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Summary. The simulation of a P system with current computers is a quite com-plex
task. P systems are intrinsically nondeterministic computational devices and
therefore their computation trees are difficult to store and handle with computers
with one processor (or a bounded number of processors). Nevertheless, there exists a
first generation of simulators which can be successfully used for pedagogical pur-poses
and as assistant tools for researchers. This chapter summarizes some of these
simulators, presenting the state of the art of the available software for simulating
(different variants of) cell-like membrane systems.

1 Introduction

In the few years since membrane computing was initiated [39] as a new branch
of natural computing, a large number of variants have been considered, con-
cerning both the syntax and the semantics of the model.

In many of these variants, P systems are seen as devices of a generative
nature, that is, from a given initial configuration several distinct computa-tions
may be developed (in a nondeterministic manner) and produce different
outputs.

There are other approaches where P systems perform computing tasks. For
example, if a certain number, n, is encoded somehow in the initial configu-
ration and we consider the cardinality of the output multiset as the result of a
successful computation, then we can interpret that to mean that the sys-tem
computes a partial function from natural numbers onto sets of natural
numbers.

Finally, membrane systems can also be used to deal with decision problems.
In this case, special objects yes and no are included in the working alphabet,
and thus the system is able to produce a boolean output (accepting or rejecting
the input) in a confluent manner.



In all these approaches, we get the output of the computation from a final
configuration, looking at the contents of the output membrane or, in the case
of the external output, considering the objects that have been sent out of the
system during the computation.

Unfortunately, for a machine-oriented model of computation as a P system
is, it is usually a complex task to predict or to guess how a P system will behave
when we are designing a cellular solution to a problem. Moreover, as there
do not exist, up to now, implementations in laboratories (neither in wvitro or
in vivo nor in any electronical medium), it seems natural to look for software
tools that can be used as assistants that are able to simulate computations of
P systems.

This is the initial motivation for programming simulators. It is clear that
such software tools are very useful when trying to understand how a cellular
system works (both for pedagogical purposes and as an assistant tool for
researchers). Another important point is that the formal verifications of the
cellular solutions designed in this framework are specially hard, and having
a simulator at hand allows us to quickly and easily get information about
the evolution of P systems that can be used as starting point for a formal
verification, maybe suggesting invariants that can be useful for the proofs.
Finally, several of the existing P systems simulators were essentially used in
the bio-applications of membrane computing (examples can be seen also in
the first few chapters of this book).

The chapter is organized as follows. In the next section, some general con-
siderations about the processes of the design and development of simulators
of P systems are given. Section 3 is devoted to the simulators that work with
transition P systems and run on sequential machines. Section 4 deals with
parallel and distributed simulators (also simulating transition P systems) and
Section 5 presents simulators for P systems with active membranes, including
a session of one of them. The chapter ends with a section devoted to other
software and some conclusions.

2 Preliminaries

The simulation of P systems with current computers is quite a complex task,
but there have been several attempts in this direction in the last few years.
We shall try to summarize some of them, presenting the state of the art of
the available software for simulating (different variants of) cell-like membrane
systems.

Generically speaking, the design and development processes for a P system
simulator can be structured as follows:

2.1 Formal Definition of the Model

First of all, one has to choose which variant of membrane systems is going
to be simulated, stating precisely the syntax and semantics of the model to



avoid ambiguous interpretations. From a technical point of view, these mod-
els can be classified into two categories: the models of P systems where the
number of membranes is bounded by the number of membranes in the ini-
tial configuration (i.e., this number does not change during the computation
or decrease with the dissolution of membranes) and the models where the
number of membranes can increase during the computation, via membrane
creation or division.

The basic variant introduced in [39] is known as transition P systems. The
rules in this model are of the form u — v, where u is a string over the alphabet
V and v = v’ or v = v'd, where v’ is a string over

(V x {here,out} U{V x {in; |1 < j <n})

and ¢ is a special symbol not in V. Besides, priority relations are considered
among rules. These rules are applied in a maximally parallel way, that is, all
objects which can evolve in one step must evolve (keeping in mind the priority
restrictions).

This basic variant can be modified in many ways, for example, by re-
stricting the model to non-cooperative rules or not allowing priority relations
among rules, considering strings instead of multisets, or even substituting the
classical tree-like membrane structure with tissue-like arrangements.

A specially relevant variant, namely, P systems with active membranes
[41], is obtained by including rules for membrane division. Let us recall that
the rules in this model are of the form

(a) [xt — Y]y, for h € H, a € {+,—,0}, z € V, y € V* (Object evolution
rule). This is an internal rule, associated with a membrane labeled h and
depending on the polarity « of that membrane, but not directly involving
the membrane.

(b) z[]p* — ]2, for h € H, ar, a2 € {+,—,0}, x,y € V (Send-in communi-
cation rule). An object from the region immediately outside a membrane
labeled h is introduced in this membrane, is possibly transformed into
another object, and, simultaneously, the polarity of the membrane can be
changed.

(c) [z]pt — [ 152y, for h € H, a1, a0 € {+,—,0}, z,y € V (Send-out commu-
nication rule). An object is sent out from a membrane labeled & to the
region immediately outside, is possibly transformed into another object,
and, simultaneously, the polarity of the membrane can be changed.

(d) [zl — y, for h € H, a € {+,—,0}, z,y € V (Dissolution rule). A
membrane labeled h is dissolved in reaction with an object. The skin is
never dissolved.

(e) [z]pt — [y]p2[2]5?, for h € H, a1, 0,03 € {+,—,0}, z,y,2 € V (Division
rule). An elementary membrane can be divided into two membranes with
the same label but possibly different polarities. The skin cannot divide.



Note that this variant of P systems uses 2-division but no cooperation or
priorities. The rules are applied according to the following principles (informal
semantics of P systems with active membranes):

e The rules are used as usual in the framework of membrane computing; that
is, in a maximally parallel way. In one step, each object in a membrane
can be used only by one rule (nondeterministically chosen in case there
are several possibilities), but any object which can evolve by a rule of any
type should evolve.

e If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external membrane (more precisely, of
the closest predecessor which is not dissolved).

e All elements which are not specified in any of the operations to apply
remain unchanged.

e A division rule can be applied to a membrane and, at the same time, some
evolution rules can be applied to some objects inside that membrane. In
this case, we can suppose that “first” the evolution rules are used, changing
the objects, and “after that” the division takes place, introducing copies
of the results of the evolutions in the two newly generated membranes
(keeping in mind that all these processes take place in the same step of
computation).

e The rules associated with label i are used for all membranes with this
label. At one step, different rules can be applied to different membranes
with the same label, but one membrane can be the subject of at most one
rule of types (b) to (e).

These two models (transition and with active membranes) are widely con-
sidered in the existing simulators.

2.2 The Choice of a Programming Language

Each programming language has its own advantages and disadvantages and,
up to now, there is no objective criterion to decide which is the most suitable
one for simulating the evolution of a membrane system. Indeed, a large number
of different languages such as Haskell, Prolog, Java, C, LISP, Visual C++,
CLIPS or Scheme have been chosen by authors in the literature. The language
chosen has to be able to carry out the evolution of the P system and to interact
with the user in a friendly way.

It is also possible to design the interface separately from the engine that
performs the evolution, using two different programming languages that are
able to communicate with each other. For example, declarative languages can
be appropriated for programming the inference engine, because an evolution
step of a P system is nearer to a production system based upon rules than to
a list of instructions to be executed in a sequential way.



2.3 A Good Way to Represent the Knowledge

The choice of a suitable data structure is a key problem in all fields of Com-
puter Science (in particular, when dealing with the simulation of P systems).
This decision is of course related to the programming language used, as spe-
cific techniques related to it have to be applied. A good representation allows
a quick transition between configurations, and therefore speeds up the simu-
lation.

There are also some designs that use two different knowledge representa-
tions, one for communicating with the user, whose goal is to implement an
easy way to input the data describing the P system and to present the output
in a natural way, so that the simulator can provide a better understanding
of the evolution of a P system even to users who are not familiar with the
programming language, and another for handling configurations and rules in
order to perform the evolution steps (an efficient internal representation of P
systems).

If two different representations are used, it becomes very useful to have at
our disposal a parser (able to analyze syntactically the input introduced by
the user) and a compiler (that translates the analyzed input into the internal
grammar). Note that in some cases the internal representation is the same
grammar used to input the data, so no compiler is needed.

2.4 Design of an Inference Engine to Carry out the Computation

There exists a basic difficulty intrinsic to the simulation of a P system in
a conventional computer: the main power of P systems, concerning the exe-
cution of computations, is their massive parallelism. Furthermore, there are
two levels of parallelism: all objects inside a membrane can be transformed
simultaneously, and this process occurs in all membranes at the same time.
Therefore, in one time unit (cellular step), many atomic transformations can
be carried out. However, sequential conventional computers have only one
processor. This means that, regardless of the programming language and the
design chosen for the simulator, only one atomic transformation can be per-
formed in each time unit (processor step).

The second feature which makes hard the design of a simulator is the
intrinsic nondeterminism of P systems. If there is a large number of branches
in the computation tree, the storage of the information can exceed the capacity
of the computer and therefore, from a practical point of view, the simulation
in this case is not feasible.

Keeping in mind these two difficulties, that is, since current computers are
not able to deal with all the information related to the maximal parallelism
and the nondeterminism of (relatively large) P systems, different authors have
imposed several restrictions on their simulators. These constraints can be to
bound the number of membranes or the cardinality of the multisets, to develop



the computation tree until a prefixed depth, or to follow only one branch in
the computation tree.

Usually, in the first generation of simulators, the codes are balanced be-
tween efficiency and explicitness in the following sense: the purpose of design-
ing a simulator is to get information about the evolution of the system that is
simulated and, therefore, we are interested in a software able to describe the
intermediate steps and configurations. In many cases, authors have preferred
to write the first versions of their simulators in code where clarity is enforced
over efficiency, leaving the latter for further versions.

In spite of these limitations, the success of the first generation of simu-
lators of P systems is beyond doubt. They are useful tools for teachers and
researchers. On the one hand, one of the main utilities of this software is its
use for a better understanding of membrane computing, so it is a pedagogical
tool of first choice. On the other hand, it has proved to be a useful assis-
tant tool for the design and verification of complex P systems which solve
problems, relieving researchers of calculations by hand.

3 Simulators of Transition P Systems

The first simulators appeared in 2000, less than two years after Paun’s founda-
tional paper [39] was presented. All of them were focused on the basic model of
transition P systems, and they pointed out one feature that has been followed
by newer simulators: the balance between understandability and efliciency.

3.1 Malita’s Simulator (2000)

In the Workshop on Multiset Processing which was held in Curtea de Arges,
Romania, in 2000, Mihaela Malita presented one of the first simulators for
membrane systems [30]. It is a program written in LPA-Prolog for simulating
transition P systems.

A configuration is represented as a list of labeled nested lists where objects
are represented together with their multiplicities. There are also flags x or y,
to distinguish between objects that can and cannot be processed.

The rules are represented by expressions explicitly mentioning four fields:
the membrane (region) where the rule can be applied, the ordinal of the rule
in its membrane, the initial multiset, and a multiset of products with target
indicators (here,in(j), or out) or, eventually, with the flag dissolve.

This simulator applies a restricted parallelism in the following sense: in
each step, for each membrane, the simulator selects only one rule, and then
this rule is applied as many times as possible.

In this simulator Malita pointed out one of the general ideas of the first
generation of simulators: the transparency of the code in order to follow the
features of membrane computing paradigm. She did not try to make pro-
gramming shortcuts or tricks that might have given an optimal program. Her



intention was to write a program so transparent that anyone who knows Pro-
log could understand how a P system works, and any person having some
familiarity with membrane systems could read and understand the Prolog
code of the simulator.

The simulator behaves as follows. It receives as input the configuration of
a system together with a set of rules, and a parameter specifying the desired
number of evolution steps. The output of the simulator shows the configura-
tions of one branch of the computation tree until reaching the desired number
of evolutions.

3.2 Suzuki and Tanaka’s Simulator (2000)

In the same year, Yasuhiro Suzuki and Hiroshi Tanaka presented in [50] a
program written in LISP for simulating transition P systems without mem-
brane division and, therefore, with the number of membranes and complexity
of membrane structure limited by the initial configuration, since membranes
can only be dissolved.

They consider a class of P systems, which they call Artificial Cell Systems
(ACSs), consisting of a membrane structure, multisets of symbols placed in
its regions, and a set of rewriting rules acting in all the regions.

As we pointed out above, different authors have imposed some constraints
to the design of their simulators. The specific feature from this one is to bound
the size of each multiset.

This simulator has been successfully used to simulate realistic situations,
such as the Brusselator model (the model of a chemical oscillation related to
the Belousov-Zabotinski reaction), and in modeling and analyzing ecological
systems (see [51] for more examples of applications).

3.3 Natural Computing Group from Madrid (2002)

In several papers (see [5, 6, 9, 11, 10]) some members of the Natural Computing
Group of the Technical University of Madrid [54] proposed frameworks and
data structures suitable for P systems, but in an abstract rather than practical
context.

In [7], based on previous theoretical formalizations, they present a sim-
ulator for transition P systems written in Haskell. They consider two layers
in a P system: on the one hand, there is a static structure, composed of the
membranes and objects of the system; on the other hand, there is a dynamic
structure, which refers to the set of rules of the system.

They present several specific modules (Abstract Data Types) to transfer to
the software the concepts of multiset, rule, region, membrane, etc.

The Haskell interpreter chosen has been Hugs98 for Microsoft Windows!.
The source code can be downloaded from the P system Web page [55].

! The interpreter for several operating systems can be downloaded from
http://cvs.haskell.org/Hugs/pages/downloading.htm.



The simulator behaves as follows. It receives as input a file encoding a
system (configuration and rules in each region) and produces another file
encoding a system (configuration and rules in each region), obtained by the
application of one step of the computation (via a maximal multiset of rules
randomly selected).

3.4 Balbontin et al. Simulator (2002)

Two years after the Workshop on Multiset Processing, also in Curtea de Arges,
D. Balbontin-Noval, M.J. Pérez-Jiménez, and F. Sancho-Caparrini presented
during the Workshop on Membrane Computing 2002 a simulator [12] for tran-
sition P systems written in MzScheme. A library of procedures was developed
for working in two stages:

(1) first a parser analyzes the input and checks if it is syntactically correct,
and if so, a compiler rewrites the input introduced by the user into an
internal grammar;

(2) then, the simulation is carried out up to a prefixed level (number of evo-
lution steps) in all branches of the computation tree.

The simulator behaves as follows. It receives as input the initial configu-
ration of a system including the set of rules and a parameter specifying the
desired number of evolution steps, and it outputs the computation tree of the
P system, step by step, until reaching the desired number of evolutions.

The inference engine that actually implements the evolution steps follows
the formalization from [47]. That is, first of all it checks which are the applica-
ble rules, according to the priority relations; then it calculates the applicability
vectors for each membrane (that is, the multisets of applicable rules satisfy-
ing the maximal parallelism condition); and finally it combines such vectors
(one vector for each region) to get the applicability matrices for the system.
The simulator uses this procedure to follow all the possible nondeterministic
choices of the computation. The expansion of the computation tree is made
in a progressive way, level by level (breadth expansion), to a prefixed depth.

3.5 Ardelean and Cavaliere’s Simulator (2003)

A very interesting tool for modeling biological processes was presented in [4].
It can be thought as a transition P system simulator because the number
of membranes does not change during the computation. More precisely, the
software deals with a special variant of P systems: the allowed rules are both
rewriting and symport/antiport rules. This variant of P systems has been
proposed in [18] and its motivations are rooted in the idea to separate the
evolutive mechanism of the cell from the communicative mechanism.

The authors try to bridge the mathematical model and biological reality,
indicating how one can use the P system framework to model very important
processes that happen in cells.



The simulator takes as input the rules of a system, its membrane structure
(which can be any graph, not only a tree) and the multisets of objects asso-
ciated with the regions. The software assigns to each rule two kinds of prob-
abilities: probability of being available and probability of winning a conflict.
The simulation takes place in the following way: at each step, the simulator
decides which are the available rules in that step, and this decision is taken
using the above mentioned probability. Then, the available rules are applied
in the maximally parallel mode by using the weak priority approach. This can
be seen as a competition of the rules for each single occurrence of the objects.

Several biological processes have been simulated illustrating the usefulness
of this software (see [19] and Chapter 4 of the present book).

3.6 Nepomuceno’s Simulator (2004)

In [37], we can find a software application, SimCM, written in Java. This tool
is a friendly application which allows us to follow the evolution of a transition
P system in a visual way. Essentially, we handle transition P systems by
means of three basic operations: Create an initial membrane system (the
simulator includes a debug mode in order to avoid user errors); Load and
Save previously defined membrane systems; and Carry out a simulation of
the P system evolution. This simulation can be made in three different ways:
showing the computation tree to a given maximal depth, level by level, or
guided.

The main screen is divided into four basic panels:

e Computation tree: this panel shows the tree of configurations after the
simulation is finished or during its development.

e Current cell: initially, this panel contains a sketch in tree form of the
membrane system to be studied (the program represents the membrane
structures of P systems as trees). Once the simulation is finished or when
it is in development, this panel will represent the state of the membrane
system according to the configuration chosen by the user in the computa-
tion tree panel. In order to select a configuration, it suffices to simply click
on the chosen node in the computation tree panel.

Rules: in this panel the rules associated with each membrane are listed.
Applicable rules: this panel shows the applicability multiset associated
with the configuration selected by the user in the computation tree.

The simulator can be downloaded from the Web page of the Research Group
on Natural Computing at the University of Seville [57].

4 Parallel and Distributed Simulators

As we already said in Section 2, one of the main difficulties in the simula-
tion of P systems in current computers is that the computational power of



these devices lies in their intrinsic massive parallelism. Several authors have
implemented the first versions of simulators based on parallel and distributed
architectures, which is close to the membrane computing paradigm.

4.1 Ciobanu and Wenyuan’s Simulator (2003)

G. Ciobanu and G. Wenyuan presented in [24] a parallel implementation of
transition P systems?. The implementation was designed for a cluster of com-
puters. It is written in C++ and makes use of Message Passing Interface
(MPI) as its communication mechanism. MPT is a standard library developed
for writing portable message passing applications, and it is implemented both
on shared memory and on distributed memory parallel computers.

The program was implemented and tested on a Linux cluster at the Na-
tional University of Singapore. The cluster consisted of 64 dual processor
nodes. The implementation is object-oriented and involves three components:

e class Membrane, which describes the attributes and behavior of a mem-
brane,
class Rule, which stores information about a particular rule, and
Main method, which acts as central controller.

The rules are implemented as threads. At the initialization phase, one
thread is created for each rule. Rule applications are performed in terms of
rounds. To synchronize each thread (rule) within the system, two barriers
implemented as mutexes® are associated with the thread. At the beginning
of each round, the barrier that the rule thread is waiting for is released by
the primary controlling thread. After the rule application is done, the thread
waits for the second barrier, and the primary thread locks the first barrier.

Since each rule is modeled as a separate thread, it should have the ability
to decide its own applicability in a particular round. Generally speaking, a rule
can run when no other rule with higher priority is running, and the resources
required are available. When more than one rule can be applied in the same
conditions, the simulator randomly picks one among the candidates.

With respect to synchronization and communication, the main communi-
cation for each membrane is done by sending and receiving messages to and
from its parent and children at the end of every round. With respect to ter-
mination, when the system is no longer active there is no rule applicable in
any membrane. When this happens, the designated output membrane prints
out the result and the whole system halts.

In order to detect if the P system halts, each membrane must inform the
other membranes about its inactivity. It can do so by sending messages to
other membranes (these membranes can be normal or inactive) and by using
a termination detection algorithm (see [8]).

2 A preliminary version of this paper can be found in [23].
3 A mutex object is a synchronization object whose state is set to signaled when it
is not owned by any thread, and non-signaled when it is owned.



4.2 Syropoulos et al. Simulator (2003)

Syropoulos, Mamatas, Allilomes, and Sotiriades presented in [52] a purely
distributive simulation of P systems. It is implemented using Java’s Remote
Methods Invocation to connect a number of computers that interchange data.
As the authors pointed out, the idea of designing a distributed simulator for
a network of computers, instead of doing so for a cluster architecture, avoids
the problem of limited hardware compatibility. The class of P systems that
the simulator can accept is a subset of the NOPxs(coo, tar) family of systems,
which have the computational power of Turing machines. This variant restricts
the number of membranes to two, allows cooperation, and the symbol tar
indicates that the communication rules use target indicators of the type in;.

Initially, a copy of the simulator is installed on a number of different com-
puters. Randomly, we choose a computer and assign to it the role of the
external compartment, while the others play the role of the internal com-
partments. Upon starting, a Membrane object is ready to participate in the
network on each computer. Threads are an essential aspect of the implemen-
tation. In particular, each membrane class runs in its own thread, which, in
turn, operates on a different machine. When the system starts, the computer
that plays the role of the external compartment reads the specification of a P
system from an external file and stores the data.

An artificial parameter is introduced in order to prevent the system from
going into an infinite loop. When the simulator has successfully parsed the P
system’s specification, the main computer decides whether there are enough
resources or not. If the available resources match the requirements set by
the description of the P system, then the simulator starts the computation.
Otherwise, it aborts the execution. In order to be able to make this decision,
the simulator has been designed in such a way that all membrane objects
send multicast UDP packets to a well known multicast address. Each packet
contains the IP address of each sender, and multicast packets are received by
all objects participating in the network. Thus, each computer knows which
computers are alive at any time. In this way, the main computer has all the
necessary information to decide whether there are sufficient resources to start
the computation. A universal clock is owned by the object that has the role of
the external compartment. This object signals each clock tick by the time the
previous macrostep is completed (i.e., when, for a given macrostep, all remote
objects have finished their computation).

The source code of the system, a jar file, which can be used to install the
simulator, as well as the documentation of the simulator, can be downloaded
from [53].

5 Simulators of P Systems with Active Membranes

The third group of software tools are devoted to simulating P systems with
active membranes. Polynomial time solutions to NP-complete problems via P



systems can be reached by trading time with space. This is done by producing
(via membrane division) an exponential number of membranes that can work
in parallel.

The simulation of these P systems has to deal with the potential growth
of the membrane structure and adapt dynamically the topology of the config-
urations depending on whether some membranes are added or deleted. Due
to the obvious limitations of computational resources, the P systems which
can be simulated are of a small size.

5.1 Ciobanu and Paraschiv’s Simulator (2002)

In [21] G. Ciobanu and D. Paraschiv presented a software application which
provides a graphical simulation for two variants of P systems: for the initial
version of catalytic hierarchical cell systems and for P systems with active
membranes (see [40, 41]). Its main functions are:

interactive definition of a membrane system,

visualization of a defined membrane system,

a graphical representation of the computation and final result, and
save and (re)load of a defined membrane system.
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Fig. 1. Main screen of Ciobanu and Paraschiv’s simulator.



The application was implemented in Microsoft Visual C++ using MFC
classes. For a scalable graphical representation, Microsoft DirectX technology
was used. One of the main features of this technology is that the size of each
component of the graphical representation is adjusted according to the number
of membranes of the system.

The system is presented to the user with a graphical interface where the
main screen is divided into two windows: The left window gives a tree rep-
resentation of the membrane system including objects and membranes. The
right window provides a graphical representation of the membrane system
given by Venn-like diagrams. A menu allows the specification of a membrane
system for adding new objects, membranes, rules, and priorities. By means of
the functions Start, Next, and Stop, the user can observe the system evolution
step by step.

The following two simulators have been developed as assistant tools for the
design and formal verification of cellular solutions to NP-complete problems
via recognizer P systems [45, 49]. In this case, as we work with confluent P
systems, it suffices to follow one branch of the computation tree.

5.2 Pérez and Romero’s Simulator (2004)

In this case ([45]) the simulator, written in CLIPS, deals with P systems with
active membranes. The design is based on representing P systems through the
production systems programming paradigm. Generally speaking, a production
system can be structured into three components:

o  Working Memory: A set of “facts” consisting of positive literals defining
what is known to be true about the world.
o Rules: An unordered set of user-defined “if-then” rules of the form:

if Py A...A P, then Actionq,..., Action,,

where the P;s are facts that determine the conditions when the rule is
applicable. Each Action adds or deletes a fact from the Working Memory.

e Inference Engine: Procedure for inferring changes (additions and dele-
tions) to Working Memory.

Configurations are represented as a set of unordered facts using the fol-
lowing template:

(deftemplate membrane (slot number)
(slot father) (multislot children)
(slot evolved) (slot label)
(slot polarity-0) (slot polarity-1)
(slot multiset-0) (slot multiset-1))



The slots number, father and children are used to represent the membrane
structure. The slots label, polarity-0, polarity-1, multiset-0, and multiset-1 rep-
resent respectively the label, polarity of the membrane (current and next) and
multiset (current and next) associated with each membrane.

The simulator transforms the rules of the P system into CLIPS rules as
follows:

(a) [z —yly

(defrule evolution
?membrane <- (membrane (label h) (polarity-0 « )
(multiset-0 $7b0 , x , $7£0)
(multiset-1 $7b1 , x , $7£1))
=>
(modify ?membrane (multiset-0 $7b0 $7£0)
(multiset-1 $7b1 , y , $7£1)))

(b) =[ 5" — [y]y?

(defrule send-in
?child <- (membrane (father 7f) (evolved 0)
(label h) (polarity-0 ai )
(multiset-1 $?content))
?father <- (membrane (number ?7f) (multiset-0 $7b0 , x , $7£0)
(multiset-1 $7b1 , x , $7£1))
=>
(modify ?7child (evolved 1) (polarity-1 as)
(multiset-1 $7content , y ,))
(modify ?father (multiset-0 $7b0 $7f0) (multiset-1 $7bl $7£1)))

(©) [zl = [1p%y

(defrule send-out
?child <- (membrane (father 7f) (evolved 0)
(label h) (polarity-0 «i )
(multiset-0 $7b0 , x , $7£0)
(multiset-1 $7b1 , x , $7£1))
?father <- (membrane (number ?f) (multiset-1 $?content))
=>
(modify ?7child (evolved 1) (polarity-1 a2)
(multiset-0 $7b0 $7£0) (multiset-1 $7bl $7£1))
(modify ?father (multiset-1 $?content , y ,)))

(d) [2]y —y

(defrule dissolve
?child <- (membrane (number ?n) (evolved 0)
(father ?7f) (children $7?ch)
(label h) (polarity-0 ay )
(multiset-0 $7b0 , x , $7£0)



(multiset-1 $7b1 , x , $7£1))

?father <- (membrane (number ?f) (children $?ch0 ?n $?7chi)
(multiset-1 $?content))

=>

(retract ?child)

(assert (restructure (father ?f) (children $7ch)))

(modify ?father (children $7chO $?ch $?7chl)
(multiset-1 $?content $7b1 , y , $7£f1 )))

(e) [alyt — [lp*[=]n°

(defrule division
?child <- (membrane (number ?n) (evolved 0)
(father 7f) (label h) (polarity-0 «i )
(multiset-0 $7b0 , x , $7£0)
(multiset-1 $7b1 , x , $7£1))
?father <- (membrane (number ?f) (children $?chO ?n $?chil)
=>
(retract ?child)
(assert (membrane (number 7*number*) (evolved 1) (father 7f)
(label h) (polarity-1 a2)
(multiset-0 $7b0 $7£0)
(multiset-1 $7b1 , y , $7£1)))
(membrane (number (+ 7*number* 1)) (evolved 1)
(father 7f) (label h) (polarity-1 a2)
(multiset-0 $7b0 $7£0)
(multiset-1 $7b1 , z , $7£1)))
(modify ?father (children $?chO ?*number* (+ ?*number* 1 ) $7ch1))
(bind 7*number* (+ 7*numberx 2)))

In order to carry out one step of the computation, the simulator performs
first an initialization step where the rules are translated into CLIPS rules and
the application of the rules is then simulated.

The simulator behaves as follows. It receives as input the initial config-
uration of a system and a set of rules, and it simulates only one branch of
the computation tree, and several options are provided to choose the degree
of verbosity of the output: show all the configurations of the evolution, or
show only a concrete step, or run and show only the final answer (external
output) of the system. Besides, the user can also decide if the rules applied
are displayed for each step or not.

This simulator has been proven useful for designing and debugging families
of P systems solving strongly NP-complete problems like BINPACKING and
the Common Algorithmic Decision Problem (CADP). Currently, variants of
this simulator which provide symport-antiport rules, catalysts, and a Java
interface are being developed.



5.3 Cordén-Franco et al. Simulator (2004)

In [27] and [26], a new simulator written in Prolog was presented. It is pretty
different from Malita’s simulator ([30]) in implementation, and it works with
P systems with active membranes [41] instead of with transition P systems.

This simulator has been successfully used as assistant in the design of P
systems with active membranes to solve NP-complete problems, for instance,
SAT, VALIDITY, Subset Sum, Knapsack, and Partition problems (see [25,
26, 27, 28, 46, 49)).

Similarly to other programs, the simulator stores and handles the infor-
mation related to the P system and tries to show the process to the user in
a friendly way. One of the main features of this simulator is that both tasks
(computation and relation with the user) are made in the same language. For
that, one exploits the ability of Prolog to define ad hoc symbols in order to
imitate natural language.

In order to give a formal representation in Prolog of the basic structures
of P systems with active membranes using 2-division, the following represen-
tation is considered. A given membrane structure is expressed by means of a
labeled tree, where:

1. < > is the position to denote the root of the tree and it is associated with
the skin;

2. if < 41,...,4, > is the position of a membrane h, then < i,71,...,%, >
denotes the position of the ith membrane placed inside membrane h.

Let us remember that to give a configuration of a P system with active
membranes consists of making explicit the membrane structure and the con-
tents of all membranes.

In this model each configuration is represented as a set of one-literal
clauses, each of them representing a membrane. Hence, in this representation
each clause shows label, position, polarity, multiset of objects, and current
step of the computation, as well as the P system the membrane belongs to.
In this way, the set of clauses gives information about the contents of the
membranes and the membrane structure (by means of the position of each
one).

More precisely, to denote that in the step t of its evolution the P system P
has a membrane at position [pos] with label h, polarity «, and m as multiset,
we write

P :: h ec a at [pos] with m at_time ¢

Note that we use the user-friendly representation of a Prolog literal instead
of the functional representation.

By means of some new function symbols, the rules are also represented as
literals, in the following way:

(a) [z —yl}
P rule x evolves_to [y] in h ec «



(b) =[ ;" — [yly?

P rule x out_of h ec a1 sends_in y of h ec s
(©) [l = [Ii*y

P rule = inside of h ec a; sends out y of h ec as
(d) [y =y

P rule z inside of h ec a dissolves_and sends out y

(e) [z];' — [ylp?[2]p®
P rule z inside of h ec ay divides_into y inside of h ec as
and z inside_of h ec a3

The simulator behaves as follows. The input of the program is the ini-
tial configuration of the system (which is represented as a set of literals with
predicate symbol ::, all of them at_time 0) and a set of rules. The Prolog
algorithm to carry out the evolution of a P system works in a natural way, as
explained below. It is worth mentioning that only one branch of the compu-
tation tree is simulated, and therefore the result of the simulation is faithful
only in the cases of confluent membrane systems (that is, systems that on the
same input produce the same output).

e Step 1: Initialization. At the beginning of each computation step, all
the membranes are set to applicable and their objects are split into two
multisets: one usable multiset, containing all the objects of the initial
membrane, and one used multiset which is empty.

e Step 2: Transition. If there exists an applicable membrane satisfying the
condition of a rule, then the rule is applied in the following way:

— (a) step: At this stage, only rules of type (a) are checked. The ob-
ject which triggers the rule is removed from usable and the resulting
multiset by the application of the rule is added to used to prevent the
use of the same object by two different rules at the same step. After
that, the membrane remains applicable, and new evolution rules can be
applied. This stage ends when no more rules of type (a) can be applied.

— Non-(a) step: At this stage, only one rule of the other types (not (a))
can be applied, and Prolog selects one from the existing possibilities
(remember that this simulation works only with confluent P systems).
The action depends on the kind of rule to apply:

- Send out rule: The element which triggers the rule is removed

from the usable multiset and the new one is added to the used
multiset of the parent membrane. The membrane changes to not
applicable mode. If the element is sent out of the skin, it is marked
with the property outside.
Send in rule: This is the converse of the previous action. The ele-
ment which triggers the rule is removed from usable in the parent
membrane and the new one is added to the used multiset. The
membrane changes to not applicable mode.



Dissolution rule: The element which triggers the rule is removed
from usable and the new element obtained, together with the rest
of the elements of the membrane, is added to the used multiset
of the parent membrane. The dissolved membrane is removed, and
the membranes inside it become children of the parent, and their
positions are arranged to be correct.
Division rule: The element which triggers the rule is removed
from usable and the division creates two new membranes in not
applicable mode. One of them keeps the original position and the
second one gets a position which has not been occupied by any
membrane.
— End: When no more rules can be applied to membranes in applicable
mode, a new configuration (with at_time incremented by 1) is stored.
At this time no membrane has applicable or not applicable state. These
modes have validity only during the evolution. At this point, the P
system is ready for a new evolution step.
e Step 3: End of computation. If there are no rules to be applied, then
the evolution finishes (the P system halts).

As we said before, the information provided by the simulator can be helpful
in the processes of designing cellular solutions to some problems. Furthermore,
this simulator has been also used in [29] as a tool to study the descriptive
complexity of P systems. The complexity of a computation of a P system can
be described for example by a table showing the number of times that the
rules of the system are applied at each step. Such tables are known as Sevilla
carpets, and were presented in [22].

The data needed to graphically represent the Sevilla carpet associated with
a P system can be extracted from the output produced when simulating the
system. To illustrate this, we present in Fig. 2 the carpet associated with a
P system solving the Partition problem (the parameters of the instance are
N =5, w; =5,wy =4, w3 = 1,wy = 8, and ws = 6). For further details we
refer the readers to [29] or [49)].

The user can choose from several possible outputs. We illustrate them by
showing a session as an example.

In order to launch the simulator, we open a Prolog interpreter and load
the main file simulator.pl. Suppose that we now want to solve an instance
of the Subset Sum problem. The simulator includes a tool that is able, given
an instance of the problem, to automatically generate the files containing the
set of rules and the initial configuration of a recognizer P system with active
membranes which solves the instance.

7- generate(subs).
% subs_file.pl compiled 0.00 sec, 6,876 bytes

Welcome to the program to generate the used files
for a P system to solve the SUBSET SUM problem
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Fig. 2. Sevilla Carpet of a solution of the Partition problem through P systems

with active membranes.

Given a finite

The Subset Sum problem is the following one:

set A of N elements, a weight function w defined over it, and

a constant K determine whether or not there exists a subset of

A such that its weight is exactly k.
Please, introduce the name of the P system:

pl.)

and one point (.) to end (e.g.:

Name: pi.

Next, introduce the parameters:

)

5

and one point (.) to end (e.g.:

Value of N =

5.

Value of K = 8.

The set of rules has been successfully generated

pl_5_8.pl1

Do you want to load it now? (y./n.):

and stored in the file rules_subs

y-

500 bytes

% rules_subs_pl_5_8.pl compiled 0.01 sec, 13,

Ok, file loaded.

Next, we are going to build the initial configuration.



We need the specific INPUT for a concrete instance of
the SUBSET SUM problem

Introduce the list of weigths (e.g. [4,5,2,1].)

List: [5,2,7,9,2].

Please, write the name of the file to store the
initial configuration and one point (.) to finish
File : init_subs_p1_58_52792.

Ok, the initial configuration has been stored in the
file init_subs_p1_58_52792.pl

Do you want to load it now? (y./n.): y.
% init_subs_pl_58_52792.pl compiled 0.00 sec, 1,024 bytes

Ok, file loaded.
Have a nice computation!

The current version of the program includes auxiliary files subs _file.pl,
knp_file.pl, and part_file.pl to deal with the Subset Sum, Knapsack, and
Partition problems, respectively. It is important to note that the generation
process can be skipped if we perform further simulations of the same instances;
it suffices then to load the corresponding files.

The user can select different types of outputs for the simulation. One can
ask for a configuration in a concrete step, or to let the simulator run internally,
getting only information about the number of cellular steps of the computation
and the output of the P system.

7- go(pl).
The P system pl stops at step 32 and returns NO

One can also ask the simulator to show the configurations step by step
until a given point in the computation. Given a configuration of a P system
pl at time t, the Prolog instruction that simulates one computation step is
evolve(pl,t).

?7- evolve(pl,0).

pl :: s ec 0 at [] with [z1-1] at_time 1

pl :: e ec -1 at [1] with [a_-8, g-1, x1-5, x2-2, x3-7, x4-9, x5-2]
at_time 1

pl :: e ec 1 at [2] with [a_-8, e0-1, x1-5, x2-2, x3-7, x4-9, x5-2]
at_time 1

Used rules in the step O:
* The rule 1 has been used only once
* The rule 51 has been used only once



Note that the output displayed includes not only the next configuration
but also information related to the rules used. Besides, the simulator informs
us if any objects have been sent out to the environment.

7- evolve(pl,31).

pl :: s ec 0 at [] with [# -508] at_time 32

pl :: e ec -1 at [1] with [2-8, x1-5, x2-2, x3-7, x4-9, x5-2]
at_time 32

pl :: e ec -1 at [2] with [a-3, x1-2, x2-7, x3-9, x4-2] at_time 32

pl :: e ec -1 at [3] with [a-6, x1-7, x2-9, x3-2] at_time 32

pl :: e ec -1 at [4] with [a-1, x1-7, x2-9, x3-2] at_time 32

pl :: e ec 1 at [64] with [a0_-25, a_-8, e5-1] at_time 32

Used rules in the step 31:

* The rule 83 has been used only once
The P-system has sent out dl at step 29
The P-system has sent out no at step 31

?7- evolve(pl,32).

No more evolution!

The P system pl has already reached a halting configuration
at step 32

Currently, a graphical interface of this simulator is being developed using
the Prolog/XPCE object-oriented library.

6 Other Software

We can also find in the literature other approaches that do not exactly fit in
the previous sections.

For instance, although it is not exactly a simulator, we would like to note
the work that Nicolau Jr., Solana, Fulga, and Nicolau published in Funda-
menta Informaticae in 2002.

In [38], D.V. Nicolau Jr. et al. presented an ANSI C library developed to
facilitate the implementation and simulation of P systems. Using the library
proposed in this paper a user can specify an initial configuration (membrane
structure and its contents) and perform actions on the objects or on the
membranes. In fact, with this library membranes can be altered by dissolve,
divide, and create actions. This library represents an intermediate step toward
a practical implementation of P systems in silico.

The authors describe membrane structures as trees. A membrane is rep-
resented by a node in the tree, and the contents (symbols or strings) of that
membrane are associated with the node by means of some auxiliary data struc-
ture such as an array or a list. The immediate “children” of this membrane are



also included in the node contents. This is done by using a recursive Abstract
Data Type. From a theoretical point of view, there is no limit on the number
of membranes in a P system, and this represents a problem for simulating
in silico P systems which allow division or creation of membranes. To avoid
memory space violations, this software fixes an upper limit on the number of
children in each membrane.

The information in the data structure also include the name of the mem-
brane (its label), the number of children, and the name of its parent mem-
brane.

Rules are not implemented explicitly as data structures. Instead, the user
is supposed to write a function for each membrane reflecting the program of
that membrane. In this way, the user is given complete flexibility over the
way in which the rules are defined and applied in each membrane, including
priority relations, and so on.

In September 2003, Alexandros Georgiou from University of Sheffield pre-
sented a simulator called SubLP-Studio. It is a software simulator for the Sub
LP-Systems model, a variant of L. systems and P systems. It optionally inter-
faces with CPFG, thus producing plant graphics using the turtle interpreter.
It is available from the P systems Web page [55].

The Group for Models of Natural Computing [56] in Verona has developed a
P systems simulator? based on the implementation of the metabolic algorithm
introduced in [14]. The algorithm is inspired by the Law of Mass Action. This
law states that the driving force of a chemical reaction is directly proportional
to the active masses of all the reactants.

They propose regarding a rule r : A1 As — By By as a chemical reaction;
then the left objects A and B play the role of reactants while those of the
right are products. Following this chemical interpretation, they propose re-
garding rules as descriptors of the changes in concentration of the reactants
into products.

The simulator which implements these ideas is written in Java and the
input is provided to the simulator as an XML file.

We would also like to note the implementation of catalytic P systems pre-
sented by Binder et al. in [15] and Alhazov’s simulator for maximally parallel
multiset-rewriting systems with promoters/inhibitors [1]. The latter was used
as an engine of the communicative P systems simulator by Vladimir Rogozhin
to check the theorems in [2, 32].

Although it is beyond the scope of the present chapter, we consider Pe-
treska and Teuscher’s implementation [48] interesting. Instead of developing
software, they have presented a hardware-based parallel implementation that
allows us to run a certain class of P systems in a highly efficient manner. The
source code of the implementation and more information are available from

[58).

* The simulator is described in [13].



It is also worth mentioning the fact that Holger Hoos from the University
of British Columbia teaches a course on Algorithms for Bioinformatics® and
one of the assignments for his students is to implement a P system simulator
for a restricted version of transition P systems.

7 Conclusions

In this chapter we have briefly presented some programs from what we con-
sider to be the first generation of P systems simulators. In a few years, more
than a dozen software simulators have been presented. As we pointed out
above, the common purpose of all of them is better understanding of the
computational process of P systems for pedagogical purposes, as assistants
for researchers, and for use (mainly) in biological applications. One of the
most extended features is the balance between efficiency and explicitness of
the code.

We are at the beginning of a new generation of simulators, whose properties
have been already pointed out by some of the simulators mentioned above.

For example, it is necessary that the simulator have a friendly and intuitive
graphical interface. This is not a trivial task, because problems such as division
or dissolution of membranes need dynamical solutions in order to update the
graphical representation of all membranes simultaneously.

Another important point to address is the way in which the P system is
provided to the simulator. Future simulators will need parsers to check the
information provided by the user and store it appropriately. Likewise, the use
of tools is necessary to handle information of P systems when the number of
rules, membranes, or objects in a configuration is large.

It is also desirable that the simulator be able to interact with the user
by providing detailed information about the computation, for example, about
the number of rules used in each step and intermediate configurations or
objects sent to the environment (if any) in order to make statistical studies
of the computations (see, e.g., [19], [29], [31] or [51]). Indeed, biologically
inspired variants of membrane systems are not interested in looking for halting
configurations, but in the evolution process itself.

Then, the simulators have to be tested when approaching new problems
both with computational interest (such as solving new NP-complete prob-
lems) and related to applications in biology. The development of more complex
simulators will also require the use of tools for their verification.

The next generation of simulators may be oriented to solve (at least par-
tially) the problems of storage of information and massive parallelism by using
parallel language programming or by using multiprocessor computers. In this
framework, the emergent generation of simulators based on parallel or dis-
tributed architectures could lead to an efficient simulation of P systems in
silico.

® http://www.cs.ubc.ca/labs/beta/Courses/ CPSC545-03/



In some sense, the current P systems simulators represent a first step to-
ward an implementation of such cellular models in electronic media. However,
we can note an important limitation: the problem of finding an efficient im-
plementation of P systems with active membranes (i.e., a software able to
simulate computations with a polynomial number of cellular steps in polyno-
mial processor time) is as hard as proving that P=NP.
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