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Abstract

Multiple criteria decision problems with one decision-maker haven been recognised and discussed in the
literature in optimisation theory, operations research and management science, Nevertheless a multiple criteria
problem can naturally arise in decision situations involving conflict among n-persons and conflict among the
criteria of each person. The corresponding concept with n-decision makers, namely multiple objective n-person
games, has not been extensively explored.

In this paper we consider several approaches for solving normal form multiple objective n-person games.
One of them is to find optimal response strategies. In non-cooperative games, characterised by strategic
behaviour and individual rationality, given all other player's strategies, each player may choose a best response as
an efficient solution of a vector maximisation problem. Also a best response can be established as a maximin
solution. Another approach to solve these games is based on security levels, We present the concept of Pareto
optimal security strategies for multiple objective n-person games and explore the relations with the optimal
response strategies.
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1. Introduction

Multicriteria decision making and game theory have contributed important insights to
several areas of social science. Multicriteria decision making has gained broad interest and has
been extensively described in the literature on operations research and decision theory over the

last two decades.

The research of the authors is partially supported by the Spanish Ministerio de Educaci6n y Cultura grant n.
PB97-07-07.
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On the other hand, game theory, born in 1944 with the publication of the book "Theory of
Games and Economics Behavior" by John von Neumann and Oscar Morgenstern [14], studies
the behavior of decision-makers whose decisions affect the others. In the last ten years recent
advances in game theory have ensured its recognition as a key subject across a wide range of
disciplines in the social science.

Both theories, multicriteria decision making and game theory, jointly applied yield to
important and novel results in various areas of applications. However, multiple objective games’
that emerge whenever players in a game have multiple objectives or a vector payoff to optimize,
have attracted limited attention in the game theory literature and have not yet been extensively
explored.

The first publication on multiple objective games dates back to 1956 [1] and some important
papers are [17, 6, 22, 10, 4, 2, 5, 9, 23].

Multicriteria games can naturally arise in decision situations involving conflict among n
persons. In practical problems, it is typical that a player deals not with one, but with several
criteria which he would like to satisfy, and there is not an explicitly given utility function.

As the methodology to solve multicriteria is based in solving multiple criteria problems we
do not need to scalarize all the objectives in order to get a single value function. Also, it is
interesting to analyze the possible extension of the results in classical game theory, because due
to the additional difficulty of dealing with multiple criteria, many of the elegant and intuitively
appealing theoretical results in scalar criterion games could not hold.

Multicriteria games can be both, cooperative and non-cooperative. In this paper we study
the non-cooperative case, although we also consider some cooperation and partial cooperation
situations.

Our main effort in this paper, has been devoted to show that, in multicriteria games, a
single solution concept in terms of equilibrium points is not sufficient. For this reason, we
propose and discuss different solution concepts associated with multicriteria games.

The paper is organized as follows. In section 3 we give the preliminary terminology used
throughout the paper. In section 3 we analyze four different solution concepts and some
examples are included to illustrate them. Finally a section devoted to conclusions and a list of

references is offered.

2. Preliminaries

In this paper we consider a multiobjective n-person game in normal form defined as
I'={N, Xi, ui} where N = {1, 2,..., n} is the set of players. For each ie N, X! is player i's
strategy set, which is assumed to be a non-empty subset in some finite-dimensional euclidean
space (Xi - ]RLi), ol X = i, X R™ g player i's vector payoff which is a real
m;-dimensional vector function. A joint strategy is xe X = H}Ll Xi, X = {xl, X2, x"} where

xe Xi, and the joint vector payoff is ue R(N) = [Ti.; R™, u = (o', v, u"}.
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Notice that each player values a different number m; of criteria. However, in order to
simplify the notation, in some sections we will consider that m; =m, =... =m; = m.

Let N, denote the set of all non-empty subsets of N, then each element of |, represents a

coalition of players. For each coalition Se i, let IS| denote the number of elements in S. For

2

each joint strategy x = {xl, x%..., x"}e X let xg denote the strategy of coalition S, x_g the

strategy of the players in the complementary coalition N-S. For the payoff vector associated,

u= {ul, w. u"}e R (N), we denote by ug and u_g the projection of u on R(S) and R(-S)

respectively: .
xg = {x'/ie S}e Xg = I X'
) ieS
xg=(x/igSleX g= O X'
_ ie S .
ug = {u’ie S}e R(S) = nq]Rm‘
1e
ug = {u/igS}e R(-S)= IT R™.
i¢S

By R(S), we denote the positive orthant of IR (S).
Recall that a partition of players {1, 2,..., n} in the game I' is a collection of coalitions
A ={Sy, S5,..., S¢} such that
k
UsS;=N

i=1
SiNSj=2 Vi=j
Example:
Consider the bicriteria three-person game represented in Table 1. Each player can play two
different strategies, A and B, and the results of the game are evaluated in two different
scenarios or with respect to two different criteria.

N = {L, II, 11T}

X! = {IA, IB} X* = (IIA, IIB} X = {IIIA, IIIB}.
3 .

X=IXx

i=1
In this example with finite joint strategy set the payoff functions are discrete and:
VxeX ui(x)e R% u= {ul, u2, u3} and so u(x)e R®
For instance, when player I plays IA, player II plays IIB and player III plays IIIA, that is to
say, x = (1A, 1IB, IITA) the payoffs are:

-50 0 50
w'o9=("50 ) w9=(_100) v®=(50)
u(x) =(-50 50 0 -100 50 5())t
This means that player I obtains -50 in his first criterion and 50 in his second criterion.

Player II obtains 0 in his first criterion and -100 in his second criterion. Player III obtains 50 in
his first criterion and 50 in his second criterion.
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A 1B
I &1
I A 1B 1 A 1B
(-50,-50,50) | (-50,0,50) (-50,-50,0) | (100,0,0)
A IA
0,0,0)  |(50,-100,50) (50,50,-100)| (100,-50,-50)
(0,-50,50) | (0,0,100) 0,100,0) | (0,0,0)
B B
(0,50,50) | (0,-50,-90) (50,100,-50)|  (0,0,0)

Table 1 - Game payoffs

3. Solution Comcepts

3.1 Nash equilibria

The concept of Nash equilibrium in conventional game theory can be extended to vector
game theory. Each player i takes other's strategies as given and chooses a "best response” as an
efficient solution of a vector maximization utility problem. Then there are a variery of solutions
that can be chosen as the "best response": properly efficient solutions, [23], efficient solutions,
[17,5], weakly efficient solutions, [12]. In this paper weakly efficient solutions are chosen as

the best response. In what follows we will refer to weak efficiency as efficiency.

Definition 3.1 A joint strategy X = {il, X%, x"}e X is a Nash equilibrium of the

multicriteria game I' = {N, Xi, ui} if Vie N, X! is an efficient solution of the vector
maximization problem:
max. ui(xi, i'i) where X7 = {{)_(1, X% ii'l, im,..., x") (D
xlex!

This solution concept is a noncooperative solution characterized by the strategic behavior
and the individual rationality. It requires that cach player chooses a best response given all other
players' strategies, and at the equilibrium no player has any incentive to deviate alone. However
Nash equilibrium is a local solution. If there are several equilibria, the players have no

compelling reason to choose among them.

Example (continued):
The Nash equilibria of the game whose payoffs are in Table 1 are the joint strategies:
xy; = (IA, IIA, TIIA), x, = (IA, 1IB, ITA), x4 = (IB, IIB, IITA),
x4 = (IB, IIA, IIIB), x5 = (IB, ITA, IIIA)
For instance x5 = (IB, IIB, ITIIA)e X is a Nash equilibrium:
Player I obtains ( 8 ) If the strategies of player IT and player II are fixed, he can obtain

( i g 8 ) also, but this last payoff is not strictly better than the other.
Player II obtains ( _5% ) Assuming now I and III's strategies as given, he can also

obtain ( i 55 8 ), which is not strictly better than the other payoff.
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Finally, III obtains ( 1_(9)8 ) If I and II's strategies are fixed, he can obtain too ( 8 ),

but again, it is not strictly better than the other.
x = (IB, IIB, IIIB)e X is not a Nash equilibrium because if I and III's strategies are fixed,

I obtains ( 8 ) but can also obtain ( ) 11 8 8 ) This payoff is strictly better than ( 8 )

Consider that there is a partition of players, then we have coexistence of competition across
coalition and cooperation within each coalition. In the Nash equilibrium each player takes all
other's strategies as given, because no cooperation with other players is allowed.

This strategic behavior can be generalized to a group of players: each coalition takes all
other coalitions' strategies as given, because no cooperation with other coalition is allowed.
Thus given coalition Se 7, and given the complementary strategies X_g, the coalition S has to

solve the vector maximization utility problem:

max uS(Xs, i_s) (2)
Xg€ XS
where the complementary strategies x_g are fixed parameters and there are z m; objectives to
ieS
be maximized. This leads to the following concept of S-efficiency:
Definition 3.2 For any coalition Se J,, a joint strategy X = {)‘(1, iz,.‘., in}e Xisa

S-efficient solution of the game I" = {N, Xi, ui} if Xg is an efficient solution of the vector
maximization problem (2).

Notice that a Nash equilibrium of the game I" is a S-efficient solution of the game I" for any
coalition with only a player.

Suppose there is a partition A = {Sy, S,,..., Si}. If we consider a S-efficient solution for
each Se A, we will have a hybrid solution concept between cooperative and non-cooperative
solution concepts that we call a Nash equilibrium for the partition A:

Definition 3.3 For each partition of players A = {S;, S,,..., S¢} in the game

2 =1 . TTTIOR .
,...,» X }€X 1s a Nash equilibrium corresponding

I'={N, Xi, ui} a joint strategy X = {il, X
to A if VSe A, Xg is an efficient solution of the vector maximization problem (2) where Xg are
the given strategies of the other players.

Notice that this kind of solutions generalizes the concept of Nash equilibrium because we
obtain a Nash equilibrium when each coalition in the partition of the game I' has only one
player.

An existence theorem for these solutions is in [23].

Theorem 3.1 Given a partition of players A = {S;, S,,..., S} in the game I" = {N, Xi, ui}
the set of the corresponding Nash equilibrium to A is non-empty if I" satisfies:

1. For each player i, X! is a closed bounded convex subset in R™.
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2. For each coalition Se A,: je S are all continuous in x = (Xg, x_g) and are
quasiconcave in xg.

Notice that this theorem generalizes the eatlier existence theorems in [13], [17] and [5].

It is difficult to solve the multicriteria problems involed in the computation of Nash
equilibria strategies. When more restricting conditions hold, such as concavity instead of
quasiconcavity, it could be computed some of the solutions based in weighted criteria. Notice
that a player has to know the other players' strategies to make his choice because of the local

character of this kind of solutions.

3.2 Maximin Solution
In this section we analyze how a player or a coalition can choose the strategy without
knowing the other player's choice. We will work from the point of view of a coalition Se T\,.
Players in S will try to maximize their payoffs. Being pessimist, for each strategy they can
play, they consider the worst possible payoff. With this information they will choose the
strategy with the better worst payoff. That is to say the maximin values of their utility function.
Hence, for any xge Xg, we will consider the efficient solutions of the vector minimization

problem:
min uS(Xs, X_S) (3)
X g€ X-S

The maximin values set for the function ug is:

max U min  ug(xg, X.g)
XsEXS X-SEX-S

We call a maximin strategy of coalition S to a strategy attaining a maximin value.
As it is shown in [15], if the strategy set is a compact set, the maximin values set is

non-empty.

Example (continued):
In order to find the maximin strategies for player I, we first consider the worst possible

payoffs when he plays strategy IA (efficient for the vector minimization problem):
min{ (70) (50) (50) (100)}={(0) (50}
The worst possible payoffs when he plays strategy IB:
min{(5) () (s0)(0)}={(0)(s0)}
Next we seek for the maximum values, that is to say:
ma{ (20) (50) (0) (500} ={C38)(8)(s0)}
Hence, maximin values can be attained either with strategy IA or with strategy IB and both are

maximin strategics.
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Notice that player I does not know which of the minimal values he is going to get when
playing a maximin strategy. Notice also that the valuation of each strategy, in general, is not a
vector but a set of vectors, what makes difficult the task of comparing them.

Now, we are going to obtain the maximin strategies for the fixed coalition S = {1,3}. The

joint strategies for coalition S are:
x = (IA, TIA), x§ = (IA, IIB), x§ = (IB, ITIA), x§ = (IB, I1IB)

The worst possible joint payoff for coalition S are:

-50 -50 -50 -50
} 1 . 0 50 0 50
min  ug(xg, X.g) =minj| 5 50 |[T)] 50 50
xg€Xg 0 50 0 50
-50 100 -50 100
) 2 . 50 100 50 100
min  ug(xg, X.g) = min 0 0 = 0 0
x.g€X.g -100 -50 -100 -50
0 0 0 0
A 5 o ol _J[ o 0
min - ug(xg, X.g) =miny| 50 || 100 [(=) 50 || 100
x g€X g 50 -90 50 -90
0 0 0 0
) 4 . 50 0 50 0
min US(Xs, X_S) = min 0 0 = 0 0
X s€Xg -50 0 -50 0

The maximin values are obtained from the comparison of these sets of vectors.

Strictly competitive games are an interesting particular case. In these conditions coalition S
plays against the other players that form the coalition -S, maximizing his utility function
ug(xg, X_g). The goal of -S will be to minimize the coalition S utility function. To this end, S
will look for a maximin strategy whereas -S will look for a minimax strategy.

We say that Xxge Xg is a "optimal response" strategy for coalition S against the given
strategy X_g€ X_g of the other players if Xg is an efficient solution for the vector maximization

problem:

max uS(Xs, i_s) (4)
XgE XS

Similarly, we say that x_ge X_g is a "optimal response” strategy for coalition -S against the
given strategy Xge Xg of the other players if X_g is an efficient solution for the vector
minimization problem:

max ug(Xg,X_g) S))
xg€X g
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The set of all optimal response strategies of a coalition S against the opponent's given
strategy X_g€ X_g is defined by Rg(X.g) and the set of all optimal response strategies of a
coalition -S against the opponent's given strategy Xxge Xg is defined by R_g(Xg). For
convenience, we denote each optimal response set as follows:

D; = {(xg, x.g)e X/x_ge R_g(xg), xg€ Xg}
D, = {(xg, x.g)e X/xge Rg(x_g), x.ge X g}.

As we defined in definition 3.3, a joint strategy X = (Xg, X.g)€ X is said to be a Nash
equilibrium of the game for the partition A = {8, -S} if:

xge Rg(x_g) and X geRg(X.g) @ xeD; N D, &

uS(iS,i_S)e min U.S(fs, X_S)n max us(Xs,i_S)
x.geX g xg€ Xg

We call an equilibrium value or saddle value to ug(Xg, x.g) where (Xg, X_.g)e X is an
equilibrium strategy or generalized saddle point. For convenience we will denote the set of all
saddle values of ug by SV(ug).

The set of all maximin values of ug and the set of all minimax values of ug respectively are:

max U min  ug(xg, X.g) = max ug (D;)
XSEXS X_SEX_S

min U max ug(xg, X.g) = min ug (D,).
x g€Xg xgeXyg

Also we call a strategy Xg (respectively X_g) attaining a maximin value (respectively a
minimax value) a maximin (respectively minmax) strategy.

The following theorems shows that under certain conditions, there exists at least an optimal
response strategy for each coalition against and opponent's given strategy, and that there exist a
maximin strategy and a minimax strategy. This results is an extension of Lema 5.5. given in
[21].

Theorem 3.2 Given a coalition Se |, let Xg and X _g be nonempty compact subsets of R(S)
and R (-S) respectively. If the vector-valued function ug is continuous then for each xge Xg
and x_*Se X.g:

@# min ug(xg, xg) Cmax U  min ug(xg xg) - R(S),
X_SEX_S XSEXS X_SEX_S

@# max ug(xg, X.*s) Cmin U max ug(xg, x.g) + R(S),.
X_SEX_S X_SEX_S XSEXS

Unfortunately, maximin strategies do not always provide equilibrium values, but may give
equilibrium values in the sense of security levels when maximin strategies satisfy certain
conditions. Thus, we note that the maximin and minimax values are upper and lower bounds of

such equilibrium values, respectively.
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Corollary 3.1 For a coalition Se L, if Xg and X_g are non-empty compact subsets of R(S)
and R(-S) and ug is continuous then

SV(Us) Cmax U min US(Xs, X_S) - IR(S)+
X36XS X g€ X—S

SV(ug) € min U max ug(xg, x.g) + R(S),.
X—SEXS X_SEX_S

Hence, if the game S against -S has a joint equilibrium strategy X = (Xg, X.g)€ X, then

there exist:

zyemax U min us(xs,x_s)—]RS+
XSEXS X_SEX_S

zi€min U max ug(xg, X.g) + RS+
XSEXS X_SEX_S

such that ug(xg, X.g) < 7, and ug(Xg, X_.g) = z;. We will say that the maximin inequality holds
if z; < z,. In [19], [20] and [21] we can find conditions under which this maximin inequality
holds.

Example (continued): In the case that player Il is interested only in minimizing the coalition
S = {1,3} joint payoff, he will seek for a minimax strategy.

-50 0 -50 0
max  ug(xg, [TA) = max 5% 5% 5(()) 58
xgeXg 0 50 J-100 )\ -50
_50 0,100 ,0
50 0 || 100 ][0
max ug(xg, IIB) = max 50 100 0 0
xgeXg 50 -90 )\ -50 J\ 0

Among these values player II will choose the minima.

3.3 Pareto-optimal security strategies (POSS)

We have seen in section 3.2 that the multicriteria extension of the concepts of maximin
strategies is difficult and looses many of its interesting properties. Although, in some cases it is
possible to establish the existence of such strategies, it is usually difficult to obtain them and in
most cases the values provided are not unique. Thus when it is not possible to obtain maximin
solutions, the concept of POSS becomes important in order to solve multicriteria games from a
conservative point of view. This concept is independent of the notion of equilibrium, so that the
opponents are only taken into account to establish the security levels for one's own payoff.

In this section we look for solutions to the n-person multiobjective game under the point of
view of a coalition Se l,. We assume that all the players value the same m criteria. Players in S

will use the security level vector defined as follows:
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Definition 3.4 The security level vector or guaranteed payoff vector to coalition Se ), is:

Vg : Xg = R(S)
. i . .
_/ min u(xg, x.g):ieS, j=1,2,.., m}
Vs(Xs) {X_SEX_S J .

Foreachie S

. i L
VS(XS)I :{X_gnelr)l(“s uj(xs’ X'S) . .] - 1’ 2,..., m}e IRIH

is player i's guaranteed vector payoff, given coalition's choice xg. Then

Vi(xg) = min uj(xg,x.g):j=1,2,..,m.
X_SEX_S

Coalition Se N, will try to choose a strategy among all the possible such that the associated

security vector be as best as possible:

Definition 3.5 A strategy xge Xg is a POSS for coalition S if it is an efficient solution of the
vector maximization problem:
max  Vg(xg). (6)
xg€ Xg
Problem (6) is equivalent to:
max { Vi(xg), Vixg),..., Viixg), ie s}

s.t.: xge Xg
By scalarization we will characterize efficient solutions in the multiple objective problem.
When payoff functions, uj, are concave, the problem is convex. In this case we obtain (see

[16]) the efficient solutions of the problem by solving the associated nonlinear scalar problem

P(A):

m
i
=1
ieS
S.t. xSeXS
where
m . .
A A’ = AeRED A =1,420,j=1,..,m, ieS

j=1
ieS

Each component 7\,; of parameter A can be seen as the relative importance that the coalition S
assigns to the scalar game with scalar payoff function uj.

For strictly competitive games, the security level vector for the opponent coalition -S is:
V-S : X—S - ]R(—S)

i . .
V_S(X'S)Z{XT:))((S Uj(XS, x.g)ieS, j=1,2,..., m}

The set of POSS for coalition -S is the set of efficient solutions of the vector minimization
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problem:
min V~S(X-S)- (7)
x.geX g

Notice that if (Xg, X_g)€ X is an equilibrium, then:
Vs(Xs) < ug(Xg, X.g) = V.g(X.g)
Conversely if (Xg and X_g) are strategies such that Vg(Xg) = V_g(X_g), then (Xg, X_g) is an
equilibrium of the game.

In effect X_g is a solution of problem (5) because if Elx_’ge X glug(Xg, X.*s) < ug(Xg, X.g)

then:
Vg(Xs) < ug(Xs, x.g) < ug(Xs, X.g) < V.g(X.g).
The inequalities above are really equalities; similarly we can see that Xg is a solution of problem
(4).

A necessary and sufficient condition for Vg(Xg) =V_g(X_g) is that Xg and X_g be ideal
strategies for coalition S and coalition -S respectively; that is, Xg maximizes Vg(xg)
simultaneously in all its components and X_g minimizes V_g(x_g) simultaneously all its
components. This result generalizes theorem 4.1 in [8] because Vj =1, 2,..., m each ideal
strategy is an equilibrium for the scalar game with payoff function u}(x).

Example (continued):
To obtain the POSS for player I we compute the security level vectors:

V|(IA) = min{-50,-50,-50,100} = -50
Vi(IA) = min{0,50,50,100} = 0

viam=("9)
Analogously:
vam-( )

Now, in order to make the choice, player I has to compare two vectors.

Then

The security level vectors for player 111 are:

vaam) = (3

V,(B) = ( oo )

We can also compute the POSS for any coalition. For coalition S = {1,3}, the security level
vectors are:

V%I,B}I(IAaHIA) = min{-SO,—SO} =-50
V{13),dAIIA) = min(0,50) = 0
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Then p
.50
viaaama) = (7).
250
0
Analogously V2, 5 (IAIIIA) = ( o0 ) and then V. 5, IATIA) =| 5
0
Similarly:
-50 0 0
ams) =| 20 |v, ,aema =] & lv, o= 2
Vs IAIIB) = "o t V) IBIMIA) = 54 | Vi5)BHIB) =)
-100 290 .50

Obtaining the optimal strategies in n-person games with multiple objectives is very difficult
with any of the proposed solution concepts. Nevertheless, the set of POSS can be obtained
imposing additional properties in the payoff functions of the game. This is the case of multiple
objective n-person games with multidimensional-matrix payoff.

LetP' = (e, 3. eL } denote the pure strategies of player 1.

Let A = [A, A%..., A" be the payoff function where Al = [Ai(l) Al2),..., Alm)] and

Al (j) is a matrix with L; rows (pure strategies of player i) and H L; columns (pure joint
=1
j#

strategies of the players in N\{i}).

Example (continued):
In this example there are two objective functions. Therefore, the payoff matrices for player
| are:

AI=[A1(1)A1(2)]=[ E -50 -5(()) -50 100] [(()) 58 55(()) 100] ]

Let S = {iy, iy,..., ig} be a coalition of players. The set of pure strategies for the coalition S

is given by P> = I P and its payoff function is a vector of matrices AS = [AS(I),
ie S

AS(2),..., AS(m)] where each AS(j) is a matrix with P3| rows and IP"S| columns whose
elements are the payoffs received in the j-th objective by the players which belong to S:

S, 1IS|
A =
@ = (@), 2@ RO, ps  pos
The following theorem reduces the computation of POSS, as defined in definition 3.5, to
obtain the efficient solutions of a multiobjective linear problem.

Theorem 3.3 The set of POSS strategies and the corresponding security level vector for a
coalition S = {ij, 15,..., 1jg} in a multiple objective n-person game with multidimensional

matrix payoff A, is given by the efficient solutions of the problem:
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i1t 11 i1 ilsl_iIsi ilsl
max (Vl s Vo seees Vimoseess Vi 5 Vo seees Vm)

st: xg(AS(D), AS),..., AS(m)) 2

xg€ Xg
The proof runs analogously to theorem 3.1 in [7] applied to the amalgation of the game induced
for the player in N\S (see [3] for the definition of amalgation of games).

Example (continued):
The security level vector and the set of POSS for the coalition S = {1} is obtained solving
the problem:

max (vy, Vo)

s.t.; -50%x; 2 vy
100x; 2 vy
02v,
50x, 2 v,
50%; + 50x, 2 v,
100x; 2 v,
X +X%Xy=1
x;20,i=1,2
vi, 1=1,2.

Using the software package ADBASE (see [18]), the POSS of this problem is:

X(1y = (0, 1), V(1)(X(1)) = (0, 0).

Therefore, in this example there is a unique POSS of player I which is IB and the security
levels are O in both payoff functions.

If we consider coalition S = {2} the set of POSS is given by the convex hull of the
strategies X (o) = (1, 0) and y(5) = (0, 1) whose associated security level vectors are
Vi2)&{2p) = (0, -100) and Vi23(¥(2)) = (-50, 0) respectively. Analogously, for the coalition
S = {3} we obtain the set of POSS as the convex hull of X3, = (13/25, 12/25) and
y(3y = (1, 0), and the corresponding security level vectors are V3y(Xy3)) = (658/25, -1684/25)
and V3,(y(3)) = (-50, -90).
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Examyple: Consider a bicriteria three-person game in strategic form. The pure strategy sets for
player I, player II and player III are:
P! = (1A, IB, IC}, P? = {IIA, IIB, IIC}, P? = {IIA, IB},
respectively. The payoff matrices for this game are given in Table 2.
For the coalition S = {1, 3} the joint pure strategy set is:
pS = {(IA, IIIA), (IB, ITTA), (IC, IIIA), (IA, IIIB), (IB, IIIB), (IC, 11IB)}
and P™S = {IIA, 1IB, IIC}.
The payoff matrix for the coalition S = {1, 3} is:

AS =1a5), AS2)]

with
(1,'1) (19'1) (1"1)
58 08 o
S s ’ ’
A=l 21 (01) (0.1)
(0,2) (-2,2) (-2,2)
(1,-1) (0,-1) (0,-1)
and
(0,2) (2,1) (0,2)
((12’01)) 58’53 ((12’01))
S " > "
A@=l (1,0) (1,0) (1,0)
(0,2) (2,-1) (0,2)
(0,0) (-1,0) (0,0)
:r”:":::: _‘ « .
(0,1,2) 20D | (0-1,2) (1,1,0) (1,0,0) (1,-1,0)
IB (0,1,0) (1,1,0) (1,-1,0) (0,0,2) (-2,1,2) (-2,-2,2)
(2,00 OLD | @1oJl ©12) [ @o-h | ©02)
IC (0,2,0) (1,0,0) (1,2,0) (1,1,-1) (0,-1,-1) (0,2,-1)
(1,0,-1) (0,1,0) (1,-1,-1) (0,2,0) (-1,1,0) (0,-1,0)

Table 2 - Payoffs matrices
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max (v}, v3, Vi, v3)

s.t.: x1-2x4+x62v}
x1+x2+x3-2x52v}
2x2+x3+x42v5
2x1+x4+2x5—x62v;
-x1+x4+2x5-x62vf
le-x3+2x52vg
x1+x2-x52vg
X +Xy+ X3+ Xg+Xs+Xg =1
x20,1i=1,2
vi i=1,3 j=1,2

associated, we solve the following multiobjective linear problem:

security level vectors:
Strategies Security Levels
Xs Vs(Xs)
(2/5,2/5,0,0,1/5,0) (2/5,4/5,0,3/5)
(1/4,1/2,0,0,1/4,0) (1/4,1,1/4,1/2)
(1/3,1/2,0,0,4/25,0) (1/3,1,0,2/3)
(3/20,23/50,0,2/25,31/100,0) (0,1,27/50,31/100)
(0,2/3,0,0,1/3,0) (0,2/3,2/3,1/3)
(1/4,5/8,0,0,1/8,0) (1/4,3/4,0,3/4)
(0,3/4,0,0,1/4,0) (0,1/2,1/2,1/2)
(0,0,0,0,1,0) (-2,0,2,-1)
(0,0,0,1/2,1/2,0) (-1,1/2,3/2,-1/2)
(0,2/5,0,1/5,2/5,0) (-2/5,1,1,0)
(1/2,1/2,0,0,0,0) (1/2,1,-1/2,1)
(1,0,0,0,0,0) (1,0,-1,1)

3.4 Core Solution

207

In order to compute the POSS for the coalition S = {1, 3} and the security level vector

The extreme efficient solutions of this problem lead to the following POSS strategies and

Security level vectors are used to define the core solution concept. A joint strategy is a core

solution if it is stable in the sense that no coalition can guarantee a better result than the payoff

obtained by the joint strategy.

Definition 3.6 A joint strategy X = (X;, X,,..., Xp)€ X is a core solution of the n-person

multiobjective game I'" = {N, Xi, ui} if:

VSe N : Qg(X) = {xge Xg/Vg(xg) >> ug(X)} =@
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Similarly, a vector ye R(N) is a "core vector" (or in the core) of the game I if it is feasible and
if:
VSe N : ®g(y) = {xge Xg/Vg(xg) >> yg} =
By feasible we mean dxe X/u(x) 2 y
With >> we note strictly greater than componentwise.
In the following theorem we shoe a relation between core solution and POSS.

Theorem 3.4 For the game I' = {N, Xi, ui}, if the joint strategy X is such that Xg is POSS
VSCN, then X is a core solution.

Proof: Xg is POSS for SCN, then there exists no xge Xg such that vg(xg) >> vg(Xg) =
minx_se X.g uS(is, X_S). But

ug(x)2 min  ug(Xg, x.g)
x.s€X g

then there exists no xge Xg such that vg(xg) >> ug(Xg). It follows that X is a core solution.

If there exists a fixed partition of the players A = {Sq, S,,..., S} then there will be partial
cooperation among the members of each coalition and competence between the different
coalitions, Then, the partition A will induce k parameiric multiple objective games:

Ts&.g) = (S, X, u'(xs, X.5)} VS =8y, Sg50.s Sic ®
For the fixed parameter X_g, each I'q(X_g) has ISI players with payoff functions ui(xs, X_g) and

is simply a new multiple objective game. The concept of hybrid solution can now be given as:

Definition 3.7 For each partition of players A = {S;, S,,..., S¢} in the n-person multiple
objective game I" = {N, Xi, ui}, a joint strategy X = {X{, X,,..., Xp}€ X is a core solution
corresponding to the partition A if VSe A, Xg is a core solution of the corresponding parametric
game: Tg(X.g) = (S, X', u'(xg, X9}

Notice that this definition generalizes the core solution concept given in definition 3.6,
because a core solution is a core solution for the trivial partition A = {N}.

In [23] an existence theorem of core solutions is established for any partition. The proof of
this result suggests an algorithm to find a core solution to the multiple objective game based on
Kakutani's fixed point theorem in [11].

Theorem 3 5 Given a partition of playetrs A = {Sy, S,,..., Sk} in the rnult1ple objective game
= {N, X u } the correspondmg core solutlons set is non-empty if I satisfies:
1. For each player i, X'isa closed bounded convex subset in ]RL1
2. For each coalition Se A, u](x), jeS, are all continuous in x = (Xg, X_5) and are

quaswonc ave in Xg.
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4, Conclusions

Nash equilibrium has been the most frequently used concepis in the analysis of n-person
non-cooperative games. However, the exhibits the same difficulties observed in bimatrix games
both in the computation and use. These inconveniences may be avoided by using different
solution concepts taken from the theory of matrix games. In this paper, we reviewed the
concepts of Nash equilibria, maximin strategies and Pareto-optimal security strategies in the
framework of n-person non-cooperative multiple objective games. New definitions were given
and properties showing relationships were stated. Examples were included to show so the
difficulty of the calculation of those strategies as their use. Finally, we proved the relationship
between POSS and core solutions in a game with a given coalitional structure.
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