + . . .+ xdnn − λx
w0
0 · . . . · x

wn
n = 0 ⊂ Pn × A1.

Bernard Dwork introduced them, Xn,1 in particular, during his study of the p-adic properties of

the zeta function of a projective hypersurface over a finite field, for they turned out to be quite

useful when trying to understand the effect of a deformation on the zeta function (cf. [Dw]).

As an example, note that when n = 2, all the wi are one and λ3 6= 27, we recover the Hessian

family of elliptic curves.

Another way of understanding the behaviour of the family with respect to that deformation

is computing the Gauss-Manin cohomology of Xn,w, which is nothing but relative cohomology

with respect to the variety of parameters, A1 in our case. At the beginning of the seventies,

Nicholas Katz proved in [Ka2] that the classes of the middle-degree part of the cohomology

satisfied a hypergeometric differential equation.

Katz again ([Ka3]) makes us go backwards and return to Kloosterman sums. Let G be the

quotient by the diagonal group µdn(1, . . . , 1) of the subgroup of automorphisms of Xn,w given

by {
(ζ0, . . . , ζn) ∈ µn+1

dn
|
n∏
i=0

ζwii = 1

}
,

acting on Pn by component-wise multiplication. If k is now a p-adic local field whose residue

field is Fq, then the quotient of Xn,w by the action of G, which is the projective closure in Pn×A1

of another family called Yn,w, is a lifting to k of Hw,1 and we have that

L(w,ψ, α, T ) =
∏
k

(
det
(

1− σkT |HkGM(Ȳn,w)
))(−1)k+1

.

In the formula, the σi are certain liftings to k of the Frobenius endomorphism on Fq and HGM

means Gauss-Manin cohomology using some Weil cohomology theory (properly twisted in terms

of ψ). In times of this stunning advance, the only one known was `-adic cohomology.

`-adic cohomology has proved to be very powerful when dealing with this kind of arithmetic

problems, being for instance the setting in which all the Weil conjectures were first proved to

be true by Pierre Deligne in [De2]. However, some objects, such as the p-adic Newton polygon

of the L-function, are invisible to this approach and it would be desirable to have a good p-adic

Weil cohomology theory, extending the pioneering work of Dwork in the sixties. From that

moment to now, several p-adic theories have arisen, but they failed in either some of the axioms

required or the universality of the category of varieties to which they apply. It was not until
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2006, when Kiran Kedlaya in [Ke] proved the Weil conjectures in a purely p-adic way, using

rigid cohomology.

Rigid cohomology seemed to be the long-awaited theory with which we could properly work.

However, it only works fine if we work globally, that is to say, taking direct images over a

point, and we need a theory holding the formalism of Grothendieck’s six operations: usual and

extraordinary direct and inverse images, tensor products and hom functors, all together with

duality, and if possible, a theory of weights as with `-adic cohomology. The main idea is to work

with D-modules defined over a p-adic field, in a similar way to analytic D∞-module theory over

C but with algebraic methods.

There are two somewhat different approaches to this idea. The first one is the formalism

of arithmetic D-modules, due to Pierre Berthelot, started at [Be]. This theory, evolving from

rigid cohomology, has been mainly developed in the last years by Daniel Caro, offering and

promising important results (cf. [Hu,CT,Car,AC]). The other idea, of Zoghman Mebkhout and

Luis Narváez Macarro, introduced at [MN1], was to consider D†
X†

-modules over weak formal

schemes. In dimension one, it received a big support from the work by Gilles Christol and

Mebkhout on the index theorem for p-adic differential equations culminating at [CM], and in

the general setting, has been deeply studied by Alberto Arabia and Mebkhout, giving birth to

the theory of special D†
X†

-modules (cf. [MN2,Me4,AM,Me5]).

We will come back to D-modules, but let us comment on the recent history of Dwork families.

Since the finding of the connection to Kloosterman sums, very few was done with them until

the incursion of theoretical physics. The calculation of the rational points and the Gauss-Manin

cohomology of certain Calabi-Yau manifolds with good properties, such as some Dwork families,

is of interest to physicists working in string theory and mirror symmetry (cf. [CDR]). Because

of this new interest on them, many rediscovered Dwork families as a good tool to deal with

other problems. We can cite, for instance, the work [Ba] of Sergey Barannikov, later generalized

by Antoine Douai and Claude Sabbah in [DS], in which the Gauss-Manin cohomology of Yn,w
is studied as the quantum cohomology of weighted n-dimensional projective spaces, by means

of its Frobenius structure. Another work of importance is [HST], where Michael Harris, Nick

Shepherd-Barron and Richard Taylor prove the Sato-Tate conjecture in all its generality, among

other impressive results, by studying the original Dwork families Xn,1.

The problem of calculating the Gauss-Manin cohomology of either the quotient Yn,w of the

Dwork family Xn,w or the whole of it has been also quite addressed. We can divide the diverse

works by its arithmetical setting and its way of attacking the problem. From the `-adic point

of view, Katz in [Ka7] computes all the cohomology of Xn,w by using all the power of the étale

machinery. Antonio Rojas León and Daqing Wan in [RW], as a way to find the moment zeta

functions for the original Dwork family and its quotient, use the same techniques. These works

are quite complete and make the most of the `-adic approach.

We can move to p-adics now, and observe a more exciting panorama. Because of the absence

of a good cohomology theory satisfying Grothendieck’s six operations, a significative part of the

work is done referring to Dwork’s classical methods of p-adic analysis. We can cite, for instance,

the work [KlR] of Remke Kloosterman giving the expression of the matrix of the integrable

Gauss-Manin connection that one obtains when avoiding singular points in terms of p-adic

hypergeometric functions using an interesting mixture of rigid and Dwork’s cohomologies. Or
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Jeng-Daw Yu’s paper [Yu] studying the variation of the unit root of the original Dwork family,

also with techniques going back to Dwork with a touch of crystalline cohomology.

Over the complex numbers, the situation is similar to the previous paragraph. A different,

computational, approach, but still à la Dwork-Katz, is that of Adriana Salerno in [Sal]; she

provides an algorithm to give the matrix of the Gauss-Manin connection. Also Yu and Katz,

in their papers above referred, treat the complex setting, respectively, by finding an horizontal

section to the connection, and expressing the Gauss-Manin cohomology of Ȳn,w in terms of

hypergeometric D-modules using analytical transcendental methods.

One could say that nothing is to be proved yet, and not mistakenly in some sense. However,

recall that we wanted to find a p-adic algebraic way of knowing the Gauss-Manin cohomology

of the Dwork family Xn,w or Yn,w. None of the two approaches to a good p-adic cohomology, or

D-module theory form a fully operational tool, so as a first step in that direction, one should be

able to perform this project, to which this thesis belongs, using D-modules in a purely algebraic

way, and that is what we carry out here. More concretely, we give an expression of the Gauss-

Manin cohomology of Yn,w over any algebraically closed field of characteristic zero using the

theory of algebraic D-modules. We have also to remark that although our first idea was to try

to carry out the computation of the Gauss-Manin cohomology of Yn,w algebraic and p-adically,

this step with usual algebraic D-modules took more effort than expected and we plan to keep on

moving forward in that direction. (See the last section, “Open questions and further projects”,

for more information.)

Main results and contents

At the end of the previous section we have said that we have worked with algebraic D-modules.

Why algebraic D-modules? We wrote before that the cohomology classes can be derived with

respect to a variable representing the parameter, and moreover, they satisfy certain differential

equations, and the Gauss-Manin cohomology of Yn,w appears naturally as the direct image by the

projection onto the variety of parameters of the structure sheaf OYn,w . Secondly, we can make

use of Grothendieck’s six operations as formulated by Mebkhout in [Me1], a Fourier transform

as in the work [DE] by Andrea D’Agnolo and Michael Eastwood and a theory of weights,

Morihiko Saito’s mixed Hodge modules (cf. [Sa]). D-modules also have the possibility of stating

topological or transcendent results in an algebraic analogous way. Furthermore, contrarily to

the more abstract `-adic setting, we can also make explicit calculations and use the existence

of a division algorithm for differential operators due to Francisco Castro Jiménez (cf. [Ca]).

And last, but not least, there exists a very good theory of D-modules in dimension one, and

hypergeometric ones in particular, developed by Katz in [Ka5]. We would not want to devalue

the rest of theories above, because they are very deep and useful formalisms, but the really

interesting point in this thesis is the usage of Katz’s study.

Let us state now the main results of this thesis. Every variety presented before is a family

included in Pn×A1, and we will denote by pn the restrictions of the second canonical projection

to any of them.

Theorem. Let K̄n = pn,+OYn,w . There exists a canonical morphism of the complexes of DA1-
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modules
(
pn,+OXn,w

)G −→ K̄n such that the cohomologies of its cone are direct sums of copies

of the structure sheaf OA1.

The following theorem gives us a detailed expression for K̄n and uses in its statement Kummer

and hypergeometric D-modules, denoted respectively by Kα and Hγ(αi;βj). They are defined

in sections 1.3 and 1.4, respectively, and will appear throughout the whole text.

Theorem. There exists a complex of DGm-modules Kn such that, denoting by j the canonical

inclusion Gm ↪→ A1 and ιn the endomorphism of Gm given by z 7→ z−dn, we have that j+K̄n
∼=

ι+nKn. This complex satisfies the following: Hi(Kn) = 0 if i /∈ {−(n − 1), . . . , 0}, Hi(Kn) ∼=
O( n

i+n−1)
Gm as long as −(n− 1) ≤ i ≤ −1, and in degree zero we have the exact sequence

0 −→ Gn −→ H0(Kn) −→ OnGm −→ 0,

Gn being a D-module whose semisimplification is

Gssn =
⊕

α∈Aa,b∗n

Kα ⊕Fn.

The parameters a, b are integers in {1, . . . , dn} and

Aa,bn =

{
1

w0
+

b

dn
, . . . ,

w0

w0
+

b

dn
, . . . ,

wn
wn

+
b

dn

}
∩
{

1

dn
, . . . ,

dn
dn

}
−
{
a+ b

dn

}
,

which is the set of fractions (k + b)/dn with k 6= a such that there exist i = 0, . . . , n and

j = 1, . . . , wi holding that j/wi = k/dn.

In the semisimplification of Gn, the module Fn is the irreducible hypergeometric DGm-module

Kb/dn ⊗OGm Hγn
(

cancel

(
1

w0
, . . . ,

w0

w0
, . . . ,

1

wn
, . . . ,

wn
wn

;
1

dn
, . . . ,

dn
dn

))
.

The inverse image by ιn gets rid of the choice of b, but not a. However, each Kummer

D-module appearing in the semisimplification of Gn becomes a structure sheaf, so in any case

we can characterize the nonconstant part of
(
pn,+OXn,w

)G
as j!+ι

+
nFn, taking b = dn. This

is the main result that other have obtained when they have computed an expression for the

Gauss-Manin cohomology of Yn,w. Even though having accomplished our main goal, we would

like to know exactly the complex Kn, which despite being auxiliary, is quite interesting in itself.

We would like to claim that a = b = dn unconditionally. We will talk in a more detailed way

of this in the last chapter of concluding remarks, but we strongly believe that we will be able

to avoid to mention those parameters disturbing the beauty of the statement. At this moment

what we can affirm is:

Theorem. Under the notation and conditions of the previous theorem, if there exists an index

i such that wi = 1, then a = b = dn, and if wi is prime to dn for every i we have that a = dn.

Note that when n = 1, by assumption we have that gcd(w0, w1) = 1, so in this case, we

always have that both of the wi are prime to d1 and then a = d1.

This thesis requires from the reader to be familiarized with the language of derived categories,

a background in algebraic geometry and some notions from D-modules. Let us explain the

contents of each chapter.
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The first chapter contains most of the concepts of D-module theory needed in the next ones.

As we have just said, we expect the reader to have some knowledge on algebraic D-module theory.

Nevertheless, in the first section we recall some basic facts of it and provide some elementary

useful results, such as the existence of the excision triangle, the smooth base change theorem or

the relative Künneth and projection formulas.

We continue by defining, in the next section, the concept of intermediate extension and

Euler-Poincaré characteristic of a complex of coherent D-modules (always seen as an element of

the corresponding derived category). This section is mainly concerned with the one-dimensional

case, but we also give a few results in a general setting. Its goal is to characterize intermediate

extensions in terms of their absence of punctual subobjects or quotients and provide two formulas

to compute the Euler-Poincaré characteristic of a D-module without punctual quotients (or an

intermediate extension, in particular), inspired by the work of Deligne on integrable connections

with regular singularities [De1].

The following section deals algebraically with a topologically inspired concept: monodromy.

Some results about the exponents of a D-module at a singularity are exposed, together with

some other on the existence of some exponents at a Gauss-Manin cohomology complex related

to the surjectivity of certain morphism and notions that we will need afterwards, when we try

to find the exponents of Kn.

We finish the chapter by the most important section of it; that in which we study D-modules

of Euler-Poincaré characteristic 0 and −1, introduce hypergeometric D-modules, studying their

basic properties, their parameters and their isomorphism classes, ending by characterizing such

a D-module by them. This chapter is mainly inspired by the work of Katz in [Ka5], including

an important result due to François Loeser and Sabbah, of their paper [LS].

The second chapter contains a big part of our main problem. In the first section we state the

grounds of the computation of the Gauss-Manin cohomology of Yn,w, explaining in much more

detail the geometrical constructions commented at the historic paragraphs of this introduction.

We also prove the first of our three main theorems and present the inductive strategy that will

serve to us in order to prove the first pieces of the second main theorem, starting by the initial

case when n = 1.

Thanks to the results of the first chapter we can characterize a hypergeometric D-module by

means of some of its algebraic properties, such as its generic rank, Euler-Poincaré characteristic,

regularity and exponents at its singularities. Almost all of them are issued in the second section.

We first explore the consequences of the inductive process, describing explicitly part of the

distinguished triangle which accompany us along the section. We then find the constant part of

Kn and describe the properties of Gn except for their exponents at the origin and infinity. The

tools used at these proofs are quite varied in nature, but all of them belong either to what we

assume already known by the reader, or the notions of the first chapter. In the end we use a lot

of the potential of algebraic D-modules that we enumerated when we were justifying the use of

those objects, but not all.

And if it is not all, it is because in the third chapter we deal in detail with the Fourier

transform of complexes of D-modules, from the functorial point of view. Thank to Katz we

can relate it with the convolution operation, motivated by the arithmetical setting. We also
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study in the first section the behaviour of certain kinds of hypergeometric D-modules when

convolved to other D-modules, to reach at a statement which allows us to express the Fourier

transform of some extensions of the inverse image by an r-th power map in Gm of an irreducible

hypergeometric D-module in terms of other hypergeometrics. The proofs of these results and

those of sections 1.2 to 1.4 are mostly included because contrarily to the references that we have

found in the literature to the `-adic part of [Ka5], we have not discovered many to its work on

D-modules.

These last results are extremely useful to us, in order to end the proof of our second main

theorem. We first compute the Fourier transform of K̄n, thanks to a suggestion of Sabbah, as

he and Douai do in [DS]. Then, we discuss the possible values of the exponents of Gn, and we

include afterwards an alternative way of finding the nonconstant part of K̄n, following another

suggestion of Sabbah. We also prove the particular cases in which gcd(dn, wi) = 1 for every

i = 0, . . . , n or some wi is equal to one. This last case fills half the length of the section, and it is

an application of the results of the second part of section 1.3. We should add that even though

the chapter is called “monodromy”, no serious mention to it is made throughout the whole text,

but it is intended to represent a synonym for “exponents”.

In the fourth chapter we provide some complements to our main theorems. They are not

a big deal, but they help to complete the study of the objects treated at this thesis. In the

first section we discuss the variation of the Gauss-Manin cohomology of Yn,w when we move to

general uniparametric monomial deformations of Fermat hypersurfaces, that is to say, when we

avoid to assume any condition on the numbers wi, as gcd(w0, . . . , wn) = 1 or wi > 0 for every

i = 0, . . . , n. Those assumptions turn out to be quite interesting, because as soon as one of them

does not hold, the Gauss-Manin cohomology of Yn,w simplifies enormously, being just either the

direct sum of several irreducible pieces related to the case in which the wi do not share a divisor

or a bunch of copies of the structure sheaf OGm . We also wonder when the exponents at the

origin or infinity of Kn or K̄n, respectively, are all integers, and characterize those circumstances

in terms of the divisibility of the wi.

In the second section we prove an inductive relation between the different hypergeometric

D-modules Fn following the style of the general inductive process.

Finally, in the third section we include some explicit calculations of the extensions of the

inverse image by a d-th power map of a hypergeometric D-module with rational exponents. This

permits us to find a pseudo-explicit expression for the middle extension of ι+nFn.

Finally, in the appendix we present an interesting byproduct of the main goal of this thesis.

At some point we needed an algebraic D-module proof of a statement computing the de Rham

global cohomology of a hyperplane arrangement. Although this fact is quite well-known, we

did not found an approach to it as desired. This evolved to the independent paper [Cas], in

which we present two Mayer-Vietoris-like spectral sequences for the localization of certain OX -

or DX -modules, X being an algebraic variety, over the open complement of a closed subvariety

Y =
⋃
i Yi of X. After a small introduction to the appendix, the first section states the basic

results about spectral sequences that we need afterwards.

In the second section one can find some more definitions and a crucial result used to prove

the existence of the two spectral sequences, the first of them being at that section, too. That one
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deals with quasi-coherent OX -modules, but the second one, at the third section, is defined just

for DX -modules, since we use the direct image functor to manage to have a relative statement,

independently of the ground variety.

In the fourth section of this appendix we prove in a purely algebraic way the formula of Orlik

and Solomon for the Poincaré polynomial of the complement of an arrangement of hyperplanes

in terms of the combinatorics of its intersection poset, for global de Rham cohomology, by virtue

of the spectral sequence of the previous section.



Chapter 1

D-modules in dimension one

The successful construction of all machinery

depends on the perfection of the tools employed;

and whoever is a master in the arts of tool-making

possesses the key to the construction of all machines.

Charles Babbage

1.1 Reminder on D-modules

In this section we will recall some notions and results from algebraic D-module theory that will

be useful in the rest of the text. We will state most results without a proof; anyway, those and

much more can be found at [Bo], [HTT] or [Me1].

An algebraic variety, or just variety, will mean for us a separated finite type scheme over

any field, reducible or not; anyway we will always work over an algebraically closed field of

characteristic zero. Whenever we talk about the dimension or the codimension of a variety Z,

we will understand that they are the sections of the locally constant sheaf kZ defined by taking

the values dimZi and codimZi at each connected component Zi. It will make sense because

we will assume that the variety is either equidimensional or smooth, this implying that all of

its connected components are equidimensional. For any scheme X, we will denote by πX the

projection from X to a point.

Let then X be an algebraic variety, and let OX and DX be its structure sheaf and the sheaf

of differential operators on it, respectively. We will denote by Mod(DX) the abelian category of

left DX -modules.

In order to take advantage of all the power of D-module theory we must move to the derived

setting. We will denote by Db(DX) the derived category of bounded complexes of DX -modules.

We can also define the derived categories Db
c (DX), Db

h(DX) and Db
rh(DX) of complexes of DX -

modules with coherent, holonomic and regular holonomic cohomologies, each of them being a full

triangulated subcategory of the precedent. Whenever we talk about a complex of DX -modules,

we will understand them as objects of the corresponding derived category, which will be clear

from the context.

17
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Definition 1.1.1. Let f : X → Y be a morphism of smooth varieties. The direct image of

DX -modules is the functor f+ : Db(DX)→ Db(DY ) given by

f+M := Rf∗
(
DY←X ⊗L

DXM
)
,

where DY←X is the
(
f−1DY ,DX

)
-bimodule

DY←X := ωX ⊗f−1OY f
−1 HomOY (ωY ,DY ) ,

called the transfer D-module for the direct image of f . In the formula, ωX is the right DX -module

of top differential forms on X.

Remark 1.1.2. When f : U ↪→ X is an open immersion, f+ = Rf∗, because DX←U ∼= f−1DX =

DU .

When f : X = Y ×Z → Z is a projection, DZ←X ⊗L
DXM is nothing but a shifting by dimY

places to the left of the relative de Rham complex of M

DRf (M) := 0 −→M −→M⊗OX Ω1
X/Z −→ . . . −→M⊗OX Ωn

X/Z −→ 0,

so we will have that f+
∼= Rf∗DRf (•)[dimY ] ([Bo, VI.5.3.1], [HTT, 1.5.28], [Me1, I.5.2.2]).

When Z is a point, the functor Rf∗ is just the derived global sections functor RΓ(X, •), and in

that special case the functor f+ is just a shifting of global de Rham cohomology.

Let us introduce now another important image functor in D-module theory.

Definition 1.1.3. Let f : X → Y be a morphism of smooth varieties. The inverse image of

DX -modules is the functor f+ : Db(DY )→ Db(DX) given by

f+M := DX→Y ⊗L
f−1DY f

−1M,

where DX→Y is the
(
DX , f−1DY

)
-bimodule

DX→Y := OX ⊗f−1OY f
−1DY ,

called the transfer D-module for the inverse image of f .

Remark 1.1.4. Just by substituting the expression of DX→Y into the formula for f+ we see

that the inverse image of DX -modules coincides with the derived inverse image of OX -modules,

Lf∗• = OX ⊗L
f−1OY f

−1•. Then, if f is a flat morphism, f+ = f∗. In the special case in which

f : U ↪→ X is an open immersion, f+ = f−1.

Definition 1.1.5. The duality functor is defined as

DX = (RHomDX (•,DX)[dimX ])left ,

where •left is the equivalence of categories given by HomOX (ωX , •) from right DX -modules to

left ones.

Given a morphism f : X → Y of smooth varieties, we define the extraordinary direct and

inverse images as f! = DY f+DX and f ! = DY f+DX , respectively.
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Remark 1.1.6. If the variety X is clear from the context, we will use the notationM∗ instead of

writing DM. In particular, in local coordinates (x1, . . . , xr), ifM can be presented as DX/(P ),

then M∗ is the quotient of DX by the left ideal generated by the adjoint of the operator P ,

denoted by P t, where (∑
u∈Nr

au(x)∂u

)t

=
∑
u∈Nr

(−∂)uau(x)

(cf. [HTT, p. 70], [Me1, I.4.1]).

Assume that we restrict ourselves to the derived category Db
c (DX) of complexes of coherent

DX -modules. Then, if the morphism f is proper, f+ = f! ([HTT, 2.7.2], [Me1, I.5.3.13]), and if

f is smooth, f+ = f ! (cf. [HTT, 2.4.5, 2.7.1]). Those two statements are very deep and useful

results in D-module theory.

Definition 1.1.7. Let X and Y be two smooth varieties. We can define two tensor products of

D-modules. The first one, interior tensor product (although we will omit the first word) is just

the derived tensor product over the structure sheaf OX

⊗L
OX : Db(DX)×Db(DX)→ Db(DX).

The second one, the exterior tensor product

� : Db(DX)×Db(DY )→ Db(DX×Y ),

is defined by M � N = π+
1M⊗L

OX×Y π
+
2 N , where the πi are the canonical projections from

X × Y to X and Y .

Remark 1.1.8. If we have two DX - and DY -modules M and N , respectively, that can be pre-

sented as

M = DX/(P1, . . . , Pm) and N = DY /(Q1, . . . , Qn),

with Pi ∈ Γ(X,DX) and Qj ∈ Γ(Y,DY ), then by [OT, 6.1] we know that

M�N ∼= DX×Y /(P1, . . . , Pm, Q1, . . . , Qn),

seeing the operators Pi and Qj as elements of Γ(X × Y,DX×Y ).

The inverse image preserves both tensor products in such a way that

f+(M⊗L
OY N ) ∼= (f+M⊗L

OX f
+N ),

and consequently by definition,

(f × g)+(M�N ) ∼= (f+M� g+N )

([HTT, 1.5.18]).

Apart from that, we can express not only the exterior tensor product in terms of the interior

one, but in the opposite way too; denoting by ∆X : X → X × X the diagonal immersion,

M⊗L
OX N

∼= ∆+
X(M�N ) for every couple of complexes M and N .
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The four direct and inverse images, the tensor product and the right derived Hom functor

are part of what is known of as the formalism of Grothendieck’s six operations. The categories

of complexes of holonomic and regular holonomic D-modules are stable by all of them, together

with duality, satisfying certain adjunction isomorphisms ([Me1, II.9.2, II.9.3.1]). This makes

Db
h(DX) a very comfortable class of coefficients to work with.

Remark 1.1.9. Recall that every holonomic D-module is both Noetherian and Artinian and

then of finite length (cf. [Bo, V.1.16.1], [HTT, 3.1.2], [Me1, I.2.4.3]), so all of them admit a

composition series. This allows us to define the semisimplification of a holonomic D-module as

the direct sum of all of its composition factors. It is well defined thanks to the Jordan-Hölder

theorem.

Once we have defined the context in which we are going to work, let us state several inter-

esting facts.

Lemma 1.1.10. (Relative Künneth formula) ([HTT, 1.5.30]) Let f : X → X ′ and g : Y →
Y ′ be two morphisms between smooth varieties, and let M ∈ Db

c (DX) and N ∈ Db
c (DY ) be two

complexes of D-modules. Then,

(f × g)+(M�N ) ∼= f+M� g+N .

Remark 1.1.11. In the particular case when bothM and N are the structure sheaves on X and

Y , and f and g are πX and πY , we obtain the global Künneth formula

πX×Y,+OX×Y ∼= πX,+OX ⊗k πY,+OY .

For the next result we will use the algebraic local cohomology of D-modules defined in the

appendix in remark A.2.2.

Proposition 1.1.12. (cf. [Bo, VI.8.3], [HTT, 1.7.1], [Me1, I.6.1.2]) Let X be a smooth algebraic

variety, and let Z be a closed subvariety of it. Denote by j : X − Z → X and i : Z → X the

embeddings. Then, for any M∈ Db
c (DX) we have the excision distinguished triangle in Db(DX)

RΓ[Z]M−→M−→ j+j
+M.

If Z is smooth, then RΓ[Z]M∼= i+i
+M[− codimX Z].

Proposition 1.1.13. (Base change theorem) ([HTT, 1.7.3]) Let us consider the cartesian

diagram of smooth varieties:

X

�f
��

g
// X ′

f ′

��

Y
g′
// Y ′

.

Then for any M∈ Db
c (DX) we have a natural isomorphism in Db(DX)

g′+f ′+M∼= f+g
+M.
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Another important result is the projection formula. Although it is a well-known result from

general OX -module theory ([Ha1, II.5.6], [Me1, Appendice B]), we will state here a version which

can be deduced from the last proposition ([HTT, 1.7.5]), because we will not need a broader

statement than the following.

Corollary 1.1.14. (Projection formula) Let f : X → Y be a morphism between smooth

varieties, and let M and N as in the previous proposition. Then we have the isomorphism

f+M⊗L
OY N ∼= f+

(
M⊗L

OX f
+N

)
.

Remark 1.1.15. Suppose that f : X → Y is a morphism between smooth affine varieties and let

M be a complex of coherent DX -modules. Then Hif+M = 0 for every i > 0, since DX is a

quasi-coherent OX -module (cf. [Bo, VI.5.3.3], [HTT, 1.4.15]).

Moreover, factoring f as the composition of the immersion of the graph of f into X × Y
and the restriction of the canonical projection over the second component, we can deduce from

remark 1.1.2 that Hif+M = 0 for any i < −dimX, reducing that bound to i < −dimZ if f is

a projection and X = Y × Z.

Lemma 1.1.16. Let X = Y × Z be the product of two smooth affine varieties such that Z

is equidimensional of dimension one. Let f be the first canonical projection, and let K be a

complex of coherent DX-modules. Then for any integer i we have the exact sequence

0 −→ H0
(
f+HiK

)
−→ Hi (f+K) −→ H−1

(
f+Hi+1K

)
−→ 0.

In particular, if X is also of dimension one (and so Y is zero-dimensional), the exact sequence

above splits and

f+K ∼=
⊕
i

(
H0
(
f+HiK

)
⊕H−1

(
f+Hi+1K

))
[−i].

Proof. Let us fix i and consider the truncation triangle

τ≤iK −→ K −→ τ≥i+1K,

and apply f+ to it. By the remark above, Hkf+τ≤iK = 0 for any k > i, and Hlf+τ≥i+1K = 0 for

every l < i. Moreover, we can also deduce that Hif+τ≤iK = H0
(
f+HiK

)
and Hif+τ≥i+1K =

H−1
(
f+Hi+1K

)
. Therefore, the long exact sequence of cohomology of the triangle above con-

tains the piece

0 −→ H0
(
f+HiK

)
−→ Hi (f+K) −→ H−1

(
f+Hi+1K

)
−→ 0.

When dimX = 1, the direct image of K by f+ is a bounded complex of k-vector spaces,

and this makes the exact sequence to split. In this category, every object is isomorphic to its

cohomology complex, as we see in the next paragraph. Consequently,

f+K ∼=
⊕
i

Hi(f+K)[−i] ∼=
⊕
i,j

Hj
(
f+HiK

)
[−i− j],

and we would be done.
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Let thus C be a complex of k-vector spaces of the form

C = . . . −→ Cn−1
dn−1−→ Cn

dn−→ Cn+1 −→ . . . .

Let us write Zn = ker dn and Bn = im dn−1. We can form the following exact sequences:

0 −→ Zn −→ Cn −→ Bn+1 −→ 0

0 −→ Bn −→ Zn −→ HnC −→ 0

As a consequence, since every exact sequence of vector spaces splits, we can claim that Cn ∼=
Bn ⊕ Bn+1 ⊕ HnC. Let πn : Cn → HnC be the composition of that isomorphism with the

projection over the third summand. Now π = {πn} : (C, dn) → (HnC, 0) is a morphism of

complexes, for πndn = 0 by definition. Moreover, Hnπ = idHnC , so C is quasi-isomorphic to⊕
nH

nC[−n].

1.2 Intermediate extensions and Euler-Poincaré characteristic

In this section we will work with two important features of D-modules such as the intermediate

extension functor and the Euler-Poincaré characteristic. Although they can be defined in any

dimension, the study of those two notions in dimension one can lead us to a much better

understanding of the D-modules we will deal with. Many of the results found in this section

either belong to [Ka5, § 2] or are analogous to some other from there. We recall that we are

working over a chosen algebraically closed field of characteristic zero k.

Remark 1.2.1. Let X be a smooth algebraic variety, and let j : U → X be the canonical inclusion

of an open subvariety of it. If j is affine, for any holonomic DU -module M both direct images

j!M and j+M are single holonomic DX -modules. We have that j+j!M∼=M, so by adjunction

there exists a morphism of DX -modules j!M→ j+M.

Definition 1.2.2. Keeping the notation of the remark, the intermediate (or middle, or minimal,

or canonical) extension ofM is the image of the canonical morphism j!M→ j+M and is denoted

by j!+M.

Remark 1.2.3. The middle extension of a DU -module M is its unique extension, up to an

isomorphism, that is both a quotient of j!M and a subobject of j+M. Indeed, for any DX -

module N such that j+N ∼=M, we have by adjunction a morphism N → j+M. On the other

hand, j+N ∗ ∼= (j+N )∗, because of j being smooth, so we have a morphism N ∗ → j+M∗, and

by duality, we finally obtain a canonical morphism j!M → N . And finally, if there were two

objects sitting between j!M and j+M, they would differ only at some subobject or quotient

with support contained in X − U , but since the connecting morphisms would be, respectively,

surjective and injective, those parts should be zero.

Proposition 1.2.4. Let X be a smooth variety, and let M be a holonomic DX-module whose

support is not contained in any closed subvariety of X. ThenM is irreducible if and only if there

exists an open subvariety U
j
↪→ X of it such that j+M is an irreducible integrable connection on

U and M∼= j!+j
+M.
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Proof. Suppose first that M is irreducible. By [HTT, 3.1.6] we know that there exists an

open subvariety U
j
↪→ X such that j+M is an integrable connection. Since M is irreducible,

it cannot have neither a subobject nor a quotient, so in particular, the canonical morphisms

j!j
+M→M→ j+j

+M must be surjective and injective, respectively, and then j!+j
+M∼=M.

Consequently, j+M is irreducible; if it were not, then there would exist a holonomic module

N ( j+M, but then we would have that j!+N ( j!+j
+M ∼= M, which is impossible by

assumption.

Regarding the reciprocal statement, if j+M is irreducible and does not have any singularity

on U andM∼= j!+j
+M, then any nonzero subobject N ofM must have the same restriction to

U asM, but in that case they can only differ by a DX -module supported on a closed subvariety

Z ⊆ X − U of X, which contradicts that M∼= j!+j
+M as in the remark above.

Remark 1.2.5. Note that in the proof of the proposition we have used that the restriction ofM
to some open subvariety of X is an integrable connection (eventually zero), and so a locally free

OU -module. Whenever we talk about the generic rank of a DX -module we will mean the rank

as an OU -module (which is well-defined) of any of such of their restrictions, and we will denote

it by rkM.

We now restrict ourselves to the one-dimensional case and state several result concerning

the middle extension of a DX -module. We will start by another characterization of it.

Definition 1.2.6. Let X be a smooth equidimensional algebraic variety of dimension one,

and let x ∈ X be a point. We define the delta DX -module at x as the punctual DX -module

δx = DX/DXIx, where Ix is the ideal of definition of x.

Proposition 1.2.7. Let X be a smooth equidimensional variety of dimension one, U be an open

subvariety of it andM be a holonomic DX-module. Then we have an isomorphismM∼= j!+j
+M

extending the identity over U if and only if the following condition is satisfied:

HomDX (M, δx) = HomDX (δx,M) = 0

for every point x of X − U , or equivalently by duality, either

HomDX (M, δx) = HomDX (M∗, δx) = 0

or

HomDX (δx,M) = HomDX (δx,M∗) = 0.

Corollary 1.2.8. Keeping the previous notation, ifM has no singularities on X, then j!+j
+M∼=

M for any embedding j : U → X.

Corollary 1.2.9. With the same notation as before, for any holonomic DU -moduleM, j!+DUM∼=
DXj!+M.

The proofs of the proposition and its two corollaries can be found at [Ka5, 2.9.1, 2.9.1.1,

2.9.2.2]. Although he considers C as his base field, the proofs are completely algebraic and do

not depend on the choice of the field, providing it is algebraically closed of characteristic zero.
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Lemma 1.2.10. Let X be a smooth equidimensional algebraic variety of dimension one, and

let p be a point of it. Denote by j : X − {p} → X the canonical inclusion, and choose a formal

parameter x at p such that ÔX,p ∼= k[[x]]. Let L ∈ Γ(X,DX) be an nonzero operator of degree n

in ∂ such that viewed as an element of k[[x]]⊗OX DX it can be written as

L =
∑
i≥0

xiPi(x∂/∂x).

Then the following conditions are equivalent:

i) L (resp. Lt) operates injectively on δp.

ii) L (resp. Lt) operates bijectively on δp.

iii) The so-called indicial polynomial P0(t) has no negative (resp. nonnegative) integer roots.

iv) j!j
+DX/(L) ∼= DX/(L) (resp. j+j

+DX/(L) ∼= DX/(L)).

Proof. The proof of this result is a combination of those of [Ka5, 2.9.2, 2.9.3, 2.9.4]. We include

them here for the sake of completeness.

Obviously i is a consequence of ii. Let us prove that ii is equivalent to iv. By duality it

suffices to prove the statement with the (usual) direct image. We know that j+j
+DX/(L) ∼=

DX/(L)[1/x], so in this case, iv is equivalent to the fact that P 7→ xP is bijective on DX/(L).

It is injective if and only if for every a, b ∈ DX such that xa = bL, there exists c with

a = cL, but then xcL = bL, and so xc = b, that is to say, the morphism α 7→ αL is injective on

DX/xDX = δ∗x, or equivalently by duality, Lt acts injectively on δx.

Now the fact that P 7→ xP is surjective on DX/(L) is equivalent to saying that for any

a ∈ DX , there exist b and c such that a = xb + cL, which happens if and only if α 7→ αL is

surjective on δ∗x, or by duality, Lt acts surjectively on δx.

Now is when the condition on L makes sense. It can be defined intrinsically, independently of

the parameter x; it just says that L, acting on OX−{p} =
⋃
m I
−m
p , sends every power of the ideal

of definition of p to itself. Therefore, for every integer m it induces a k-linear endomorphism

over Imp /I
m+1
p , which is nothing else but multiplication by P0(m).

Thus we can choose x in such a way that if ∂ is the derivation of OX with respect to which we

take the adjoint of an operator, then ∂(x) = 1. This is possible, since in any case ∂ = f(x)∂/∂x,

f being some unit of k[[x]], but then we just have to take x to be a formal primitive of f−1.

Choosing x in that way, the adjoint of Lt is

Lt =
∑
i≥0

xiPi(−1− i− x∂),

so the indicial polynomial of Lt is just P ∗0 (t) = P0(−1 − t) and the assumption on L holds for

Lt, too, and by duality we just have to prove the rest of the proposition with it.

Note that δp is isomorphic, via the morphism
∑

i,j ∂
ixj 7→

∑
i,j ∂

i
(
xj−1

)
, to the DX -

module k [x±] /k[x] ∼= k((x))/k[[x]]. By the assumption on L, every k-vector space F−m =

x−mk[[x]]/k[[x]] is mapped to itself by L, and their union is δp, so Lt acts injectively on δp if

and only if it does so on every F−m. Since F−m is finite-dimensional for each m, it is equivalent

to say that Lt acts bijectively on every F−m and so on δp.
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We just need to see that ii is equivalent to iii, but this is easy; Lt, on F−m/F1−m, induces

the multiplication by P0(m − 1), so it will be bijective on δp if and only if P0(t − 1) does not

have positive integer roots.

Proposition 1.2.11. Let X be a smooth equidimensional algebraic variety of dimension one, let

p1, . . . , pr be points of it and xi be formal parameters at the pi as in the previous proposition, and

let U = X − {p1, . . . , pr}
j
↪→ X. Given a holonomic DX-module M, let di denote the dimension

of the k-vector space of formal meromorphic solutions at pi

HomDU

(
j+M, ÔX,pi [1/xi]

)
∼= HomDU (j+M⊗OU k((xi)), k((xi))),

which is finite-dimensional. Then, if HomDX (M, δpi) = 0 for every i = 1, . . . , r,

j+j
+M/M∼=

r⊕
i=1

δdipi .

Proof. This proposition is a slight generalization of [Ka5, 2.9.8], so we will mostly reproduce its

proof here.

Let us assume without loss of generality that xi has no zeros other than pi, and let us prove

first that ExtkDX

(
j+j

+M, ÔX,pi
)

= 0 for k = 0, 1. The first vanishing is trivial, since j+j
+M

is a localization on xi, among others, and no element of ÔX,pi ∼= k[[xi]] can be divided by xi

without limit. Let us show the second one, in which this property of xi being a unit only in one

of the two DX -modules is playing also an important role.

It will be enough to prove that any short exact sequence of DX -modules

0 −→ ÔX,pi
f−→ A

g−→ B −→ 0

splits, B being a DX [1/xi]-module. This splitting must be unique because of the vanishing of

the first Ext. In fact, ÔX,pi is a direct summand of A; the other summand will be denoted by

C, being the intersection
⋂
n≥0 x

n
i A, which is obviously a DX -submodule of A.

Now ÔX,pi ∩ C = 0. If not, there would exist some a ∈ ÔX,pi and ϕn ∈ A for every n ≥ 0

such that a = xni ϕn. Since a would be mapped to zero by g, all of the ϕn would belong to ker g,

too, and then, a would be indefinitely divisible by xi, which is impossible. Let then a belong to

A, and let us see that it is the sum of two elements from ÔX,pi and C. If it is in the image of f ,

we have nothing to prove. But if it is not, its equivalence class in coker f ∼= B does not vanish

as well as x−ni (a+ im f) for every n, and so a will be in C + ÔX,pi .
Let us now return to the statement of the proposition and form the exact sequence

0 −→M −→ j+j
+M−→ j+j

+M/M−→ 0.

The last term is holonomic and supported at the pi, so its composition factors will be ri copies of

each δpi . Actually the factors are direct summands, since the endomorphism of δpi given by multi-

plication by xi is surjective, and then, Ext1
DX (δpi , δpi) = 0. Apply the functor HomDX

(
•, ÔX,pi

)
to that sequence. Because of the vanishing of the Ext that we have already proved, we obtain

an isomorphism

HomDX

(
M, ÔX,pi

)
∼= Ext1

DX

(
j+j

+M/M, ÔX,pi
)
∼= Ext1

DX

(
δpi , ÔX,p

)ri
.
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If we replace M by OX and proceed analogously, we get that Ext1
DX

(
δpi , ÔX,pi

)
∼= k for

j+j
+OX/OX ∼=

⊕
i δpi and OX is dense in ÔX,pi , so

HomDX

(
M, ÔX,pi

)
∼= kri .

Now consider another exact sequence,

0 −→ ÔX,pi −→ ÔX,pi [1/xi] −→ δpi −→ 0.

Since by assumption, HomDX (M, δpi) = 0, by applying the functor HomDX (M, •) to the se-

quence we can deduce that

HomDX

(
M, ÔX,pi

)
∼= HomDX

(
M, ÔX,pi [1/xi]

)
∼= HomDU

(
j+M, ÔX,pi [1/xi]

)
,

because the formal meromorphic solutions at pi only depend on the behaviour of M on a

punctured neighborhood of pi. In conclusion, ri = di, as we wanted to prove.

Note that the statement remains true if we take a DU -module M and consider the quotient

j+M/j!+M, which is the approach of Katz, with U = X − {p}. This proposition allows us

to formulate several results about the Euler-Poincaré characteristic of a DX -module and its

intermediate extension, as we will see. But before that, let us go back to the case of general

dimension.

Definition 1.2.12. Let X be a smooth equidimensional algebraic variety of dimension n and

let M be a complex of holonomic DX -modules. We define the Euler-Poincaré characteristic of

M as

χ(M) = (−1)n
∑
k

(−1)k dimHkπX,+M.

Remark 1.2.13. The definition makes sense because the cohomologies HkπX,+ are vector spaces

of finite dimension and do not vanish only for a finite amount of degrees. The multiplication by

(−1)n is motivated by the classical geometrical setting, so that whenever k = C the topological

Euler-Poincaré characteristic of X is the same as the algebraic one of OX . Since χ is an

additive function, by lemma 1.1.16 (going downstairs in the dimension of X) we have that

χ(M) =
∑

k(−1)kχ
(
HkM

)
.

Corollary 1.2.14. (cf. [Ka5, 2.9.8.1]) Let X be a smooth equidimensional variety of dimension

one, let U be an open subvariety of X (with j the inclusion of the former in the latter) and let

M be a holonomic DX-module such that HomDX (M, δp) = 0 for every p not belonging to U .

Denote by Solfp the k-vector space of formal meromorphic solutions of M at p and by dp its

dimension. Then,

χ(M) = χ(j+M) +
∑

p∈X−U
dp.

Proof. By definition, χ(j+M) = χ(j+j
+M), so by proposition 1.2.11,

χ(M) = χ(j+j
+M)−

∑
p/∈U

dpχ(δp).

The statement follows from the fact that χ(δp) = −1, for the map ∂ : k((x))/k[[x]]→ k((x))/k[[x]]

is injective and its cokernel is k · x−1.



1.2. INTERMEDIATE EXTENSIONS AND EULER-POINCARÉ CHARACTERISTIC 27

Let us expose here one more notion that we will need in order to formulate properly the next

result. We have mentioned that there exist a property of D-modules called regularity. This is

in fact just a glimpse of a theory of irregularity for D-modules. Although it can be defined in

any dimension (cf. [Me2,Me3]), we will stay in the one-dimensional case.

Definition 1.2.15. Let X be a smooth curve, and let p ∈ X andM be a holonomic DX -module.

Suppose that, choosing a local parameter x at p, we can write in local coordinates in an open

neighborhood U of p that M = DX/(L), being

L =

n∑
r=0

ar(x)∂r ∈ Γ(U,DX).

Then the irregularity of M at p, denoted by Irrp(M), is the positive integer number

max
r
{r − νp(ar)} − (n− νp(an)),

νp(a) being the vanishing order of a at p.

For a general holonomic DX -module M = D/I, since Γ(U,DX) is a division ring, we can

take a Gröbner basis of I, denoted by {L1, . . . , Ln}. Then the irregularity at p ofM is the same

as that of D/(L1).

A holonomic DX -module is said to be regular at a point p ∈ X if Irrp(M) = 0. If for every

p ∈ X̄, j+M is regular at p (j being the open immersion X ↪→ X̄), M is defined to be regular.

Corollary 1.2.16. (cf. [Ka5, 2.9.9]) Let X and U be as in the previous corollary and let

M be a holonomic DX-module such that its restriction to U is a integrable connection and

HomDX (M, δp) = 0 for every p not belonging to U . For any such p define the integers

dropp = rkM− dp and

totdropp = Irrp(M) + dropp .

They are nonnegative and

χ(M) = rk(M)χ(OX)−
∑

p∈X̄−X

Irrp(M)−
∑

p∈X−U
totdropp .

Proof. The number dropp is nonnegative because any differential equation has at most as many

formal local solutions as its degree, and Irrp(M) is always nonnegative, too.

The formula for the Euler-Poincaré characteristic follows from Deligne’s formula [De1, p.

111] for an integrable connection

χ(j+M) = rk(j+M)χ(OU )−
∑

p∈Ū−U

Irrp(j
+M)

and the previous corollary, knowing that, by proposition 1.2.11, χ(OU ) = χ(OX) − card(X −
U).
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1.3 Exponents of a D-module

This section is more like an interlude between the preceding and the following, but it affects the

rest of the text in such a way that we cannot ignore it. As we keep our way to gain more insight

into certain kinds of D-modules, we have to sharpen our assumptions, and in this section we

will focus on the case in which X is an open subvariety of the affine line. From now on, we will

denote by Dx the product x∂x, omitting the variable as long as it is clear from the context.

The exponents of a DX -module are very related to the monodromy of its algebraic or formal

solutions. This notion is topological in nature when k = C, but we can manage to work in

an algebraic way with a similar concept, and because of that, we will usually use both names,

monodromy and exponents, to mention the phenomenon and the object of study. Although

this theory can be constructed in any dimension thanks to the formalism of the V -filtration,

the Bernstein-Sato polynomial and the vanishing cycles of Malgrange and Kashiwara (cf. [Ma],

[Kas1] [MM] or the appendix by Mebkhout and Sabbah at [Me1, § III.4]), it is defined in a much

more simple way in dimension one. We refer to the seminal [Mi] for those interested in knowing

the topological motivation.

Definition 1.3.1. A Kummer D-module is the quotient Kα = DGm/(D − α), for any α ∈ k.

Remark 1.3.2. Note that, by a twist by x, any two KummerD-modulesKα andKβ are isomorphic

if α− β is an integer. Then Kα ∼= OGm for any α ∈ Z.

Proposition 1.3.3. Let M be a holonomic DX-module, let p be a point of X, and fix a formal

parameter x at p such that ÔX,p ∼= k[[x]]. The tensor product M⊗OX k((x)) can be decomposed

as the direct sum of its regular and purely irregular parts.

Now suppose that M⊗OX k((x)) ∼= k((x))[D]/(L), where

L =
∑
i

xiAi(D) ∈ k[[x]][D],

with degD L = g ≥ g0 = degD A0. Then, the rank of (M⊗OX k((x)))reg is g0, and if this last

degree is positive and A0(t) = γ
∏
i(t− αi)ni, its composition factors are Kαi,p with multiplicity

ni, where Kβ,p is the tensor product over k((x)) with the isomorphic image of the Kummer

D-module Kβ under the translation 0 7→ p.

Moreover, if the roots of A0(t) are not congruent modulo Z, then

(M⊗OX k((x)))reg
∼= k((x))[D]/(A0(D)) ∼=

⊕
i

k((x))[D]/(D − αi)ni .

Proof. The decomposition into regular and purely irregular parts of the tensor productM⊗OX
k((x)) is a well-known fact of the theory of integrable connections over a field (cf. [Ka1, 11.5,

11.9]).

The rest is analogous to [Ka5, 2.11.7]. This result can be stated in fact for any algebraically

closed field of characteristic zero, as any previous result over which it lies.

Proposition 1.3.4. (Formal Jordan decomposition lemma) Let M, p and x as before,

and suppose that M is regular at p. Then,
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i) M⊗OX k((x)) is the direct sum of regular indecomposable k((x))[D]-modules.

ii) Any regular indecomposable k((x))[D]-module is isomorphic to

Loc(α, nα) := k((x))[D]/(D − α)nα ,

where α is unique modulo the integers.

iii) For any two regular indecomposables Loc(α, nα) and Loc(β, nβ), and i = 0, 1, the vector

space ExtiDX (Loc(α, nα),Loc(β, nβ)) is of dimension min(nα, nβ) if α − β ∈ Z, being zero

otherwise.

iv) Given α ∈ k, the number of indecomposables of type Loc(α,m) at the decomposition of

M⊗OX k((x)) is the dimension of the vector space HomDX (M⊗OX K−α,p,k((x))).

Proof. When k = C, there is a topological proof as in [Ka5, 2.11.8]. However, we can give a

purely (linear) algebraic proof of that.

SinceM is holonomic, it is a finitely generated torsionDGm-module, and so will beM⊗k((x))

over k((x))[D]. This ring is a noncommutative principal ideal domain, so by the structure

theorem for finitely generated modules over such a ring [Ja, § 3, theorem 19] we obtain that

M⊗k((x)) is the direct sum of indecomposable k((x))[D]-modules. They must be regular since

M is, and that proves point i.

Therefore, we can affirm that

M⊗ k((x)) ∼=
r⊕
i=1

k((x))[D]/(Ai(x,D)),

where Ai(x,D) =
∑

j≥0 x
jAij(D) and every Ai0 has its roots incongruent modulo the integers.

By the previous proposition,

k((x))[D]/(Ai(x,D)) ∼= k((x))[D]/(Ai0(D)).

Now, since k is algebraically closed and k((x))[D]/(Ai0(D)) ∼= k[D]/(Ai0(D))⊗kk((x)), applying

again the structure theorem for finitely generated modules over a commutative pid this time, we

get point ii, once that we realize that k((x))[D]/(D − α) ∼= k((x))[D]/(D − α − 1) by twisting

by x.

Let now be Loc(α, nα) and Loc(β, nβ)) as in point iii. We can suppose that both α and β

belong to the same fundamental domain (exhaustive set of representatives without repetitions)

of k/Z, up to isomorphism. Since Loc(α, nα) is a flat k((x))-module, we can assume that α = 0.

Now the vector spaces ExtiDX (Loc(α, nα),Loc(β, nβ)) are just kernel and the cokernel of Dnα

over Loc(β, nβ). If β = 0, then the statement is easy to check. And if β 6= 0, both are zero for

Loc(β, nβ) is a successive extension of Kβ,p and Dnα is bijective over them. Point iv is just an

easy consequence of the two preceding ones.

Those two propositions show that the equivalence classes modulo Z of the numbers α ap-

pearing in the decomposition of the tensor product of a holonomic DX -module with k((x)), and

their associated nα, are intrinsic to the DX -module and quite important, actually, to know its

behaviour at a point, so that motivates us the following definition.
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Definition 1.3.5. Let M, p and x as in proposition 1.3.3. The exponents of M at p are the

values αi such that

(M⊗OX k((x)))reg
∼=
⊕
i

Loc(αi, ni),

seen as elements of k/Z. For each exponent αi we define its multiplicity to be ni.

Remark 1.3.6. For the sake of simplicity, we will usually refer both an exponent and some of its

representatives in k in the same way.

Exponents are considered unordered and eventually repeated. Note that, when k = C,

that notion of multiplicity of an exponent α is related to the size of the Jordan blocks of local

monodromy associated with the eigenvalue e2πiα, and not to its multiplicity as a root of the

characteristic polynomial of the monodromy. However, this two notions are the same under

some special conditions (cf. corollary 1.4.9 or lemma 1.4.11). Anyway, in our algebraic setting,

whenever we mention “Jordan block” we will mean a regular indecomposable Loc(α, nα), in

analogy with the complex analytic case.

In the next chapter we will focus in the particular case in which our DX -module is the zeroth

cohomology of the direct image of the structure sheaf of an affine space. In this case we can

state this particular result:

Proposition 1.3.7. Let n be a fixed positive integer, and let R = k((t))[x1, . . . , xn]. Let f ∈
k[x1, . . . , xn] and denote by f ′i its partial derivatives. Let α ∈ k and let ϕα = ∂t − (1 + α)t−1

be an endomorphism of k((t)). Denote also by f the associated morphism An → A1. Then, α

mod Z is not an exponent of the DA1-module H0f+OAn at the origin if and only if the morphism

Φ : Rn+1 −→ R

(a, b1, . . . , bn) 7−→
(
(f − t)a, (∂1 + f ′1ϕα)b1, . . . , (∂n + f ′nϕα)bn

)
is surjective. If it is not surjective, the number of Jordan blocks associated with α is the dimen-

sion of the cokernel of Φ as a k-vector space.

Proof. Let K = f+OAn . Since K is a complex of regular holonomic DA1-modules, by proposition

1.3.4 we can claim that

H0(K)⊗OA1
k((t)) ∼=

r⊕
i=1

k((t))[D]/(D − βi)mi .

Therefore, α will be an exponent of H0(K) if and only if the endomorphism

D − α : H0(K)⊗OA1
k((t)) −→ H0(K)⊗OA1

k((t))

is surjective, for

Extik((t))[D]

(
k((t))[D]/(D − α), k((t))[D]/(D − β)k

)
= 0,

whenever α 6≡ β mod Z, for i = 0, 1 and any k.

Now let us decompose the morphism f as the closed immersion into its graph iΓ followed by

the projection on the first coordinates π, so that we have to prove that D − α is surjective on

π+OAn×A1(∗Γ)/OAn×A1 ⊗OA1
k((t)),
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for the graph of f is smooth in An+1.

Note that we are always dealing with affine morphisms and quasi-coherent OAn×A1-modules

and we are taking tensor products with k((t)), so it suffices to work from now on with the global

sections of the objects involved in the proof.

Let us denote by M = k[x, t]
[
(t− f)−1

]
/k[x, t]. Recall that we are interested in the last

cohomology of DRx(M) (for π+ is just a relative de Rham). Since k((t)) is flat over k[t], tensor

products with the former over the latter commutes with cohomology, and thus we are going to

deal with

Mloc := k((t))[x]
[
(t− f)−1

]
/k((t))[x];

it is a module over R and D̂ := R〈∂t, ∂1, . . . , ∂n〉.
Let us introduce just a bit more of notation that we are going to use. We will denote by Dt,

Dx and D̂x the rings k((t))〈∂t〉, k[x]〈∂1, . . . , ∂n〉 and k((t))[x]〈∂1, . . . , ∂n〉, respectively.

Summing everything up, α mod Z is not an exponent of the DA1-module H0f+OAn at the

origin if and only if

R1 HomDt

(
Dt/(D − α),Rn HomD̂x (R,Mloc)

)
= 0.

Note that R ∼= D̂x ⊗Dx k[x], so by extension of scalars

Rn HomD̂x (R,Mloc) ∼= Rn HomDx (k[x],Mloc) .

Now applying the derived tensor-hom adjunction,

R1 HomDt
(
Dt/(D − α),Rn HomDx (k[x],Mloc)

) ∼= Rn+1 HomDx (Dt/(D − α) � k[x],Mloc) ∼=

∼= Rn+1 HomD̂

(
D̂/(D − α, ∂1, . . . , ∂n),Mloc

)
,

the last isomorphism being by extension of scalars again.

Now note that Mloc is autodual, being the direct image by a closed immersion of the autodual

object k[x], so it is equivalent to prove that

Rn+1 HomD̂

(
Mloc, D̂/(D + 1 + α, ∂1, . . . , ∂n)

)
= 0.

The second D̂-module above is nothing but R · t−1−α, where t−1−α should be understood as a

symbol. The actions of the partial derivatives are the usual ones in R of ∂1, . . . , ∂n, and regarding

∂t,

∂t
(
a · t−1−α) = ∂t(a) · t−1−α + (−1− α)t−1a · t−1−α.

In order to finish all this construction, take into account that the annihilator of the class of

(t− f)−1 in Mloc is the left ideal (f − t, ∂1 + f ′1∂t, . . . , ∂n + f ′n∂t); indeed, each of its generators

make it vanish and the ideal is maximal. Therefore, Mloc can be presented as

Mloc
∼= D̂/(f − t, ∂1 + f ′1∂t, . . . , ∂n + f ′n∂t).

Consequently, α mod Z is not an exponent of the DA1-module H0f+OAn at the origin if and

only if the k-linear homomorphism Φ : Rn+1 −→ R given by

Φ =
(
f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα

)
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is surjective.

The statement on the dimension of the cokernel follows easily by reversing the isomorphisms

and applying point iii of proposition 1.3.4.

Corollary 1.3.8. Under the same conditions as in the proposition, if the Koszul complex

K•(R; f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα) is acyclic in degrees d0 to d1 (eventually equal to zero or

n+ 1, respectively), then α mod Z is not an exponent at the origin of any of the cohomologies

Hkf+OAn for d0 − 1 ≤ k + n ≤ d1.

Proof. Note that the operators f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα commute pairwise, so the Koszul

complex K•(R; f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα) is well defined. If it is acyclic at degree k, then

Rk HomD̂

(
Mloc, D̂/(D + 1 + α, ∂1, . . . , ∂n)

)
= 0.

In a similar way to the proof of lemma 1.1.16 and reversing the isomorphisms given in the proof

of the proposition, that object is the extension of the

Ri HomDt

(
Dt/(D − α),Rj HomD̂x (R,Mloc)

)
with j = k and j = k − 1. As a consequence, for every i and j with d0 − 1 ≤ j ≤ d1 such an

object must vanish, and in conclusion, the endomorphism

D − α : Hj(K)⊗ k((t)) −→ Hj(K)⊗ k((t))

is surjective for d0 − 1 ≤ j + n ≤ d1, so α mod Z is not an exponent at the origin of any of the

cohomologies Hjf+OAn for such values of j.

We finish this section by providing several results or notions regarding the field of formal

Laurent series.

Lemma 1.3.9. Let ϕ : k((t)) −→ k((t)) be a k-linear automorphism of k((t)) such that ϕ(k[[t]] ·
tk) = k[[t]] · tk. Then, for any k-linear endomorphism ψ of k((t)) such that ψ(k[[t]] · tk) ⊆
k[[t]] · tk+1, the sum ϕ+ ψ is another automorphism of k((t)).

Proof. Multiplying by ϕ−1 we can assume that ϕ = id. We will write the elements of k((t)) as

a =
∑

k akt
k.

Let then b be a fixed formal Laurent series and let us see if there exists an a ∈ k((t)) such

that (id +ψ)(a) = b. Evidently, the exponents of the least powers of t (which is called the order)

of both of a and b will be the same, so let us write

a =
∑
k≥m

akt
k , ψ(a) =

∑
k≥m+1

a′kt
k and b =

∑
k≥m

bkt
k.

From the equation (id +ψ)(a) = b we deduce that am = bm. Now call a1 = a − amt
m and

b1 = b− (id +ψ)(amt
m); both of them have order equal to m+ 1. We have that

(id +ψ)a1 = (id +ψ)a− (id +ψ)(amt
m) = b1.

Thus we can start over again the same process with a1 and b1. Since this can be continued for

every power of t, we can deduce the surjectivity of id +ψ. Moreover, if we take bk = 0 for every

k ∈ Z, it follows that every ak vanishes too, so id +ψ is also injective.
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Definition 1.3.10. Let r be an element of k. Then we can define the operators Dt,r = t∂t + r,

and analogously Di,r, for i = 1, . . . , n. We will write ϕr = ∂t+rt−1 = t−1Dt,r. They are k-linear

endomorphisms of k((t)), so we can also consider them as operating within any k((t))-algebra

by extension of scalars.

Remark 1.3.11. It is easy to see that Dt,r (and so ϕr) is an automorphism of k((t)) for every r

not an integer and only for them, for Dt,r sends a power tk of t to (k+ r)tk. In this case we can

define another operator that will be of interest from now on:

Definition 1.3.12. Fix an element α of k, and let r and s be two other elements of k such that

α+ s is not an integer. Then we can define the operator Ar,s = t+ rϕ−1
α+s.

Let Rn = k((t))[x1, . . . , xn] and β ∈ k. We can also define the k-linear endomorphisms of

Rn given by AβDi,r,s = t+ βDi,rϕ
−1
α+s, where i = 1, . . . , n.

In the following, for the sake of simplicity, we will denote by Ar and Dr the operators Ar,0

and Dt,r, respectively.

Remark 1.3.13. As before, Ar,s is not always an automorphism of k((t)), as AβDi,r,s of Rn. Since

Ar,sϕα+s = Dt,α+r+s, the former is bijective whenever α+ r + s is not an integer. Analogously,

AβDi,r,sϕα+s = βDi,r+Dt,α+s. It sends tkxu to (β(ui+r)+α+k+s)tkxu, so AβDi,r,s is bijective

if and only if, for every integer l, we have that β(l + r) + α+ s is not an integer.

Now we could wonder about the commutativity of those operators that we have just defined.

We have the following:

Lemma 1.3.14. Let α and β be two elements of k, and r, r′, s and s′ four another elements

of k such that neither α+ s nor α+ s′ are integers. Then, the following relations hold:

• Ar,sϕα+s = Dt,α+r+s , ϕα+sAr,s = Dt,α+r+s+1.

• ϕα = t−1Dt,α = Dt,α+1t
−1 , tϕα = ϕα−1t , Dt,αϕβ = ϕα−1Dt,β.

• Dt,αDt,β = Dt,βDt,α , ϕαϕβ = ϕβ+1ϕα−1 , Ar,sAr′,s′ = Ar′,s′−1Ar,s+1.

• Ar,st = tAr,s+1 , AβDi,r,sxi = xiAβDi,r+1,s.

Proof. The proof is easy (but not necessarily simple), using for each relation some of the ones

proved before and the Leibniz rule.

1.4 Hypergeometric D-modules

Let us return again to our journey into D-modules of dimension one. In this section we will

restrict our setting a bit more by assuming that X = Gm. Almost any result stated here is

inspired or directly equal to some other of [Ka5, § 3], but the section has a different organization

and some of the results have different proofs, so we will write them all. In fact, apart from Katz’s

superb reference, we have not found in the literature an algebraic approach to hypergeometric

D-modules as his.

Recall that our base field k was already assumed to be algebraically closed. To make the

notation coherent with that of the next chapter, we will denote by λ the parameter at the origin,

instead of x. Before going on, let us digress a little.
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Proposition 1.4.1. Let M be a holonomic DGm-module. Its Euler-Poincaré characteristic is

zero if and only if its composition factors are Kummer D-modules.

Proof. By corollary 1.2.16, the Euler-Poincaré characteristic of a holonomic DGm-module is never

positive, and it is additive, so we just need to show the equivalence when M is irreducible.

If M = Kα, since it has no singularities at Gm we can apply Deligne’s formula. M has a

regular singularity both at zero and infinity, so χ(M) = 0.

Suppose then that χ(M) = 0. In this case, by proposition 1.2.4, we have that M, being

irreducible, coincides with j!+j
+M, for any open subvariety U

j
↪→ Gm of Gm in which M is an

integrable connection. Then we can apply again corollary 1.2.16. Since χ(OGm) = 0, we have

necessarily that all the singularities ofM are regular, and droppM = 0 at every point of Gm−U ,

so M is an integrable connection on Gm. Therefore there exists a square matrix A of elements

of k [λ±] of order r such that M ∼= DrGm/(D − A). Now we can apply to this connection the

theorem of the cyclic vector [DGS, 4.2] to obtain thatM is isomorphic to DGm/(P (λ,D)), with

P being a nonconstant polynomial of k [y±, t]. (Note that although the proof of the theorem

of the cyclic vector requires the connection to be defined over a function field k(X), it only

actually needs that X is invertible, as in our case, providing a global proof in Gm.) Now M
has a regular singularity at zero, so the degree in λ of the coefficients of P cannot be negative

(cf. [De1, 1.1.2]). Taking µ = λ−1, we have that Dµ = −Dλ, so by the same argument, the order

at µ of the coefficients of P must vanish too, and thus, P is a polynomial only in D. Since k is

algebraically closed and M is irreducible, degP (D) = 1, for if it were greater we would have a

composition factor of M consisting of the quotient of DGm by the left ideal generated by any

factor of P (D). In conclusion, M∼= DGm/(D − α).

Lemma 1.4.2. Let r be a positive integer, and let us denote by [r] the map defined by taking

r-th powers at P1, defined by [r](x0 : x1) = (xr0 : xr1). Then,

[r]+OGm =

r−1⊕
a=0

Ka/r.

Proof. [r]+OGm is the direct image by an étale morphism of degree r of a regular holonomic

DGm-module of Euler-Poincaré characteristic zero, so it will share all those properties with OGm ,

apart from having a generic rank equal to r.

Let us now consider the following cartesian diagram:

Cr

�π2
��

π1 // Gm

[r]
��

Gm
[r]
// Gm

.

Cr is the curve of G2
m with equation xr − yr = 0, and the πi are the respective canonical

projections. Cr is actually the disjoint union of r lines, so

[r]+[r]+OGm
∼= π2,+OCr ∼= OrGm .
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Since [r]+Kα ∼= Krα, we can deduce that

[r]+OGm
∼=

r⊕
i=1

Kαi ,

where rαi is an integer.

On the other hand, thanks to the projection formula,

[r]+OGm ⊗K1/r
∼= [r]+

(
OGm ⊗ [r]+K1/r

) ∼= [r]+OGm .

That is why we can write each αi as α1 + (i− 1)/r, so we have that

[r]+OGm
∼=

r⊕
i=1

Ki/r,

as we wanted.

Corollary 1.4.3. Let r a positive integer, and let M and N be two complexes of coherent

DGm-modules. Then,

[r]+[r]+M∼=
r⊕

a=1

M⊗OGm Ka/r

and

[r]+[r]+M∼=
⊕
ζ∈µr

hζ,+M,

where hη is the homothety λ 7→ ηλ. Moreover, if both complexes are of irreducible cohomologies,

then [r]+M∼= [r]+N if and only if there exist some integers ai such that HiM∼= HiN ⊗Kai/r.

Proof. The first assertion follows from the projection formula and the lemma above, since

[r]+[r]+M∼= [r]+
(
OGm ⊗OGm [r]+M

) ∼= ([r]+OGm)⊗OGmM.

To prove the second formula we use the same cartesian diagram as in the proof of the proposition,

so that [r]+[r]+M ∼= π2,+π
+
1M. The curve Cr is the disjoint union of the lines lζ of G2

m with

equation x− ζy = 0 for every ζ ∈ µr, all of them cyclically exchangeable by the automorphisms

ψζ : (x, y) 7→ (x, ζy). Take π0
1 and π0

2 to be the restrictions of the projections πi to the line l0 of

Cr. Then,

π2,+π
+
1M∼=

⊕
ζ∈µr

π0
2,+ψ+ζπ

0,+
1 M∼=

⊕
ζ∈µr

π0
2,+ψ+ζ

((
π0

1

)−1
)

+
M =

⊕
ζ∈µr

hζ,+M.

As with the last point, since [r] is an étale morphism, [r]+ and [r]+ are both exact functors of

DGm-modules, so we can suppose thatM and N are concentrated in degree zero. Then we know

that [r]+[r]+M∼= [r]+[r]+N , so since everyM⊗Ka/r is irreducible, there will exist two indexes

a1 and a2 such that M⊗Ka1/r ∼= N ⊗Ka2/r. Now take a0 = a2 − a1 and we are done.

We have just characterized, up to semisimplification, the holonomic DGm-modules of Euler-

Poincaré characteristic zero. The next step should be wondering about those of characteristic

−1. That simple and apparently easy question will accompany us for the rest of this section,

and will be crucial in the future.
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What we can claim right know is that the composition factors of any holonomic DGm-

module of Euler-Poincaré characteristic −1 will be a finite amount of Kummer D-modules and

an irreducible DGm-module of characteristic −1, which can be a delta DGm-module supported at

any point of Gm. Therefore, we have to be more precise in our search and look for the irreducible

nonpunctual holonomic DGm-modules of characteristic −1.

Definition 1.4.4. Let (n,m) 6= (0, 0) be a couple of nonnegative integers, and let P and Q be

two polynomials in k[t] of respective degrees n and m.

The hypergeometric D-module associated with P and Q is defined as

H(P,Q) := DGm/(P (D)− λQ(D));

the operator at the quotient is called the hypergeometric operator associated with P and Q.

Another way of denoting a hypergeometric D-module is by finding the roots of P and Q, if

any, and naming them α1, . . . , αn and β1, . . . , βm, writing

Hγ(α1, . . . , αn;β1, . . . , βm) := DGm/

γ n∏
i=1

(D − αi)− λ
m∏
j=1

(D − βj)

 ,

where γ ∈ k is the quotient between the leading coefficients of P and Q.

Remark 1.4.5. The excluded type (n,m) = (0, 0) corresponds to punctual delta DGm-modules

on Gm, since

Hγ(∅; ∅) = DGm/(γ − λ).

Let inv be the inversion operator in Gm. For the sake of simplicity, we will denote the

D-module Hγ(α1, . . . , αn;β1, . . . , βm) by Hγ(αi;βj). It is easy to check the following identities:

• Hγ(αi;βj)⊗OGm Kη ∼= Hγ(αi + η;βj + η).

• hη,+Hγ(αi;βj) ∼= h+
η−1Hγ(αi;βj) ∼= Hγη(αi;βj).

• inv+Hγ(αi;βj) ∼= inv+Hγ(αi;βj) ∼= H(−1)n+m/γ(−βj ;−αi).

• DHγ(αi;βj) ∼= H(−1)n+mγ(−αi;−1− βj), where the adjoint operator is taken with respect

to Dλ.

Proposition 1.4.6. The Euler-Poincaré characteristic of any hypergeometric D-module is −1.

Proof. The following proof is a completion of the sketchy one of [Ka5, 2.9.13].

Let H = DGm/(H) be a hypergeometric D-module, where H = P (D)− λQ(D). By duality,

its characteristic is that of the complex RπGm,∗RHomDGm (H∗,OGm), that is to say,

Ht : k
[
λ±
]
−→ k

[
λ±
]
.

For each pair of integers r ≤ s, let V (r, s) be the k-vector subspace of k [λ±] generated by the

powers of λ of degree between r and s. Then Ht maps any V (r, s) to V (r, s + 1). As long as

r < s, Ht, defined over the quotients V (r, s)/V (r, s − 1) and V (r, s)/V (r − 1, s), takes λs to

Q(−s− 1)λs+1 and λr to P (−r)λr, respectively.
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Let us denote by Cn the complex ϕn := Ht : V (−n, n) −→ V (−n, n + 1). By the previous

paragraph and the snake lemma, the inclusion in,n+1 of Cn into Cn+1 is a quasi isomorphism

if P (n + 1) 6= 0 6= Q(−n − 2), so for a big enough n, the cohomology of Cn does not change.

The cohomology of the direct limit of the system {Cn, in,m} remains the same too, since taking

direct limits is an exact functor. Now we only have to note that the direct limit of the Cn is our

original complex

Ht : k
[
λ±
]
−→ k

[
λ±
]
,

and the Euler-Poincaré characteristic of any Cn is

dim kerϕn − dim cokerϕn = dim kerϕn − (2n+ 1− (2n− dim kerϕn)) = −1.

Proposition 1.4.7. Let H := Hγ(αi;βj) be a hypergeometric D-module of type (n,m). If

n 6= m, it has no singularities on Gm. If n > m (resp. m > n), it has a regular singularity at

the origin (resp. infinity) and an irregular singularity at infinity (resp. the origin) of irregularity

one.

If n = m, H is regular, with singularities only at the origin, the point at infinity and γ, where

the Jordan decomposition of its local monodromy (of its exponents) is a pseudoreflection, that is,

the space of formal meromorphic solutions Solfγ is (n−1)-dimensional. Moreover, H ∼= j!+j
+H,

j being the inclusion of Gm − {γ} into Gm, unless its composition factors are a punctual delta

DGm-module supported at γ and some Kummer D-modules.

Proof. If n 6= m, the poles of the hypergeometric operator associated with γ, the αi and the βj

can only be at zero and infinity, so H is an integrable connection on Gm. Then, we can apply

corollary 1.2.16 to find that

−1 = − Irr0− Irr∞ .

The statement follows from the fact that if n > m, then there are not poles at the origin in the

matrix form D −A(λ) of the integrable connection H, or at infinity if m > n.

If n = m, the singularities of H are at γ, and perhaps, at the origin and the point at infinity.

Since its Euler-Poincaré characteristic is −1, if it has a punctual subobject or quotient, by the

additivity of χ, it must be a unique delta DGm-module supported at some point of Gm, providing

a singularity for H. Therefore, H must be an extension of δγ and a DGm-module of characteristic

zero, which by proposition 1.4.1 has Kummer D-modules as composition factors.

Then suppose that H has no punctual subobject or quotient. Then, by proposition 1.2.7, it

is isomorphic to j!+j
+H, j being as in the statement. In particular we can apply again corollary

1.2.16 to find that

−1 = − Irr0− Irr∞− totdropγ .

Analogously as when n 6= m, there is not any pole at γ in the matrix form D − A(λ) of the

integrable connection H|Gm−{γ}, so Irrγ = 0. On the other hand, dropγ > 0, so H has regular

singularities at the origin and infinity. Since then, dropγ = 1, we have that dim Solfγ = n − 1,

as we wanted to prove.
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We have seen that any hypergeometric D-module is of Euler-Poincaré characteristic −1 and

its behaviour at P1 can be quite understood from its parameters. This phenomenon is much

deeper and in the following results we are going to show it.

Proposition 1.4.8. (cf. [Ka5, 2.11.9, 3.2]) Let H := Hγ(αi;βj) be a hypergeometric D-module.

It is irreducible if and only if for any pair (i, j) of indexes, αi − βj is not an integer.

Proof. In order to prove one direction of the equivalence, it will suffice for us to prove that if

H is irreducible, then for any choice of α′i and β′j congruent modulo Z to the αi and the βj ,

respectively, H′ := Hγ(α′i;β
′
j) is isomorphic to H. As a consequence, we could choose every

αi and βj in the same fundamental domain of k/Z. The condition αi0 − βj0 ∈ Z means now

that αi0 = βj0 , but then D − αi0 right divides the hypergeometric operator and thus H has the

Kummer D-module Kαi0 as a composition factor, contradicting the fact that it is irreducible.

In fact, by inversion and induction, it is enough to prove the claim if n > 0, α′1 = α1 − 1

and α′i = αi for i > 1. Let us write, as usual, H = H(P,Q). Then there exists a polynomial

R(t) ∈ k[t] such that P (t) = (t − α1)R(t). The product at the right by (D − α1 + 1) at DGm
induces a morphism of DGm-modules

·(D − α1 + 1) : H −→ H′,

for ((D − α1)R(D)− λQ(D)) (D − α1 + 1) = (D − α1) ((D + 1− α1)R(D)− λQ(D)).

Now D − α1 + 1 cannot be in the ideal generated by (D + 1 − α1)R(D) − λQ(D), because

the degree in λ of the former is smaller than that of the latter. Therefore, the morphism is not

zero, and by irreducibility, it is injective. If n 6= m both DGm-modules are in fact integrable

connections, so locally free OGm-modules, and so the morphism is surjective, too. And if n = m,

we could reproduce the argument over Gm−{γ}, so the eventual cokernel will be supported at γ,

but then the Euler-Poincaré characteristic of H′ would be −1, that of H, plus the characteristic

of that punctual DGm-module, which is at least −1, too. This contradicts proposition 1.4.6 and

so H′ ∼= H.

Suppose now that H is reducible and for any pair of indexes (i, j), αi − βj is not an integer.

Since χ(H) = −1, by inversion we can suppose that it has a Kummer D-module Kα as a quotient.

In that case, P (D)−λQ(D) will annihilate an expression of the form λα
∑b

i=a aiλ
i, where a, b ∈ Z

and λα must be interpreted as a symbol verifying that D (λα) = αλα. However, looking at the

extremal degrees, we necessarily have that P (α + a) = 0 and Q(α + b) = 0, making P and Q

share, up to an integer constant, a root, which is impossible.

Corollary 1.4.9. ([Ka5, 3.2.2]) Let H := Hγ(αi;βj) be an irreducible hypergeometric D-module

of type (n,m), and fix a fundamental domain I of k/Z. Then,

i) The Jordan decomposition of the regular part of H at the origin is

H⊗ k((λ))reg
∼=
⊕
α∈I

k((λ))[D]/(D − α)nα ,

where nα is the amount of αi congruent to α modulo Z. If n ≥ m, each exponent occurs

just at one Jordan block.
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ii) The Jordan decomposition of the regular part of H at the point at infinity is

H⊗ k((1/λ)) ∼=
⊕
β∈I

k((1/λ))[D]/(D − β)nβ ,

where nβ is the number of βi congruent to β modulo Z. If m ≥ n, each exponent occurs at

a single Jordan block.

Proof. By the proposition we can already assume that every αi and βj are at the fundamental

domain I, and so, we can apply proposition 1.3.3 to obtain the Jordan decomposition stated.

We only have to prove the uniqueness of the Jordan blocks for each exponent.

Let P and Q be as usual. By inversion we can assume that n ≥ m, and taking tensor

products with a Kummer D-module, it is enough to see that if 0 is the only integer root of P ,

then the exponent 1 has a unique Jordan block associated to it. The number of Jordan blocks

associated with the exponent 1 is the dimension of the k-vector space of formal meromorphic

solutions of H, Solf0 = HomDGm (H⊗ k((λ)), k((λ))).

Let a = xd
∑

i≥0 aiλ
i, with a0 6= 0, be an element of k((λ)) annihilated by H = P (D) −

λQ(D). The term of least degree of Ha is P (d)a0λ
d, so d = 0 since it is the only integer root

of P by assumption. Then a ∈ k[[λ]] and we have the recursion P (i)ai = Q(i− 1)ai−1, for any

i ≥ 0. Since P (i) 6= 0 for any i > 0, every coefficient ai is determined by a0, in such a way that

ai =
Q(i− 1) · . . . ·Q(0)

P (i) · . . . · P (1)
a0.

Therefore, the space of formal meromorphic solutions is one-dimensional and so, there exists a

unique Jordan block for the exponent 1.

Proposition 1.4.10. ([Ka5, 3.3]) Let H = Hγ(αi;βj) be a hypergeometric D-module of type

(n,m). Its isomorphism class as DGm-module determines n and m, the set of all of the αi and

βj modulo Z, and if either H is irreducible or n = m, the point γ.

Proof. By inversion, we can assume that n ≥ m. Then n is the generic rank of H and m the

dimension of its regular part at infinity. The values of the αi and βj mod Z are the exponents

of H at those points, as seen in the previous corollary. We only have to show that γ is intrinsic

to H too, in the two special cases stated above.

If n = m, by proposition 1.4.7, γ is the unique singularity of H within Gm, and thus is

characterized by the behaviour of H. If n 6= m, by the same proposition, H is an integrable

connection on Gm. Suppose that H is irreducible. If γ were indistinguishable from another

point of Gm, the homothety hη, for some η 6= 1, would be an automorphism of H. However,

that would contradict [Ka4, 2.3.8], since by proposition 1.4.7 again, the irregularity of H at

infinity is one.

This proposition shows that in the regular or the irreducible case, all the parameters of a

hypergeometric D-module are intrinsic to it, so we could wonder about the converse of this

statement, that is to say, in which way those parameters determine the D-module.
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Lemma 1.4.11. ([Ka5, 3.7.2]) Let M be an irreducible nonpunctual DGm-module of Euler-

Poincaré characteristic −1. Then, for any α ∈ k,

dim Solf0 (M⊗Kα) + dim Solf∞ (M⊗Kα) ≤ 1.

In particular, in the formal Jordan decomposition at the origin (or infinity) ofM, each exponent

occurs at a single indecomposable Loc(α, nα), viewing the exponents as elements of k.

Proof. Let j be the canonical inclusion Gm → P1. By proposition 1.2.11 we have the short exact

sequence

0 −→ j!+M−→ j+M−→ δ0 ⊗k Solf0⊕δ∞ ⊗k Solf∞ −→ 0.

Let us find some of their de Rham global cohomologies. By irreducibility,

H−1πP1,+j+M∼= H−1πGm,+M∼= Γ (Gm,HomDX (OGm ,M)) = 0,

because if it did not vanish, thenM∼= OGm , which is impossible because χ(M) = −1. Therefore,

H0πP1,+j+M∼= H0πGm,+M∼= k.

On the other hand, we already know that H−1πP1,+δp = 0 and H0πP1,+δp ∼= k, p being either

zero or infinity.

Finally, H1πP1,+j!+M∼= H−1πP1,+j!+M∗, by corollary 1.2.9. Since j!+M∗ is a subobject of

j+M∗, applying πP1,+ to the short exact sequence 0 → j!+M∗ → j+M∗ → j+M∗/j!+M∗ → 0

and taking its long exact sequence of cohomology gives us that H−1πP1,+j!+M∗ is a subspace

of H−1πP1,+j+M∗, which vanishes, for the same reason as H−1πP1,+j+M.

Summing up, the long exact sequence of cohomology associated with the triangle

πP1,+j!+M−→ πP1,+j+M−→ πP1,+δ0 ⊗k Solf0⊕πP1,+δ∞ ⊗k Solf∞

contains a fragment given by

. . . −→ H0πP1,+j+M−→ Solf0⊕Solf∞ −→ 0,

and we are done.

Proposition 1.4.12. (cf. [Ka5, 3.5.4]) Let M1 and M2 be two irreducible regular holonomic

DGm-modules of generic rank n ≥ 1 such that none of them have any singularity on Gm − {γ},
for some point γ ∈ Gm, where both of their local monodromies are a pseudoreflection, sharing

the set of exponents at zero and infinity. Then, M1 and M2 are isomorphic as DGm-modules.

Proof. In this proof we go beyond the borders of algebraic methods and carry out an analytic

proof, for what we need to fix only here k to be C. We will discuss this situation after the proof.

Denote by j and k, respectively, the canonical inclusions Gm − {γ} ↪→ P1 and k : Gm −
{γ} ↪→ Gm, and by N the tensor product M∗1 ⊗OGm M2. What we will really prove is that

χ(j!+k
+N ) = 2. Then, since

χ(j!+k
+N ) =

1∑
i=−1

(−1)i+1 dimHiπP1,+j!+k
+N ,
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at least one of the first or last cohomologies will not vanish. Suppose that so does happen with

the first one. Then, H−1πP1,+j!+k
+N is

Γ
(
P1,RHomDP1

(
j!+OGm−{γ}, j!+k

+N
)) ∼= Γ

(
P1,RHomDP1

(
j!+OGm−{γ}, j+k

+N
))
,

since we are adding to the second D-module just a punctual part, which does not affect the first

one because of being a middle extension. And now, by adjunction,

Γ
(
P1,RHomDP1

(
j!+OGm−{γ}, j+k

+N
)) ∼= Γ

(
Gm − {γ},RHomDGm−{γ}

(
j+j!+OGm−{γ}, k

+N
)) ∼=

∼= Γ
(
Gm − {γ},RHomDGm−{γ}

(k+M1, k
+M2)

)
= HomDGm−{γ}

(k+M1, k
+M2),

where the last isomorphism is just the result of applying the way-out lemma [Ha1, 7.1] to the

simpler one HomDGm−{γ}

(
OGm−{γ}, k

+N
) ∼= HomDGm−{γ}

(k+M1, k
+M2).

Therefore, we obtain a nonzero morphism between k+M1 and k+M2, which must be bijective

since both its source and its target are irreducible by proposition 1.2.4. The image by k!+ of

that morphism gives us another one betweenM1 andM2 that is an isomorphism again because

of them being irreducible intermediate extensions.

Now if H1πP1,+j!+k
+N 6= 0, by duality and corollary 1.2.9, we can follow the same argument,

having thatH1πP1,+j!+N ∼= H−1πP1,+j!+(M∗2⊗OGmM1) and obtaining an isomorphism between

M2 and M1.

Let us now apply proposition 1.2.11 to j!+k
+N and j. Then we get a short exact sequence

0 −→ j!+k
+N −→ j+k

+N −→ δd00 ⊕ δ
dγ
γ ⊕ δd∞∞ −→ 0,

where each dp is the dimension of Solfp for p = 0, γ,∞. By the additivity of the Euler-Poincaré

characteristic,

χ(j!+k
+N ) = χ(j+k

+N ) + d0 + dγ + d∞.

Note that χ(j+k
+N ) = χ(k+N ) and k+N is a regular integrable connection on Gm − {γ}.

Consequently, by Deligne’s formula 1.2.16, χ(j+k
+N ) = −n2.

The D-module N is regular; by virtue of proposition 1.3.4 and the previous lemma we can

affirm that dim Solf0 = dim Solf∞ = n. Only dγ is what remains to be found. The global

monodromy of each of theMi induces a representation on the fundamental group of Gm−{γ},
which can be thought of as a group with three generators a, b and c such that abc = 1 (cf., for

example, [Sal, § 2.2]). Now the local monodromies of bothM1 andM2 at γ are pseudoreflections,

so the only noninteger exponents, if any, are determined by those at zero and infinity of theMi,

and consequently, they are the same.

If every exponent of the Mi is one, then taking λγ as a good formal parameter at γ,

Mi ⊗ C((λγ)) ∼= C((λγ))n−2 ⊕ C((λγ))[D]/(D − 1)2,

so dim Solfγ = (n− 2)2 + 2 + 2(n− 2) = n2 − 2n+ 2. If there exists an exponent different from

one, then

Mi ⊗ C((λγ)) ∼= C((λγ))n−1 ⊕ C((λγ))[D]/(D − η),

for some noninteger η, and thus dim Solfγ = (n−1)2 +1 = n2−2n+2. Summing up, χ(j!+N ) =

−n2 + 2n+ n2 − 2n+ 2 = 2, as desired.
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To end the proof and return to our general ground field k, we just need to invoke the Lefschetz

principle; in the end everything defined at this proof can be defined over an extension of Q of

finite transcendence degree, embeddable in C.

Remark 1.4.13. This proposition is in fact a regular version of a rigidity theorem for holonomic

DGm-modules without singularities in Gm−{γ}. The analytic proof that we have given above is

a bypass to overcome the only point used for which we have not found an algebraic equivalent.

The only algebraic approach to this sort of problem in the setting of D-modules that we have

found in the literature is the work by Bloch and Esnault [BE]. See the last section, “Open

questions and further projects”, for a more detailed analysis and more information.

Corollary 1.4.14. LetM be a nonpunctual irreducible regular holonomic DGm-module of Euler-

Poincaré characteristic −1 with singularities at the origin and infinity. Then M is a hypergeo-

metric D-module.

Proof. Let j be the canonical inclusion into Gm of an open subvariety U of it on which M
has no singularities. Then, M ∼= j!+j

+M by proposition 1.2.4. Applying now 1.2.16, −1 =

−
∑

p∈Gm−U droppM, so there is a unique point γ on Gm on which M has a singularity, the

monodromy there being a pseudoreflection. The result follows from comparing M and the

hypergeometric D-module Hγ(αi;βj), where the equivalence classes of the αi and the βj modulo

the integers are the exponents of M at the origin and infinity.

Remark 1.4.15. In fact, the corollary is part of the deeper result [Ka5, 3.7.1], which states that

every irreducible holonomic DGm-module of characteristic −1 is a hypergeometric D-module. It

uses the irregular analogue of the previous proposition, [ibid., 3.7.3], which provides an isomor-

phism between two integrable connections on Gm of characteristic −1 that share their formal

Jordan decompositions at zero and infinity. We will not use that result in the text, but its

importance makes impossible for us to omit it for the sake of the completeness of the section.

We have also included this approach to try to show a bit the importance of having a rigidity

theorem for regular connections on Gm minus a point. However, there exists another strategy

to prove the statement of the corollary in its general way, independently of the regularity and

only with algebraic methods, appearing at [LS]. Thanks to it we can still claim that in this

dissertation every statement has an algebraic proof.

Proposition 1.4.16. (cf. [LS, Théorème 1]) Let M be a nonpunctual irreducible holonomic

DGm-module of Euler-Poincaré characteristic −1. Then M is a hypergeometric D-module.

Proof. In order to prove this result we are going to introduce the algebraic Mellin transform for

DGm-modules. Let us make the change of variables s = D and λ = t−1, such that k
[
λ, λ−1

]
〈D〉

becomes DA1 := k[s]
〈
t, t−1

〉
, the ring of finite difference operators, which is nothing but the

localization at t of the quotient of the free algebra k〈s, t〉 by the relation ts = (s + 1)t. The

DGm-module M, seen as a module over the second ring, will be denoted by M. Write M(s)

for the tensor product M ⊗k[s] k(s); it is a finite dimensional k(s)-vector space for M being

holonomic.
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Let us prove firstly that χ(M) = −dimk(s) M(s). The Euler-Poincaré characteristic of the

DGm-module M can be seen as the characteristic of the complex of k-vector spaces

Cs(M) : 0 −→M
s−→M −→ 0,

where the leftmost term is placed at degree zero.

Say that dimk(s) M(s) = r, so take a basis {m1, . . . ,mr} of M(s) over k(s), and denote by

M0 the free k[s]-module k[s]〈m1, . . . ,mr〉 (note that the generators form a linearly independent

set over k(s)). Just by applying the commuting relation between s and t it is clear that

tkM0 ⊗k[s] k(s) ∼= M0 ⊗k[s] k(s) ∼= M

for every k ∈ Z. For every j > 0, define Mj to be
∑
|l|≤j t

lM0. Then the Mj form an increasing

filtration of M. Indeed, any element from M can be written as a sum m =
∑

i (fi(s)/gi(s))mi.

Denote by g(s) the least common multiple of the gi. Then, since p(s + 1)t = tp(s) for every

p ∈ k[s], g(s+ 1)tm ∈Mj for a large enough value of j.

Moreover, every graded element of that filtration is of k[s]-torsion. We have that tkM0⊗k[s]

k(s) ∼= M0 ⊗k[s] k(s) for k = ±1, in particular. Then, there exist two polynomial a′(s), a′′(s) ∈
k[s] such that each of the tmi, t

−1mi, respectively, live in M0 when multiplied by them. Call

their product a(s). Consequently, a(s + j)a(s − j)Mj+1 ⊆ Mj . For a large enough value of j,

the polynomials s and a(s + j)a(s − j) are relatively prime, so the complex Cs(Mj+1/Mj) is

exact. In conclusion, there is a quasi-isomorphism, induced by the inclusion, between Cs(Mj)

and Cs(M) for j � 0. Now we can use the same argument as in the proof of proposition 1.4.6.

Taking direct limits is an exact functor, so the cohomology of Cs(M) is the direct limit of those

of Cs(Mj). Since M0 is free of rank r, the multiplication by s is injective and

χ (Cs(Mj)) = χ (Cs(M0)) = −dimk (k[s]/(s))r = −r

for every j ≥ 0, and then, χ(M) = −dimk(s) M(s).

Now we can affirm, by assumption, that we have an irreducible DA1-module of dimension 1

over k(s). Let m be a generator of M as a DA1-module. Then, m in itself forms a basis of M(s),

so tm = a(s)m for some a(s) ∈ k(s). Let m′ = h(s)m be another basis of M(s). The matrix

(actually a single element from k(s)) a′(s) associated with the map t· is then a(s)h(s+ 1)/h(s).

Choosing appropriately h, we can claim that a′(s) = −Q(s)/P (s), such that P and Q do not

share a root modulo Z. Now denote DA1 ·m′ by M′. Then, writing H for the Mellin transform

of the hypergeometric DGm-module H(P,Q), we obtain a surjective morphism between H and

M′, which must be bijective for the former is irreducible. But then, if h(s) = p(s)/q(s),

M′ = DA1 ·m′ = DA1 · q(s)m′ = DA1 · p(s)m = DA1 ·m = M,

because all of them are irreducible DA1-modules of rank one.

Summing up, by undoing the Mellin transform we obtain thatM must be isomorphic to the

hypergeometric DGm-module H(P,Q) and we are done.
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Chapter 2

Gauss-Manin cohomology

Le voyageur qui franchit sa montagne dans la direction

d’une étoile, s’il se laisse trop absorber par ses problèmes

d’escalade, risque d’oublier quelle étoile le guide.

Antoine de Saint-Exupéry

2.1 Setting the problem

In this section we begin to work with Dwork families and the “interesting” part of its Gauss-

Manin cohomology, as treated in the introduction, recalling some of the notions presented there.

We will describe the approach to follow and prove some basic facts that will be of use later on.

Let n be a positive integer and let w = (w0, . . . , wn) ∈ Zn+1
>0 be an (n + 1)-uple of positive

integers such that gcd(w0, . . . , wn) = 1. We will denote by dn the sum
∑
wi ≥ n + 1 and by

γn the product (dn)−dn
∏
iw

wi
i . Let us fix as our ground field an algebraically closed field of

characteristic zero k, and let us consider the family, parameterized by λ ∈ A1, of projective

hypersurfaces of Pn given by:

Xn,w : xdn0 + . . .+ xdnn − λx
w0
0 · . . . · x

wn
n = 0 ⊂ Pn × A1 = Proj (k[x0, . . . , xn])× Spec (k[λ]) .

This family is an example of what can be known of as a generalized Dwork family, consisting

of the deformation of a Fermat hypersurface by an arbitrary monomial in every variable. Any

other family of the form

a0x
dn
0 + . . .+ anx

dn
n − bλx

w0
0 · . . . · x

wn
n = 0 ⊂ Pn × A1 ,

more general a priori, is isomorphic to one of the previous by the homography xi 7→ ηixi,

λ 7→ b
∏
η−wii , where ηi is a dn-th root of ai.

Proposition 2.1.1. Xn,w is a smooth quasi-projective variety. Denoting by pn : Xn,w → A1 the

restriction to Xn,w of the second canonical projection, this morphism is smooth over the open

subvariety Un =
{
λ ∈ A1 | γnλdn 6= 1

}
.

45
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Proof. Let us write, for the sake of simplicity, xw0
0 · . . . · xwnn = xw. The partial derivatives of

xdn0 + . . .+ xdnn − λxw with respect to the xi and λ are

δi = dnx
dn−1
i − λwixw−ei and δλ = −xw,

respectively. If δλ = 0, then some xi must vanish, and if, in addition, δi = 0 for every i, all of the

xi will be zero, which is impossible. Therefore, Xn,w is smooth. Since at the singular points of

the fibers of pn we have that xi 6= 0 for every i, we can multiply by them the partial derivatives

δi, obtaining that dnx
dn
i = −wiλxw for every i, so w0x

dn
i = wix

dn
0 . But then, substituting the

xdni in the equation of Xn,w, (dn/w0)xdn0 = λxw. Taking dn-th powers at each side, we get that

ddnn = λdn
∏
iw

wi
i , so if we do not have that equality, we will find ourselves at a nonsingular

fibre.

There exists an important subgroup of the group of automorphisms of Xn,w, being the one

which will provide us our main object of study. Let

µ0
dn =

{
(ζ0, . . . , ζn) ∈ µn+1

dn

∣∣∣∣ n∏
i=0

ζwii = 1

}
,

and let G = µ0
dn
/∆, the quotient of µ0

dn
by the diagonal subgroup, acting linearly over Xn,w by

((ζ0, . . . , ζn), ((x0 : . . . : xn), λ)) 7−→ ((ζ0x0 : . . . : ζnxn), λ).

Since G is a finite group, Xn,w/G is another projective variety. The action of G leaves

invariant only the polynomials generated by the monomials xdni and xw, so Xn,w/G is{
x0 + . . .+ xn = λxn+1

xw0
0 · . . . · xwnn = xdnn+1

⊂ Pn+1 × A1.

Substituting in the second equation the value of xn+1 given by the first one, and taking x0 = 1,

we find that Xn,w/G is the projective closure of

Yn,w : xw1
1 · . . . · x

wn
n (λ− x1 − . . .− xn)w0 = 1 ⊂ Gn

m × A1 = Spec
(
k
[
x±1 , . . . , x

±
n , λ

])
.

In this sense we will write Ȳn,w for Xn,w/G.

Let Zn,w be the following variety:

xw1
1 · . . . · x

wn
n · (1− x1 − . . .− xn)w0 = λ ⊂ An × A1 = Spec (k [x1, . . . , xn, λ]) .

When the context is clear, we will omit the (n+ 1)-uple w from Zn,w.

Then if, abusing a bit of the notation, we denote by pn every restriction of the second

canonical projections, we can form the following cartesian diagram:

Yn,w − p−1
n (0)

�pn

��

α̃n // Zn,w − p−1
n (0)

pn

��

Gm
ιn // Gm

,

where α̃n(x, λ) =
(
(x1/λ, . . . , xn/λ), λ−dn

)
(note that it is the restriction of an endomorphism

of Gn+1
m ) and ιn(z) = z−dn .
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Proposition 2.1.2. The families Yn,w and Zn,w are smooth, while their projective closures are

not. The projections pn from Yn,w and Zn,w are smooth, respectively, over the open subvarieties

Un and Gm − {γn}.

Proof. Yn,w and Zn,w are smooth for being, respectively, a n-dimensional torus and a graph.

However, their projective closure will have singularities at their sections at infinity independently

of λ, because both of them are the cartesian product of the same arrangement of hyperplanes

with A1.

Regarding the fibers of pn, since the section at infinity of Ȳn,w is independent of λ, the

singular fibers of Yn,w will be over the same points of A1 as those of Ȳn,w. Now, the quotient

map from Xn,w to Ȳn,w is G-equivariant by definition, as well as pn. Then the singular locus of

pn : Ȳn,w → A1 is the same as that of pn : Xn,w → A1, which is Un.

With respect to the fibers of Zn,w, note that α̃n is an étale morphism outside of its section

with equation λ = 0, where it is ramified. Therefore, Zn,w will have nonsingular fibers on the

image by ιn of Un except for the origin, that is to say, Gm − {γn}.

Remark 2.1.3. Our goal is to calculate the invariant part under the action of G of the Gauss-

Manin cohomology of Xn,w relative to the parameter λ, or in other words,
(
pn,+OXn,w

)G
. This

must be understood as follows.

G acts linearly over Xn,w, and in fact, over Pn × A1. Then for any G-equivariant DXn,w - or

DPn×A1-module (cf. [Kas2, 3.1.3], noting that quasi-G-equivariance and G-equivariance coincide

due to the finiteness of G) we have an action (the same as a G-equivariant O-module) of the Lie

algebra associated with G, which, by the latter being finite and abelian, it is the commutative

group algebra k[G]. In our case, OXn,w is a G-equivariant DXn,w -module by [Kas2, Example

3.1, ii], and since pn is a G-equivariant morphism by definition, the direct image pn,+ induces a

G-equivariant structure on pn,+OXn,w (cf. [Kas2, p. 169]).

In this sense, whenever we talk about the invariant part of a D-moduleM, we will understand

its image by the functor Homk[G](k,M).

In fact, what we are really interested in is the nonconstant part of
(
pn,+OXn,w

)G
, that is,

everything which is not a successive extension of structure sheaves, and we can actually restrict

ourselves to an affine context in order to find it:

Theorem 2.1.4. Let K̄n = pn,+OYn,w . There exists a canonical morphism of the complexes of

DA1-modules
(
pn,+OXn,w

)G −→ K̄n such that the cohomologies of its cone are direct sums of

copies of the structure sheaf OA1.

Proof. Let us see Ȳn,w as a quasi-projective variety in Pn×A1 and callM := RΓ[Ȳn,w]OPn×A1 [1].

Let JX and JY be the ideals of definition of Xn,w and Xn,w/G, respectively. The action of G can

be easily extended to Pn×A1, and seen in that way, the invariant part under the action of G of

the rings OPn×A1/J kX is, by construction, OPn×A1/J kY (cf. [Hr, p. 127]). Since we are working

with a finite abelian group and sheaves of k-vector spaces, we can claim thanks to Maschke’s

theorem that the functor •G = Homk[G](k, •) is exact.

Furthermore; G is finite, and thus isomorphic to the product of some cyclic groups. Then

the invariant part of a sheaf of k-vector spaces (or DPn×A1-modules, in particular) is the kernel

of the product of the linear maps ϕai − id, the ai and ϕai being the generators of G and their
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associated actions on the sheaf. Now recall the definition of algebraic local cohomology from

remark A.2.2. Since •G is a kernel and an exact functor, it commutes with derived functors of

left exact ones. In particular, so it does with RHomOX (•,OPn×A1), and then the invariant part

of RΓ[Xn,w]OPn×A1 [1] under the action of G must be M.

Now abusing of notation by calling pn to the second canonical projection of Pn × A1, note

that pn,+OXn,w ∼= pn,+RΓ[Xn,w]OPn×A1 [1], because Xn,w is smooth (cf. proposition 1.1.12).

If we prove that taking invariants and direct image by pn commute, then we will have that(
pn,+OXn,w

)G
= pn,+M.

The morphism pn is a projection, so the functor pn,+ is the image by Rpn,∗ of the relative

de Rham complex DRpn shifted n − 1 degrees to the left. By the same reasons as in the first

paragraph, Rpn,∗ (as well as the shifting) commutes with •G. The relative de Rham complex

is a complex of sheaves of k-vector spaces whose objects are DPn×A1-modules, more precisely in

our case, N ⊗OPn×A1
Ωi
Pn×A1/A1 for some DPn×A1-module N . The connecting morphisms are k-

linear, and then G-equivariant. Since locally the differential modules are isomorphic to a direct

sum of copies of OPn×A1 , its objects will be locally isomorphic to the direct sum of copies of N .

Consequently, •G and DRpn will commute as well, and then,
(
pn,+OXn,w

)G
= pn,+M.

Let now Y∞n,w be the intersection of the hyperplane at infinity with Ȳn,w and denote by

i : Pn−1 × A1 → Pn × A1 and j : An × A1 → Pn × A1 the canonical immersions. We have the

associated excision distinguished triangle

pn,+RΓ[Pn−1×A1]M−→ pn,+M−→ pn,+j
+M,

where we can take RΓ[Pn−1×A1]M∼= i+i
+M thanks to Pn−1×A1 being smooth. Now, by [Me1,

I.6.2.4],

RΓ[Pn−1×A1]M∼= RΓ[Y∞n,w]OPn−1×A1 [1] ∼= π+
1 RΓ[Ā]OPn−1 [1],

Ā being the projective arrangement of hyperplanes such that Y∞n,w is the product Ā×A1. Then by

the relative Künneth formula, pn,+RΓ[Pn−1×A1]M is the tensor product πPn−1,+RΓ[Ā]OPn−1 [1]⊗k

OA1 , so it has constant cohomologies.

Finally, j+M∼= RΓYn,wOAn×A1 by [ibid., I.6.3.1]. Since Yn,w is smooth, pn,+j
+M∼= K̄n, so

in the end we have a triangle(
pn,+OXn,w

)G −→ K̄n −→ pn,+i+i
+M,

the last complex being constant, and we are done.

Remark 2.1.5. Since pn is a proper smooth morphism andOXn,w is a pureDXn,w -module of weight

0, thanks to [Sa, 4.5.3, 4.5.4] we know that pn,+OXn,w is a semisimple complex of D1
A-modules,

that is, it is the direct sum of its cohomologies, them being in turn semisimple DA1-modules.

Now note that pn,+M is a direct summand of pn,+OXn,w , because the latter can be decomposed

as the direct sum of its eigenspaces associated with the action of G, occurring the former as the

invariant part, so in particular, it is a semisimple complex of DA1-modules, too.

In particular, the theorem tells us that the nonconstant part of
(
pn,+OXn,w

)G
is that of K̄n,

which, because of being the former a semisimple complex of DA1-modules, coincides with the

middle extension of its restriction to Gm.
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In this new context, we can state a more detailed theorem, but before doing so, let us

introduce some more notation.

Let us denote by (α1, . . . , αn) and (β1, . . . , βm) two unordered n- and m-uples, respectively,

of elements from k, i.e., seen as elements of the n- and m-fold symmetric product of k, re-

spectively. We will define their cancelation, denoted by cancel(α1, . . . , αn;β1, . . . , βm), as the

result of eliminating from both tuples the elements that they share modulo Z, obtaining shorter

disjoint lists (cf. definition 1.3.5). In other words, assume that every αi and βj lie in the same

fundamental domain of k/Z and take

cancel(α1, . . . , αn;β1, . . . , βm) =

= ((α1, . . . , αn)− (β1, . . . , βn); (β1, . . . , βn)− (α1, . . . , αn)) ,

where the subtractions remove only an element of the first tuple for each similar element of the

second one. For instance,

cancel (1, 3/2,−3, 1/3, 2/3, 0; 1/6, 1/3, 1/2,−4/3, 5/6, 2, 2, 2) = (0, 0; 1/6, 5/6, 0, 0).

Note that the difference between the lengths of the resulting tuples is still the same, since we

are taking from them the same amount of elements.

For each n and a, b ∈ {1, . . . , dn}, let us denote by Aa,bn the following set:

Aa,bn =

{
1

w0
+

b

dn
, . . . ,

w0

w0
+

b

dn
, . . . ,

wn
wn

+
b

dn

}
∩
{

1

dn
, . . . ,

dn
dn

}
−
{
a+ b

dn

}
,

which is the set of fractions (k + b)/dn with k 6= a such that j/wi = k/dn, for some i = 0, . . . , n

and j = 1, . . . , wi. A
a,b
n − {b/dn} will be empty if and only if dn is prime to each wi. We will

denote by Aa,b∗n the set Aa,bn − {1}.
Let us state now our following main theorem. We will prove it throughout this chapter and

the next one.

Theorem 2.1.6. Let j be the canonical inclusion from Gm to A1. There exists a complex of

DGm-modules Kn such that j+K̄n
∼= ι+nKn. This complex satisfies the following: Hi(Kn) = 0 if

i /∈ {−(n− 1), . . . , 0}, Hi(Kn) ∼= O
( n
i+n−1)

Gm as long as −(n− 1) ≤ i ≤ −1, and in degree zero we

have the exact sequence

0 −→ Gn −→ H0(Kn) −→ OnGm −→ 0,

Gn being a D-module whose semisimplification is

Gssn =
⊕

α∈Aa,b∗n

Kα ⊕Fn,

for some a, b ∈ {1, . . . , dn}. There, Fn is the irreducible hypergeometric DGm-module

Kb/dn ⊗OGm Hγn
(

cancel

(
1

w0
, . . . ,

w0

w0
, . . . ,

1

wn
, . . . ,

wn
wn

;
1

dn
, . . . ,

dn
dn

))
.

Corollary 2.1.7. Under the same notations as above, the nonconstant part of
(
pn,+OXn,w

)G
is

j!+ι
+
nH, where H is the irreducible hypergeometric D-module

Hγn
(

cancel

(
1

w0
, . . . ,

w0

w0
, . . . ,

1

wn
, . . . ,

wn
wn

;
1

dn
, . . . ,

dn
dn

))
.



50 CHAPTER 2. GAUSS-MANIN COHOMOLOGY

Proof. Just note that any Kummer D-module of rational parameter of denominator dn gets

mapped to OGm by ι+n . Then the nonconstant part of
(
pn,+OXn,w

)G
, by virtue of theorem 2.1.4

and remark 2.1.5, is j!+ι
+
nFn, which is independent of the value of b, so the latter can be taken

equal to dn.

Apart from pursuing our main goal, we could try to understand completely the complex

Kn, which despite seeming auxiliary, we consider that it is interesting enough in itself. At this

moment this is what we can state:

Theorem 2.1.8. Under the notation and conditions of the previous theorem, if there exists an

index i such that wi = 1, then a = b = dn, and if wi is prime to dn for every i we have that

a = dn.

Note that when n = 1, by assumption we have that gcd(w0, w1) = 1, so in this case, we

always have that both of the wi are prime to d1 and then a = d1.

Thanks to a combination mainly of proposition 1.4.10 and corollary 1.4.14 (or proposition

1.4.16) we can characterize Gn as in the theorem if we prove that its Euler-Poincaré characteristic

is -1, find its generic rank as OGm-module, calculate the exponents at the origin and infinity

and know where in Gm it has a singularity. At the end of the next chapter we summarize this

strategy in a more detailed way.

To prove theorems 2.1.6 and 2.1.8, we will see in an alternative way the preceding construc-

tion. Let λn be the morphism defined by

λn : An −→ A1

x 7−→ xw1
1 · . . . · xwnn · (1− x1 − . . .− xn)w0

.

Let Zn = λ−1
n (Gm) = {x ∈ Gn

m : x1 + . . .+ xn 6= 1}. Therefore, by the base change theorem,

we can take Kn = λn,+OZn .

We will make use of the following inductive process. Let us factor λn through G2
m:

Zn
(πn,λn)−→ G2

m
π2−→ Gm,

so that Kn = π2,+(πn, λn)+OZn . We focus now in finding Ln := (πn, λn)+OZn .

Consider now the isomorphisms φn from (Gm − {1}) × Gm to itself given by (z, λ) 7→
(z, λ/(zwn(1−z)dn−1)), with dn−1 =

∑n−1
i=0 wi, and ψn from Zn−{xn = 1} to Zn−1× (Gm−{1})

given by (x1, . . . , xn) 7→ (x1/(1−xn), · · · , xn−1/(1−xn), xn). Those morphisms form the carte-

sian diagram

Zn − {xn = 1}

�(πn,λn)

��

ψn
// Zn−1 × (Gm − {1})

π2×λn−1π1
��

(Gm − {1})×Gm
φn

// (Gm − {1})×Gm

,

so by the base change theorem,

Ln|(Gm−{1})×Gm
∼= (π2φn)+Kn−1.

Let us obtain all the information about K1 that we will make use of during the inductive

process.
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Lemma 2.1.9. K1 is a regular D-module over Gm such that its generic rank is d1 and it has a

unique singularity at γ1.

Proof. Let C = λ−1
1 (γ1). Then, λ1 is an étale morphism from Z1 − C to Gm − {γ1} of degree

d1, so λ1,+OZ1−C will actually be a unique DGm−{γ1}-module; moreover, it will be a locally free

OGm−{γ1}-module of rank d1, which will be the generic rank of K1.

On the other hand, πGm,+K1 = πGm−{1},+OGm−{1}, so the Euler-Poincaré characteristic

of K1 will be equal to that of OGm−{1}, which is -1. Therefore, thanks to the additivity of

the characteristic and corollary 1.4.14 (or proposition 1.4.16), we will be able to find among

the composition factors of K1 some eventually trivial Kummer D-modules and an irreducible

hypergeometric DGm-module (punctual or not), and so its only singular point within Gm must

be γ1.

2.2 Getting closer

In this section we will move forward towards the proof of our main theorem 2.1.6, finding some

of the desired properties of Kn. All of the proofs are inductive, and in fact can be thought of as

a long proof divided into several pieces, each of them being at most a sentence of the statement

of the theorem. Despite this interdependence of the propositions of this section, the reader will

be able to check that no tautological circle appears. We will explain this in more detail.

For each n, the process of finding Kn depends on two inductive steps. Let, for each n ≥ 2,

Tn =
{
x ∈ Gn−1

m |x1 + . . .+ xn−1 6= 0
}

. Each Tn can be seen as a smooth closed subvariety of

Zn by the identification Tn ∼= Tn × {1}, and we will do that in what follows. From the diagram

Zn − Tn
j→ Zn

i← Tn we can get the triangle

OZn −→ j+j
+OZn −→ i+i

+OZn .

Let us consider the following commutative diagram:

Zn − Tn
(πn,λn)

��

j
// Zn

(πn,λn)
��

Tn

(πn,λn)
��

ioo

(Gm − {1})×Gm
j
//

π2

��

G2
m

π2

��

{1} ×Gm
ioo

π2

��

Gm
// Gm Gm

oo

.

Applying (πn, λn)+ to the last triangle and taking into account the commutativity of the diagram,

we get a new one:

(πn, λn)+OZn −→ (πn, λn)+j+j
+OZn −→ (πn, λn)+i+i

+OZn .

In other words, defining Mn := λn|Tn,+OTn ,

Ln −→ j+(π2φn)+Kn−1 −→ i+Mn,

where Mn tells us what we lose when doing induction over (Gm − {1}) × Gm instead of G2
m.

We will calculate its expression later on. What we are interested in is noting that Kn depends
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on Kn−1 and Mn, for applying π2,+ to the last triangle we obtain the one which is going to be

useful for us:

Kn −→ π2,+(π2φn)+Kn−1 −→Mn.

In the next proposition we will see that our method to make Mn explicit depends only on Kn−2.

As a consequence, the inductive process goes as indicated in the following diagram, where an

arrow means that the object at the origin is used to find the object at the target:

M3

!!

M5

##

K1
//

==

K2
//

!!

K3
//

==

K4
// K5 . . .

M2

==

M4

==

.

Lemma 2.2.1. Let w0, . . . , wn be an (n+ 1)-uple of positive integers, whose sum is dn, and let

f = xw1
1 · . . . ·xwnn (x1 + . . .+xn)w0. Then, the syzygies of the Jacobian ideal Jf = (f, f ′1, . . . , f

′
n) ⊆

k[x] are generated as a k[x]-submodule of k[x]n+1 by the Euler relation (−dn, x1, . . . , xn) and the

Koszul-like syzygies

xixj(x1 + . . .+ xn)

f
(f ′jei − f ′iej), for all 1 ≤ i < j ≤ n.

Proof. For the sake of simplicity, let us write xw and σ for xw1
1 · . . . · xwnn and x1 + . . . + xn,

respectively, so that f = xwσw0 , and li = wiσ + w0xi for each i = 1, . . . , n, and so f ′i =

xw−eiσw0−1li.

f is a homogeneous polynomial of degree dn, so the Euler syzygy appears naturally among

the generators because of having its first component of degree zero. That is why we can divide

any syzygy by the Euler relation and restrict ourselves to finding the syzygies of (f ′1, . . . , f
′
n).

Let (a1 . . . , an) ∈ k[x]n such that
∑

i f
′
iai = 0, or in other words

xw−1σw0−1
n∑
i=1

aix
1−ei li = 0.

This means that (a1l1, . . . , anln) is a syzygy of the ideal (x1−e1 , . . . , x1−en), so for each i, xi

must divide aili for being (x1, . . . , xn) a regular sequence in k[x]. Since xi and li are prime to

each other, it follows that ai = xibi for every i. Thus it follows that (b1, . . . , bn) is a syzygy

of (l1, . . . , ln), generated by a regular sequence in k[x] too, just because it is an isomorphic

image of (x1, . . . , xn). (Indeed, the matrix of the change of basis has a determinant equal to

wn−1
0 dn by Sylvester’s determinant theorem.) Therefore, there exist g(i,j) ∈ k[x] for every couple

1 ≤ i < j ≤ n such that

(b1, . . . , bn) =
∑

1≤i<j≤n
g(i,j)(ljei − liej),

and then,

(a1, . . . , an) =
∑

1≤i<j≤n
g(i,j)

xixjσ

f
(f ′jei − f ′iej).
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Proposition 2.2.2. For each n, Hi(Mn) = 0 for any i /∈ {−(n−2), . . . , 0}, Hi(Mn) ∼= O
( n−1
i+n−2)

Gm
whenever −(n− 2) ≤ i ≤ −2, and there exists a positive integer mn such that

H−1(Mn) ∼= O
(n−1
n−3)

Gm ⊕
dn−1−1⊕
a=1

Kmn−1
a/dn−1

,

and in degree zero,

H0(Mn) ∼= On−1
Gm ⊕

dn−1−1⊕
a=1

Kmna/dn−1
.

Proof. Let us define f = xw1
1 · . . . · x

wn−1

n−1 (x1 + . . . + xn−1)w0 . We are going to introduce some

varieties associated with this polynomial. We will denote by Tn and T dn−1
n the subvarieties of

An−1 × Gm given by f − λ = 0 (so that Mn
∼= pn,+OTn), and f − λdn−1 = 0. We will set F to

be the Milnor fiber of the morphism associated with f , namely, F : f = 1 ⊂ An−1.

When n = 2, f = xd11 and then Mn
∼=
⊕d1

i=1Ki/d1 by lemma 1.4.2, and we are done, so

assume from now on that n > 2.

Consider now the following cartesian diagrams:

F ×Gm

�π2

��

α // T dn−1
n

�pn

��

ψdn−1
// Tn

pn

��

Gm
id

// Gm
[dn−1]

// Gm

,

where π2 is the second canonical projection, ψdn−1 is the restriction to T dn−1
n of idAn−1 ×[dn−1]

and α is the isomorphism given by (x, λ) 7→ (x1/λ, . . . , xn−1/λ, λ). All the varieties involved are

smooth, so by the base change theorem,

[dn−1]+Mn
∼= pn,+OT dn−1

n

∼= π2,+OF×Gm ∼= (π+ × idGm)+(OF �OGm) ∼= πF,+OF ⊗k OGm .

That tells us that every cohomology of [dn−1]+Mn is a direct sum of copies of OGm , so for

every degree i there exist some nonnegative integers ci and some sets Ai ⊆ {1, . . . , dn−1 − 1}
such that

Hi(Mn) ∼= OciGm ⊕
⊕
a∈Ai

Ka/dn−1
.

The global de Rham cohomology of Mn is that of Tn, which thanks to proposition A.4.1 is

−1⊕
i=−(n−1)

k( n
i+n−1)[−i]⊕ kn−1[0].

Then the constant part of the cohomology of Mn is concentrated in degrees −(n− 2), . . . , 0, by

virtue of remark 1.1.15. Moreover, from the calculation of the global de Rham cohomology of

Mn we deduce that c−(n−2) = 1, c0 = n−1 and ci+ci+1 =
(

n
i+n−1

)
for every i = −(n−2), . . . ,−1.

Therefore, ci =
(
n−1
i+n−2

)
. We only have to prove that |Ai| = 0 for all i < −1 and A0 and A−1

are, respectively, mn and mn − 1 copies of {1, . . . , dn−1 − 1}.
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Consider a new cartesian diagram:

Tn

�λn×πn−1

��

(µ,πn−1)
// Zn−2 ×Gm

(λn−2,πn−1)
��

Gm G2
m

π1oo

ψ
// G2

m

,

where µ and ψ are the isomorphisms given by, respectively, x 7→ (−x1/xn−1, . . . ,−xn−1/xn−1)

and (λ, z) 7→ ((−1)dn−w0λz−dn−1 , z). Thanks to lemma 1.1.16, we can affirm thatHiπGm,+
(
Mn ⊗OGm Kα

)
=

0 for i < −2 and any rational number α = k/dn−1, k being certain integer, if and only if Ai = ∅
for i < −1. By using the base change theorem associated with the diagram above,

πGm,+
(
Mn ⊗OGm Kα

) ∼= πGm,+π1,+

(
(π1ψ)+Kn−2 ⊗OG2

m
π+

1 Kα
)
.

By lemma 1.1.16 again, we know that HiπGm,+
(
Mn ⊗OGm Kα

)
depends on the cohomologies of

(π1ψ)+Kn−2 ⊗OG2
m
π+

1 Kα at degrees i, i+ 1 and i+ 2. Since for the values of i in which we are

interested, all of them are copies of Kα (for having Kn−2 only copies of OGm), their images by

πGm,+ vanish, having that |Ai| = 0 for any i ≤ −2.

Note now that the restriction of µ to F , given by x 7→ (−x1/xn−1, . . . ,−xn−2/xn−1), is

an étale map of degree dn−1, so the Euler-Poincaré characteristic of πF,+OF , which equals

(−1)n−2(1+|A0|−|A−1|), is dn−1(−1)n−2 times that of Kn−2, which is in turn 1, so |A0|−|A−1| =
dn−1 − 1. We will be done if we prove that all of the exponents k/dn−1 of Mn occur with the

same multiplicity.

In order to do that, we will apply corollary 1.3.8, and try to study the acyclicity of the

complex K•(R; f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα), where R = k((t))[x1, . . . , xn]. R is not only an

R-module in itself, but also a module over the commutative sub k-algebra S of its endomorphisms

generated by f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα. Then we can wonder about the regularity of the

sequence of operators defining the Koszul complex in terms of a noninteger rational number

α such that dn−1α ∈ Z. In fact, what we are interested in is knowing the independence of α

(for the values under consideration) of the failure of the regularity of the sequence (f − t, ∂1 +

f ′1ϕα, . . . , ∂n + f ′nϕα). In order to see that, we just need to show that the lack of injectivity of

the morphism

Φ : Rn+1 −→ R

(a, b1, . . . , bn) 7−→
(
(f − t)a, (∂1 + f ′1ϕα)b1, . . . , (∂n + f ′nϕα)bn

)
is independent of the concrete value of α ∈ {1/dn−1, . . . , (dn−1 − 1)/dn−1}.

To prove that last statement we can assume, without loss of generality, that a and each

of the bi are homogeneous, allowing them to vanish eventually. For the sake of simplicity, we

will use ϕα := ∂t + αt−1, since the map x 7→ −1 − x is a bijection modulo the integers on

{1/dn−1, . . . , (dn−1− 1)/dn−1}. Let us try to know what happens if there exist a, b1, . . . , bn ∈ R
homogeneous of degrees m,m+ 1, . . . ,m+ 1, respectively, such that

fa+
∑
i

f ′iϕαb
i = 0

−ta+
∑
i

bi′i = 0
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Thanks to the previous lemma, from the first equation we know that there exist homogeneous

polynomials F, g(i,j) ∈ R for every 1 ≤ i < j ≤ n, of respective degrees m and m − 1 in the xi

(so that the g(i,j) must be zero if m = 0), such that

a = −dn−1F

ϕαb
i = xiF +

∑
j 6=i

ε(j − i)xixjσ
f

f ′jg(i,j) , i = 1, . . . , n.

Substituting those values in the second equation and applying the Euler relation for F , we get

that

dn−1A m+n
dn−1

F +
∑

1≤i<j≤n
L(i,j)g(i,j) = 0,

where

L(i,j) = ((wj − wi)σ + (w0 − wi)xj − (w0 − wj)xi + xilj∂i − xjli∂j)ϕ−1
α

for each pair i, j); they depend on α only because they apply ϕ−1
α , which is always an isomorphism

for the values of α under consideration, to the g(i,j).

The operator acting on F is A := dn−1A m+n
dn−1

. Now if dn−1α is not an integer, A is invertible,

and so the system has a solution. This does not tell us anything new about the regularity of the

sequence; what is really new is that we can deduce from the equations that the behaviour of the

system when dn−1α is integer is independent of the choice of α, as we wanted to know; should

the equation above have a solution, the lack of surjectivity of A occurs for any α, changing

appropriately m. In conclusion, all the classes modulo Z of the elements of {1, . . . , dn−1 − 1}
appear as exponents of every cohomology of Mn with the same multiplicity and we are done.

Proposition 2.2.3. For each n ≥ 1, Hi(Kn) = 0 whenever i /∈ {−(n − 1), . . . , 0}, Hi(Kn) ∼=
O( n

i+n−1)
Gm for all −(n − 1) ≤ i ≤ −1 and in degree zero, we can find exactly n copies of OGm

among the composition factors of H0(Kn). The direct sum of the rest is a DGm-module of

Euler-Poincaré characteristic −1, without any constant composition factor.

Proof. To deal in a better way with the cohomologies of Kn, let us separate the copies of OGm
from the semisimplification of the rest of composition factors, such that Hi(Kn)ss = Oci ⊕ Fi,
that is to say, let the direct sum of the nonconstant composition factors of Hi(Kn) be Fi.

As in remark 1.1.15 we can deduce that Hi(Kn) = 0 for every i /∈ {−n, . . . , 0}. Let us

proceed inductively. If n = 1 we already have everything proved at lemma 2.1.9, so let us go

for the general case assuming that we know Kn−1. Remember that we have the distinguished

triangle

Kn −→ π2,+(π2φn)+Kn−1 −→Mn.

Let us calculate the long exact sequence of cohomology of that triangle. Before doing that, we

should know the cohomologies of π2,+(π2φn)+Kn−1. By lemma 1.1.16 we have an exact sequence

for any i of the form

0→ H0π2,+Hi(π2φn)+Kn−1 → Hiπ2,+(π2φn)+Kn−1 → H−1π2,+Hi+1(π2φn)+Kn−1 → 0.

(π2φn)+ is an exact functor of D-modules, so the images by it of the composition factors of

Kn−1 will be direct sums of the composition factors of (π2φn)+Kn−1. On the other hand, if any
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of the cohomologies of Hi(Kn) is formed, among others, by an extension of OaGm by ObGm for

certain a and b, it will necessarily be trivial (although that does not happen in general; consider

for instance the extension 0→ OGm → DGm/(D
2)→ OGm → 0). In fact, by theorem 2.1.4, the

cohomologies Hi(j+K̄n) do not have any singularity at the origin. Now take into account that

those cohomologies are nothing but the image by ι+n of those of Kn, so any of the extensions

of OaGm that we could have may be extended to the analogous over an affine line (Gm and the

point at infinity), so they must be trivial, since

Ext1
DA1

(OA1 ,OA1) = R1Γ
(
A1,RHomDA1

(OA1 ,OA1)
) ∼= coker(∂λ : k[λ]→ k[λ]) = 0.

Having proved this we can claim that the exact sequences above will split for any i 6= −1, 0.

Thanks to the global Künneth formula we know that π2,+(π2φn)+OGm
∼= OGm [−1]⊕O2

Gm [0], so

the long exact sequence will be like this:

0→ H−n(Kn)→ 0→ 0→ H−(n−1)(Kn)→ OGm → 0→

...

→ Hi(Kn)→ O( n−1
i+n−2)+( n

i+n−1)
Gm → O( n−1

i+n−2)
Gm →

...

→ H−2(Kn)→ H−2
(
π2,+(π2φn)+Kn−1

)
→ O(n−1

n−4)
Gm →

→ H−1(Kn)→ H−1
(
π2,+(π2φn)+Kn−1

)
→ O(n−1

n−3)
Gm ⊕

dn−1−1⊕
a=1

Kmn−1
a/dn−1

→

→ H0(Kn)→ H0
(
π2,+(π2φn)+Kn−1

)
→ On−1

Gm ⊕
dn−1−1⊕
a=1

Kmna/dn−1
→ 0,

where the composition factors of the two cohomologies of π2,+(π2φn)+Kn−1 are, respectively,

those of H−1 (π2,+(π2φn)+Gn−1) and
(
n−1
n−3

)
+
(
n
n−2

)
copies of OGm , and those appearing at

H0 (π2,+(π2φn)+Gn−1) and 2n− 2 copies of OGm .

By irreducibility and the Jordan-Hölder theorem, c−n = 0, c−(n−1) = 1 and Fi = 0 for any

i 6= −1, 0, so for those values of i, Hi(Kn) ∼= Oci .
Now note that the global de Rham cohomologies of Kn and OZn are the same. The second

one is already known, thanks to corollary A.4.2, so we will have the following system of equations:
ci + ci+1 =

(
n+1
i+n

)
, i = −n, . . . ,−3

h−1
−1 + c−2 + c−1 =

(
n+1
n−2

)
h0
−1 + h−1

0 + c−1 + c0 =
(
n+1
n−1

)
h0

0 + c0 = n+ 1,

where hji is the dimension of the j-th global de Rham cohomology of Fi. From the first equations

we obtain that ci =
(

n
i+n−1

)
for i = −(n− 1), . . . ,−2, and since

h−1
i = dim Γ

(
Gm,RHomDGm (OGm , Fi)

)
,
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by irreducibility both h−1
i must vanish, so c−1 =

(
n
n−2

)
and our system can be reduced to:{

h0
−1 + c0 = n

h0
0 + c0 = n+ 1.

Thanks to that, we can also affirm that almost every row of the long exact sequence above

is a single short exact sequence in itself, all of them with the zero object at the beginning and

the end, except for the two last ones. Paying attention to the amount of copies of OGm in the

last of those short exact sequences, we get that c0 +n− 1 = 2n− 2 + r, r being the total rank of

the constant part of H0 (π2,+(π2φn)+Gn−1). Therefore, n− 1 ≤ c0 ≤ n. Let us see that c0 = n

by proving that r ≥ 1.

Although we do not know Gn−1 explicitly, we just need to work with a DGm-module whose

semisimplification is the same as that of Gn−1, like the (maybe reducible) hypergeometric DGm-

module G := Hγn−1(αi;βj), where the sets of the αi and the βj are, respectively,

A =

{
1

w0
+

b

dn−1
, . . . ,

w0

w0
+

b

dn−1
, . . . ,

wn−1

wn−1
+

b

dn−1

}
−
{
a+ b

dn−1

}
,

B =

{
1

dn−1
, . . . ,

dn−1

dn−1

}
−
{
a+ b

dn−1

}
.

Then, just by applying the chain rule it is easy to see that (π2φn)+G ∼= D(Gm−{1})×Gm/(P0, P1),

where

P0 = ∂z −
dnz − wn
z(1− z)

Dλ y P1 = γn−1z
wn(1− z)dn−1

dn−1−1∏
i=1

(Dλ − αi)− λ
dn−1−1∏
j=1

(Dλ − βj).

Since π2,+(π2φn)+G = π2,∗
(
Ω(Gm−{1})×Gm/Gm ((π2φn)+G)

)
[1], we should prove that there exists

a nonzero element at the cokernel of ∂z over DGm
[
z, (z(1− z))−1

]
[∂z]/(P0, P1) such that its

image by Dλ vanishes.

In that case, let us know DGm
[
z, g−1

]
[∂z] better. Its elements can be written as

a =
∑
j,k≥0

(∑
i∈Z

(aijk + bijkz)g
i

)
∂jz∂

k
λ,

with all of the aijk and the bijk belonging to OGm . Applying ∂z to a we obtain that

∂za =
∑
j,k≥0

(∑
i∈Z

(cijk + dijkz)g
i

)
∂jz∂

k
λ,

where the following equations hold for every i, j, k:{
cijk = (1 + 2i)bijk + (i+ 1)ai+1,j,k + ai,j−1,k

dijk = −2(i+ 1)ai+1,j,k − (i+ 1)bi+1,j,k + bi,j−1,k

Since d−1,0,0 = 0 independently of the aijk and the bijk, e = (−wn + dnz)g
−1 cannot be the

image by ∂z of any element of DGm
[
z, g−1

]
[∂z]. Moreover, its degrees in ∂z and ∂λ are zero,

so it cannot belong to the ideal generated by P0 and P1, and its class in H0π2,+(π2φn)+G is

nonzero. To finish this point, just notice that Dλe = −P0 + ∂z, which is zero at the quotient.
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Summing up, r = 1, and then c0 = n, so h0
−1 = 0 and h0

0 = 1. This proves everything except

for H−1 (π2,+(π2φn)+Gn−1) = 0, which would also give us that G−1 = 0. A priori, we only know

that it is a DGm-module of Euler-Poincaré characteristic zero, so it will be an extension of certain

nontrivial Kummer D-modules (actually a direct sum because of the same reason that implied

the absence of nontrivial extensions of copies of OGm). As before, we will see that vanishing

with an explicit calculation; we have to show that the kernel of ∂z at DGm
[
z, g−1

]
[∂z]/(P0, P1)

is zero. This time we will write the elements of DGm
[
z, g−1

]
[∂z] in a more useful way:

Since we are dividing by P0, every element can be written as a =
∑N

i=0 aiD
i
λ, with every

coefficient ai ∈ OGm
[
z, g−1

]
and g = z(1 − z). Let us show that we can take N = dn−1 − 2.

Indeed, let N ≥ dn−1 − 1. Dividing again by P0, we have that

∂z · a =

N∑
i=0

∂z(ai)D
i
λ +

N∑
i=0

(dnz − wn)g−1aiD
i+1
λ .

Since ∂za ∈ (P0, P1), we can take the symbols with respect to Dλ of both elements and deduce

that

(dnz − wn)g−1aN = x
(
zwn(1− z)dn−1 − γ−1

n−1λ
)

for some x, and so,

aN = y
(
zwn(1− z)dn−1 − γ−1

n−1λ
)

for some y. Then we can write a as the sum a′ + yD
N−dn−1+1
λ P1, where degDλ a

′ < N . In

addition, we have that ∂za belongs to the ideal (P0, P1) if and only if ∂za
′ does.

Let then a =
∑dn−1−2

i=0 aiD
i
λ, and suppose that ∂za ∈ (P0, P1). Doing the same calculation

as before, there will exist x and y belonging to OGm
[
z, g−1

]
such that

(dnz−wn)g−1adn−1−2 = x
(
zwn(1− z)dn−1 − γ−1

n−1λ
)

and adn−1−2 = y
(
zwn(1− z)dn−1 − γ−1

n−1λ
)
.

Since degDλ ∂za = dn−1− 1 and once we have divided by P0 we know that it is a multiple of P1,

we necessarily have that ∂za = xP1. On the other hand, as we noted above, there must exist

some number α, not integer, such that (Dλ − α)a = y′P1.

However, note that ∂za and (Dλ − α)(dnz − wn)g−1a share their leading term in Dλ, so(
∂z − (Dλ − α)(dnz − wn)g−1

)
a

will vanish. Therefore, for every i = 0, . . . , dn−1 − 2 we will have that

∂z(ai)− (dnz − wn)g−1(Dλ − α)(ai) = 0.

Writing locally each ai as
∑

j∈Z aijλ
j , with each aij belonging to k

[
z, g−1

]
, we must have that,

for any i and j,

∂z(aij) = (dnz − wn)g−1(j − α)aij .

This differential equation has as a formal solution space the k-span of
(
zwn(1− z)dn−1

)α−j
,

which is not algebraic. In conclusion, H−1 (π2,+(π2φn)+Gn−1) = G−1 = 0 and we are done.
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Note that the proof also shows that we have an exact sequence which will be very useful in

the following, namely

0→
dn−1−1⊕
a=1

Kmn−1
a/dn−1

→ H0(Kn)→ H0
(
π2,+(π2φn)+Kn−1

)
→ On−1

Gm ⊕
dn−1−1⊕
a=1

Kmna/dn−1
→ 0.

Looking at the result that we have just proved and the statement of the theorem, it is not

just that among the composition factors of Kn there appear copies of OGm and a DGm-module

of Euler-Poincaré characteristic −1, but they are related in a particular way, adopting the form

of an exact sequence. That is what we are going to prove now.

Proposition 2.2.4. For every n ≥ 1 we have the exact sequence

0 −→ Gn −→ H0(Kn) −→ OnGm −→ 0,

where Gn is a DGm-module of Euler-Poincaré characteristic −1, without copies of OGm among

its composition factors.

Proof. Since by the previous proposition we know that OnGm and no more copies of the structure

sheaf occur among the composition factors of H0(Kn), we will have enough if we prove that it

actually has a quotient isomorphic to OnGm , defining Gn as the subobject with which we take the

quotient.

Let us consider Zn ⊂ An×Gm, and let Z̄n ⊂ Pn×Gm and Z∞n ⊂ Pn−1×Gm be its projective

closure in the first factor and its intersection with the hyperplane at infinity, respectively. For

the sake of simplicity, let us call M = RΓ[Z̄n]OPn×Gm [1]. Then we can form the distinguished

triangle

M−→ j+j
+M−→ i+i

+M−→

associated with the diagram An ×Gm
j→ Pn ×Gm

i← Pn−1 ×Gm.

Applying pn,+ to the above triangle (and abusing a bit of notation by denoting by pn all of

the projections over Gm), we obtain a new triangle, whose long exact sequence of cohomology

contains the following piece:

. . . −→ H0pn,+j
+M−→ H0pn,+i

+M−→ H1pn,+M−→ 0,

because j+M is a coherent D-module over an affine variety and so Hipn,+j+M = 0 for all i > 0.

Now, by [Me1, I.6.3.1], j+M ∼= RΓ[Zn]OAn×Gm , which is nothing but the direct image of

OZn by the closed immersion Zn → An × Gm, thanks to Zn being smooth. Then pn,+j
+M is

actually our Kn. We will have proven the statement of the proposition if we show the following:

H0pn,+i
+M∼=

{
On+1

Gm if 2 | n
OnGm if 2 - n

and H1pn,+M∼=

{
OGm if 2 | n
0 if 2 - n

.

Let us prove the first isomorphisms. Thanks again to [ibid., I.6.3.1] and proposition 1.1.12,

i+i
+M∼= RΓ[Pn−1×Gm]

(
RΓ[Z̄n]OPn×Gm [1]

)
[1] ∼= RΓ[Z∞n ]OPn−1×Gm [1] ∼= π+

1 RΓ[Ā]OPn−1 [1],

where Ā is the projective arrangement of hyperplanes

Ā : x1 · . . . · xn(x1 + . . .+ xn) = 0 ⊂ Pn−1,
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such that Z∞n ∼= Ā×Gm.

Thus by the global Künneth formula

pn,+i
+M∼= πPn−1,+RΓ[Ā]OPn−1 [1]⊗k OGm .

We are then interested in knowing H1πPn−1,+RΓ[Ā]OPn−1 . From considering the diagram

M(Ā) := Pn−1 − Ā j→ Pn−1 ← Ā (renaming j) and applying πPn−1,+ we can obtain the distin-

guished triangle

πPn−1,+RΓ[Ā]OPn−1 −→ πPn−1,+OPn−1 −→ πPn−1,+j+OM(Ā).

Note that M(Ā) is also the complement of an affine arrangement Ad of n hyperplanes in general

position, taking xn = 0 as the hyperplane at infinity in Pn−1. Therefore, by virtue of corol-

lary A.4.2 and knowing the global de Rham cohomology of the projective space, the following

fragments occur in the long exact sequence of cohomology of the triangle above:

0 −→ kn −→ H1πPn−1,+RΓ[Ā]OPn−1 −→ k −→ 0,

if n is even, or

. . . −→ H0πPn−1,+OPn−1
∼= k −→ H0πPn−1,+j+OM(Ā)

∼= kn −→ H1πPn−1,+RΓ[Ā]OPn−1 −→ 0,

if n is odd.

The complex πPn−1,+j+OM(Ā) is isomorphic to the Orlik-Solomon algebra of the arrangement

Ad (cf. [Bri, 5]), which is generated by the inverse of the equations of each hyperplane in it, so

the morphism H0πPn−1,+OPn−1 −→ H0πPn−1,+j+OM(Ā) is zero and then,

H1πPn−1,+RΓ[Ā]OPn−1
∼=

{
kn+1 if n | 2
kn if n - 2

We already have the first isomorphisms that we were seeking. Let us go for the second ones,

and let us go back to Xn,w to obtain them, but restricting the variety of parameters to Gm. We

already know that pn,+OXn,w is a semisimple complex of D-modules, and the middle extension

of its restriction to U∗n = Gm −
{
λdn − γ−1

n

}
, where pn is smooth. Every fiber over a point of

U∗n is a smooth projective hypersurface, and so, except for degree zero, they will have the same

global de Rham cohomology as that of the projective space Pn−1, seen as a subvariety of Pn. In

particular, H1pn,+Op−1
n (λ0)

∼= k if n is even, vanishing if n is odd. In that case, it is obvious that

H0pn,+OXn,w will vanish too, but what happens when n is even?

Let us consider in that case X af
n,w and X∞n,w to be the affine part of Xn,w and its intersection

with the hyperplane at infinity within the first factor of Pn × Gm. Since X af
n,w is affine and

pn,+OX af
n,w

is quasi-coherent over OGm we have the exact sequence

. . . −→ H0pn,+OX af
n,w
−→ H0pn,+OX∞n,w −→ H

1pn,+OXn,w −→ 0.

Note that X∞n,w is the cartesian product of a Fermat hypersurface with Gm, so by the global

Künneth formula, H0pn,+OX∞n,w ∼= O
r
Gm , for some r > 0. We have then that H1pn,+Op−1

n (U∗n) is
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a DU∗n-module of generic rank 1 and at the same time a quotient of OrU∗n , so it is nothing but

OU∗n . In conclusion, H1pn,+OXn,w ∼= OGm if n is even.

Now let us continue our journey passing from Xn,w to Ȳn,w, and from there to Z̄n. Remember

that there was an étale morphism between the two latter defined by α̃n((x0 : . . . : xn), λ) =

((λx0 : x1 : . . . : xn), λ−dn). Since α̃+
n is an exact functor in the category of D-modules and can

be extended to Pn × Gm, we have that RΓ[Ȳn,w]OPn×Gm [1] ∼= α̃+
nM and by the smooth base

change theorem, pn,+RΓ[Ȳn,w]OPn×Gm [1] ∼= ι+n pn,+M.

Since H1pn,+RΓ[Ȳn,w]OPn×Gm [1] is a direct summand of H1pn,+OXn,w , it must be zero if n

is odd, and it can either be OGm or vanish if n is even. However, if this last happened, then

H1pn,+M would vanish too, because nothing else can vanish after taking the inverse image by an

étale map, and then, H0pn,+j
+M∼= H0Kn would have a quotient equal to On+1

Gm , contradicting

the fact that it has only n copies of OGm among its composition factors.

Therefore H1(ι+n pn,+M) is either OGm or zero, if n is even or odd, respectively. In this last

case we have proved what we wanted to, so let us take n even. Since ι+n is an exact functor

in the category of DGm-modules, H1(pn,+M) must be a Kummer D-module, eventually trivial.

But it is a quotient of H0(pn,+i
+M), which we already know that it is a direct sum of copies of

OGm , so it will also be OGm . This ends the proof of the second couple of isomorphisms.

Now what we have to prove are the rest of the properties of Gn that are of interest to us: its

generic rank, its singular points and its exponents at the origin and infinity.

Proposition 2.2.5. For every n ≥ 1, the generic rank of Gn is dn − 1, and it has a unique

singularity at Gm, namely at γn.

Proof. We already know that Gn is a regular holonomic DGm-module, and its Euler-Poincaré

characteristic is −1, so by corollary 1.2.16 it will have a singularity at some point λ0. Its

restriction to the rest of Gm will then be a module with a connection of some rank to be

determined.

Since we know by lemma 2.1.9 that the statement of the proposition is true for n = 1, let us

prove the rest by induction, and so let us assume its veracity for n− 1.

Recall that we had an exact sequence of the form

0→
dn−1−1⊕
a=1

Kmn−1
a/dn−1

→ H0(Kn)→ H0
(
π2,+(π2φn)+Kn−1

)
→ On−1

Gm ⊕
dn−1−1⊕
a=1

Kmna/dn−1
→ 0.

Then the generic rank of Gn plus dn−1 is equal to the generic rank of π2,+(π2φn)+Gn−1; let us

find that one.

(π2φn)+Fn−1 is a regular holonomic D-module over (Gm − {1}) × Gm, having singularities

along the curve (π2φn)−1(γn−1) =: Cλ : λ = γn−1z
wn(1− z)dn−1 . Fixing λ1 in Gm, the intersec-

tion of Cλ and the line λ = λ1 are dn points whenever λ1 6= γn; it is formed by dn − 1 points in

that case. Indeed, ∂z
(
zwn(1− z)dn−1

)
= (wn−dnz)zwn−1(1−z)dn−1−1, which, within Gm−{1},

only vanishes at z = wn/dn, and for that value of z, γn−1z
wn(1 − z)dn−1 = γn. The second

derivative of zwn(1 − z)dn−1 does not vanish when z = wn/dn, so we only lose one point when

λ1 = γn.
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Now consider the cartesian diagram

(Gm − {1})× {λ}

�π2
��

iλ // (Gm − {1})×Gm

π2

��

{λ} iλ // Gm

.

By applying the base change formula,

i+λ π2,+(π2φn)+Gn−1
∼= π2,+i

+
λ (π2φn)+Gn−1.

Now since π2,+(π2φn)+Gn−1 has no singularities at λ 6= λ0, we have that i+λ π2,+(π2φn)+Gn−1

is a complex of k-vector spaces concentrated in degree zero for those values of λ. Thus it can be

seen as a single vector space, and its dimension equals the generic rank of π2,+(π2φn)+Gn−1.

On the other hand, since for a fixed λ the morphism π2φniλ is étale, i+λ (π2φn)+Gn−1 is a

single DGm−{1}-module and not a complex of them. Its Euler-Poincaré characteristic will be

dimH−1π2,+i
+
λ (π2φn)+Gn−1 − dimH0π2,+i

+
λ (π2φn)+Gn−1 =

= −dim i+λ π2,+(π2φn)+Gn−1 = − rkπ2,+(π2φn)+Gn−1.

The DGm-module Gn−1 has no punctual part, so applying proposition 1.2.16,

χ
(
i+λ (π2φn)+Gn−1

)
= −(dn + dn−1 − 1)

when λ 6= γn, so in conclusion, the generic rank of Gn must be dn + dn−1 − 1 − dn−1 = dn − 1.

Now, if the point where Gn has a singularity were different from γn, then we could do the same

process above and see that

χ
(
i+λ (π2φn)+Gn−1

)
= −(dn + dn−1 − 2),

which cannot be possible. Therefore, λ0 = γn.



Chapter 3

Monodromy

Dı̀s es tòn autòn potamòn ouk àn embáıēs.

(You cannot step twice into the same stream.)

Heraclitus

3.1 Fourier transform and convolution of D-modules

This section could fit in the first chapter, because its content is much more expository than

original. However, the notions and concepts defined here will be only of interest from now on,

specially at this chapter.

The Fourier transform of a D-module (also called Fourier-Laplace transform) is inspired

in both the classical tool from analysis and the much more modern Fourier-Mukai transform.

See [Bry] or [DE] for more information. Anyway, we will treat just the one-dimensional case, and

in spite of including the proof of every result that we state, we follow the approach of [Ka5, §§ 5,

6].

Definition 3.1.1. Let L be the holonomic DA2-module DA2/(∂x − y, ∂y − x). The Fourier

transform is a functor of Db(DA1) to itself given by

FT = π2,+

(
π+

1 • ⊗
L
OA2
L
)
,

where the πi are the canonical projections from A2 to each of its factors A1.

Remark 3.1.2. The Fourier transform preserves coherence over DA1 and holonomy, but not regu-

lar holonomy; it is an equivalence of categories when defined over the associated full triangulated

subcategories of Db(DA1) with the first two properties.

It is also an exact functor in the category of holonomic DA1-modules. In local coordinates,

it just takes any operator L =
∑

i fi(x)∂i into FT(L) =
∑

i fi(∂)(−x)i, and M = DA1/(L)

into FT(M) = DA1/(FT(L)). Consequently, it exchanges the structure sheaf OA1 and the delta

DA1-module δ0 (cf. [Ka5, 2.10.0]).

The Fourier transform will be quite useful for us, but before that we must introduce the

convolution of D-modules, following Katz’s approach in [Ka5, § 5].

63
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Definition 3.1.3. Let X be a smooth algebraic group over a field of characteristic zero, and

let µ : X ×X → X be the product law on X. The convolution of two complexes of DX -modules

M and N , denoted by M∗N , is the direct image µ+(M�N ).

Remark 3.1.4. It is straightforward to see that the convolution inherits the properties of the

product in X; it is always associative and if the product in X is commutative, so is ∗, too (in

our case, X will be Gm, with the usual abelian product). Its identity object is the punctual

DX -module supported at the identity element e of X, since µ(ie × idX) = idX , ie being the

inclusion of e in X.

Lemma 3.1.5. (cf. [Ka5, 5.1.9, 5.2.1]) Let M and N be two complexes of holonomic DGm-

modules. Then,

i) For any homomorphism ϕ from Gm to itself, ϕ+ (ϕ+M∗N ) ∼=M∗ (ϕ+N ).

ii) For any η ∈ Gm, hη,+(M∗N ) ∼= (hη,+M) ∗ N . In particular, hη,+N ∼= δη ∗ N .

iii) For any α ∈ k, (M∗N )⊗Kα ∼= (M⊗Kα) ∗ (N ⊗Kα).

Proof. Consider the cartesian square

G2
m

�µ

��

idGm ×ϕ // G2
m

µ(ϕ×idGm )

��

Gm
ϕ

// Gm

.

Then the first point is just the result of applying the base change formula to the DG2
m

-module

M�N .

Regarding ii, the first formula is a direct consequence of the fact that hηµ = µ(hη × idGm).

The particular case follows from considering M = δ1, the neutral element for convolution.

And about the third statement, we know by the projection formula that for any α, (M ∗
N ) ⊗ Kα ∼= µ+ ((M�N )⊗ µ+Kα). Then, the statement follows from µ+Kα ∼= DG2

m
/(Dx −

α,Dy − α) ∼= Kα �Kα, thanks to remark 1.1.8.

Proposition 3.1.6. ([Ka5, 5.2.3]) LetM be a holonomic DGm-module, and let j be the canonical

embedding of Gm into A1. Then,

j+ FT j+ invM∼=M∗H1(0; ∅).

Proof. Let L′ be the DA1-module DA1/(∂ − 1), let H = H1(0; ∅) ∼= j+L′, and let ψ be the

involution of G2
m given by (x, y) 7→ (x−1, xy). Note that µ = π2ψ and ψ+

∼= ψ+. Then,

M∗H ∼= µ+(π+
1M⊗OG2

m
π+

2 H) ∼= π2,+

(
π+

1 inv+M⊗OG2
m
µ+H

)
.

Denote now by π̃1, π̃2 or µ̃ the extension to A1 ×Gm of the πi and µ. Then clearly

π2,+

(
π+

1 inv+M⊗OG2
m
µ+H

)
∼= π̃2,+(j × idGm)+

(
π+

1 inv+M⊗OG2
m

(j × idGm)+µ̃+L′
)
,

which in turn is isomorphic to

π̃2,+

(
π̃+

1 j+ inv+M⊗OG2
m
µ̃+L′

)
,
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thanks to the projection formula and the base change formula associated with the cartesian

square

G2
m

�π1

��

j×idGm // A1 ×Gm

π̃1
��

Gm
j

// A1

.

Let us write πi with a bar over them to name their extensions to A2. Applying again the smooth

base change associated with similar diagrams, we obtain the isomorphism

M∗H ∼= j+π̄2,+

(
π̄+

1 j+ inv+M⊗OA2
L
)

= j+ FT j+ inv+M,

if we prove that (idA1 ×j)+L ∼= µ̃+L′. And that is trivial, since both of them are

DA1×Gm/(Dx −Dy, ∂x − y) ∼= DA1×Gm/(∂x − y, ∂y − x).

This operation of taking the convolution with a hypergeometric D-module of rank one will

lead us to consider the convolution of general hypergeometrics by using the next two results.

Lemma 3.1.7. Let P and Q be two nonzero polynomials in k[t] such that tP (t) and Q(t) do

not share any root modulo Z. Then,

H(P (t), Q(t)) ∗ H(t, 1) ∼= H(tP (t), Q(t)).

Proof. Since H(t, 1) = H1(0; ∅), by the previous proposition we have that

H(P (t), Q(t)) ∗ H(t, 1) ∼= j+ FT j+ inv+H(P (t), Q(t)) ∼= j+ FT j+H(Q(−t), P (−t)).

Now Q has no integer roots, so by lemma 1.2.10, j+H(Q(−t), P (−t)) = j+j
+DA1/(Q(−t) −

λP (−t)) ∼= DA1/(Q(−t)− λP (−t)). In order to finish, just note that FT(D) = −D − 1, so

j+ FT j+ inv+H(P (t), Q(t)) ∼= DGm/(FT(Q(−t)− λP (−t))) ∼= H(tP (1 + t), Q(1 + t)),

which is isomorphic to H(P (t), Q(t)), because of both having the same roots modulo Z.

Proposition 3.1.8. ([Ka5, 5.3.1]) Let P , Q, R and S be four nonzero polynomials in k[t] such

that PR and QS do not share any root modulo Z. Then,

H(P,Q) ∗ H(R,S) ∼= H(PR,QS).

Proof. The proof will depend on deg(RS). If it is zero, write R = r and S = s. Then,

H(R,S) = δr/s and H(PR,QS) ∼= hr/s,+H(P,Q) by remark 1.4.5. And this D-module and

δr/s ∗ H(P,Q) are isomorphic by lemma 3.1.5.

Having proved that initial case, let us assume that deg(RS) > 0. By lemma 3.1.5 (point i

with ϕ = inv) we can further assume without loss of generality that deg(R) ≥ 1, and R(t) =

tR0(t). Then, by the previous proposition,

H(P,Q) ∗ H(R,S) ∼= H(P (t), Q(t)) ∗ H(R0(t), S(t)) ∗ H(t, 1) ∼= H(tP (t), Q) ∗ H(R0(t), S(t)).

Repeating the same argument factoring R and S we reduce ourselves to the first case, so in

conclusion, H(P,Q) ∗ H(R,S) ∼= H(PR,QS).
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Lemma 3.1.9. ([Ka5, 6.3.5]) Let α ∈ k. For any γ, η ∈ Gm, we have the short exact sequence

0 −→ δγη −→ Hγ(α; ∅) ∗ Hη(∅;α) −→ Kα −→ 0.

Proof. Taking tensor product with Kα and direct images by a homothety hξ are exact functors,

so by lemma 3.1.5 we just need to prove the case in which α = 0 and γ = η = 1. As a consequence

we can apply proposition 3.1.6;

H1(0; ∅) ∗ H1(∅; 0) ∼= j+ FT j+ inv+H1(∅; 0) ∼= j+ FT j+H−1(0; ∅).

The DGm-module H−1(0; ∅) is isomorphic to j+DA1/(∂ + 1) = j+OA1 · e, where e is a symbol

such that ∂ · e = −e. Consider the exact sequence

0 −→ OA1 · e −→ j+j
+OA1 · e −→ δr0 −→ 0,

for some r ≥ 0. Now

j+j
+OA1 · e/OA1 · e ∼= OA1 [1/λ] · e/OA1 · e ∼= k((λ)) · e/k[[λ]] · e ∼= δ0,

so r = 1. Thus we can rewrite the previous exact sequence as

0 −→ DA1/(∂ + 1) −→ j+H−1(0; ∅) −→ δ0 −→ 0.

The functor j+ FT is exact, and if we apply it to that sequence we obtain the one from the

statement.

We have seen that hypergeometric D-modules behave well with respect to the convolution

whenever the result is irreducible; when they share some exponent both at zero and infinity

we cannot affirm an equality, although the semisimplification is still preserved (cf. the easy

consequence [Ka5, 3.7.5.2] from our discussion after corollary 1.4.3). This motivates us to define

a modified kind of hypergeometric D-module and study some of their properties. This will lead

us to the main result of the section.

Definition 3.1.10. Let α1, . . . , αn and β1, . . . , βm be elements of k, and let γ ∈ Gm. The

modified hypergeometric D-module of parameters γ, αi and βj is defined as

MHγ(αi;βj) = hγ,+ (H1(α1; ∅) ∗ . . . ∗ H1(αn; ∅) ∗ H1(∅;β1) ∗ . . . ∗ H1(∅;βm)) .

The DGm-modulesMHγ(αi; ∅) andMHγ(∅;βj) are defined analogously, but without convolving

with any H1(∅;βj) or H1(αi; ∅), respectively.

Remark 3.1.11. By the global Künneth formula, πGm,+(M∗N ) ∼= πGm,+M⊗k πGm,+N for any

pair of complexes of holonomic DGm-modulesM and N , so in particular, any modified hyperge-

ometric D-module is of Euler-Poincaré characteristic −1, with its global de Rham cohomology

concentrated in degree 0. As with usual hypergeometrics, we have that

• MHγ(αi;βj)⊗OGm Kη ∼=MHγ(αi + η;βj + η).

• hη,+MHγ(αi;βj) ∼= h+
η−1MHγ(αi;βj) ∼=MHγη(αi;βj).
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• inv+MHγ(αi;βj) ∼= inv+MHγ(αi;βj) ∼=MH(−1)n+m/γ(−βj ;−αi).

When the αi and the βj are disjoint modulo the integers, we know by proposition 3.1.8 that

a modified hypergeometric of parameters γ, αi and βj is isomorphic to the usual hypergeometric

of the same parameters. In fact, thanks to the previous three results, for any exponents we

consider, the semisimplification of both kinds of hypergeometrics is the same, and the effect of

taking the cancelation on the sets of exponents also coincides:

MHγ(cancel(αi;βj)) ∼= Hγ(cancel(αi;βj)).

Nevertheless, we can be a bit more precise and state the following:

Proposition 3.1.12. ([Ka5, 6.3.9]) Let MHγ(αi;βj) be a modified hypergeometric D-module

and let η ∈ k. Then, for any integer k we have the exact sequence

0 −→MHγ(αi;βj) −→MHγ(αi, η;βj , η + k) −→ Kη −→ 0.

Proof. Up to isomorphism, we can assume that k = 0. By lemma 3.1.9 we have the exact

sequence

0 −→ δ1 −→MH1(η; η) −→ Kη −→ 0.

Now apply the functor MHγ(αi;βj) ∗ • to it, to obtain the triangle

MHγ(αi;βj) −→MHγ(αi, η;βj , η) −→MHγ(αi;βj) ∗ Kη.

The statement follows from noticing that MHγ(αi;βj) ∗ Kη ∼= Kη. By lemma 3.1.5,

MHγ(αi;βj) ∗ Kη ∼= Kη ⊗OGm

((
MHγ(αi;βj)⊗OGm K−η

)
∗ OGm

)
.

Consider the automorphism ψ of G2
m given by (x, y) 7→ (x, xy). Then for any complex M of

holonomic DGm-modules,

M∗OGm
∼= π2,+

(
ψ−1

)+
(M�OGm) ∼= π2,+(M�OGm) ∼= πGm,+M⊗k OGm .

Since the global de Rham cohomology of any modified hypergeometric D-module is concentrated

in zero degree and one-dimensional, the claim above follows and we are done.

Corollary 3.1.13. ([Ka5, 6.3.11]) With the same notation as above, let A be the set of param-

eters occurring at both the lists of the αi and the βj. Then,

MHγ(αi;βj)
ss ∼= Hγ(cancel(αi;βj))⊕

⊕
η∈A
Kη.

Now we can prove the results that will be of utility for us. They describe the effect of taking

the Fourier transform of the extensions of a Kummer pullback of an irreducible hypergeometric

D-module.

Lemma 3.1.14. (cf. [Ka5, 3.5.6.1]) Let d be a positive integer. Then the direct image by [d] of

the DGm-module H1(0; ∅) is the hypergeometric D-module Hdd(1/d, . . . , d/d; ∅).
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Proof. The statement can be proved in two ways, which are included just for the sake of com-

pleteness. The DGm-module Hdd(1/d, . . . , d/d; ∅) is irreducible, because it cannot have any

Kummer D-module as a composition factor. And [d]+H1(0; ∅) is irreducible, too.

Indeed, suppose that it had a nonzero subobjectM. Taking inverse images by [d], we would

have that [d]+M would be a subobject of

[d]+[d]+H1(0; ∅) ∼=
⊕
ζ∈µd

Hζ(0; ∅),

thanks to corollary 1.4.3. Since all of the summands on the right-hand side are irreducible,

[d]+M should be a direct sum of some of them, say belonging to Z ⊆ µd. Now note that

hζ,+[d]+ = [d]+ for every ζ ∈ µd, so Z = µd. In conclusion, [d]+M = [d]+[d]+H1(0; ∅), and M
would not be anything else but [d]+H1(0; ∅).

Then, in order to prove the existence of an isomorphism from it to [d]+H1(0; ∅), it will be

enough, by irreducibility, to find a nonzero morphism between them.

For any d ≥ 1, let Hd be the operator

Hd :=

d−1∏
j=0

(D − j)− λd.

It belongs to the subsheaf of rings Dd of DGm of differential operators generated by λd, λ−d and

D. Let us show that it is always a right multiple of D − λ.

More concretely, we will show that

Hd =

d−1∑
k=0

d−1−k∑
j=0

s(d− j, k + 1)λjDk

 (D − λ),

where the s(a, b) are the Stirling numbers of the first kind. In fact, since

Hd =
d∑
j=1

s(d, j)Dj − λd,

we have to show that

s(d, d) = 1,

−λd = −
d−1∑
k=0

d−1−k∑
j=0

s(d− j, k + 1)λj+1,

s(d, r) =

d−r∑
j=0

s(d− j, r)λj −
d−1∑
k=r

d−k∑
j=1

s(d− j + 1, k + 1)λj
(
k

r

)
.

The first equality follows by definition, as well as the second one; note that

d−j−1∑
k=0

s(d− j, k + 1) = 1(1− 1) · . . . · (1− d+ j + 1).

Since j < d, that amounts to δj,d−1, the Kronecker delta for those values. Regarding the third

one, reordering the sums and separating them for each power of λ, it is equivalent to prove that

for any e ≥ r > 0,

s(e, r) =

e∑
k=r

s(e+ 1, k + 1)

(
k

r

)
,
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which can be proved by induction in e using the recurrence formulas for the binomial numbers

and the Stirling numbers of the first kind (cf. [AS, 24.1.1.II.A, 24.1.3.II.A]).

Therefore, we can define the morphism of Dd-modules Dd/(Hd) −→ H1(0; ∅) given by 1 7→ 1.

Note that Dλd = Dλ/d ∈ Dd, so the direct image by [d] of any complex of DGm-modules is itself

seen as a Dd-module. Thus our morphism above induces another one, namely

Dd/(Hd) −→ [d]+H1(0; ∅),

which does not vanish either. Now make µ := λd. Then DGm is isomorphic to Dd as a DGm-

module by the identification λ 7→ µ, D 7→ Dd, and under this change of variables,

Hd = dd
d−1∏
j=0

(Dµ − j/d)− µ,

so we can define a nonzero morphism between Hdd(0, 1/d, . . . , (d − 1)/d; ∅) and [d]+H1(0; ∅).
Since a hypergeometric D-module remains the same when changing its parameters modulo the

integers, we are done.

The other method uses proposition 1.4.16. SinceH1(0; ∅) is aDGm-module of Euler character-

istic −1 and generic rank 1, then its image by [d]+ will be another DGm-module of characteristic

−1, that is, a hypergeometric one, being its rank d. Write [d]+H1(0; ∅) = Hγ(αi;βj). Applying

[d]+ to that equality, we have that

⊕
ζ∈µd

Hζ(0; ∅) = DGm/

γ/dd r∏
i=1

(D − dαi)− λd
s∏
j=1

(D − dβj)

 ,

so r = d and s = 0 (the set of the βj must be empty). In that case, our equality also shows us

that ∏
ζ∈µd

ζ = 1 = γ/dd,

so γ = dd, which is characterized for Hγ(αi; ∅) is irreducible, thanks to proposition 1.4.10. To

finish this second proof, the exponents of [d]+Hγ(αi;βj) are the classes of the dαi, but they

must be integer because so the exponents of the Hζ(0; ∅) are. And tensoring with the Kummer

D-module K1/d gives by the projection formula that

[d]+H1(0; ∅)⊗OGm K1/d
∼= [d]+

(
H1(0; ∅)⊗OGm [d]+K1/d

)
= [d]+H1(0; ∅).

In conclusion, αi = i/d for every i = 1, . . . , d and we are done.

Proposition 3.1.15. ([Ka5, 6.4.1]) Let j be the canonical inclusion of Gm into A1, let d be a

positive integer, and let Hγ(αi;βj) be an irreducible hypergeometric D-module of type (n,m).

Then,

j+ FT j+[d]+Hγ(αi;βj) ∼= [d]+MH(−1)m+ndd/γ(1/d, . . . , d/d,−βj ;−αi).

Proof. Before going for that, just note that if some of the lists of the αi or the βj were empty,

the argument would be the same, mutatis mutandis.
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We will use once again proposition 3.1.6. Therefore,

j+ FT j+[d]+Hγ(αi;βj) ∼=
(
[d]+ inv+Hγ(αi;βj)

)
∗ H1(0; ∅).

Now apply point i of lemma 3.1.5 with ϕ = [d] to find that

j+ FT j+[d]+Hγ(αi;βj) ∼= [d]+
(
H(−1)m+n/γ(−βj ;−αi) ∗ [d]+H1(0; ∅)

)
.

Finally, just apply the lemma above to end the proof.

Proposition 3.1.16. ([Ka5, 6.4.2]) Under the same notations and conditions of the proposition

above,

j+ FT j!+[d]+Hγ(αi;βj) ∼= [d]+H(−1)m+ndd/γ(cancel(1/d, . . . , d/d,−βj ;−αi)).

Proof. Since [d] is an étale morphism, j!+ takes irreducibles to irreducibles and j+ FT is an

exact functor, both DGm-modules at the statement are semisimple by assumption, and so it will

suffice to show that they have the same semisimplifications to obtain the isomorphism.

Up to taking direct or inverse image by the inversion in Gm we can assume that n ≥ 0. If

m = 0, as in the proof of the previous proposition, the strategy described will remain the same.

Consider the short exact sequence

0 −→ j!+[d]+Hγ(αi;βj) −→ j+[d]+Hγ(αi;βj) −→ δr0 −→ 0.

Let A be the set

A =
{
k ∈ {1, . . . , d} | k/d ≡ αi mod Z for some i = 1, . . . , n

}
.

Then by corollary 1.4.9 and proposition 1.2.11 we can affirm that r = cardA. Consequently,

applying the exact functor j+ FT to the exact sequence we have that

j+ FT j+[d]+Hγ(αi;βj)
ss ∼= j+ FT j!+[d]+Hγ(αi;βj)⊕OrGm .

On the other hand, by the proposition above and corollary 3.1.13 we know that

j+ FT j+[d]+Hγ(αi;βj)
ss ∼= [d]+

H(−1)m+ndd/γ(cancel(1/d, . . . , d/d,−βj ;−αi))⊕
⊕
η∈A
Kη

 .

Thus comparing both expressions and getting rid of the common OrGm , we finally obtain that

j+ FT j!+[d]+Hγ(αi;βj) ∼= [d]+H(−1)m+ndd/γ(cancel(1/d, . . . , d/d,−βj ;−αi)).
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3.2 Exponents of Gn

In this section we will apply the results of the previous one to our context of chapter 2 to find

the exponents of Gn or ι+nGn at both the origin and the point at infinity. We also provide the

proof of theorems 2.1.6 and 2.1.8 by using all the information given by the propositions of the

previous chapter, together with the calculation of the exponents.

Proof of theorem 2.1.6, part one. The statement about the “constant” part of Kn is part of

proposition 2.2.3, and the existence of Gn and the exact sequence

0 −→ Gn −→ H0(Kn) −→ OnGm −→ 0

follows from proposition 2.2.4.

Now by proposition 2.2.5, Gn is a regular DGm-module of Euler-Poincaré characteristic −1,

of rank dn − 1 and singularities at the origin and infinity, so by propositions 1.4.1 and 1.4.10

and corollary 1.4.14 (or proposition 1.4.16) its semisimplification will consist of k Kummer D-

modules and an irreducible hypergeometric D-module of type (dn − 1 − k, dn − 1 − k), with a

singularity at γn, that is to say,

Gss
n =

⊕
α∈A
Kα ⊕Fn,

where |A| = k and Fn is an irreducible hypergeometric D-module of type (dn−1−k, dn−1−k)

of the form Hγn(αi;βj).

Since we want to characterize the Kummer D-modules and Fn, we only need, by virtue

of propositions 1.3.4 and 1.4.10, to find the exponents of Gn at both zero and infinity. Thus

those occurring at both points will determine the Kummer summands, and the rest will be the

parameters of Fn.

Recall that by proposition 2.1.1, pn is a proper and smooth morphism at the origin, so

pn,+OXn,w does not have any singularity there, as well as every of its subobjects, like its invariant

part under the action of G. Now, as in the proof of theorem 2.1.4, K̄n sits in a distinguished

triangle between
(
pn,+OXn,w

)G
and a complex whose cohomologies are just copies of OA1 , so

it cannot have a singularity at the origin either. Since j+K̄n = ι+nKn by construction, the

dn − 1 exponents at the origin of Gn can only be fractions of denominator equal to dn, say with

numerators k1, . . . , kdn−1 ∈ {1, . . . , dn}. �

Let us find now the restriction by j+ of the Fourier transform of K̄n. The strategy is similar

to and inspired by the one used in the first three sections of [DS]. Given an r-uple a in the

cartesian r-th power of some set, we will denote its i-th coordinate by ai.

Lemma 3.2.1. ([DS, 2.1]) Reorder the values of the wi in increasing order. Let {a(k), i(k)}k≥0

be the sequence in Nn+1 × {0, . . . , n} defined by the following recursion:

a(0) = (0, . . . , 0) i(0) = 0

a(k + 1) = a(k) + ei(k) i(k + 1) = min

{
i ∈ {0, . . . , n}

∣∣∣∣ a(k + 1)i
wi

= min
j=0,...,n

a(k + 1)j
wj

}
.

Then the following properties hold:
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i) For any k ≥ 0,

a(k)i(k)

wi(k)
≤
a(k + 1)i(k+1)

wi(k+1)
≤
a(k)i(k) + 1

wi(k)
.

ii) a(dn) = (w0, . . . , wn), and if k < dn, then a(k)i(k) < wi(k).

iii) The map {0, . . . , dn − 1} →
∐n
i=0{0, . . . , wi − 1} given by k 7→ ai(k) · ei(k) is bijective.

Proof. Regarding the first point, if i(k+ 1) = i(k) the statement holds by definition of a(k+ 1).

If not, then a(k+ 1)i(k+1) = a(k)i(k+1), and the two inequalities follow by the definitions of i(k)

and i(k + 1), respectively.

Let us show point ii. Note that if there exists an index j such that a(k)j < wj , then by

definition a(k)i(k) < wi(k), too, so a(k+1)i(k) ≤ wi(k). Therefore, no coordinate of a(k) surpasses

a wi until all of the a(k)i are equal to the corresponding wi. As a consequence, the (n+ 1)-uple

w can only be reached when k = dn.

Only point iii remains, but this is easy to show after the previous one; both sets have

the same cardinality and by definition and point ii the map is well defined and injective, so

bijective.

Proposition 3.2.2. (cf. [DS, 3.2]) Let n ≥ 1. Then, we have an isomorphism of complexes of

DGm-modules

j+ FT K̄n
∼= [dn]+H

ddnn γn

(
1

w0
, . . . ,

w0

w0
, . . . ,

wn
wn

; ∅
)
.

Proof. We already know the expression of Kn up to the exponents of Gn. Since ιn is étale,

the functor Fn := j+ FT j!+ι
+
n is exact and preserves semisimplicity. Then the cohomologies

of the complex j+ FT K̄n coincide with those of FnKn because they can be extended without

singularities to the origin, and so they will be the image by Fn of those of Kn. Let us see what

happens to each of them.

All the copies of OGm appearing as composition factors of each Hi(Kn) become the punctual

delta module δ0 after applying FT j!+ι
+
n , so they vanish when taking their restriction to Gm

again. And something similar happens with the Kummer D-modules, if any, which are compo-

sition factors of H0(Kn). By what we know of Kn (cf. the first part of the proof of theorem

2.1.6), their respective parameters (the representatives of their exponents at both zero and the

point at infinity) must be rational numbers of denominator dn, so their image by ι+n is OGm and

so the result of applying to them j+ FT j!+ is zero anyway.

Therefore, j+ FT K̄n will be concentrated in degree zero and only consist of FnFn, so by

proposition 3.1.16, j+ FT K̄n is just the inverse image by [dn] of an irreducible hypergeometric

D-module.

On the other hand, by definition,

j+ FT K̄n
∼= j+π2,+

(
π+

1 ϕ+OGn ⊗OA2
L
)
,

where Gn is the n-dimensional torus with equation xw0
0 · . . . · xwnn = 1 and ϕ(x) = x0 + . . .+ xn.
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Note that K̄n
∼= ϕ+OGn . Consider the following diagram of cartesian squares:

Gn ×Gm

�ϕ×π2
��

j̄
// Gn × A1

�ϕ×π2
��

π1 // Gn

ϕ

��

A1 ×Gm

�π2

��

j̃

// A2

π2
��

π1
// A1

Gm j
// A1

.

Applying the base change and projection formulas,

j+π2,+

(
π+

1 ϕ+OGn ⊗OA2
L
) ∼= j+π2,+

(
(ϕ× π2)+OGn×A1 ⊗OA2

L
) ∼=

∼= j+π2,+(ϕ× π2)+L ∼= π2,+(ϕ× π2)+j̃+L.

The inverse image by j̃(ϕ × π2) of L, is not so easy to compute, but its direct image by the

closed immersion i : Gn ×Gm → Gn+1
m ×Gm, say M, is

M∼= DGn+1
m ×Gm/(x

w − 1, ∂0 − λ, . . . , ∂n − λ, ∂λ − x0 − . . .− xn).

We then have to find the last cohomology of the relative (with respect to the last factor of

Gn+1
m ×Gm) de Rham cohomology of M, or equivalently, the cokernel of

ψ : (OGm [x]/(xw − 1))n+1 −→ (OGm [x]/(xw − 1))

(a0, . . . , an) 7→
n∑
i=0

(∂i + λ)(ai),

where the action of ∂λ on R := (OGm [x]/(xw − 1)) is given by multiplication by x0 + . . .+ xn.

Let a be an (n + 1)-uple of nonnegative integers, and let xa ∈ R. Then every image of the

form (∂i + λ)(xa) will vanish in the cokernel N of ψ. We will build up the differential equation

that we are looking for from those elementary ones.

Fix a j ∈ {0, . . . , n} and consider the element of R

n∑
i=0

xi(∂i + λ)(xa)− dn
wj
xj(∂j + λ)(xa).

We know it vanishes in N , and by the Euler relation and the action of ∂λ on R, we have that(
Dλ + |a| − dnaj

wj

)
(xa) =

dn
wj
λxa+ej

on N . Now, for any k = 0, . . . , dn − 1, consider a = a(k) as in the previous lemma. Thanks to

it, for any such k,

(Dλ + k − dns(k))(xa(k)) =
dn
wj
λxa(k+1),

where the s(k) are the numbers j/wi, for i = 0, . . . , n and j = 0, . . . , wi−1 ordered increasingly.

Then, starting by a = 0 and applying the dn relations that we have found,

dn−1∏
k=0

(Dλ − dns(k)) =
ddnn∏n
i=0w

wi
i

λdn
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in N . Up to a twisting by λ, that is the equation defining the image by [dn]+ of the irreducible

hypergeometric D-module

H
ddnn γn

(
1

w0
, . . . ,

w0

w0
, . . . ,

wn
wn

; ∅
)
.

Summing up, j+ FT K̄n is the image by [dn]+ of an irreducible hypergeometric D-module which

contains such a module in its composition series, so both are equal and we are done.

Proof of theorem 2.1.6, part two. Write the exponents of Gn at zero as α1, . . . , αdn−1, all of them

thought of as elements of k/Z. Thus by propositions above and 3.1.16 we can be a bit more

specific and state that(
dn
w0
, . . . ,

dnw0

w0
, . . . ,

dnwn
wn

; ∅
)

= cancel (1, . . . , dn, dnα1, . . . , dαdn−1; k1, . . . , kdn−1) ,

where the cancelation operation now is made modulo dnZ, and not the integers, since we are

dealing with inverse images by [dn].

Let us understand how the process with the exponents of Gn goes until obtaining those of

j+ FT K̄n. Let us denote by Wn, Dn and D′n, respectively, the list of the αi, {1, . . . , dn} and the

list of the kj/dn.

Dn Wn

D′n
−→ Dn Wn −D′n

D′n −Wn
−→ Dn − (D′n −Wn) Wn −D′n

(D′n − (Wn ∪Dn) = ∅

First, we cancel the αi which are equal to some element from D′n. Then, those remaining cancel

again with the list Dn. At this point there is no exponent at infinity left, and we add the

elements of Dn which have not been canceled to the remaining αi.

Up to taking tensor product with a Kummer D-module Kb/dn for some b = 1, . . . , dn, the αi

must all be of the form j/wi, with i = 0, . . . , n and j = 1, . . . , wi.

If two elements of D′n coincide and are not equal to any of Wn, then both of them should

cancel with an element of Dn, which has no repeated numbers, so we would have some exponent

of j+ FT K̄n at infinity, which is impossible. Consequently at least all but one of the repeated

values of D′n must cancel with some of Wn. In that case, despite we could manage to have an

empty list of exponents of j+ FT K̄n at infinity, that is not possible either.

Suppose that we cancel all but one of the repeated values of D′n with some of Wn. Then, we

cannot replace that element of Wn with its copy at Dn, because it is canceled too, contradicting

the fact that in the end we have at the origin all of the j/wi. The last case to be considered is

when some elements of D′n get canceled with some of Wn, but not of Dn. In that case, as before,

we only have another copy of the same element at Dn to replace many of them remaining, and

we cannot complete the list of the j/wi. In conclusion, all of the ki are different.

Summing up, up to a Kummer shifting by some b/dn, the exponents at the point at infinity

of Gn are, modulo Z, those of Dn divided by dn except for certain a/dn, with a ∈ Dn. At the

origin, we can find each number of the form j/wi, with i = 0, . . . , n and j = 1, . . . , wi, except

for the same a/dn. In other words, there exist two integers a, b ∈ {1, . . . , dn} such that modulo

the integers the exponents at the origin and infinity of Gn are, respectively,

W a,b
n :=

{
1

w0
+

b

dn
, . . . ,

w0

w0
+

b

dn
, . . . ,

wn
wn

+
b

dn

}
−
{
a+ b

dn

}
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and

Da,b
n :=

{
1

dn
, . . . ,

dn
dn

}
−
{
a+ b

dn

}
.

(We will avoid mentioning a and b in the symbols of Wn and Dn whenever it is clear from the

context.) This ends the proof of the theorem. �

We now include another way of ending the proof of theorem 2.1.6, as suggested to us and

outlined by Sabbah in a personal communication. It follows a different approach, focusing at

K̄n directly, instead of finding first the exponents of Gn up to the values of a and b. We will first

prove that the nonconstant part of j+K̄n is

ι+nHγn
(

cancel

(
1

w0
, . . . ,

w0

w0
, . . . ,

1

wn
, . . . ,

wn
wn

;
1

dn
, . . . ,

dn
dn

))
.

Thus the exponents of Gn should be, up to a parameter b coming from tensoring with a Kummer

D-module Kb/dn all of the parameters of the hypergeometric above modulo Z, except for certain

a/dn which cannot exist, for we know that the rank of Gn is dn − 1 thanks to proposition 2.2.5.

First of stating and proving anything, we must introduce a new functor for complexes of

DA1-modules, Fourier localization.

Definition 3.2.3. Let M ∈ Db(DA1) be a bounded complex of DA1-modules, and let j be the

canonical inclusion of Gm into A1. We define its Fourier localization as

FLocM = FT−1 j+j
+ FTM.

Proposition 3.2.4. The functor FLoc is exact in the category of coherent DA1-modules. For

any holonomic DA1-moduleM, there exists a canonical morphismM−→ FLocM whose kernel

and cokernel are constant. In particular, the nonconstant composition factors ofM and FLocM
are the same.

Proof. The first claim follows from the fact that FT, j+ and j+ are exact in the respective

categories of coherent D-modules. By adjunction, we always have a canonical morphism N −→
j+j

+N for any holonomic DA1-module N , so taking N = FTM and applying FT−1 we obtain

the desired canonical morphism.

Let us show the other claims. If we had a DGm-module N such that FT−1 j+N = 0, then

necessarily N = 0. Then, if FT−1 j+j
+M for some DA1-moduleM, it has to be supported just

at the origin, so FLoc only annihilates constant composition factors.

Assume now that M does not have any constant composition factor. Since FT is an exact

equivalence of categories, that means that FTM has no punctual composition factor. Then we

can apply proposition 1.2.11 to it so that we obtain the exact sequence

0 −→ FTM−→ j+j
+ FTM−→ δr0 −→ 0,

for some r ≥ 0. Applying FT−1 again we arrive at an exact sequence whose last term is constant,

so the statement about the cokernel is also proved.

Proposition 3.2.5. For every n ≥ 1, the nonconstant part of j+K̄n is ι+nH, where H is the

hypergeometric DGm-module

Hγn
(

cancel

(
1

w0
, . . . ,

w0

w0
, . . . ,

1

wn
, . . . ,

wn
wn

;
1

dn
, . . . ,

dn
dn

))
.
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Proof. The discussion above shows that we just need to prove that j+ FLoc K̄n is isomorphic to

ι+nH. By proposition 3.2.2 we know that j+ FT K̄n
∼= DGm/(P ), where P is

γn

n∏
i=0

wi∏
j=0

(
D − dnj

wi

)
− λdn .

Taking the direct image by j is just localizing at λ, so applying FT−1 to the canonical morphism

DA1/(P )→ j+j
+ FT K̄n, we can deduce that there exists another canonical morphism from the

nonconstant part M of DA1/(Q) to FLoc K̄n, with Q being the image by FT−1 of P , that is,

Q = ∂dn − γn
n∏
i=0

wi∏
j=0

(
∂λ+

dnj

wi

)
.

Since the kernel and the cokernel of the first morphism is necessarily supported at the origin,

then both the kernel and the cokernel of M → FLoc K̄n must be constant. However, by the

exactness of FLoc and proposition 2.2.5, both DA1-modules have the same generic rank, for we

are canceling the same constant factors at each side, making that morphism bijective.

Now we just need to apply j+ to the isomorphismM→ FLoc K̄n, and thus allowing ourselves

to invert λ. But then we can multiply Q on the left by λdn , and since λdn∂dn =
∏dn−1
j=0 (D − j)

(which can be easily proved by induction by using that λD = (D − 1)λ), we have in conclusion

that j+ FLoc K̄n is isomorphic to the nonconstant part of the quotient of DGm by the left ideal

generated by
dn−1∏
j=0

(D − j)− γnλdn
n∏
i=0

wi∏
j=0

(
∂λ+

dnj

wi

)
,

which is isomorphic to the inverse image by ιn of H, up to taking tensor product with K1/dn .

After having proved theorem 2.1.6 we now have to discuss the particular cases in theorem

2.1.8; we will do it after proving a result about the exponents of Kn at the origin when w0 = 1

by using all the machinery introduced in the second part of section 1.3.

Proposition 3.2.6. Let n ≥ 1 be a natural number, R = k((t))[x1, . . . , xn], and (w1, . . . , wn) ∈
Zn>0 be an n-uple of positive integers. Let now α be a rational number such that wiα is not an

integer for any i = 1 . . . , n, and let λ = xw1
1 · . . . · xwnn (1− x1 − . . .− xn) ∈ R. Then the k-linear

homomorphism Φ : Rn+1 −→ R given by

Φ =
(
λ− t, ∂1 + λ′1ϕα, . . . , ∂n + λ′nϕα

)
,

is surjective.

Proof. Let us assume that n ≥ 2, but if we will comment throughout the proof the changes we

should do to treat the case in which n = 1.

Let us note some facts that we will made use of. Splitting λ in homogeneous components,

we can write λ = µ + ν, with µ = xw1
1 · . . . · xwnn and ν = −µ(x1 + . . . + xn). We will denote

by Jν = (ν, ν ′1, . . . , ν
′
n) the extended Jacobian ideal of ν, and by Sν its module of syzygies of

first order. It is straightforward to see that xiµ
′
i = wiµ and that xiµ = wiν − xiν ′i for every

i = 1, . . . , n. Apart from that, we know thanks to lemma 2.2.1 that Sν , which is free, is generated
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by (−dn, x1, . . . , xn), the Euler syzygy (dn = 1 +
∑
wi ≥ n+ 1 is the degree of λ), and for every

pair of indexes (i, j) such that 1 ≤ i < j ≤ n, a Koszul syzygy of the form (ν ′jei − ν ′iej)xixj/µ.

Evidently, if n = 1 we only have the Euler syzygy.

We will write each element of R as a sum of its homogeneous components, a =
∑

k≥0 ak, as

we did with λ. Then let us pick an element c of R, which we can assume without loss of generality

to be homogeneous of degree m ≥ 0, and let us say that there exist a, and n polynomials bi for

every i = 1, . . . , n, so that Φ(a, b1, . . . , bn) = c, and see which conditions we have to impose on

them. For every r ≥ 0, we will have that

νar−dn + µar−dn+1 − tar +
∑
i

µ′iϕαb
i
r−dn+2 +

∑
i

ν ′iϕαb
i
r−dn+1 +

∑
i

bi′r+1,i = cr.

We will consider that a only has nonvanishing k-th homogeneous components for k = m, . . . ,m+

dn − 1, and each of the bi for k = m + 1, . . . ,m + dn. Thus our general formula will be useful

for us only for r = m, . . . ,m+ 2dn − 1.

Let us start in the formula above by r = m+ 2dn − 1. We have that

νam+dn−1 +
∑
i

ν ′iϕαb
i
m+dn = 0.

Then (am+dn−1, ϕαb
1
m+dn

, . . . , ϕαb
n
m+dn

) ∈ Sν , so there exist homogeneous polynomials in R, f

and g(i,j), for every 1 ≤ i < j ≤ n of respective degrees m+ dn − 1 and m+ dn − 2 such that

am+dn−1 = −dnf
ϕαb

i
m+dn = xif +

∑
j 6=i

ε(j − i)xixj
µ

ν ′jg(i,j), i = 1, . . . , n. ,

where ε is the sign function for a nonzero real number; ε(x) = |x|/x.

Let us go on by taking n = m+ 2dn − 2. Our general formula turns into

νam+dn−2 + µam+dn−1 +
∑
i

µ′iϕαb
i
m+dn +

∑
i

ν ′iϕαb
i
m+dn−1 = 0.

We can replace am+dn−1, and the ϕαb
i
m+dn

by their values in terms of f and the g(i,j):

νam+dn−2 − dnµf +
∑
i

xiµ
′
if +

∑
i

∑
j 6=i

ε(j − i)xixj
µ

µ′iν
′
jg(i,j) +

∑
i

νiϕαb
i
m+dn−1 =

= am+dn−2ν + (−dnµ+
∑
i

xiµi)f +
∑
i

ϕαbim+dn−1 −
∑
j 6=i

ε(j − i)wjxig(i,j)

 νi = 0,

where we have used that xiµ
′
i = wiµ. Now noticing that (dn − 1)µ = x1µ

′
1 + . . .+ xnµ

′
n,

am+dn−2ν +
∑
i

ϕαbim+dn−1 −
∑
j 6=i

ε(j − i)wjxig(i,j)

 ν ′i − fµ = 0.

Note that, since f is homogeneous of degree m + dn − 1 > 0, there exist n homogeneous

polynomials f(1), . . . , f(n) ∈ R of degree m+ dn − 2 such that f =
∑

i xif(i). Using the formulas

xiµ = wiν − xiν
′
i we can form again a syzygy of Sν , so there must exist new homogeneous
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polynomials in R, f (1) and g
(1)
(i,j), of respective degrees m+dn−2 (note that if n = w0 = w1 = 1,

this would imply that f (1) is constant and we would stop this first part of the process) and

m+ dn − 3 such that

am+dn−2 = −dnf (1) +
∑
i

wif(i)

ϕαb
i
m+dn−1 = xif

(1) − xif(i) +
∑
j 6=i

ε(j − i)
(
xixj
µ

ν ′jg
(1)
(i,j) + wjxig(i,j)

)
, i = 1, . . . , n.

So let us move on and see what happens when n = m+ 2dn−3. Here our favorite formula reads

νam+dn−3 + µam+dn−2 +
∑
i

µ′iϕαb
i
m+dn−1 +

∑
i

ν ′iϕαb
i
m+dn−2 = 0.

Writing am+dn−2 and the ϕαb
i
m+dn−1 like above and proceeding as in degree m+ 2dn − 2 yields

am+dn−3ν − µf (1) +
∑
i

(wiµ− xiµ′i)f(i)+

+
∑
i

∑
j 6=i

ε(j − i)
(
wixjν

′
jg

(1)
(i,j) + wiwjµg(i,j)

)
+
∑
i

ϕαb
i
m+dn−2ν

′
i = 0.

In this formula we can notice that each term of the form wiµf(i)−xiµ′if(i) vanishes. Apart from

that, summing over all of the unordered pairs (i, j) the expressions ε(j− i)wiwjµg(i,j) gives zero,

since except for the sign they are independent of the order of the indexes.

Thanks to f (1) being homogeneous of degreem+dn−2 ≥ n−1 > 0, there exist n homogeneous

polynomials f
(1)
(1) , . . . , f

(1)
(n) ∈ R of degree m+ dn − 3 such that f (1) =

∑
i xif

(1)
(i) .

Acting as before, we obtain that there exist n other homogeneous polynomials of R, f (2) and

g
(2)
(i,j), of respective degrees m − dn − 3 and m + dn − 4 (note that this would imply that all of

the g
(2)
(i,j) are zero if m = 0, n = 2 and wi = 1 for all i) such that

am+dn−3 = −dnf (2) +
∑
i

wif
(1)
(i)

ϕαb
i
m+dn−2 = xif

(2) − xif (1)
(i) +

∑
j 6=i

ε(j − i)
(
xixj
µ

ν ′jg
(2)
(i,j) + wjxig

(1)
(i,j)

)
, i = 1, . . . , n.

For r = m + dn, . . . ,m + 2dn − 4 (if possible) we will observe the same behaviour, but taking

further polynomials of the form f (k) and g
(k)
(i,j), for 1 ≤ i < j ≤ n. More concretely, for every

r = m+ 1, . . . ,m+ dn and every i = 1, . . . , n,

ar−1 = −dnf (m+dn−r) +
∑
i

wif
(m+dn−r−1)
(i)

ϕαb
i
r = xif

(m+dn−r) − xif (m+dn−r−1)
(i) +

∑
j 6=i

ε(j − i)
(
xixj
µ

ν ′jg
(m+dn−r)
(i,j) + wjxig

(m+dn−r−1)
(i,j)

)
.
,

where the f (k) and the gk(i,j) are homogeneous polynomials of R of respective degrees m+dn+k−1

and m+dn+k−2 (if n ≥ 2 and m = 0, g
(dn−1)
(i,j) = 0 for every pair (i, j). Moreover, we will express

every polynomial f (k), for k < dn − 1, as f (k) =
∑

i xif
(k)
(i) , where the f

(k)
(i) are n homogeneous

polynomials of R of degree m+ dn + k − 2.
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Summing up, we have been able to express our first unknowns, the forms ak and bik, in

terms of many more polynomials, and we do not know anything about them but their degrees.

However, recall that we have other dn equations left arising from our general formula. Those

will be the ones which will give us some information about our new unknowns.

Let us then take r = m+ dn − 1. Our formula is like this:

µam − tam+dn−1 +
∑
i

µ′iϕαb
i
m+1 +

∑
i

bi′m+dn,i = 0.

We can now replace all of the forms above (thanks to ϕα being bijective). This changes sub-

stantially our formula into

−dnµf (dn−1) +
∑
i

wiµf
(dn−2)
(i) + dntf +

∑
i

xiµ
′
if

(dn−1) −
∑
i

xiµ
′
if

(dn−2)
(i) +

+
∑
i

∑
j 6=i

ε(j − i)
(
wixjν

′
jg

(dn−1)
(i,j) + wiwjµg

(dn−2)
(i,j)

)
+
∑
i

ϕ−1
α f +

∑
i

Diϕ
−1
α f+

+
∑
i

∑
j 6=i

ε(j − i)xixj
µ

(
−wi − 1

xi
ν ′j + ν ′′ij + ν ′j∂i

)
ϕ−1
α g(i,j) = 0.

Summing wiwjµg
(dn−2)
(i,j) or ν ′′ij would give zero. Taking that into account together with the Euler

relation for µ and ϕ−1
α f , and the fact that for every i, we have that xiµ

′
i = wiµ, leads us to the

following equation in homogeneous polynomials of degree m+ dn − 1:

dnAm+dn+n−1
dn

f − µf (dn−1) +
∑
(i,j)

(
V(i,j)g(i,j) +N(i,j)g

(dn−1)
(i,j)

)
= 0,

where the operators Ar were defined at 1.3.12 and, respectively, V(i,j) and N(i,j) are the following

for each pair (i, j):

V(i,j) =
xixj
µ

(
ν ′j∂i − ν ′i∂j +

wj − 1

xj
ν ′i −

wi − 1

xi
ν ′j

)
ϕ−1
α ,

N(i,j) = −wjxiν ′i + wixjν
′
j .

Now let us take an arbitrary r ∈ {m+ 1, . . . ,m+ dn − 2}, if possible. Our general formula

can be written as

−tar +
∑
i

bi′r+1,i = 0.

Substituting ar and all of the bir+1 by their expressions and acting as the previous case, we

obtain that

dnA r+n
dn

f (m+dn−r−1)−
∑
i

wiADi,1
wi

f
(m+dn−r−2)
(i) +

∑
(i,j)

(
T(i,j)g

(m+dn−r−2)
(i,j) + V(i,j)g

(m+dn−r−1)
(i,j)

)
= 0,

with T(i,j) being defined for every pair (i, j) as

T(i,j) = (wjDi,1 − wiDj,1)ϕ−1
α .

If r = m the only difference with the formula above is that we have cm in the right-hand side.
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Therefore, as we said before, the second group of dn equations allowed us to impose certain

conditions on the f (k) and the g
(k)
(i,j) taking the form of a system of (homogeneous polynomial)

equations, namely

dnAm+dn+n−1
dn

f − µf (dn−1) +
∑
(i,j)

(
V(i,j)g(i,j) +N(i,j)g

(dn−1)
(i,j)

)
= 0

dnAm+dn+n−2
dn

f (1) −
∑
i

wiADi,1
wi

f(i) +
∑
(i,j)

(
T(i,j)g(i,j) + V(i,j)g

(1)
(i,j)

)
= 0

...

dnAm+n+1
dn

f (dn−2) −
∑
i

wiADi,1
wi

f
(dn−3)
(i) +

∑
(i,j)

(
T(i,j)g

(dn−3)
(i,j) + V(i,j)g

(dn−2)
(i,j)

)
= 0

dnAm+n
dn

f (dn−1) −
∑
i

wiADi,1
wi

f
(dn−2)
(i) +

∑
(i,j)

(
T(i,j)g

(dn−2)
(i,j) + V(i,j)g

(dn−1)
(i,j)

)
= cm

.

If n = 1, we would only have the first and the last ones. How to prove that this system has a

solution, and then, that Φ is surjective? Let us denote by Sk the set {u ∈ Nn : |u| = k}. For any

k = 0, . . . , dn− 2, we know that f (k) =
∑

i xif
(k)
(i) , and that, obviously, supp(f (k)) = Sm+dn+k−1.

Whenever that condition holds, we could choose the support of all of the f
(k)
(i) , up to a reordering

on the set of exponents which would appear at each one. We will say that the support of

a polynomial f
(k)
(i) is maximal if it is the whole Sm+dn−k−2.Then, without loss of generality,

assume the maximality of the supports of the following polynomials:

f
(k)
(1) for k = dn − 1− w1, . . . , dn − 2,

and for every i = 2, . . . , n,

f
(k)
(i) for k = dn − 1− w1 − . . .− wi, . . . , dn − 2− w1 − . . .− wi−1.

(Obviously this definition of maximality and the assumptions on the f
(k)
(i) are useless when n = 1.)

Thanks to the choice of α and remark 1.3.13 we know that each ADi,1
wi

is invertible, so we can

solve any f
(dn−r−1)
(i) of maximal support in terms of f (dn−r) and the g

(dn−r−1)
(i,j) and g

(dn−r)
(i,j) , for

r = 1, . . . , dn − 1, over all the possible support of the corresponding equation.

Now is when the choice on the supports of the f
(k)
(i) makes sense. Start at the last equation by

solving f
(dn−2)
(1) and replacing its value in the preceding equation, and do this with the polynomial

f
(k)
(i) assumed to have a maximal support until we reach the first one. As a consequence, we will

have the following expression:(
ddnn

∏
i

w−wii Am+dn+n−1
dn

xnA
−1
Dn,1
wn

Am+dn+n−2
dn

· . . . · x1A
−1
D1,1
w1

Am+n
dn

− µ

)
f (dn−1) + . . . =

= ddnn
∏
i

w−wii Am+dn+n−1
dn

xnA
−1
Dn,1
wn

Am+dn+n−2
dn

· . . . · x1A
−1
D1,1
w1

cm,

where the dotted summand in the left-hand side is formed by the remaining f
(k)
(i) and g

(k)
(i,j).

Thanks to lemma 1.3.14 we can move all of the variables to the left and write

µ
(

ΥAm+n
dn

− 1
)
f (dn−1) = µΥcm,
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where

Υ = ddnn
∏
i

w−wii Am+dn+n−1
dn

A−1
Dn,wn
wn

· . . . ·Am+dn+n−wn
dn

A−1
Dn,1
wn

· . . . ·Am+n+1
dn

A−1
D1,1
w1

=

=

dn−1∏
k=1

Am+dn+n−k
dn

,k−1

 n∏
i=1

wi∏
j=1

ADi,j
wi

,j+w1+...+wi−1−1

−1

.

Applying lemma 1.3.9 we know that ΥAm+n
dn

− 1 is an automorphism of R, which besides

preserves each monomial (although not their coefficients). Thus we can find f (dn−1) from cm

just by solving the equations on its monomials. All this process could be made independently

of the choice of m, n, all of the wi and cm, so it finally proves the surjectivity of Φ and the

proposition.

Proof of theorem 2.1.8. We need to show the concrete values of a and b. When every wi is prime

to dn, it is impossible to have an equality of the form j/wi = a/dn for any j = 1, . . . , wi − 1, so

the only rational number (a+ b)/dn that we can subtract from Wn is b/dn.

The important case is when some wi is equal to 1 (say i = 0 up to a reordering); here we

can be more precise. In this case we can show that λn,+OZn has as exponents at the origin and

infinity W dn,dn
n and Ddn,dn

n , respectively.

We have just seen that the exponents at the origin of Kn = λn,+OZn can only be those of

the form j/wi mod Z, and each of them which is not integer occurs with the same multiplicity.

In fact, since the exponents of Gn form the set W a,b
n for some a and b, that multiplicity of each

noninteger exponent of Gn must be one and, as a consequence, that of the integer one is n; that

is, the exponents at the origin of Gn are W dn,dn
n = W a,b

n . Let us show now that that implies that

there is no possible choice of a and b other than a = b = dn.

If a 6= dn, then the value b/dn appears at Wn with multiplicity n+ 1, and if it is not 1, then

there must exist n+ 1 different jk < wk such that jk/wk = jl/wl = b/dn, but this is impossible

because of the following lemma. Therefore, b = dn, but in that case, since a 6= dn, there would

exist an exponent at both the origin and infinity equal to 1, and in that case, Gn would have a

composition factor equal to OGm , which cannot happen by proposition 2.2.3.

Thus a = dn. Then if b 6= dn there must exist again an exponent at both the origin and

infinity equal to 1, because the sets{
1

w0
+

b

dn
, . . . ,

w0

w0
+

b

dn
, . . . ,

wn
wn

+
b

dn

}
−
{
b

dn

}
and {

1

w0
, . . . ,

w0

w0
, . . . ,

wn
wn

}
− {1}

must coincide. As before this is a contradiction, so in conclusion a = b = dn. This ends the

proof of the particular cases, and thus the theorem. �

Lemma 3.2.7. Let n > 1 be an integer, and let (w1, . . . , wn) an n-uple of positive integers. The

following conditions are equivalent:
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i) There exists another n-uple (a1, . . . , an) of positive integers such that ai < wi for every

i = 1, . . . , n, and the quotients ai/wi are all equal.

ii) gcd(w1, . . . , wn) > 1.

Proof. The upwards part of the equivalence is easy, since if there exists some integer d dividing

all of the wi, then write wi = dvi and take ai = vi.

Let us proof the other implication. Since a1/w1 = a2/w2, then w1 and w2 must share a

prime factor, say p. If n = 2 everything is proved, so assume that n > 2 and take r ≥ 2 such

that, up to a reordering of the indexes, p divides w1, w2, . . . , wr. Evidently, if r = n we are done,

so we can assume that r < n and p does not divide wr+1, . . . , wn. For such values of i and for

j = 1, . . . , r, we have that ajwi = aiwj , so p must divide aj . Therefore, we can simplify the

fraction ai/wi dividing by p both the numerator and the denominator. Renaming them as ai

and wi we return to a new pair of n-uples satisfying the first condition of the statement, so we

can assume from the beginning that a1 and w1 are prime to each other, reducing as before by

all of its common prime divisors in case they are not.

Consequently, doing the same as before, we can claim that the first r ≥ 2 of the wi have a

prime common divisor p. Since a1wi = aiw1 for every i = r + 1, . . . , n and p cannot divide a1,

then p|wi for every i and then gcd(w1, . . . , wn) > 1.



Chapter 4

Some complements

The mathematician’s patterns, like the painter’s or the poet’s

must be beautiful; the ideas, like the colours or the words

must fit together in a harmonious way.

G. H. Hardy

4.1 Special cases of (w0, . . . , wn)

In this section we deal with three particular cases of (n+1)-uples (w0, . . . , wn) ∈ Z≥0. Although

the first two are not really interesting as we will see, they allow us to complete the study of the

Gauss-Manin cohomology of Yn,w without imposing any condition on the monomial xw0
0 ·. . .·xwnn .

The first condition that we could try to erase is that gcd(w0, . . . , wn) = 1. If not, there

would be an integer d dividing all of the wi, and then, G and Yn,w would be reducible. In fact,

they would be the disjoint union of their irreducible components, all of them differing only by a

d-th root of unity. Going downstairs to the context of Zn,w, we would have that

pn,+OZn,w ∼=
⊕
ζ∈µd

hζ,+pn,+OZn,w/d ,

so in the end, K̄n would be the direct sum of d copies of pn,+OYn,w/d , reducing the calculation

to the original setting.

So that case it is not quite important, but we can also consider the case in which for some

r ≥ 0 and every i = 0, . . . , r we have that wi = 0. This would complete all the existing

possibilities for the choice of the monomial xw0
0 · . . . · xwnn in the expression of Xn,w.

Under this assumption, the morphisms pn from Xn,w and Yn,w are smooth in the whole of

A1, and Kn is the direct image of OGnm by the morphism λn(x) = x
wr+1

r+1 · . . . · xwnn . Then, by

definition and the global Künneth formula, we have that

Kn
∼=

wr+1⊕
i1=1

· · ·
wn⊕

in−r=1

Ki1/wr+1
∗ · · · ∗ Kin−r/wn

⊗( 0⊕
i=−r

O( r−i)
Gm [−i]

)
;

we are interested in calculating each of those summands.

83
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Proposition 4.1.1. Let r ≥ 0 such that wi = 0 for i = 0, . . . , r. Then every cohomology of K̄n

is the direct sum of copies of OA1.

Proof. By the last paragraph of the first part of the proof of 2.1.6 we just need to show that

any cohomology of Kn is of zero Euler-Poincaré characteristic.

Note that for any α and β in k,

Kα ∗ Kβ ∼=

{
Kα[1]⊕Kα[0] if α ≡ β mod Z
0 otherwise

.

By virtue of point i of lemma 3.1.5, we only need to prove the statement when β is an integer,

and in that case we can follow the same argument as in the end of the proof of proposition 3.1.12

to find that

OGm ∗ Kα ∼= πGm,+Kα ⊗k OGm .

Since the global de Rham cohomology of a Kummer D-module vanishes unless it is OGm , we are

done.

Now by applying repeatedly that claim and lemma 3.1.5 again we can affirm that

wr+1⊕
i1=1

· · ·
wn⊕

in−r=1

Ki1/wr+1
∗ · · · ∗ Kin−r/wn ∼=

(⊕
α∈A
Kα

)
⊗

(
0⊕

i=−n+r+1

O(n−r−1
−i )

Gm [−i]

)
,

where A is the set of rational numbers α ∈ (0, 1] for which there exist i1, . . . , in−r such that

α = ij/wr+j for every j, and thus,

Kn
∼=

(⊕
α∈A
Kα

)
⊗

(
0⊕

i=−n+1

O(n−1
−i )

Gm [−i]

)
.

However, due to lemma 3.2.7, A ) {1} if and only if gcd(wr+1, . . . , wn) > 1. Then, if A = {1},
Kn is constant itself and so K̄n. And if A ) {1}, then Kn will be the direct sum of the tensor

products of several Kummer D-modules with the same constant complex. Any of the exponents

of those Kummer D-modules are, modulo the integers, rational numbers of denominator a divisor

of dn, so by returning to the previous discussion, K̄n has constant cohomologies.

Now we could wonder when Kn or K̄n have unipotent local monodromy at the origin and

infinity, respectively. This is a remarkable and rare, in the case of Kn, property, and we can

characterize it in terms of the wi:

Proposition 4.1.2. Under the conditions and notations of theorem 2.1.6, the following state-

ments are equivalent:

i) The generic rank of Fn is n.

ii) The exponents of Fn at the origin are all 1.

iii) The local monodromy at the origin of Fn consists of a single Jordan block.

iv) For every 0 ≤ i < j ≤ n, we have that gcd(wi, wj) = 1 and wi divides dn.
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Proof. The veracity of every statement is independent of the choice of the parameter b appearing

at the exponents of Gn, so up to taking tensor product with Kb/dn we can assume that b = dn,

and we will see in the end that it is the only possible assumption.

The exponents at the origin of Fn are n times 1 and some of the rational numbers of the

form j/wi with j = 1, . . . , wi − 1 and i = 0, . . . , n, except for a/dn as long as it is not 1. Then,

the first assertion implies directly the second one by the pigeonhole principle.

Now if any exponent at the origin is 1, then no other j/wi can appear. If a = dn, we have

n exponents remaining, and if a 6= dn, although we have n+ 1 times 1, the (n+ 1)-th one gets

canceled with the same exponent of Gn at infinity, so the first point follows. It is equivalent to

the third one because of corollary 1.4.9.

The interesting statement is the last one. Let us look more carefully at the exponents of Fn
at the origin. They are the result of canceling the lists{

1

w0
, . . . ,

w0

w0
, . . . ,

wn
wn

}
and

{
1

dn
, . . . ,

dn
dn

}
,

so if all of them are 1, the rest of the j/wi must occur on the second list, too, which happens if

and only if wi divides dn. Now, on the list of the k/dn every exponent appears exactly once, and

this only happens if and only if every pair of exponents k1/wi and k2/wj are different from each

other, for any 0 ≤ i < j ≤ n, k1 = 1, . . . , wi − 1 and k2 = 1, . . . , wj − 1. And that is equivalent

to the fact that gcd(wi, wj) = 1 for every i and j.

The fourth condition of the proposition implies in fact that at least a wi, for some i, is equal

to 1. If not, since gcd(wi, wj) = 1 and wi|dn, then
∑
wi = dn ≥

∏
wi, which cannot happen

if wi ≥ 2 for every i. To see that, write the wi in increasing order and divide the previous

inequality by wn to obtain that 2n <
∏n−1
i=0 wi < n+ 1, a contradiction for any n ≥ 2. Then in

this case we know that a = b = dn and the proposition follows.

We note that a similar proof of this proposition can be found at [Ka7, 8.8]. For the first

values of n, the (n+ 1)-uples verifying the conditions of the proposition are:

n = 1 (1, 1)

n = 2 (1, 1, 1), (1, 1, 2), (1, 2, 3)

n = 3 (1, 1, 1, 1), (1, 1, 1, 3)

n = 4 (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 1, 4), (1, 1, 1, 2, 5)

n = 5 (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 5)

n = 6 (1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 6), (1, 1, 1, 1, 1, 2, 7), (1, 1, 1, 1, 1, 3, 4)

.

Proposition 4.1.3. The exponents of ι+nFn at infinity are all 1 if and only if every wi divides

dn.

Proof. Since the exponents at the point at infinity of ι+nFn are dn times those of Fn at the origin,

the statement follows easily.

Some examples of (n + 1)-uples (w0, . . . , wn) satisfying the condition of the proposition for

n = 3, 4 can be found at [DS, 2.2].
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4.2 Relation between Fn−1 and Fn

Over the years, some relations between hypergeometric functions or D-modules have been

proved. We can list, for instance, those of Erdélyi at [Er], in the classical setting, or Katz,

using D-modules, at [Ka5, § 5.3]. They mainly use the convolution and the Fourier transform

to express a hypergeometric D-module in terms of others with a smaller rank and part of the

parameters of the first one. Although it is not part of our main goal, we will prove a result that

relates directly Fn with Fn−1, which is different in nature from the others above mentioned,

since both hypergeometric D-modules do not need to have any parameter in common. In this

section we will assume that the parameter b in the expression of Gn−1 is dn−1; as it describes the

Kummer D-module with which we take tensor product to get Gn−1, we can get rid of it when

applying ι+n−1, so in practice we do not lose anything. In the end, the reader can interpret the

result as some kind of induction between certain types of such modules.

Proposition 4.2.1. For any n ≥ 2, we have the exact sequence

0 −→
⊕

α/∈A∗n−1

Kα −→ π2,+(π2φn)+Fn−1 −→ G̃n −→ 0,

where G̃n is a DGm-module whose semisimplification equals Fn ⊕
⊕

α∈A∗n Kα.

Proof. Recall that we had the exact sequence

0→
dn−1−1⊕
a=1

Kmn−1
a/dn−1

→ H0(Kn)→ H0
(
π2,+(π2φn)+Kn−1

)
→ On−1

Gm ⊕
dn−1−1⊕
a=1

Kmna/dn−1
→ 0.

Since the composition factors ofH0 (π2,+(π2φn)+Kn−1) are those of π2,+(π2φn)+Gn−1 andO2n−2
Gm ,

we can deduce that

(π2,+(π2φn)+Gn−1)ss ∼= Gss
n ⊕

dn−1⊕
a=1

Ka/dn−1
.

The composition factors of π2,+(π2φn)+Gn−1 are in turn those occurring in π2,+(π2φn)+Fn−1

and π2,+(π2φn)+Kα, for every α ∈ Aa,b∗n−1. As in the proof of proposition 2.2.3, it is easy to show

that (π2φn)+Kα ∼= D(Gm−{1})×Gm/(P0, Pα), where

P0 = ∂z −
dnz − wn
z(1− z)

Dλ and Pα = Dλ − α.

But then, dividing by Pα we can take a better pair of generators of the ideal (P0, Pα), namely

P0,α = z(1 − z)∂z − (dnz − wn)α and Pα. With this new generators, we see thanks to remark

1.1.8 that

(π2φn)+Kα ∼= DGm−{1}/(P0,α) �Kα.

Note that DGm−{1}/P0,α is nothing but the restriction to Gm−{1} of the hypergeometric DGm-

module H1(αwn;αdn). By proposition 1.4.6 and the relative Künneth formula,

π2,+(π2φn)+Kα ∼= Kα
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for α ∈ Aa,b∗n−1. Consequently, we can slightly improve our relation between the different semisim-

plifications and say that

(π2,+(π2φn)+Fn−1)ss ∼= Gss
n ⊕

⊕
α/∈Aa,b∗n−1

Kα.

We will prove the statement of the proposition if we have that each Kα is actually a subobject

of π2,+(π2φn)+Fn−1, for every α /∈ Aa,b∗n−1.

Let then α1, . . . , αr and β1 . . . , βr be rational numbers such that

((α1, . . . , αr), (β1 . . . , βr)) =

=

(
cancel

(
1

w0
+

b

dn−1
, . . . ,

w0

w0
+

b

dn−1
, . . . ,

wn−1

wn−1
+

b

dn−1
;

1

dn−1
, . . . ,

dn−1

dn−1

))
.

As in the proof of proposition 2.2.3 again, (π2φn)+Fn−1
∼= D(Gm−{1})×Gm/(P0, P1), where P0 is

written above and

P1 = γnz
wn(1− z)dn−1

r∏
i=1

(Dλ − αi)− λ
r∏
i=1

(Dλ − βi).

Analogously as that proof, we have that

π2,+(π2φn)+Fn−1 = π2,∗
(
Ω(Gm−{1})×Gm/Gm

(
(π2φn)+Fn−1

))
[1],

so we will deal with the cokernel of ∂z over DGm [z, g−1][∂z]/(P0, P1). We already know that

f0 = (−wn + dnz)g
−1 is not in the cokernel and Dλe = −P0 + ∂z, which is zero.

Let now be, for each k = 1, . . . , r,

fk =
(dnz − wn)g−1

zwn(1− z)dn−1

r∏
i=1,i 6=k

(Dλ − βi) .

Then, for those values of k we have that

(D − βk)fk =
(dnz − wn)g−1

zwn(1− z)dn−1

r∏
i=1

(Dλ − βi) =

= λ−1γn(dnz − wn)g−1
r∏
i=1

(Dλ − αi) = λ−1γn

r∏
i=2

(Dλ − αi)∂z = 0,

where we have reordered the αi so that α1 = 1. This is possible thanks to the initial assumption

on b. The equalities follow by dividing by P1 and P0, respectively.

We must also check that fk 6= 0 in π2,+(π2φn)+Fn−1. Its degrees in ∂z and Dλ are less than

1 and r, respectively (they actually are 0 and r − 1), so the only possibility left is that fk is in

the image of ∂z over π2,∗(π2φn)+Fn−1. Let us suppose then that there exists c =
∑r−2

i=0 ciD
i
λ

such that

fk =
r−2∑
i=0

∂z(ci)D
i
λ +

r−2∑
i=0

(dnz − wn)g−1ciD
i+1
λ .
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Let s0,k, . . . , sr−1,k be the rational numbers defined by

r∏
i=1,i 6=k

(x− βi) =
r−1∑
l=0

sl,kx
l.

It is easy to prove by induction going backwards on l that

cl = (−1)l+1z−wn(1− z)−dn−1

r−1∑
j=l+1

(−1)jsj,k.

Then, looking at the zero degree term of fk, we must have that

(dnz − wn)g−1

zwn(1− z)dn−1

r−1∑
l=1

(−1)lsl,k =
(dnz − wn)g−1

zwn(1− z)dn−1
s0,k,

so the sum
∑r−1

l=0 (−1)lsl,k must vanish, but that is equal to
∏r
j=1,j 6=k(−1−βj), which is obviously

nonzero. Consequently all of the fk occur at π2,+(π2φn)+Fn−1 − {0} and we are done.

4.3 Finding some extensions

Let j : Gm ↪→ A1 be the canonical embedding. Remember that the nonconstant part of(
pn,+OXn,w

)G
was j!+ι

+
nFn, by corollary 2.1.7. In this section we give a nearly explicit de-

scription of it, finding also j!ι
+
nFn and j+ι

+
nFn. Actually, we will do it in a much more general

setting. Before starting, let us introduce some notation. Let γ be a point of Gm, d be a positive

integer and (n,m) 6= (0, 0) a couple of nonnegative integers.

Let (a1, . . . , an) and (b1, . . . , bm) be two tuples of rational numbers such that ai, bj ∈ [0, d),

and let H be the differential operator of DGm

H = γλd
n∏
i=1

(D − ai)−
m∏
j=1

(D − bj).

(If n or m are zero, we just do not take any product.) The inverse image by ι, the endomorphism

of Gm given by z 7→ z−d, of any hypergeometric DGm-module with exponents at the origin and

infinity in Q/Z, and irregular singularities on P1 or not (depending of course on γ, r and the

ai/d and bi/d), can be written in such a way. We will denote byM the DGm-module DGm/(H).

For any integer m, let Hm be the result of substituting D by D +m in the expression of H.

Proposition 4.3.1. With the same notation as above,

j!M∼= DA1/(H) and j+M∼= DA1/(Hd).

Proof. Let M1 = DA1/(H). We know that j!M∼= (j+M∗)∗, and since j is an open immersion,

M∗ ∼= j+M∗1. We have then to give an expression of M∗1, i. e., of Ht, where this last operator

is the adjoint of H with respect to ∂, the basis of the derivations of A1. Before that, we will

rewrite H as

H = γλd
n∏
i=1

(D − ai)−
m∑
j=0

sjD
j .
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Now, using that Daλd = λd(D + d)a and Dt = −D − 1,

(−1)mHt = (−1)m+nγλd
n∏
i=1

(D + d+ 1 + ai)−
m∑
j=0

(−1)m+jsj(D + 1)j =

= (−1)m+nγλd
n∏
i=1

(D + d+ 1 + ai)−
m∑
j=0

 m∑
k=j

(−1)m+ksk

(
k

j

)Dj .

Now we can apply lemma 1.2.10. In this particular context, our P0(t) verifies that

(−1)mP0(t) = −
m∑
j=0

 m∑
k=j

(−1)m+ksk

(
k

j

) tj .

Note that sm = 1 and

(−1)m+ksk =
∑

1≤j1<...<jr−k≤m

m−k∏
l=1

bjl ≥ 0

for every k = 0, . . . ,m−1, so every coefficient of (−1)mP0 is negative, and thus that polynomial

cannot have a positive and integer root. Therefore, j+j
+M∗1 ∼=M∗1 and so j!M =M1.

Let us proceed now to find the other extension. We know that j+M = j+j
+M1 =

M1

[
λ−1

]
. Using the formalism of the Bernstein-Sato polynomial, we will show in a moment

that M1

[
λ−1

]
=M1 · λ−d, whence j+M = DA1/AnnM1(λ−d); let us compute the annihilator

of λ−d.

Notice that Hdλ
−d = λ−dH, and suppose we had a differential operator L annihilating λ−d

in j+M. Then, there should exist some other operator P such that Lλ−d = PH = PλdHdλ
−d,

so L ∈ DA1Hd. In conclusion, j+M would be equal to DA1/(Hd).

So let us prove that M1

[
λ−1

]
is generated by λ−d. Let s be a dummy variable and let

Φ : DGm [s] → DGm [s] be the automorphism of OGm [s]-modules such that it leaves invariant λ

and s and Φ(D) = D − s. Φ(H) belongs not only to DGm [s], but to DA1 [s], too. Let λs be a

symbol, and let us consider the DA1 [s]-module M1

[
λ−1, s

]
· λs, in which ∂λs = sλ−1 · λs. As

before, just by the definition of it as a DA1 [s]-module we have that Φ(H) · λs = 0.

In this setting, we can express Φ(H) as a difference P (s)λ− b(s), with b being a polynomial

in s. Indeed,

Φ

(
γλd

n∏
i=1

(D − ai)

)
= λd

n∏
i=1

(D − s− ai) =
n∏
i=1

(D − s− d− ai)λd,

and

Φ(D − bj) = D − s− bj = (D + 1)− (s+ bj + 1) = ∂λ− (s+ bj + 1).

Then by taking b(s) = (s+ b1 + 1) · . . . · (s+ bm + 1), we have that

P (s)λ · λs = b(s) · λs

in M1

[
λ−1, s

]
· λs. Let now ϕl be the specialization morphism defined by

ϕl :M1

[
λ−1, s

]
· λs −→ M1

[
λ−1

]
s 7−→ −d− l,

,
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with l ≥ 1. Since b(−d− l) 6= 0 for those values of l, we have a relation inM1

[
λ−1

]
of the form

λ−d−l =
P (−d− l)
b(−d− l)

λ−d−l+1,

and we are done.

Note that if m = 0, in fact any negative power of λ generates j+M, so although it is still

true, the result is not optimal. Anyway, we will only need it as stated. This proposition is

absolutely general with respect to the parameters of the original hypergeometric D-module. In

the following statement we will have to make stronger assumptions to obtain weaker results, but

it will still work with any of our Fn.

Proposition 4.3.2. With the same notation as above, let m < d and suppose that no ai is

congruent to any bj modulo dZ and there exist a set of integers {b′1, . . . , b′r} ⊂ {1, . . . , d−1} such

that m+ r = d− 1 and {b1, . . . , bm, b′1, . . . , b′r} = {1, . . . , d− 1}. Define H ′ to be the differential

operator given by

H ′ = γλd
n∏
i=1

(D − ai)
r∏

k=1

(D − b′k)−
m∏
j=1

(D − bj)
r∏

k=1

(D − b′k),

and let L ∈ DA1 be

∂d−1 − γλ
n∏
i=1

(D − ai + 1)
r∏

k=1

(D − b′k + 1).

Then, j!+M is the direct sum of the nonconstant composition factors of j!+DGm/(H
′) ∼= DA1/(L).

Proof. Let M′ = DGm/(H
′) and let N be a DGm-module such that M ∼= ι+N . Choosing N

appropriately, we can claim thatM′ is the inverse image by ι of a reducible hypergeometric DGm-

module, whose composition factors are N and some Kummer D-modules having as exponents

rational numbers of denominator d modulo Z. Then the composition factors of j!+M′ will be

j!+M and some copies of OA1 . Since N is nonpunctual and irreducible, M is semisimple, and

so is j!+M, being then a direct sum of d irreducibles where each of them is the inverse image of

another by a homothety of ratio a d-th root of unity. Therefore, none of them can be constant,

for all of them would be so and consequently, N could not be of Euler-Poincaré characteristic

−1. Let us prove that j!+M′ ∼= DA1/(L).

By the previous proposition, the canonical morphism j!M′ → j+M′ coincides in this case

with the localization morphism

·λd : DA1/(H ′) −→ DA1/(H ′d).

Thus j!+M′ will be the submodule of j+M′ generated by λd. Actually this submodule is also

generated by λd−1, for we have a relation λd−1 + Pλd = QH ′d, P and Q being two elements of

DA1 .

Let Q = αλd−1, where α ∈ Q will be determined later. Multiplying by λ−d on the right and

λ on the left, we know that λd−1 + Pλd = QH ′d is equivalent to 1 + λP = αH ′, which is trivial:

since λ divides D on the left, we can write H ′ as λP ′ + (−1)d
∏
j bi
∏
k b
′
k, so we can take α to

be the inverse of that last summand.
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If we had an operator L such that H ′1 = λd−1L, then we would have proved the proposition,

for it would generate the annihilator of λd−1 in j+M′. In fact, if we had two operators P and Q

such that Pλd−1 = QH ′d, then P = QH ′dλ
−d+1 = Qλ−d+1H ′1 = QL, so j!+M′ ∼= DA1/(L). Let

us prove that such an element L of DA1 exists and has the expression stated above.

By assumption,

H ′ = γλd
n∏
i=1

(D − ai)
r∏

k=1

(D − b′k)−
d−1∑
j=0

s(d, j + 1)Dj ,

the s(a, b) being the Stirling numbers of the first kind. For the sake of clarity, rename a′i = ai

for i = 1, . . . , n and a′i = b′i−m for i = m+ 1, . . . , d− 1. Then,

H ′1 = γλd
n+r∏
i=1

(D + 1− a′i)−
d−1∑
j=0

s(d− 1, j)Dj .

Each power Dj can be written as
∑j

k=0 S(j, k)λk∂k, where the S(a, b) are the Stirling numbers of

the second kind. Let us prove this by induction. For j = 1 it is obvious, so let us go to the general

case. Then, by the recursion formula for Stirling numbers of the second kind [AS, 24.1.4.II.A],

Dj+1 =

j∑
k=0

S(j, k)Dλk∂k =

j+1∑
k=0

(S(j, k − 1) + kS(j, k))λk∂k =

j+1∑
k=0

S(j + 1, k)Dλk∂k.

Write γ
∏n+r
i=1 (D + 1− a′i) =

∑n+r
i=0 tiD

i. With this notation,

H ′1 =
n+r∑
i=0

tiλ
d

i∑
l=0

S(i, l)λl∂l −
d−1∑
j=0

s(d− 1, j)

j∑
l=0

S(j, l)λl∂l.

We have arrived at an expression in which every term of the form λk∂k has a coefficient which

is a linear combination of λd and 1, but

−
d−1∑
j=l

s(d− 1, j)S(j, l) = −δl,d−1,

which is a well known formula in combinatorics (cf. [AS, 24.1.4.II.B]). Therefore we have that

H ′1 = −λd−1L, with

L = ∂d−1 − λ
n+r∑
i=0

ti

i∑
l=0

S(i, l)λl∂l = ∂d−1 − γλ
n+r∏
i=1

(D + 1− a′i).

Remark 4.3.3. This proposition solves partially, because we do not give a purely explicit ex-

pression of j!+M, the open question [Ka5, 6.1.3], but in a more general setting than [ibid.,

6.1.1].

Note that L has only a regular singularity, if any, at the points with equation γλd − 1 = 0,

which, in our case, were the ramification points of pn : Xn,w → A1. We can also check that
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j!+M is an autodual DA1-module (and so j!+M′, because it is semisimple and the rest of their

composition factors are just copies of OA1 , which is autodual, too), under the conditions and

notations of the proposition, whenever there exists an integer α such that the map x 7→ −x+α

mod d is bijective on the set of the ai and n + m is even (this makes us restrict ourselves to

some more particular hypergeometric D-modules, but we can find all of the Gn among them):

In order to prove that, we use corollary 1.2.9, so if we showed that M were itself autodual,

we would be done. This D-module is the inverse image by ι, of an irreducible hypergeometric

D-module of parameters γ, the αi and the βj . Therefore, by remark 1.4.5, M∗ will be the

inverse image by ι of an irreducible hypergeometric of parameters γ(−1)n+m, the −αi and the

−βj . The isomorphism between both inverse images of hypergeometrics follows, after twisting

α times by λ, by proposition 1.4.10 under the assumptions of the previous paragraph.



Appendix A

Mayer-Vietoris spectral sequences

for D-modules

Local cohomology and localization of sheaves of abelian groups have been of interest since the

sixties, when Grothendieck introduced them in a seminar at Harvard ([Ha2]). Since then, they

have become a common tool when working in algebraic geometry or commutative algebra, for

they appear naturally when studying sheaf cohomology, D-modules, depth or cohomological

dimension.

In this appendix we give two Mayer-Vietoris spectral sequences of the localization of certain

OX -modules over the open complement of a closed subvariety Y =
⋃
i Yi of an algebraic variety

X of characteristic zero. For a complex of OX -modules M ∈ Db(OX), one can define the

localization of M, denoted by RM(∗Y ), as the image of M by the right derived functor of

lim−→k
HomOX

(
J kY , •

)
. If M is of quasi-coherent cohomology, Grothendieck’s classical version

and this one coincide. For this functor we prove in theorem A.2.5 the existence of the spectral

sequence of bounded complexes of quasi-coherent OX -modules

Ep,q1 =
⊕
|I|=1−p

RqM(∗YI)⇒p Rp+qM(∗Y ),

where YI is the intersection of the components (not necessarily irreducible) Yi for i ∈ I. This

way of dividing Y and taking the spectral sequence is completely analogous to how Àlvarez

Montaner, Garćıa López and Zarzuela Armengou acted with local cohomology of modules (with

support in certain ideals) in [AGZ], work which was generalized by Lyubeznik in [Ly].

There is another spectral sequence provided in theorem A.3.1, very related to the one written

above, but in a relative version. To achieve that, we work with DX -modules, by using the direct

image functor in Db
c (DX) associated with a morphism f : X → Z. The spectral sequence takes

a complex of DX -modules M∈ Db
c (DX) and deals with complexes of DZ-modules like this:

Ep,q1 =
⊕
|I|=1−p

Hqf+RM(∗YI)⇒p Hp+qf+RM(∗Y ).

Despite the abundant presence of Mayer-Vietoris-like spectral sequences in the literature,

we only found an analogue of the second one when f is a projection over a point in [SGA 4

1/2, Sommes trig. 2.6.2*], but using `-adic cohomology with compact support.

93
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The relative spectral sequence allows us to compute in a purely algebraic way the global

algebraic de Rham cohomology of the complement of an (affine or projective) arrangement

of hyperplanes over any algebraically closed field of characteristic zero. In the case it were C,

by [Gr, Theorem 1’] we know that the global algebraic de Rham cohomology of that complement

is the same as its singular cohomology, giving in particular a proof of the well known result of

Orlik and Solomon [OS, 5.3], whose original proof requires more background on the combinatorics

of the intersection poset of the arrangement and its characteristic and Poincaré polynomials.

A.1 Basics on spectral sequences

In this section we will recall some facts about spectral sequences that will be useful in what

follows. We will only work with cohomological spectral sequences, so that adjective will be

omitted.

Definition A.1.1. A spectral sequence in an abelian category A is a family {Ep,qr } of objects

in A for every integers p, q and for every integer r ≥ 0, such that for each (p, q, r) there is a

morphism, called differential, dp,qr : Ep,qr → Ep+r,q−r+1
r satisfying that dp+r,q−r+1

r ◦ dp,qr = 0.

The subfamily of objects Er := {Ep,qr } for a fixed r is called the r-th page, or sheet, of the

spectral sequence, and we name the family of all differentials dp,qr with r fixed dr : Er → Er.

The chain condition for the dp,qr can be written as d2
r = 0.

Moreover, we also have isomorphisms

Hp,q(Er) = ker dp,qr / im dp−r,q+r−1
r

∼−→ Ep,qr+1.

Definition A.1.2. Let E = {Ep,qr } be a spectral sequence such that for every r ≥ r(p, q) it

holds that Ep,qr = Ep,qr(p,q). We define the limit term of E as Ep,q∞ := Ep,qr(p,q), and we say that E

abuts to E∞.

The limit term of a spectral sequence is what gives us the desired information. There are

some cases in which it exists and is easy to compute:

Remark A.1.3. Let E be a spectral sequence. If there exists an r0 ≥ 0 such that dr = 0 for every

r ≥ r0, then Er0 = E∞, for Er+1 = H(Er) = Er. In that case we say that E degenerates at r0.

Now suppose that there exists an r0 ≥ 2 such that Er0 is concentrated in a single row or

column. Then we have that every differential dp,qr departs from or arrives at the zero object, so

the spectral sequence degenerates at the r0-th page. In this special case of degeneration we say

that the spectral sequence collapses at the r0-th sheet.

Definition A.1.4. Let E be a spectral sequence. It is said to converge if there exists a graded

object H•, with a finite filtration F •H•, such that the limit term of E is the graded complex

associated to F •, that is,

Ep,q∞ = GpHp+q = F pHp+q/F p+1Hp+q.

We denote this by Ep,qr ⇒p H
p+q.
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This is what spectral sequences are for; they usually allow us to calculate an approximation

by means of a filtration of an interesting filtrated object hard to deal with, by computing some

other objects in a simpler way.

For instance, if E is a spectral sequence collapsing at the s-th page, it converges to H•,

where Hn is the only Ep,qs 6= 0 such that p+ q = n.

We are going to introduce a special kind of spectral sequences that will be of help in the

following: the spectral sequences of a double complex. Recall that a double complex in A is a

bigraded complex C•,• with differentials dp,qI : Cp,q → Cp+1,q and dII : Cp,q → Cp,q+1 such that

d2
I = d2

II = dIdII + dIIdI = 0.

Remark A.1.5. With each complex of complexes C = (C•)• we can associate a bicomplex in an

obvious way just by taking as vertical differentials those of C and horizontal differentials the

ones of C multiplied by (−1)q in the q-th row.

Definition A.1.6. Let C•,• be a double complex. Its total complex, Tot(C)•, is the complex

given by

Tot(C)n =
⊕
p+q=n

Cp,q,

with differentials dT given by dT = dI+dII . It can be endowed with two filtrations, the horizontal

and vertical ones, given respectively by

F pI (Tot(C)n) =
⊕

r+s=n,r≤p
Cr,s and F pII(Tot(C)n) =

⊕
r+s=n,s≤p

Cr,s.

Proposition A.1.7. Let C•,• be a double complex. Then, there exist two spectral sequences,

called usual, IE and IIE, given by

IEp,q0 = IIEp,q0 = Cp,q and IEp,q1 = Hp(C•,q); IIEp,q1 = Hq(Cp,•).

If the bicomplex C•,• can be translated to occupy either the first or the third quadrant, both

spectral sequences converge to the cohomology of the total complex, that is,

IEp,q∞ ⇒p Hp+q(Tot(C)•) and IIEp,q∞ ⇒p Hp+q(Tot(C)•).

Proof. Take into account that if we translate to the first or third quadrant our complex, we do

not change the structure of its associated usual spectral sequences, so we can assume that it lies

directly on one of those quadrants and then apply [Ro, 11.17].

A complex having a finite number of nonvanishing and left or right bounded rows or columns

fulfills the condition of the proposition. Note that although both spectral sequences have a

grading of the total complex as limit term, they do not need to be the same, since the filtrations

that induce them are different.

Spectral sequences arising from double complexes appear very frequently, but this is not the

only way to obtain a spectral sequence. Two further constructions are the spectral sequences

associated with an exact couple or a filtered complex. See, for example, [Ro, § 11] for more

information.
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A.2 Mayer-Vietoris spectral sequence

In what follows, X will denote a smooth algebraic variety over an algebraically closed field of

characteristic zero, and Y ⊆ X will be a closed subvariety of X defined by the ideal JY .

After [Gr, Remark 5], we can define the functor •(∗Y ) of Mod(OX) given by

M(∗Y ) := lim−→
k

HomOX
(
J kY ,M

)
.

Remark A.2.1. Let I• be an acyclic complex of injective OX -modules. Since HomOX (•, Iq) is

an exact functor for every q, the complex HomOX (J kY , I•) will be acyclic for every k, and so

will be I(∗Y ) because direct limits commute with cohomology as long as it is an exact functor.

Therefore, by [Ha1, I.5.1], the functor •(∗Y ) is left exact and can be right derived to provide a

functor

R • (∗Y ) : Db(OX) −→ Db(OX).

Remark A.2.2. Let j : X − Y ↪→ X denote the open immersion from the complement of Y into

X, and let us define (cf. [Me1, I.6.1]) the algebraic local cohomology of an OX -module M as

RiΓ[Y ](M) := lim−→
k

RiHomOX
(
OX/J kY ,M

)
.

Because of the same reason as above, Γ[Y ] is a left exact functor. From the exact sequence

0→ J kY → OX → OX/J kY → 0 and [Ha2, Corollary 1.9, 2.8], we obtain a commutative diagram

0 // Γ(Y,M) //M // j∗j
−1M // R1Γ(Y,M) // 0

0 // Γ[Y ](M) //

OO

M //

OO

M(∗Y ) // R1Γ[Y ](M) //

OO

0

,

where the first and fourth objects of the top and the bottom row are, respectively, the first two

local cohomology modules of M over Y and their algebraic counterparts (cf. [Ha2]). Then we

have a morphism M(∗Y ) → j∗j
−1M, which, again by [Ha2, 2.8], becomes an isomorphism if

M is of quasi-coherent cohomology, as well as with RM(∗Y )→ Rj∗j
−1M.

As a consequence, for every quasi-coherent injective OX -module I, we have that I(∗Y ) =

j∗j
−1I is another quasi-coherent injective OX -module by [EGA III.I, 1.4.10].

Definition A.2.3. Let us assume that Y can be decomposed as the union of r different closed

subvarieties Yi ⊆ X, i = 1, . . . , r. For each I ⊆ {1, . . . , r}, we will write YI =
⋂
i∈I Yi. If I = ∅,

YI = Y .

We define the functor MV{Yi} :Mod(OX) −→ C(OX) given by

MVp
{Yi}(M) =


⊕
|I|=1−p

M(∗YI) p = −(r − 1), . . . , 0

0 otherwise

,

with connecting morphisms consisting of an alternating sum of the canonical morphisms ρI,J :

M(∗YI) → M(∗YJ) whenever I ⊃ J induced by the inclusions of the respective ideals of
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definition, ηJ,I : JYJ ↪→ JYI . More precisely, if we denote by Ij the subset resulting of taking

out of I its j-th element, ⊕
|I|=1−p

M(∗YI) −→
⊕
|J |=−p

M(∗YJ)

αI 7−→
−p⊕
j=0

(−1)jρI,Ij (αI)

.

It is straightforward to see that these morphisms make MV{Yi}(M) into a complex.

Any morphism between two OX -modulesM and N gives rise to a morphism betweenM(∗T )

and N (∗T ) for every closed subvariety T ⊂ X, just by applying the corresponding hom functor

and taking direct limits. Thus the image by MV{Yi} of a morphism M → N is just the chain

map consisting of the direct sum of their associated morphisms at every degree.

Proposition A.2.4. Let I be an injective OX-module. Then the complex MV{Yi}(I) is exact

except in degree zero, in which its cohomology is I(∗Y ).

Proof. To prove this statement we will introduce two complexes. Let us define Γ[{Yi}](M) to be

the complex defined by

Γp[{Yi}](M) =


⊕
|I|=1−p

Γ[YI ](M) p = −(r − 1), . . . , 0

0 otherwise

,

with morphisms given by ⊕
|I|=1−p

Γ[YI ](M) −→
⊕
|J |=−p

Γ[YJ ](M)

αI 7−→
−p⊕
j=0

(−1)jρLI,Ij (αI)

as chain maps, ρLI,Ij being the morphisms associated with the canonical inclusions ηJ,I : JYJ ↪→
JYI for J ⊆ I. As with MV{Yi}, it can easily be proved that it is a complex.

The other complex that we will provide, denoted by Cha(M), mimics this behaviour of

Γ[{Yi}](•) and MV{Yi}(•), but taking as objects just copies of M. Namely,

Chap(M) =


⊕
|I|=1−p

M p = −(r − 1), . . . , 0

0 otherwise

.

The chain maps are just alternating sums of identity morphisms as with the other two complexes.

Now for every injective OX -module I, we can form an exact sequence

0 −→ Γ[{Yi}](I) −→ Cha(I) −→ MV{Yi}(I) −→ 0,

where, at each index, we take the exact sequence induced by applying direct sums, direct limits

and the exact functor (since I is injective) HomOX (•, I) to

0 −→ J kYI −→ OX −→ OX/J
k
YI
−→ 0.
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Thanks to [Ly, 2.1] we know that, for every x ∈ X, Γ[{Yi}](I)x is exact except at degree zero,

in which its cohomology is Γ[Y ](I)x. On the other hand, Cha(I)x is just the simplicial complex

of cohomology associated with the standard (r−1)-simplex ∆r−1 with coefficients in the abelian

group Ix. Consequently, its p-th cohomology will vanish but for p = 0, being Ix at that point.

Thus if we take stalks at x on our exact sequence of complexes and form its long exact

sequence of cohomology, we can deduce that at every x ∈ X the cohomology of MV{Yi}(I)x

vanishes everywhere except in zero degree, being there Ix/Γ[Y ](I)x ∼= I(∗Y )x.

Having the same for every stalk, we can go upstairs to X thanks to [Iv, 2.6] and obtain what

we wanted to prove.

Once we have settled that important fact that we will use in the following, we can state the

first main result of this appendix.

Theorem A.2.5. For every M∈ Db
qc(OX), there exists a spectral sequence of the form

Ep,q1 =
⊕
|I|=1−p

RqM(∗YI)⇒p Rp+qM(∗Y ).

Proof. Let us take a quasi-coherent OX -injective resolution I ofM (we can do it thanks to [Ha1,

II.7.18]), and form the double complex C•,•, given by Cp,q = MVp
{Yi}(I

q), with vertical differ-

entials given by the images by the functor MVp
{Yi} of the ones of I•, and horizontal differentials

those of MV•{Yi}(I
q) multiplied by (−1)q.

Since C•,• occupies the first quadrant (and has r nonzero columns), its usual spectral se-

quences will converge to the cohomology of the total complex, Hn (Tot(C•,•)).

The first sheet of the first of those usual spectral sequences is, by proposition A.2.4,

IEp,q1 = Hp
(

MV•{Yi}(I
q)
)

=

{
Iq(∗Y ) p = 0

0 otherwise

Now, since the second page of this spectral sequence is the vertical cohomology of the first one

and the latter is concentrated in one column, we have that

IEp,q2 = Hq
(
Hp
(

MV•{Yi}(I
q)
))

=

{
RqM(∗Y ) p = 0

0 otherwise
,

so IEr collapses and Hn (Tot(C•,•)) = IE0,n
2 = RnM(∗Y ).

On the other hand, the first page of the other usual spectral sequence is given by IIEp,q1 =

Hq (Cp,•). In our context, we have by definition that

IIEp,q1 = Hq
(

MVp
{Yi}(I

•)
)

=
⊕
|I|=1−p

RqM(∗YI).

Since IIEp,q1 ⇒p Rp+qM(∗Y ), we obtain what we wanted to prove.

Note that when r = 1 the spectral sequence is trivial and gives no additional information.

When r = 2 we have several short exact sequences of the form

0 −→ E−1,n+1
∞ −→ RnM(∗Y ) −→ E0,n

∞ −→ 0,

so in this case we already obtain a different (and more detailed) information than by using the

Mayer-Vietoris long exact sequence [Me1, I.6.2].
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A.3 Relative Mayer-Vietoris spectral sequence

As we have already said, in this section we present a relative version of the above mentioned

spectral sequence, but for DX -modules, by using the direct image functor for them.

Theorem A.3.1. Let f : X −→ Z be a morphism between two smooth algebraic varieties and

let Y =
⋃
i Yi a closed subvariety of X. Then, for every M ∈ Db

c (DX), there exists a spectral

sequence of complexes of DZ-modules of the form

Ep,q1 =
⊕
|I|=1−p

Hqf+RM(∗YI)⇒p Hp+qf+RM(∗Y ).

Proof. First take into account that every morphism can be decomposed as a closed immersion

into its graph followed by the canonical projection over the second component, so if we prove

that for any closed immersion i : X −→ Z we have that i+RM(∗Y ) ∼= R(i+M)(∗Y ), we will

only need to prove the statement of the theorem in the case in which f = π : X = T ×Z −→ Z

is a projection.

Indeed, consider the cartesian diagram given by

X − Y

�ī
��

j
// X

i
��

Z − Y j̄
// Z

.

We know that M is a coherent DX -module, hence quasi-coherent OX -module, so RM(∗Y ) ∼=
j+j

+M. By the base change theorem,

i+j+j
+M = j̄+ī+j

+M∼= j̄+j̄
+i+M.

Now i+M is a quasi-coherent OZ-module ([HTT, 1.5.24]), whence j̄+j̄
+i+M ∼= R(i+M)(∗Y )

and we are done.

Thus assume that f is a projection as in the first paragraph. For every I ⊂ {1, . . . , r}, let

us define UI = X − YI and denote by jI the open immersion of UI into X, and define also

j0 : U0 := X − Y ↪→ X. Since M is of quasi-coherent cohomology over OX , by virtue of

remarks A.2.2, 1.1.2 and 1.1.4, RM(∗YI) ∼= RjI,∗j
−1
I M ∼= jI,+j

+
I M. Therefore we will have

that π+RM(∗YI) = π+jI,+j
+
I M = (π ◦ jI)+j

+
I M. As a consequence,

π+RM(∗YI) = R(π ◦ jI)∗
(
DZ←UI ⊗

L
DUI

j−1
I M

)
.

Now take into account that DUI = j−1
I DX and DZ←UI = j−1

I DZ←X , so we can write π+RM(∗YI)
as

R(π ◦ jI)∗j−1
I

(
DZ←X ⊗L

DXM
)
.

The analogous result holds for π+RM(∗Y ) ∼= R(π ◦ j0)∗j
−1
0

(
DZ←X ⊗L

DXM
)

.

Recall that DZ←X⊗L
DXM

∼= DRπ(M)[codimX Z] because of π being a projection. DRπ(M)

does not belong to the category of complexes of quasi-coherent OX -modules because its chain

maps are just linear over our field of definition; however, it is a complex in the category of sheaves
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of abelian groups whose objects are quasi-coherent OX -modules. This slight difference allows us

to take an injective Cartan-Eilenberg resolution of it in the category of sheaves of abelian groups,

but having injective quasi-coherent OX -module as objects. To see this, just note that in the dual

of the proof of [Wei, 5.7.2] every (classical) injective resolution that we form can be taken within

the category of quasi-coherent OX -modules. The problem appears when one has to lift linear

maps, since it cannot provide a morphism of OX -modules. Nevertheless, this drawback can be

controlled because chain morphisms do not affect the properties of the objects, and taking the

total complex of that Cartan-Eilenberg resolution, we turn out to have an injective resolution

I• of DRπ(M)[codimX Z] in the category of sheaves of abelian groups whose objects are much

more than that, since they are quasi-coherent OX -modules.

Consequently, let us build the bicomplex C•,• with objects

Cp,q =
⊕
|I|=1−p

(π ◦ jI)∗j−1
I I

q = π∗MVp
{Yi}(I

q),

where the last equality holds because of our careful choice of I•, being the vertical and horizontal

differentials the image by π∗ of those from MVp
{Yi}(I

•) and the differentials of MV•{Yi}(I
q)

multiplied by (−1)q, respectively.

As in the proof of theorem A.2.5, we will take the usual spectral sequences for that double

complex, which has r bounded below nonvanishing columns. Then those spectral sequences will

converge to the cohomology of the total complex associated with C•,•.

Since π∗ is a left exact functor and the Iq(∗YI) are acyclic, the first usual spectral sequence

has as first page

IEp,q1 = Hp (C•,q) =

{
π∗Iq(∗Y ) p = 0

0 otherwise

This is because we were working with horizontal differentials, which are OX -linear. Therefore

the second sheet of this spectral sequence will be

IEp,q2 = Hq (Hp (C•,q)) ∼=

{
Rq(π ◦ j0)∗j

−1
0 DRπ(M)[dimT ] p = 0

0 otherwise

As it happened in the proof of theorem A.2.5, this spectral sequence collapses, and in consequence

Hn (Tot(C•,•)) = IE0,n
2
∼= Hnπ+RM(∗Y ).

Note that the last isomorphism is just a consequence of having the isomorphism DZ←X⊗L
DXM

∼=
DRπ(M)[dimT ] with complexes of quasi-coherent OX -modules as objects.

Let us see what expression the other usual spectral sequence has. Its first page is the vertical

cohomology of the double complex, that is to say,

IIEp,q1 = Hq(Cp,•) ∼=
⊕
|I|=1−p

Rq(π ◦ jI)∗j−1
I I

q ∼=
⊕
|I|=1−p

Hqπ+RM(∗YI).

There is no objection to that; what we only needed were kernels and cokernels, and they are the

same in both senses.

In conclusion,

Ep,q1 =
⊕
|I|=1−p

Hqπ+RM(∗YI)⇒p Hp+qπ+RM(∗Y ),

as desired.
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A.4 Arrangements of hyperplanes

Now we will exemplify the usefulness of theorem A.3.1 with the calculation of the global de

Rham cohomology of the complement of an arrangement of hyperplanes A over an algebraically

closed field k of characteristic zero. As we will see, it is much influenced by the combinatorics

of its intersection poset.

Even though the arrangement is projective, its complement is still affine, since we can con-

sider one of the hyperplanes as the one at infinity, so we will formulate the result just for affine

arrangements. Thus let X = An and Y be the subvariety of An given by the union of the

hyperplanes of A, which we will rename to Y1, . . . , Yr. Let M = OAn . We have the spectral

sequence

Ep,q1 =
⊕
|I|=1−p

HqπAn,+ROAn(∗YI)⇒p Hp+qπAn,+ROAn(∗Y ).

If A is not essential, let us denote its rank by r < n and the variety formed by the essential

arrangement associated with A by Y ′. Then An − Y ∼= (Ar − Y ′) × An−r, so by the global

Künneth formula we know that πAn,+ROAn(∗Y ) ∼= πAr,+ROAr(∗Y ′)[n− r].
In order to use the spectral sequence, we must know all of the πAn,+ROAn(∗YI), for which we

need to do a little work. Recall that for every closed subvariety T ⊂ X and everyM∈ Db
c (DX),

we have the isomorphism RM(∗T ) ∼= j+j
+M, j being the open immersion of the complement

of T into X. Moreover, we can form the triangle in Db (DX)

RΓ[T ](M) −→M −→ j+j
+M = RM(∗T ) −→,

associated with the diagram X − T j→ X
i← T , and if T is smooth we can replace RΓ[T ](M) by

i+i
+M[− codimX T ].

Proposition A.4.1. Let Y be the variety formed by the union of the hyperplanes Yi, i = 1, . . . , r

of an essential affine arrangement of hyperplanes over an algebraically closed field of character-

istic zero k.

For any pair of integers (p, q), let

dp,q = card{∅ 6= I ⊆ {1, . . . , r} | |I| = 1− p, dimYI = (n− q − 1)/2},

and let pq,0 and pq,1 be, for a fixed q 6= −n, the least and greatest p such that dp,q 6= 0, respectively.

Then, for any i = −n+ 1, . . . , 0 there exists a unique integer q such that q + pq,1 = i, and

dimHiπAn,+ROAn(∗Y ) = (−1)−pq,1
pq,1∑
p=pq,0

(−1)pdp,q,

If i = −n, HiπAn,+ROAn(∗Y ) = k, and if i /∈ {−n, . . . , 0}, HiπAn,+ROAn(∗Y ) vanishes.

Proof. Note that the last statement follows from the fact that πAn,+ is nothing but taking global

de Rham cohomology, shifted n places to the left. Then, HiπAn,+ROAn(∗Y ) = 0 for any i < −n,

and it also vanishes for positive values of i (cf. remark 1.1.15).

For every I ⊂ {1, . . . , r} let rI = dimYI . We have that An−YI ∼= (An−rI − {0})×ArI , so we

only need, by virtue of the global Künneth formula, to compute the global de Rham cohomology
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of the affine space Am minus one point for every m. In order to do that we can use the excision

triangle with T = {0} as a closed subvariety of An, namely

i+i
+OAm [−m] −→ OAm −→ ROAm(∗{0}) −→ .

Applying the direct image functor associated with the projection πAm we get another triangle

of graded k-vector spaces

k[−m] −→ k[m] −→ πAm,+ROAm(∗{0}),

so πAm,+ROAm(∗{0}) = k[m]⊕ k[−m+ 1].

Thus for every I ⊂ {1, . . . , r} we have that

πAn,+ROAn(∗YI) =

{
k[n]⊕ k[−n+ 2rI + 1] if YI 6= ∅

k[n] if YI = ∅
.

By definition, the first page of our relative Mayer-Vietoris spectral sequence is

Ep,q1 =


k( r

1−p) p = −(r − 1), . . . , 0 , q = −n
kdp,q q 6= −n and dp,q 6= 0

0 otherwise

.

For a fixed q, the differentials between the Ep,q1 terms are induced by the differentials in

MV{Yi}(I) for an injective OAn-module I, whose cohomologies vanished except in degree zero,

and so will happen with E•,q1 .

Whenever we have an exact sequence of vector spaces of the form

V : 0 −→ V0 −→ . . . −→ Vs,

the dimension of the last cohomology (that is, the s-th one), is

dim coker(Vs−1 → Vs) = (−1)s
s∑
i=0

(−1)i dimVi,

which can be easily proved by induction. Then, when q = −n, the dimension of the last

cohomology space of E•,−n1 is

r∑
i=1

(
r

i

)
(−1)i−1 = − ((1− 1)r − 1) = 1,

while for other q such that dp,q 6= 0 for some p, the dimension of the last cohomology space of

E•,q1 is

ep,q := (−1)−pq,1
pq,1∑
p=pq,0

(−1)pdp,q,

vanishing otherwise.

Thus we can affirm that at the second sheet of our spectral sequence,

dimEp,q2 =


ep,q if q 6= −n, p = pq,1 and dp,q 6= 0

1 if p = 0, q = −n
0 otherwise

.
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By definition, apart from q = −n, Ep,q2 = 0 if q − n is even. It is easy to see that E2 = E∞,

for any dp,qr maps Ep,qr to Ep+r,q−r+1
r , and for no r we can go from one point of the form

(p, n + 2k − 1) neither to another (p′, n + 2k′ − 1) nor to (0,−n), for any couple of integers k

and k′, so Ep,q2 = Ep,q∞ 6= 0. Furthermore, note that pq,1 = (1− q−n)/2, because it is one minus

the least amount of distinct hyperplanes which suffice to intersect in a variety of dimension

r = (n − q − 1)/2, which is n − r (we are using here that the arrangement is essential), so for

each integer i = −n, . . . , 0 there is at most just one pair (p, q) satisfying p = pq,1 (when it can

be defined) and p + q = i. Summing up, our spectral sequence degenerates at the second page

and

dimHiπ+ROAn(∗Y ) =


ep,q if ep,q 6= 0 for i = p+ q

1 if i = −n
0 otherwise

.

Corollary A.4.2. Under the same assumptions of the proposition, if A is an affine arrangement

in general position,

π+ROAn(∗Y ) =

0⊕
i=−n

k( r
i+n)[−i],

where
(
a
b

)
= 0 if a < b by convention.

Recall that the proposition reproduces in our context the decomposition given by Orlik and

Solomon in [OS, 5.3], when A is affine and central. Although we can reduce to this case for

other kind of arrangements, our result gives a more direct proof of the general case.
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Concluding remarks

Il possibile lo facciamo subito,

l’impossibile cerchiamo di farlo,

per i miracoli ci stiamo attrezzando.

Popular Italian

Original contributions

In this section we list, for the sake of clarity and honesty, the original results or those proved

independently or in a different way to what we have found in the literature. Throughout the text,

the reader will have seen proofs gathering together some others, known results in a generalized

way, or some proved independently of what we have found in the literature. We can also count

results which were unknown until now, with a proof inspired in the work of others or completely

original. Let us go chapter by chapter.

In the first chapter, because of its preliminary nature, no big contribution to the knowledge

has been done; the only new thing to us is the proof of lemma 1.1.16.

In the second section, the main novelty is the generalization of proposition 1.2.11 to the

complement of some points, avoiding the mention to the middle extension. This implies that

the statements of its two corollaries on the Euler-Poincaré characteristic are slightly improved

with respect to Katz’s, and for instance, can be used at the proof of proposition 2.2.5.

The third section contains an algebraic proof of the formal Jordan decomposition lemma

1.3.4, independently of the choice of the base field as long as it is algebraically closed. This

allows us to work in all the rest of the thesis over such a field instead of restricting to the

complex numbers. It may be not a big deal, but it helps to the completeness of the main results.

The second half of the section, starting at proposition 1.3.7, is original and was done in order

to find the exponents of Gn.

Section 1.4 is mainly due to Katz’s [Ka5, § 3] (and Loeser and Sabbah’s [LS]), and we have

only reordered some results and completed the proofs of some others as well as added the first

three.

The first half of section 2.1 is expositive, and the results are included so that the reader

can achieve a better understanding of the text. Apart from those pages, the rest is original.

Theorem 2.1.4 is mainly a justification to reduce ourselves to find the Gauss-Manin cohomology

of Yn,w over Gm, being then able to carry out all the inductive strategy. It is inspired on some
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arithmetic manipulations when working with exponential sums. And before proving inductively

any statement, one has to check the veracity of a basic case; that is lemma 2.1.9.

The rest of the chapter is a sequence of original propositions whose long proofs makes us get

closer and closer to the proof of theorem 2.1.6.

Chapter 3 is a small reflection of what happens at the first two. The first section includes,

in logical order, every statement needed to formulate and prove proposition 3.1.16; they are

included for the sake of completeness, not originality, except for the second proof of lemma

3.1.14, which is new.

The second section of the chapter contains the rest of what we needed to prove theorems

2.1.6 and 2.1.8 and their proofs themselves. The main result of the first half is the computation

of the restriction to Gm of the Fourier transform of K̄n. Some time ago we wanted to find

an expression for it, knowing the results of Katz exposed at the first section, but we did not

manage to find a way of doing it. As we have already commented, the proof of proposition 3.2.2

is inspired by a suggestion of Sabbah and his work with Douai [DS]. Although the methods

are not the same, the process is similar and we also make use of their fundamental arithmetic

lemma 3.2.1. The other way of finding the nonconstant part of K̄n is not original, as it was

suggested by Sabbah as well, but it is so the development of the strategy that we had to follow.

The second half of the section contains a detailed original analysis of the case in which wi = 1,

using the results of section 1.3.

As with the fourth chapter, the discussion on the assumptions on the wi at the first section

is original but inspired by the work [KlR] of Kloosterman, in which he does not impose any

condition on them.

The second section contains a fact observed when proving the results of chapter 2, and, like

them, is new. Up to semisimplification it gives an explicit result relating irreducible hypergeo-

metric D-modules of different parameters.

The propositions of the third section are the result of longing for providing an explicit

expression for the nonconstant part of K̄n. This was generalized in such a way that we also

deal with irregular hypergeometric D-modules, finding the extensions by j!, j+ and j!+, and

answering the open question [Ka5, 6.1.3] of Katz.

The appendix, inspired by the works of Àlvarez Montaner, Garćıa López and Zarzuela Ar-

mengou and Lyubeznik, is indeed original (primarily the last two and a half sections), and we

can carefully prove theorems A.2.5 and A.3.1, and provide a new purely algebraic way of show-

ing the expression of the Poincaré polynomial of an arrangement of hyperplanes in terms of its

intersection poset, despite not making mention to it.

Open questions and further projects

Let us now, to finish this thesis, comment in some detail the main ideas we have in mind to

complete or generalize the work exposed here.

In the proof of proposition 1.4.12 we have had to perform a small trip outside the algebraic

world. This result, present at [Ka5, 3.5.4], but mostly the seminal book [Ka6], introduced the

theory of rigidity of meromorphic connections on P1. This topic has been thoroughly studied by

106



many in the setting of `-adic local systems, whereas little has been done on the side of D-modules.

The main contributions to this are two independent approaches showing the preservation of the

index of rigidity after taking Fourier transforms: that of Paiva at his thesis [Pa], and Bloch

and Esnault’s work in [BE], already referred after the proof of the proposition. The methods

used by the latter are more algebraic than those of the former; since we would like to have an

algebraic proof of our rigidity result, it seems to us that a good way to do it is to understand

the techniques used at the second work.

Theorem 2.1.6 has in its statement two annoying parameters a and b, of which we cannot

get rid, not even partially, except for two cases, as we see in theorem 2.1.8. As we have already

said, we know that in any case it provides us the analogous result to the ones that Katz and

Kloosterman have already shown in other contexts. Nevertheless, we strongly believe that the

strategy followed when w0 = 1 can lead us to a general unconditional proof of our third main

theorem. This is the first point in which we plan to work. Other strategies that we have in mind

to overcome this drawback are, for instance, trying to find an inductive strategy in the value

of w0, maybe by means of étale morphisms connecting the different Kn associated with those

values of w0, or focusing on the exponents at infinity of Gn to find the value of a+ b and deduce

from there more facts about them.

For instance, if k is the field of complex numbers, it is a straightforward consequence of the

construction of the monodromy zeta function of λn that for each exponent α of Gn, at the origin

or infinity, its opposite class modulo Z −α must be also an exponent of Gn at the same point.

We also have that the trace of the associated monodromy at those points is an integer, implying

the same as above with respect to the exponents. If any of those topological arguments could

be translated to the algebraic setting, we would easily have that a + b would not be anything

but dn or dn/2, if possible, restricting the possible values of a and b.

We would also like to erase the ambiguity of the existence of another annoying parameter,

mn, despite it does almost not disrupt the strategy of the proof of theorem 2.1.6. In some

particular cases, from a topological point of view (cf. [OR]), we have that mn = 1; we conjecture

that this happens in the general case.

Once we finally prove theorem 2.1.8 in its full generality and we solve those small loose ends

above, we could think of the next step of the project about which we talked in the introduction.

There is a motivation for the use of D-modules which we did not remarked properly. We

commented at the introduction that there are two approaches to obtain a p-adic analogue of

the frame of `-adic constructible sheaves with weights. Both of them are inspired by and want

to imitate complex analytic D∞-module theory, since they need to work with a special kind

of convergence of series, appearing when one takes the weak formal completion of a formal

scheme. The formalism of Grothendieck’s six operations together with duality is independent

of the point of view, and it is being achieved by those two approaches, as well as a notion of

Fourier transform. Arithmetic D-modules have also a theory of weights, so apparently, any tool

from D-module theory used at this thesis is expected to appear soon, if it does not exist yet.

Nevertheless, there is not an actual p-adic analogue of Katz’s work on D-modules in dimen-

sion one or hypergeometrics in particular. Regarding p-adic differential equations in dimension

one, a big progress has been done, and we just need to cite [CM], a part of the amazing project
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on the index theorem of Christol and Mebkhout. This should be the starting point in order to

achieve p-adic analogues of sections 1.2 to 1.4 and 3.1. From the arithmetic D-module side, the

only existing result is an analogue of corollary 1.2.16 by Li at [Li]; much is to be done in both

settings. This is our main project: to build a theory of hypergeometric p-adic D-modules as

powerful as the one that we used in this thesis. This goal, together with a more settled develop-

ment of p-adic D-modules theory could lead us to a much better understanding on Kloosterman

sums and their L-functions, perhaps allowing us to generalize the results of Sperber of [Sp] about

the p-adic Newton polygon of such a function.

Other ways of generalizing our main theorems belong to the algebraic world of equal char-

acteristics. We could try to fully understand the Gauss-Manin cohomology not of Yn,w, but of

Xn,w, to complete the algebraic study of Dwork families. We know, thank to [Ka7, KlR] that

hypergeometric D-modules would still occur at the different eigenspaces of the cohomology with

respect to the action of the group G, so the tools exposed in this thesis would likely be of use.

The main handicap here seems to be to work in a general way with different parts of the same

direct image, without being able to reduce to some quotient, as with Yn,w. We should note that

Katz himself, by using only complex methods and not `-adic ones, comments at the beginning

of section in [Ka7, § 8] that he does not know how to put into practice this idea.

We can also make some advances in the direction of the dimension of the variety of parame-

ters. Although only a few, some bidimensional families of deformations of Fermat hypersurfaces

have been considered (cf., for instance, [CDFKM]), because of their connections with mirror

symmetry. It seems that generalized hypergeometric D-modules in two variables appear at

the expression of the Gauss-Manin cohomology of those families, and in that sense we have

two different theories. Loeser and Sabbah introduced in [LS] a generalized kind of hypergeo-

metric D-modules based on Katz’s work, but very little has been done using their construction.

Nowadays there is a much more popular generalization of hypergeometric D-modules, namely A-

hypergeometric systems, as introduced by Gel’fand, Graev, Kapranov and Zelevinskĭı (cf. [GGZ]

or [GZK]), and they have already been used to find the cohomology of some varieties, such as

the work on complete intersections [ASp] by Adolphson and Sperber.
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[Me5] Z. Mebkhout, Constructibilité de de Rham p-adique. C. R. Math. Acad. Sci. Paris

351 (2013), no. 15-16, 617-621.

[Mi] J. Milnor, Singular points of complex hypersurfaces. Annals of Mathematics Stud-

ies, 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press,

Tokyo (1968).

[MM] P. Maisonobe, Z. Mebkhout, Le théorème de comparaison pour les cycles
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Hautes Études Sci. Publ. Math. 11 (1961).

[SGA 4 1/2] P. Deligne, Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie
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