
Accepting Hybrid Networks
of Evolutionary Processors

Maurice Margenstern1, Victor Mitrana2, and Mario J. Pérez-Jiménez3

1 LITA, UFR MIM, University of Metz,
Ile du Saulcy, 57045 Metz-Cedex, France

margens@lita.univ-metz.fr
2 Faculty of Mathematics and Computer Science, University of Bucharest,

Str. Academiei 14, 70109, Bucharest, Romania
and

Research Group in Mathematical Linguistics, Rovira i Virgili University,
Pça. Imperial Tarraco 1, 43005, Tarragona, Spain

vmi@fll.urv.es
3 Department of Computer Science and Artificial Intelligence,

University of Seville
Mario.Perez@cs.us.es

Abstract. We consider time complexity classes defined on accepting hy-
brid networks of evolutionary processors (AHNEP) similarly to the clas-
sical time complexity classes defined on the standard computing model
of Turing machine. By definition, AHNEPs are deterministic. We prove
that the classical complexity class NP equals the set of languages ac-
cepted by AHNEPs in polynomial time.

1 Introduction

The origin of networks of evolutionary processors (NEPs for short) is twofold. In
[5] we consider a computing model inspired by the evolution of cell populations,
which might model some properties of evolving cell communities at the syntac-
tical level. Cells are represented by words which describe their DNA sequences.
Informally, at any moment of time, the evolutionary system is described by a
collection of words, where each word represents one cell. Cells belong to species
and their community evolves according to mutations and division which are de-
fined by operations on words. Only those cells are accepted as surviving (correct)
ones which are represented by a word in a given set of words, called the genotype
space of the species. This feature parallels with the natural process of evolution.

On the other hand, a basic architecture for parallel and distributed sym-
bolic processing, related to the Connection Machine [10] as well as the Logic
Flow paradigm [6], consists of several processors, each of them being placed in
a node of a virtual complete graph, which are able to handle data associated
with the respective node. Each node processor acts on the local data in accor-
dance with some predefined rules, and then local data becomes a mobile agent

which can navigate in the network following a given protocol. Only such data
can be communicated which can pass a filtering process. This filtering process
may require to satisfy some conditions imposed by the sending processor, by
the receiving processor or by both of them. All the nodes send simultaneously
their data and the receiving nodes handle also simultaneously all the arriving
messages, according to some strategies, see, e.g., [7, 10].

In [1](further developed in [2, 11, 3]), we modify this concept (considered
in [4] from a formal language theory point of view) in the following way in-
spired from cell biology. Each processor placed in a node is a very simple pro-
cessor, an evolutionary processor. By an evolutionary processor we mean a
processor which is able to perform very simple operations, namely point mu-
tations in a DNA sequence (insertion, deletion or substitution of a pair of
nucleotides). More generally, each node may be viewed as a cell having ge-
netic information encoded in DNA sequences which may evolve by local evo-
lutionary events, that is point mutations. Each node is specialized just for
one of these evolutionary operations. Furthermore, the data in each node is
organized in the form of multisets of words (each word appears in an arbi-
trarily large number of copies), and all copies are processed in parallel such
that all the possible events that can take place do actually take place. Obvi-
ously, the computational process described here is not exactly an evolution-
ary process in the Darwinian sense. But the rewriting operations we have con-
sidered might be interpreted as mutations and the filtering process might be
viewed as a selection process. Recombination is missing but it was asserted
that evolutionary and functional relationships between genes can be captured
by taking only local mutations into consideration [12]. Consequently, hybrid
networks of evolutionary processors might be viewed as bio-inspired comput-
ing models. We want to stress from the very beginning that we are not con-
cerned here with a possible biological implementation, though a matter of great
importance.

In a series of papers, we present linear time solutions to some NP-complete
problems using these simple mechanisms. Such solutions are presented for the
Bounded Post Correspondence Problem in [1], for the “3-colorability problem”
in [2] (with simplified networks), and for the Common Algorithmic Problem in
[11]. In this paper, we consider time complexity classes defined on accepting
hybrid networks of evolutionary processors (AHNEP) similarly to the classical
time complexity classes defined on the standard computing model of Turing
machine. By definition, AHNEPs are deterministic. We prove that NP equals
the class of languages accepted by AHNEPs in polynomial time.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any sequence of symbols from an alphabet V is called string (word)
over V . The set of all strings over V is denoted by V ∗ and the empty string is

denoted by ε. The length of a string x is denoted by |x| while alph(x) denotes
the minimal alphabet W such that x ∈ W ∗.

A nondeterministic Turing machine is a construct T = (Q,V, U, δ, q0, B, F),
where Q is a finite set of states, V is the input alphabet, U is the tape alphabet,
V ⊂ U , q0 is the initial state, B ∈ U \V is the “blank” symbol, F ⊆ Q is the set
of final states, and δ is the transition mapping, δ : (Q \F)×U −→ 2Q×U×{R,L}.
Moreover, if (s,B,X) ∈ δ(q, a) for some s, q ∈ Q and X ∈ {R,L}, then a = B,
i.e. T never write B over a symbol different than B. The variant of a Turing
machine we use in this paper can be described intuitively as follows: it has a tape
divided into cells that may store symbols from U (each cell may store exactly
one symbol from U). The tape is semi-infinite, namely it is bounded to the left
(there is a leftmost cell) and unbounded (arbitrarily long) to the right. The
machine has a a central unit which can be in a state from a finite set of states,
and a reading/writing tape head which can scan in turn the tape cells. This head
cannot go the the left-hand end of the tape. The input word is a word over V
and is stored on the tape starting with the leftmost cell and all the other tape
cells contain the symbol B.

Initially, the tape head scans the leftmost cell and the central unit is in the
state q0. The machine performs moves. A move depends on the contents of the
cell currently scanned by the tape head and the current state of the central unit.
A move consists of: change the state, write a symbol from U on the current cell
and move the tape head one cell either to the left (provided that the cell scanned
was not the leftmost one) or to the right. An input word is accepted iff after a
finite number of moves the Turing machine enters a final state.

An instantaneous description (ID for short) of a Turing machine T as above
is a string over (U \ {B})∗Q(U \ {B})∗. Given an ID αqβ, this means that the
tape contents is αβ followed by an infinite number of cells containing the blank
symbol B the current state is q, and the symbol currently scanned by the tape
head is the first symbol of β provided that β �= ε, or B, otherwise.

We say that a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both
a and b are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion rule
if a = ε and b �= ε. The set of all substitution, deletion, and insertion rules over
an alphabet V are denoted by SubV , DelV , and InsV , respectively.

Given a rule as above σ and a string w ∈ V ∗, we define the following actions
of σ on w:

• If σ ≡ a → b ∈ SubV , then

σ∗(w) = σr(w) = σl(w) =
{{ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

• If σ ≡ a → ε ∈ DelV , then σ∗(w) =
{{uv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{{u : w = ua},
{w}, otherwise σl(w) =

{{v : w = av},
{w}, otherwise

• If σ ≡ ε → a ∈ InsV , then
σ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)}, σr(w) = {wa}, σl(w) = {aw}.

α ∈ {∗, l, r} expresses the way of applying an evolution rule to a word, namely
at any position (α = ∗), in the left (α = l), or in the right (α = r) end of the
word, respectively. For every rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define
the α-action of σ on L by σα(L) =

⋃
w∈L σα(w). Given a finite set of rules M ,

we define the α-action of M on the word w and the language L by:
Mα(w) =

⋃
σ∈M σα(w) and Mα(L) =

⋃
w∈L Mα(w),

respectively. In what follows, we shall refer to the rewriting operations defined
above as evolutionary operations since they may be viewed as linguistic formu-
lations of local gene mutations. For two disjoint subsets P and F of an alphabet
V and a word w over V , we define the predicates

ϕ(1)(w;P,F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
ϕ(2)(w;P,F) ≡ alph(w) ⊆ P
ϕ(3)(w;P,F) ≡ P ⊆ alph(w) ∧ F �⊆ alph(w)
ϕ(4)(w;P,F) ≡ alph(w) ∩ P �= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts) and F (forbidding contexts).

For every language L ⊆ V ∗ and β ∈ {(1), (2), (3), (4)}, we define:
ϕβ(L,P, F) = {w ∈ L | ϕβ(w;P,F)}.

An evolutionary processor over V is a tuple (M,PI, FI, PO, FO), where:

– Either (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ InsV). The set M represents
the set of evolutionary rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.
– PI, FI ⊆ V are the input permitting/forbidding contexts of the processor,
while PO,FO ⊆ V are the output permitting/forbidding contexts of the proces-
sor (with PI ∩ FI = ∅ and PO ∩ FO = ∅).

We denote the set of evolutionary processors over V by EPV .
An accepting hybrid network of evolutionary processors (AHNEP for short)

is a 7-tuple Γ = (V,U,G,N, α, β, xI , xO), where:

– V and U are the input and network alphabet, respectively, V ⊆ U .
– G = (XG, EG) is an undirected graph with the set of vertices XG and the

set of edges EG. G is called the underlying graph of the network.
– N : XG −→ EPU is a mapping which associates with each node x ∈ XG the

evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).
– α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on

the words existing in that node.
– β : XG −→ {(1), (2), (3), (4)} defines the type of the input/output filters of a

node. More precisely, for every node, x ∈ XG, the following filters are defined:
input filter: ρx(·) = ϕβ(x)(·;PIx, F Ix),

output filter: τx(·) = ϕβ(x)(·;POx, FOx).
That is, ρx(w) (resp. τx) indicates whether or not the string w can pass the
input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set
of strings of L that can pass the input (resp. output) filter of x.

– xI , xO ∈ XG are the input and the output node of Γ , respectively.

We say that card(XG) is the size of Γ . If α and β are constant functions, then
the network is said to be homogeneous. In the theory of networks some types of
underlying graphs are common, e.g., rings, stars, grids, etc. Networks of evolu-
tionary processors with underlying graphs having these special forms have been
considered in [1, 2, 11, 3]. We focus here on complete AHNEPs, i.e., AHNEPs
having a complete underlying graph denoted by Kn, where n is the number of
vertices.

A configuration of a AHNEP Γ as above is a mapping C : XG −→ 2V ∗
which

associates a set of strings with every node of the graph. A configuration may
be understood as the sets of strings which are present in any node at a given
moment. Given a string w ∈ V ∗, the initial configuration of Γ on w is defined
by C

(w)
0 (xI) = w and C

(w)
0 (x) = ∅ for all x ∈ XG − {xI}.

A configuration can change either by an evolutionary step or by a communi-
cation step. When changing by an evolutionary step, each component C(x) of the
configuration C is changed in accordance with the set of evolutionary rules Mx

associated with the node x and the way of applying these rules α(x). Formally,
we say that the configuration C ′ is obtained in one evolutionary step from the
configuration C, written as C =⇒ C ′, iff C ′(x) = M

α(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each string it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the strings sent by any node
processor connected with x providing that they can pass its input filter.

Formally, we say that the configuration C ′ is obtained in one communication
step from configuration C, written as C � C ′, iff C ′(x) = (C(x) − τx(C(x))) ∪⋃

{x,y}∈EG
(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Let Γ be an AHNEP, the computation of Γ on the input string w ∈ V ∗

is a sequence of configurations C
(w)
0 , C

(w)
1 , C

(w)
2 , . . ., where C

(w)
0 is the initial

configuration of Γ on w, C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 � C

(w)
2i+2, for all i ≥ 0.

By the previous definitions, each configuration C
(w)
i is uniquely determined by

the configuration C
(w)
i−1. Otherwise stated, each computation in an AHNEP is

deterministic. A computation halts (and it is said to be finite) if one of the
following two conditions holds:

(i) There exists a configuration in which the set of strings existing in the
output node xO is non-empty. In this case, the computation is said to be an
accepting computation.

(ii) There exist two consecutive identical configurations.
The language accepted by Γ is

L(Γ) = {w ∈ V ∗ | the computation of Γ on w is an accepting one}.

3 Complexity Classes

The reader is referred to [8, 9] for the classical time and space complexity classes
defined on the standard computing model of Turing machine.

We define some computational complexity measures by using AHNEP as the
computing model. To this aim we consider a AHNEP Γ and the language L

accepted by Γ . The time complexity of the accepting computation C
(x)
0 , C

(x)
1 ,

C
(x)
2 , . . . C

(x)
m of Γ on x ∈ L is denoted by TimeΓ (x) and equals m. The time

complexity of Γ is the partial function from N to N,
TimeΓ (n) = max{TimeΓ (x) | x ∈ L(Γ), |x| = n}.

For a function f : N −→ N we define
TimeAHNEP (f(n)) = {L | there exists an AHNEP Γ and n0 such that

L = L(Γ) and ∀n ≥ n0(TimeΓ (n) ≤ f(n))}
Moreover, we write PTimeAHNEP =

⋃
k≥0 TimeAHNEP (nk).

Now we prove a result which establishes a strong connection between the
complexity classes defined on Turing machines and those defined on AHNEPs.

Proposition 1. For any nondeterministic Turing machine, M , recognizing a
language L there exists an AHNEP, Γ , accepting the same language L. Moreover,
if M works within time f(n) then TimeΓ (n) ∈ O(f(n)).

Proof. Let M = (Q,V1, V2, δ, q0, B, F) be an arbitrary Turing machine. We de-
fine the new alphabets:
U

(K)
1 = {〈s, b,K, a〉 | (s, b,K) ∈ δ(q, a), s, q ∈ Q, a, b ∈ V2 \ {B}},K ∈ {R,L},

U2 = {[a, b] | a, b ∈ V2 \ {B}} U3 = {Xa | a ∈ V2 \ {B}},
U4 = {Y (b)

a | a, b ∈ V2 \ {B}} U5 = {Za | a ∈ V2 \ {B}},
U6 = {Wa | a ∈ V2 \ {B}} U7 = {sa | s ∈ Q, a ∈ V2 \ {B}},
U8 = {Ya | a ∈ V2 \ {B}} U10 = {s̃a | s ∈ Q, a ∈ V2 \ {B}}
U

(K)
9 = {〈〈s, a,K, q〉〉 | (s, a,K) ∈ δ(q,B), s, q ∈ Q, a ∈ V2 \ {B}},K ∈ {R,L}.

Furthermore, for an alphabet T we denote by T ′ the alphabet consisting of the
primed copies of all symbols in T . Now, we put

U = U
(R)
1 ∪ U

(L)
1 ∪ U2∪ U3∪ U4∪ U5∪ U6∪ U7∪ U8∪ U

(R)
9 ∪ U

(L)
9 ∪

U10 ∪ V2 ∪ Q ∪ U ′
3 ∪ U ′

5 ∪ U ′
6 ∪ U ′

8 ∪ (V2 \ {B})′
We define the AHNEP Γ = (V1, U,G,N, α, β, xI , xO), where G is a complete
graph whose nodes are described below.
MxI

= {ε → q0}, PIxI
= ∅, FIxI

= U , POxI
= ∅, FOxI

= ∅, α(xI) = r,
β(xI) = (1).

Table 1

Node M PI FI PO FO α β

x
(�=B)
1 {q → 〈s, b, K, a〉 | ∅ U \ (V2 ∪ Q) ∅ ∅ ∗ (1)

(s, b, K) ∈ δ(q, a)}
x

(�=B)
1 (a, b) {ε → Y

(a)
b } {〈s, b, R, a〉} U \ (V2 ∪ U

(R)
1 ∅ ∅ r (1)

∪U4)

x
(�=B)
1 (a) {a → Xa} {Y (a)

b } U \ (V2 ∪ U
(R)
1 U3 ∅ ∗ (4)

∪U3 ∪ U4)

x
(�=B)
2 {〈s, b, R, a〉 → s, U3 U \ (V2 ∪ U

(R)
1 U \ (U

(R)
1 U

(R)
1 ∪ U4 ∗ (4)

Y
(a)

b → b} ∪U3 ∪ U4) ∪U4)

x
(�=B)
3 {Xa → ε} U3 U \ (V2 ∪ U3) U \ U3 U3 l (4)

The nodes described in Table 1 are used for simulating a move of M which
consists in reading a symbol different from B, possibly changing the state as well
as the read symbol, and moving the tape head to the right. In this table, s, q ∈ Q,
a, b ∈ V2\{B} and K ∈ {R,L}. Each table is accompanied by some explanations
which emphasize the simulation mode. By the definition of the input node xI ,
for any input string w ∈ V ∗

1 , C
(w)
1 (xI) = {wq0}. In the next communication step

both nodes x
(�=B)
1 and x

(=B)
1 (which will be defined later) receive a copy of wq0.

Note that the initial ID of a computation of M on w is q0w. Let us consider now
an ID αqβ, which can be obtained by a computation in M starting with q0w.
By induction, we may assume that βqα ∈ C

(w)
m (x(�=B)

1) ∩ C
(w)
m (x(=B)

1) for some
m ≥ 1. Let us suppose that β = aβ′, a ∈ V2 \ {B}, β′ ∈ (V2 \ {B})∗. Clearly,
C

(w)
m+1(x

(=B)
1) ⊇ {β〈s, b,K, c〉α | (s, b,K) ∈ δ(q, c), s ∈ Q, b, c ∈ V2 \ {B},K ∈

{R,L}}. Obviously, only those strings with c = a from the above ones are
useful for our simulating process. Now, let us follow what happens with a string
β〈s, b, R, a〉α for some fixed s ∈ Q, b ∈ V2\{B} in the following steps. This string
is accepted by x

(�=B)
1 (a, b) only, where Y

(a)
b is appended to its right-hand end. The

resulting string β〈s, b, R, a〉αY
(a)
b is sent out by x

(�=B)
1 (a, b) and x

(�=B)
1 (a) is the

unique node which can receive it. Here, exactly one occurrence of a in different
copies of β〈s, b, R, a〉αY

(a)
b is replaced by Xa and all the obtained strings leave

x
(�=B)
1 (a). (We shall see later that only those strings starting with a in which this

first occurrence of a is replaced by Xa can further navigate through the network;
the others remain in x

(�=B)
3 forever.) Then, all of them enter the node x

(�=B)
2 where

〈s, b, R, a〉 and Y
(a)
b are replaced by s and b, respectively. Both symbols must be

replaced in two consecutive evolutionary steps since the output filter of x
(�=B)
2

prevents leaving of this node by the strings containing symbols from U
(R)
1 or U4.

All the strings leaving x
(�=B)
2 arrive in x

(�=B)
3 where those starting with Xa can

leave x
(�=B)
3 after having removed Xa from their left-hand end, while the others

remain in x
(�=B)
3 forever. In this way, we check whether or not the first letter of

β is indeed a. By the above explanations, we infer that
C

(w)
m+14(x

(�=B)
1) ⊇ {β′sαb | (s, b, R) ∈ δ(q, a), s ∈ Q, b ∈ V2 \ {B}}.

The nodes described in Table 2, together with x
(�=B)
1 are used for simulating

a move of M which consists in reading a symbol different from B, possibly
changing the state as well as the read symbol, and moving the tape head to the
left, provided that this is possible. In this table, s, q ∈ Q and a, b ∈ V2 \ {B}.

We start our explanation by returning to the configuration C
(w)
m+1(x

(=B)
1) ⊇

{β〈s, b,K, c〉α | (s, b,K) ∈ δ(q, c), s ∈ Q, b, c ∈ V2 \ {B},K ∈ {R,L}}. In the
sequel, we follow a string β〈s, b, L, a〉α for some fixed s ∈ Q, b ∈ V2 \ {B}. This
string enters x

(�=B)
2 (a, b) where, similarly to the situation described above when

the followed string reached x
(�=B)
1 (a), exactly one occurrence of a in different

copies of β〈s, b, L, a〉α is replaced by [a, b]. As we shall see later, the node x
(�=B)
5

blocks all the strings obtained in x
(�=B)
2 (a, b) which do not start with [a, b] for

further navigation through the network. Until that moment, we continue our

explanations. The strings obtained in x
(�=B)
2 (a, b) enter x

(�=B)
2 (b), where Wb is

appended to their right-hand end. Now, all these strings enter x
(�=B)
4 , where

exactly one occurrence of each letter c ∈ V2 \ {B} is replaced by Zc. The role of
this node is to check whether or not α = ε since a move of the tape head to the
left in the ID αqβ is possible provided that α �= ε. More clearly, C

(w)
m+5(x

(�=B)
4)

has just received all strings of the form β1〈s, b, R, a〉αWb and β〈s, b, R, a〉α1Wb,
where β1 and α1 differ from β and α, respectively, on exactly one position where
a in β or α is replaced by [a, b].

Table 2

Node M PI FI PO FO α β

x
(�=B)
2 (a, b) {a → [a, b]} {〈s, b, L, a〉} U \ (V2 ∪ U

(L)
1) U2 ∅ ∗ (4)

x
(�=B)
2 (b) {ε → Wb} {[a, b]} U \ (V2 ∪ U

(L)
1 ∅ ∅ r (1)

∪U2)

x
(�=B)
4 {a → Za} U6 U \ (V2 ∪ U

(L)
1 U5 ∅ ∗ (4)

∪U2 ∪ U6)

x
(�=B)
5 {[a, b] → ε} U5 U \ (V2 ∪ U

(L)
1 U \ U2 U2 l (4)

∪U2 ∪ U5 ∪ U6)

x
(�=B)
3 (a) {ε → W ′

a} {Wa} U \ (V2 ∪ U
(L)
1 U \ U3 U3 l (4)

∪U5 ∪ U6)

x
(�=B)
6 {Wa → ε} U ′

6 U \ (V2 ∪ U
(L)
1 U \ U6 U6 r (4)

∪U5 ∪ U6 ∪ U ′
6)

x
(�=B)
4 (a) {ε → Z′

a} {Za} U \ (V2 ∪ U
(L)
1) U \ U3 U3 l (4)

x
(�=B)
7 {Za → ε} U ′

5 U \ (V2 ∪ U
(L)
1 U \ U5 U5 r (4)

∪U5 ∪ U ′
5 ∪ U ′

6)

x
(�=B)
8 {W ′

a → a}∪ U ′
5 U \ (V2 ∪ U

(L)
1 U \ (U

(L)
1 U

(L)
1 ∪ ∗ (4)

{Z′
a → a}∪ ∪U ′

5 ∪ U ′
6) ∪U ′

5 ∪ U ′
6) U ′

5 ∪ U ′
6

{〈s, b, L, a〉 → s}

Now, C
(w)
m+6(x

(�=B)
4) contains all strings h(β1)〈s, b, L, a〉αWb, β1〈s, b, L, a〉h(α)Wb,

β〈s, b, L, a〉h(α1)Wb, h(β)〈s, b, L, a〉α1Wb, where h : ((V2 \ {B}) ∪ U2 ∪ U6 ∪
U

(L)
1)∗ −→ 2((V2\{B})∪U2∪U6∪U

(L)
1 ∪U5)

∗
is a finite substitution which leaves un-

changed all the symbols from U2 ∪U6 ∪U
(L)
1 and h(c) = {c, Zc}, for all c ∈ V2 \

{B}. But C
(w)
m+6(x

(�=B)
4) contains no string β1〈s, b, L, a〉αWb or β〈s, b, L, a〉α1Wb

from above. Later, it will turn out that only the strings [a, b]β′〈s, b, L, a〉α′ZcWb

are useful for the rest of computation. Indeed, the strings which do not start
with a symbol in U2 remain blocked in x

(�=B)
5 . The others leave x

(�=B)
5 and enter

x
(�=B)
3 (a) where they receive W ′

a in their left-hand end, provided that they have
Wa in their right-hand end. After that, Wa is deleted. This is actually the way
of rotating a symbol from the right-hand end to the left-hand end of a string.
The role of x

(�=B)
4 (a) and x

(�=B)
7 is the same and now we can easily notice that

only the strings proceeding from [a, b]β′〈s, b, L, a〉α′ZcWb can continue the com-
putation. Finally, we deduce that

C
(w)
m+22(x

(�=B)
1) ⊇ {cbβ′sα′ | α = cα′, (s, b, L) ∈ δ(q, a), s ∈ Q, b, c ∈ V2 \ {B}}.

The nodes described in Table 3 are used for simulating a move of M which con-
sists in reading B and changing it into a symbol from V2\{B}, possibly changing
the current state, and moving the tape head to the right. In this table, s, q ∈ Q,
a ∈ V2 \ {B} and K ∈ {R,L}.

Table 3

Node M PI FI PO FO α β

x
(=B)
1 {ε → 〈〈s, a, K, q〉〉 | ∅ U \ (V2 ∪ Q) ∅ ∅ r (1)

(s, a, K) ∈ δ(q, B)}
x

(=B)
1 (q) {q → ε} {〈〈s, a, K, q〉〉} U \ (V2 ∪ U9 U ∅ l (4)

∪Q)

x
(=B)
1 (s, a) {ε → sa} {〈〈s, a, R, q〉〉} U \ (V2 ∪ U

(R)
9) ∅ ∅ l (1)

x
(=B)
1 (a) {ε → Ya} {sa} U \ (V2 ∪ U

(R)
9 U ∅ r (4)

∪U7)

x
(=B)
2 {〈〈s, a, R, q〉〉 → ε} U8 U \ (V2 ∪ U

(R)
9 ∅ U

(R)
9 ∗ (1)

∪U7 ∪ U8)

x
(=B)
3 {Ya → a}∪ U8 U \ (V2 ∪ U8 U \ (U8 U8 ∪ U7 ∗ (4)

{sa → s} ∪U7) ∪U7)

We consider a string βqα ∈ C
(w)
m (x(=B)

1) and (s, a,R) ∈ δ(q,B) a transition
which the move of M we want to simulate is based on. First, βqα〈〈s, a,R, q〉〉 is
produced in x

(=B)
1 and then sent out. The string enters x

(=B)
1 (q) where one

checks whether or not β = ε. Only qα〈〈s, a,R, q〉〉, after deleting q, is able
to leave x

(=B)
1 (q), the others being blocked in this node. Now, α〈〈s, a,R, q〉〉

enters x
(=B)
1 (s, a), where the symbol sa is appended to its left-hand end, and

the resulting string enters x
(=B)
1 (a), where Ya is appended to its right-hand end.

Table 4

Node M PI FI PO FO α β

x
(=B)
2 (s, a) {ε → s̃a} {〈〈s, a, L, q〉〉} U \ (V2 ∪ U

(L)
9) U ∅ l (4)

x
(=B)
4 {〈〈s, a, L, q〉〉 → ε} U7 U \ (V2 ∪ U

(L)
9 U \ U

(L)
9 U

(L)
9 ∗ (4)

∪U10)

x
(=B)
2 (a) {ε → X ′

a} {s̃a} U \ (V2 ∪ U10) U ∅ l (4)

x
(=B)
5 {a → Y ′

a} U ′
3 U \ (V2 ∪ U10 U ′

8 ∅ ∗ (4)
∪U ′

3)

x
(=B)
3 (a) {ε → a′} {Y ′

a} U \ (V2 ∪ U10 ∅ ∅ l (1)
∪U ′

3 ∪ U ′
8)

x
(=B)
6 {Y ′

a → ε} V ′
2 U \ (V2 ∪ U10 U \ U ′

8 U ′
8 r (4)

∪U ′
3 ∪ U ′

8 ∪ V ′
2)

x
(=B)
7 {X ′

a → a}∪ U ′
3 U \ (V2 ∪ U10 U \ (V ′

2∪ V ′
2 ∪ U ′

3 ∗ (4)
{s̃a → s}∪ ∪U ′

3 ∪ V ′
2) U ′

3 ∪ U10) ∪U10

{a′ → a}

Then, 〈〈s, a,R, q〉〉is removed and Ya, as well as sa, are replaced by a and s,
respectively. Hence

C
(w)
m+14(x

(=B)
1) ⊇ {sαa | (s, a,R) ∈ δ(q,B), s ∈ Q, a ∈ V2 \ {B}}.

The nodes described in Table 4 are used, together with the nodes x
(=B)
1 and

x
(=B)
1 (q), q ∈ Q, for simulating a move of M which consists in reading B and

changing it into a symbol from V2 \ {B}, possibly changing the current state,
and moving the tape head to the left. In this table, s, q ∈ Q and a ∈ V2 \ {B}.

We consider again a string βqα ∈ C
(w)
m (x(=B)

1) and (s, a, L) ∈ δ(q,B) a
transition which the move of M we want to simulate is based on. As above, after
producing βqα〈〈s, a, L, q〉〉 in x

(=B)
1 , this string enters x

(=B)
1 (q), where one checks

whether or not β = ε and q is removed. Then, α〈〈s, a, L, q〉〉 enters x
(=B)
2 (s, a),

where s̃a is appended to its left-hand end. The new string, after having removed
〈〈s, a, L, q〉〉 receives X ′

a in its left-hand end resulting in X ′
as̃aα. Now, the last

symbol of α, say b, is shifted as b′ before X ′
a by means of the nodes x

(=B)
5 , x

(=B)
6 ,

and x
(=B)
3 (b). The obtained string is now b′X ′

as̃aα′, with α = α′b. Therefore,
C

(w)
m+22(x

(=B)
1) ⊇ {basα′ | (s, a, L) ∈ δ(q,B), s ∈ Q, a ∈ V2 \ {B}, α = α′b}.

The construction of Γ is completed with the output node xO defined by MxO
= ∅,

PIxO
= F , FIxO

= U \(V2∪F), POxO
= ∅, FOxO

= U , α(xO) = ∗, β(xO) = (4).
By the aforementioned explanations, we infer that L(M) = L(Γ).

It is worth mentioning that the underlying graph G is the complete graph Kp,
with p = 15+7(card(V2)−1)+card(Q)+2(card(V2)−1)2+2card(Q)(card(V2)−1).
That is, the number of nodes of Γ is bounded by a quadratic function depending
on the number of states and symbols of M . Also, the total number of symbols
used by Γ is the above simulation is bounded by a cubic function depending on
the number of states and symbols of M . More precisely,

card(U) = 4card(Q)(card(V2) − 1)2 + 2(card(V2) − 1)2 + Card(V2) +
2card(Q)(card(V2) − 1) + 9(card(V2) − 1) + card(Q) �

Now we are ready to prove the main result of this paper.

Theorem 1. NP = PTimeAHNEP .

Proof. Let L be a language accepted by a nondeterministic Turing machine M
with k tapes such that for each x ∈ L, |x| = n, M can accept x in no more than
p(n) moves. We write this as TM (n) ≤ p(n). Clearly, we can construct a Turing
machine M ′ such that TM ′(n) ≤ p(n)/

√
22. By the well-known results regarding

tape compression, we can construct a Turing machine M ′′ with one tape only,
such that TM ′′(n) ≤ p2(n)/22. Now, by the previous proof, we construct an
AHNEP Γ such that L(M ′′) = L(Γ) and TimeΓ (n) ≤ 22TM ′′ ≤ p2(n), which
concludes the proof of NP ⊆ PTimeAHNEP .

Conversely, let L be a language accepted by an AHNEP Γ in polynomial
time p(n). We construct a nondeterministic Turing machine M as follows:

(1) M has a finite set of states associated with each node of Γ . This set is divided
into disjoint subsets such that each filter (input or output) and each rule has an
associated subset of states.

(2) M chooses nondeterministically a copy of the input word from those existing
in the initial node of Γ (this word is actually on the tape of M in its initial ID)
and follows its itinerary through the underlying network of Γ . Let us suppose
that the contents of the tape of M is α; M works according to the following
strategy labelled by (∗):

(i) When M enters a state from the subset of states associated to a rule
a → b, it applies this rule to an occurrence of a in α, if any, nondeterministically
chosen. If α does not contain any occurrence of a, M blocks the computation.

(ii) When M enters a state from the subset of states associated to a filter,
it checks whether α can pass that filter. If α does not pass it, M blocks the
computation. Clearly, M checks first the condition of the current node (sending
node) output filter and then the condition of the receiving node input filter
(which becomes the current node).

(iii) As soon as M has checked the input filter condition of the output node
of Γ , it accepts its input word.

It is rather plain that M accepts L. If the input word w in the initial node of Γ
is in L, then there exists a computation in Γ of time complexity O(p(|w|)). Since
in any evolutionary step one inserts at most one letter, the length of α in (∗) is
at most p(|w|)+ |w|. Clearly, each step (i) and (ii) of (∗) can be accomplished in
time O(|α|). Therefore, w is accepted by M in O(p2(|w|)) time and we are done.

�

References

1. J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Solving NP-complete prob-
lems with networks of evolutionary processors, IWANN 2001 (J. Mira, A. Prieto,
eds.), LNCS 2084, Springer-Verlag, 2001, 621–628.

2. J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Networks of evolutionary
processors, Acta Informatica 39 (2003), 517-529.

3. J. Castellanos, P. Leupold, V. Mitrana, Descriptional and computational complex-
ity aspects of hybrid networks of evolutionary processors, submitted.

4. E. Csuhaj-Varjú, A. Salomaa, Networks of parallel language processors. In: New
Trends in Formal Languages (Gh. Păun, A. Salomaa, eds.), LNCS 1218, Springer
Verlag, 1997, 299–318.

5. E. Csuhaj-Varjú, V. Mitrana, Evolutionary systems: a language generating device
inspired by evolving communities of cells, Acta Informatica 36 (2000), 913–926.

6. L. Errico, C. Jesshope, Towards a new architecture for symbolic processing. In
Artificial Intelligence and Information-Control Systems of Robots ’94 (I. Plander,
ed.), World Sci. Publ., Singapore, 1994, 31–40.

7. S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann machines. In Proc. AAAI National Conf. on
AI, William Kaufman, Los Altos, 1983, 109–113.

8. J. Hartmanis, P.M. Lewis II, R.E. Stearns, Hierarchies of memory limited compu-
tations. Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical
Design, 1965, 179 - 190.

9. J. Hartmanis, R.E. Stearns, On the computational complexity of algorithms, Trans.
Amer. Math. Soc. 117 (1965), 533–546.

10. W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.
11. C. Martin-Vide, V. Mitrana, M. Perez-Jimenez, F. Sancho-Caparrini, Hybrid net-

works of evolutionary processors, Proc. of GECCO 2003, LNCS 2723, Springer
Verlag, Berlin, 401 - 412.

12. D. Sankoff et al. Gene order comparisons for phylogenetic inference:Evolution of
the mitochondrial genome. Proc. Natl. Acad. Sci. USA, 89 (1992) 6575–6579.

	Introduction
	Basic Definitions
	Complexity Classes
	References

