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Luis Valencia-Cabrera

Editors





14th Brainstorming Week
on Membrane Computing

Sevilla, February 1 – 5, 2016

Carmen Graciani
David Orellana-Mart́ın
Agust́ın Riscos-Núñez
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Preface

The 14th Brainstorming Week on Membrane Computing (BWMC) was held in
Sevilla, from February 1 to February 5, 2016, in the organization of the Research
Group on Natural Computing (RGNC) from the Department of Computer Science
and Artificial Intelligence of Universidad de Sevilla. The first edition of BWMC
was organized at the beginning of February 2003 in Rovira i Virgili University,
Tarragona, and all the next editions took place in Sevilla at the beginning of
February, each year.

In the style of previous meetings in this series, the 14th edition of BWMC
was conceived as a period of active interaction among the participants, with the
emphasis on exchanging ideas and cooperation. Several “provocative” talks were
delivered, mainly devoted to open problems, research topics, conjectures waiting
for proofs, followed by an intense cooperation among the 40 participants – see the
list in the end of this preface. The efficiency of this type of meetings was again
proved to be very high and the present volume illustrates this assertion.

The 2016 edition of the Brainstorming enjoyed a special visit from a group
of undergraduate Physics students, under the initiative of Prof. Ricardo Graciani-
Dı́az, from the University of Barcelona. Their presence and interest was a powerful
catalyst for many interactions, which have given rise to a couple of papers in this
volume. In addition, each student wrote a short note on his/her experience.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of papers from this volume will be considered for publication in
special issues of Theoretical Computer Science, which will also contain a selection
of papers from ACMC 2016 (the Asian Conference on Membrane Computing, to
be held at Universiti Kebangsaan, in November 14th-16th).
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After each BWMC, one or two special issues of various international journals
were published. Here is their list:

• BWMC 2003: Natural Computing – volume 2, number 3, 2003, and New Gen-
eration Computing – volume 22, number 4, 2004;

• BWMC 2004: Journal of Universal Computer Science – volume 10, number 5,
2004, and Soft Computing – volume 9, number 5, 2005;

• BWMC 2005: International Journal of Foundations of Computer Science –
volume 17, number 1, 2006);

• BWMC 2006: Theoretical Computer Science – volume 372, numbers 2-3, 2007;
• BWMC 2007: International Journal of Unconventional Computing – volume 5,

number 5, 2009;
• BWMC 2008: Fundamenta Informaticae – volume 87, number 1, 2008;
• BWMC 2009: International Journal of Computers, Control and Communica-

tion – volume 4, number 3, 2009;
• BWMC 2010: Romanian Journal of Information Science and Technology –

volume 13, number 2, 2010;
• BWMC 2011: International Journal of Natural Computing Research – volume

2, numbers 2-3, 2011;
• BWMC 2012: International Journal of Computer Mathematics – volume 99,

number 4, 2013;
• BWMC 2013: Romanian Journal of Information Science and Technology, vol.

17, nr. 1, 2014;
• BWMC 2014: Fundamenta Informaticae, volume 134, numbers 1-2, 2014;
• BWMC 2015: Natural Computing – 2016.

Other papers elaborated during the fourteenth BWMC will be submitted
to other journals or to suitable conferences. The reader interested in the final
version of these papers is advised to check the current bibliography of membrane
computing available in the domain website http://ppage.psystems.eu.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Maŕıa Arazo-Sánchez, University of Barcelona (Spain)
maria.arazo@gmail.com

2. Fernando Arroyo-Montoro, Universidad Politécnica de Madrid (Spain)
farroyo@eui.upm.es

3. Marc Barroso-Mancha, University of Barcelona (Spain)
marc.barroso4@gmail.com

4. Diego R. Cabrera-Mendieta, Univ. Politécnica Salesiana (Ecuador)
dcabrera@ups.edu.ec

5. Juan B. Castellanos-Peñuelas, Universidad Politécnica de Madrid (Spain)
jcastellanos@fi.upm.es
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6. Rodica Ceterchi, University of Bucharest (Romania)
rceterchi@gmail.com

7. Erzsébet Csuhaj-Varjú, Eötvös Loránd University (Hungary)
csuhaj@inf.elte.hu

8. Rudolf Freund, TU Wien (Austria)
rudi@emcc.at

9. Zsolt Gazdag, Eötvös Loránd University (Hungary)
gazdagzs@inf.elte.hu

10. Marian Gheorghe, University of Bradford (UK)
m.gheorghe@bradford.ac.uk

11. Carmen Graciani, Universidad de Sevilla (Spain)
cgdiaz@us.es

12. Ricardo Graciani-Dı́az, University of Barcelona (Spain)
graciani@icc.ub.edu

13. José Luis Guisado-Lizar, Universidad de Sevilla (Spain)
jlguisado@us.es

14. Miguel Ángel Gutiérrez-Naranjo, Universidad de Sevilla (Spain)
magutier@us.es

15. Sergiu Ivanov, Université Paris Est (France)
sergiu.ivanov@u-pec.fr

16. Kristóf Kántor, University of Debrecen (Hungary)
kantor.kristof@inf.unideb.hu

17. Gábor Kolonits, Eötvös Loránd University (Hungary)
kolomax@inf.elte.hu

18. Alberto Leporati, Università degli Studi di Milano-Bicocca (Italy)
leporati@disco.unimib.it

19. Luis Felipe Maćıas-Ramos, Universidad de Sevilla (Spain)
lfmaciasr@us.es

20. Luca Manzoni, Università degli Studi di Milano-Bicocca (Italy)
luca.manzoni@disco.unimib.it

21. Giancarlo Mauri, Università degli Studi di Milano-Bicocca (Italy)
mauri@disco.unimib.it

22. Vı́ctor Méndez-Muñoz, Autonomous University of Barcelona (Spain)
vmendez@caos.uab.cat

23. Alejandro Millán-Calderón, Universidad de Sevilla (Spain)
amillan@us.es

24. Laura Moreno-Valero, University of Barcelona (Spain)
95morenolaura@gmail.com

25. David Orellana-Mart́ın, Universidad de Sevilla (Spain)
dorellana@us.es

26. Gheorghe Păun, Universidad de Sevilla (Spain) and Institute of Mathematics
of the Romanian Academy (Romania)
gpaun@us.es
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27. Mario de Jesús Pérez-Jiménez, Universidad de Sevilla (Spain)
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porreca@disco.unimib.it

29. Ariadna Ribes-Metidieri, University of Barcelona (Spain)
aribesmetidieri@gmail.com

30. Patricia Ribes-Metidieri,University of Barcelona (Spain)
ribesmetidieri@gmail.com

31. Agust́ın Riscos-Núñez, Universidad de Sevilla (Spain)
ariscosn@us.es

32. Gábor Román, Eötvös Loránd University (Hungary)
romangabor@caesar.elte.hu

33. Álvaro Romero-Jiménez, Universidad de Sevilla (Spain)
romero.alvaro@us.es
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As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Universidad de Sevilla (http://www.gcn.us.es)– and
all the members of this group were enthusiastically involved in this (not always
easy) work.

We acknowledge the support obtained from the Department of Computer Sci-
ence and Artificial Intelligence, as well as from “Vicerrectorado de Investigación”
(V Plan Propio de Investigación), both of them from Universidad de Sevilla.

Mario J. Pérez-Jiménez
Agust́ın Riscos-Núñez
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Complexity of Simulating R Systems by
P Systems

Artiom Alhazov1, Bogdan Aman2, Rudolf Freund3, and Sergiu Ivanov3
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E-mail: sergiu.ivanov@u-pec.fr

Summary. We show multiple ways to simulate R systems by non-cooperative P systems
with atomic control by promoters and/or inhibitors, or with matter-antimatter annihi-
lation rules, with a slowdown by a factor of constant. The descriptional complexity is
also linear with respect to that of simulated R system. All these constants depend on
how general the model of R systems is, as well as on the chosen control ingredients of
P systems. Special attention is paid to the differences in the mode of rule application in
these models.

1 Introduction. Differences between P and R

Membrane systems, also called P systems (non-distributed, with symbol-objects)
are a formal model of (possibly controlled) multiset rewriting [8]. Reaction sys-
tems, also called R systems, is also a formal rewriting-like model of set evolution
introduced in [6], see also a recent survey [5]. Both P systems and R systems are
inspired by the functioning of the living cells. It is a natural task to compare R
systems, which was introduced later, to P systems, by simulation. The application
of a successful solution would be possibilities to use membrane computing tools
and perspective for studying reaction systems. Some research comparing them was
done in [10], more exactly, this paper considers P systems with no-persistence as-
pect of R systems, from the viewpoint of the computational power. We, however,
first focus on comparing standard R systems to standard P systems by simulat-
ing the former with latter, and then revisit the direction of bringing aspects of R
systems to the P systems model, verifying how closer this can make the models.
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We start the explanation of the simplest case – triples of single objects. Rules
in R systems have form (a, b, c), which loosely correspond to a→ c|¬b in P systems,
i.e., the first element is the reactant (in this paper we may also call it the left side)
the second element is the product (in this paper we may also call it the right side),
and the third element is the inhibitor, with the following differences in the mode
of application.

The first difference is that the configuration is a set, not a multiset, and thus
simultaneously producing the same symbol by multiple rules yields a single object.
P systems with sets of objects instead of multisets of objects have been considered
in [1], where they have been shown to be universal in the distributed P systems,
both for the transitional model, and for the model with active membranes. How-
ever, in [1] the goal of showing universality was reached without actually using
this first aspect (automatic reduction of multiple copies of identical object into
one object), but rather by avoiding to ever need multiple copies of the same object
(in the same region). This aspect, combined with the one below, are called the
threshold principle in the literature. However, it is also meaningful to view them
individually.

The second difference is that, if multiple rules with the same a in the left side
exists, (if a is present in the configuration, for all of these rules where the inhibitors
are not present in the configuration) all these rules are applied, simultaneously
producing the corresponding products. (This comes from an inspiration that either
the abundance of objects a is sufficient, or the replication and, possibly, proper
control take place to guarantee the application of all such rules.) This second
aspect is standard, e.g., in H systems [11] (together with the first one). The second
aspect has been already considered also in P systems area, see, e.g., [3].

The third difference is that the objects are not persistent. This means that, even
if an object does not undergo any rule, it still disappears from the configuration
of the next step, unless, of course, it is produced by some rule. This third aspect
is standard in time-varying distributed H systems [9, 12], (together with the first
and second ones), and they relate especially naturally to TVDH1 systems, see [7].

In the general case, the elements of the triples describing the rules of R systems
are sets of objects. Hence, the meaning of the triple (A,B,C) is: the joint presence
of objects in A, in the case when all objects in B are absent, leads to production
of objects in C, and, moreover, the subsequent configuration is precisely equal to
the union of the right sides of applicable rules (possibly united with the input
context).

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing, see [13] for a comprehensive introduction and the web-
page [15] of P systems.

The notation (ncoo, prok,l + inhk′,l′) describes the possible class of rules: non-
cooperative evolution with at most k promoters of weight at most l and at most k′
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inhibitors of weight at most l′, see [4, 14]; the sign “+” here means both promoters
and inhibitors are allowed to be used in the same rule, if it is not the case, we
write a comma instead of a plus sign.

The notation (ncoo, antim/pri) stands for non-cooperative evolution rules and
matter-antimatter annihilation rules, with weak priority of all annihilation rules
assumed over all other rules (the most studied variant of P systems with antimat-
ter), see [2].

3 Using promoters and inhibitors

In fact, in terms of intuition from P systems, A is more similar to a promoter than
a reactant (and there is no difference between a set of distinct atomic promoters
and a corresponding one higher-weight promoter), and B corresponds to a set of
atomic inhibitors (if B were a single higher-weight inhibitor, it would disable the
rule when all its elements are present, not just any of them, which would not
correspond to the correct definition). However, within the traditional P systems
mode, we would additionally need to restrict the rule application to only once per
step.

3.1 Using powerful rules

Hence, an arbitrary general R system with alphabet V of k symbols and rules
(Ai, Bi, Ci), 1 ≤ i ≤ n could be written as the following P systems (non-
cooperative, but with powerful promoters and inhibitors), having additional ob-
jects I1 and di for all 1 ≤ i ≤ n:

Π0 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {di | 1 ≤ i ≤ n} ∪ I1,
R1 = {di →

∏
c∈Ci

c|Ai,{¬b|b∈Bi}, di → λ|¬Ai
, di → λ|b | b ∈ Bi, 1 ≤ i ≤ n}

∪ {a→ λ | a ∈ V } ∪ {I1 → I1
∏

1≤i≤n
di}.

This combination of features only takes one step to simulate a step of P systems,
n+ k + 1 symbols and 2n+ k + 1 +

∑
1≤i≤n |Bi| rules. Note that the first rule in

the description of R1 uses a higher-weight promoter together with a set of atomic
inhibitors. Also note that in a special case when the rules of the simulated R
system are triples of single symbols, the control used becomes atomic promoters
together with atomic inhibitors.

In the rest of the paper we show how to achieve the same goal with P systems
having more restricted rules, also discussing how to produce only one copy of
symbols present in the simulated R system. We use promoters and inhibitors,
then consider only one kind of these features, then we replace them by matter-
antimatter annihilation rules, and finally, we discuss how much the problem is
simplified if some of the aspects of R systems are assumed by the P systems
model.
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3.2 Triples of symbols

We start with the simplest case - when the elements of triples describing the rules
are single elements. Consider such an R system S with alphabet V and rules
{(ai, bi, ci) | 1 ≤ i ≤ n}. We construct a P system Π1 simulating S, where the
initial configuration w1 matches the initial configuration of S, and the following
rules, the simulation taking only 2 steps:

Π1 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n},
R1 = {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {di → ci|¬(bi)′ , di → λ|(bi)′ | 1 ≤ i ≤ n} ∪ {a
′ → λ | a ∈ V }.

The simulation task here is simple for two reasons: we took the simpler model
of R systems, and using promoters besides inhibitors makes it possible to remove
unneeded objects easily. We also note that the number of objects and rules can be
decreased by not producing a′ when a participates in the left side of any rule, and
using dmin{j|1≤j≤n, aj=b} instead of b′ as promoter and inhibitor.

If |V | = k, then |O| = 2k + n and |R1| = 2k + 2n. Moreover, the optimization
described in the previous paragraph decreases both |O| and |R1| by the number
of symbols appearing on the left side of some rule of S.

The multiplicities of symbols may grow. When the same symbol is produced
simultaneously by multiple rules, the multiplicative effect happens. It is, however,
fairly easy to reset the multiplicities of objects in V to one, at a cost of one more
step, 2k + 3 additional symbols in O and 3k + 3 additional rules, also using an
additional object I1 in the initial configuration:

Π2 = (O,µ = [ ]
1
, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {a′, a′′, a | a ∈ V } ∪ {di | 1 ≤ i ≤ n},∪{I1, I2, I3}
Ri = {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V } ∪ {I1 → I2},

Rii = {di → (ci)
′′|¬(bi)′ , di → λ|(bi)′ | 1 ≤ i ≤ n}

∪ {a′ → λ | a ∈ V } ∪ {I2 → I3
∏

a∈V
a},

Riii = {a→ a|a′′ , a→ λ|¬a′′ , a′′ → λ | a ∈ V } ∪ {I3 → I1}.

3.3 Triples of sets

Now the task is more complicated. While generating a set Ci instead of symbol
ci is straightforward, instead of verifying that ai is present and bi is absent, rule
applicability is defined as presence of all symbols from set Ai and absence of all
symbols from set Bi. We recall that our task is a constant-time solution. Notice
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that the rule is not applicable if and only if some symbol from Ai is absent or
some symbol from Bi is present.

Consider such an R system S with alphabet V and rules {(Ai, Bi, Ci) | 1 ≤
i ≤ n}. We construct a P system Π3 simulating S, where the initial configura-
tion matches the initial configuration of S, plus an additional object I1, and the
following rules, the simulation taking only 3 steps:

Π3 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
R1 = {I1 → d1 · · · dnI2}
∪ {di → λ|¬a, di → λ|b | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n} ∪ {I2 → I3}
∪ {di →

∏
c∈Ci

c|I3 | 1 ≤ i ≤ n} ∪ {a→ λ|I3 | a ∈ V } ∪ {I3 → I1}.

If |V | = k, then |O| = k + n + 3 and |R1| = k + n + 3 +
∑

1≤i≤k(|Ai| + |Bi|).
Notice also that, besides objects from V , no object ever appears in multiple copies.
As for each object from V , its multiplicity represents the number of rules in S
that has produced it in the last simulated step. Unlike the construction from the
previous section, the multiplicative effect does not carry over to the next step of
computation of S, since each object from V (except the instances in the starting
configuration) is produced from some object di, produced in one copy, effectively
resetting the multiplicities of the previous step. However, producing objects in V
in a single copy requires additional overhead. Similarly to obtaining Π2 from Π1,
we can obtain Π4 from Π3, at the price of one more step, 2k+1 additional symbols
in O and 3k + 1 additional rules. We skip the details.

3.4 Using only promoters

It should not be any surprise that (in the maximally parallel mode) the effect of in-
hibitors can be obtained by non-cooperative rules with promoters only. Informally,
to verify that some object b is absent, we first check if b is present by some rule
a→ a′|b, and it suffices to check in the next step whether a is unchanged. The re-
verse, i.e. replacing promoters with inhibitors, is even easier to see, since promoting
a rule by b can be modeled by inhibiting a rule by some immediately-erased object
b′, creation of which is inhibited by b. We still think it is interesting to consider
the use of only promoters or only inhibitors, for two reasons. First, the reduction
of promoters/inhibitors in the general case of P systems is too complicated, and
second, we would like to explore how little overhead in terms of slowdown and
descriptional complexity would suffice to achieve our task.

First, as an exercise, we construct a P system for an R system S with triples
of symbols {(ai, bi, ci)} as rules. The initial configuration matches the initial con-
figuration of S, plus an additional object I1.
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Π5 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I3} ∪ {di → λ|(bi)′ | 1 ≤ i ≤ n} ∪ {a
′ → λ | a ∈ V }

∪ {I3 → I1} ∪ {di → ci|I3 , | 1 ≤ i ≤ n}.

This construction is obtained from the first one with promoters and inhibitors,
implementing the group of rules with inhibitors (contrasted with existing rules
with the same objects as promoters) in the next step, promoted by “timer” I3.
We also note, similarly to Π1, that the number of objects and rules can be de-
creased by not producing a′ when a participates in the left side of any rule, and
using dmin{j|1≤j≤n, aj=b} instead of b′ as promoter. Once again, this simulation
has multiplicative effect, and the multiplicities can be reset to one, at the price of
one more step, 2k+ 1 additional symbols in O and 3k+ 1 additional rules. Let us
call the obtained system Π6. We omit the details, only mentioning that instead
of rules a→ λ|¬a′′ as in Π2, we can erase these symbols in the next step by rules
a→ λ|I1 .

Now consider the general case of simulating an R system S with alphabet V
and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the initial
configuration which matches the initial configuration of S, plus additional objects
I1 and a′ for each a ∈ V .

Π7 = (O,µ = [ ]
1
, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
Ri = {I1 → d1 · · · dnI2} ∪ {a′ → λ|a | a ∈ V },
Rii = {di → λ|a′ , di → λ|b | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n}
∪ {a→ λ|I2 , a′ → λ|I2 | a ∈ V } ∪ {I2 → I3},

Riii = {di →
∏

c∈Ci

c|I3 | 1 ≤ i ≤ n} ∪ {I3 → I1
∏

a∈V
a′}.

This construction is obtained from the second one with promoters and in-
hibitors, as follows. The role of objects a′ is to survive for one step if and only if
the corresponding object a is present, to be used as a promoter instead of inhibitor
a; objects a′ are recreated in the last step, for the next simulation cycle. Moreover,
as now objects from V are no longer used as inhibitors, they can be removed one
step earlier.

The system above needs only 3 steps to simulate a step of S, and if |V | = k,
then |O| = 2k + n + 3 and |R1| = 3 + 3k + n +

∑
1≤i≤n(|Ai| + |Bi|). Of course,

alternatively, objects a′ could be created from one additional initial object, at
a price of an additional step and a few extra rules, but we currently focus on
constructions that are efficient in time and descriptional complexity. We again
comment that, although this construction has no multiplicative effect, the number
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of copies of a symbol in V produced in the end of the simulation equals the number
of rules in S that have produced this symbol in the last step. Producing exactly
one copy needs one more step, 2k+1 additional symbols in O and 3k+1 additional
rules. We call this system Π8 and give no more details, since obtaining it from Π7

is exactly like obtaining Π6 from Π5.

3.5 Using only inhibitors

First, as an exercise, we construct a P system for an R system S with triples of
symbols {(ai, bi, ci)} as rules. The initial configuration matches the initial config-
uration of S, plus an additional object I1.

Π9 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I1} ∪ {di → ci|¬(bi)′ | 1 ≤ i ≤ n}
∪ {di → λ|¬I2 | 1 ≤ i ≤ n} ∪ {a′ → λ|¬I2 | a ∈ V }.

This construction is obtained from the one with promoters and inhibitors,
implementing the group of rules with promoters (contrasted with existing rules
with the same objects as inhibitors) in the next step, inhibited by “timer” I2.
Moreover, removing objects a′ is delayed for one step, to make sure that the rules
inhibited by them in the second step are not applied in the third step. Notice also
that the simulation of a computation step of S only takes two steps of computation
in Π; the third step of computation cleaning objects di and a′ overlaps with the
first step of simulation of the next step in S. However, this produces no interference,
since sub-alphabets {di | 1 ≤ i ≤ n} ∪ {a′ | a ∈ V } and {I1} ∪ V are disjoint. We
also note, similarly to Π1, that the number of objects and rules can be decreased
by not producing a′ when a participates in the left side of any rule, and using
dmin{j|1≤j≤n, aj=b} instead of b′ as promoter.

The problem of multiplicative effect can be solved in the usual way, resetting
multiplicities to one: produce one copy of each candidate-object, and erase the
objects where the multiplicity is zero. However, with inhibitors it takes longer: one
additional step to erase objects a when the corresponding object a′′ is absent, and
one further step to rewrite a into a.

Π10 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′, a′′, a | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3, I4},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I3
∏

a∈V
a} ∪ {di → (ci)

′′|¬(bi)′ | 1 ≤ i ≤ n}



8 A. Alhazov, B. Aman, R. Freund, S. Ivanov

∪ {I3 → I4} ∪ {di → λ|¬I2 | 1 ≤ i ≤ n} ∪ {a′ → λ|¬I2 , a→ λ|¬a′′ | a ∈ V }
∪ {I4 → I1} ∪ {a→ a|¬I3 , a′′ → λ|¬I3 | a ∈ V }.

Hence, the total additional price for resetting the multiplicities of elements of
V to one using only inhibitors is 2 more steps, 2k+2 additional objects, and 3k+2
rules.

Now consider the general case of simulating an R system S with alphabet V
and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the initial
configuration which matches the initial configuration of S, plus additional objects
I1, J and b′ for each b ∈ V .

Π11 = (O,µ = [ ]1, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {b′, b′′ | b ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3, J},
Ri = {I1 → d1 · · · dnI2J} ∪ {b′ → b′′|¬b | b ∈ V } ∪ {J → λ},
Rii = {di → λ|¬a, di → λ|¬b′′ | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n}
∪ {b′ → λ|¬I1 | b ∈ V } ∪ {I2 → I3, J → λ},

Riii = {di →
∏

c∈Ci

c|¬I2 | 1 ≤ i ≤ n}

∪ {a→ λ|¬J | a ∈ V } ∪ {b′′ → λ|¬I2 | b ∈ V } ∪ {I3 → I1J
∏

b∈V
b′}.

This construction is obtained from the second one with promoters and in-
hibitors, as follows. The role of objects b′ is to change into b′′ if and only if the
corresponding object b is present, so b′′ can be used as an inhibitor instead of
promoter b; objects b′ are recreated in the last step, for the next simulation cycle.
Moreover, to make sure the rules erasing di in the absence of a are not applied
in the third step, objects a can only be removed in the third step. This is why
an additional object J is present in each of the first two steps of the simulation,
inhibiting premature removal of objects a. The rule erasing J is written both in
Ri and Rii only to highlight that it is applied both in the first and in the second
step.

The system above needs only 3 steps to simulate a step of S, and if |V | = k,
then |O| = 3k + n + 4 and |R1| = 4 + 4k + n +

∑
1≤i≤n(|Ai| + |Bi|). Of course,

alternatively, objects b′ could be created from one additional initial object, at
a price of an additional step and a few extra rules, but we currently focus on
constructions that are efficient in time and descriptional complexity. Resetting to
one the multiplicities of objects in V can be done exactly how Π10 was constructed
from Π9. Hence, the new system Π12 will have, compared to Π11, 2 more steps,
2k + 2 additional objects, and 3k + 2 rules.
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4 Using antimatter

This section is devoted to a different control mechanism: matter-antimatter anni-
hilation rules are used instead of promoters and/or inhibitors. The weak priority
of annihilation rules over non-cooperative rules is assumed, which is the most com-
mon variant of the antimatter model. First, we notice that erasing with a promoter,
say, d→ λ|b, in the case the promoting object b is erased without being used any-
where else, and when the number of copies of d is bounded, can be modeled by
antimatter as follows:

• replace the promoting object b by anti-object d− of the promoted object, in
sufficient copies to erase all possible copies of promoted object d,

• add erasing rules for this anti-object d− to remove the copies of the anti-objects
which did not annihilate.

We now construct the P system equivalent to Π1 using antimatter.

Π13 = (O = V ∪ {di, d−i | 1 ≤ i ≤ n}, µ = [ ]
1
, w1, R1) where

R1 = {a→
∏

1≤i≤n,bi=a
d−i

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {did−i → λ, di → ci, d
−
i → λ | 1 ≤ i ≤ n}.

In each rule of the first group of R1, it is enough to produce a single copy of
d−i , because at most one di may be generated by the system in the same step, since
the rule uniquely determines its left side. The simulation only takes two steps, and
uses k + 2n objects and k + 3n rules.

This construction, too, has multiplicative effect. Resetting multiplicities to one
can be done by two-step annihilation. Say, we got some number (possibly zero) of
objects c′′, and we only want to know whether this number is positive. Then we
produce one copy of (c′′)− and rewrite it to c′ if it does not immediately annihilate.
One step later, we produce one copy of (c′)−, and rewrite it to c if it does not
immediately annihilate. As a result, c will appear if and only if (c′)− did not
annihilate, i.e., c′ did not appear one step before. But this happened if and only
if (c′′)− was annihilated, i.e., there was at least one copy of c′′ two steps before.
Performing this routine to objects in V of Π13, we obtain the following system,
using an additional starting object I1:

Π14 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′, a′′, (a′)−, (a′′)− | a ∈ V } ∪ {di, d−i | 1 ≤ i ≤ n} ∪ {I1, I2, I3, I4},

R1 = {a→
∏

1≤i≤n,bi=a
d−i

∏
1≤i≤n,ai=a

di | a ∈ V } ∪ {I1 → I2}

∪ {did−i → λ, di → (ci)
′′, d−i → λ | 1 ≤ i ≤ n} ∪ {I2 → I3

∏
a∈V

(a′′)−}

∪ {a′′(a′′)− → λ, (a′′)− → a′ | a ∈ V } ∪ {I3 → I4}
∪ {a′(a′)− → λ, (a′)− → a | a ∈ V } ∪ {I4 → I1}.
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As you can see, resetting multiplicities with antimatter has a price of two more
steps, 4k + 4 additional objects and 4k + 4 additional rules.

Now consider the general case of simulating an R system S with alphabet V
and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the initial
configuration which matches the initial configuration of S, plus additional object
I1.

Π15 = (O,µ = [ ]
1
, w1, R1 = Ri ∪Rii ∪Riii where

O = V ∪ {a′, (a′)−, a′′, | a ∈ V } ∪ {di, d−i | 1 ≤ i ≤ n} ∪ {I1, I2, I3},

Ri = {I1 → I2d1 · · · dn
∏

a∈V
a′} ∪ {a→ (a′)−a′′ | a ∈ V },

Rii = {a′(a′)− → λ, a′ → d−i , b
′′ → d−i , (a′)− → λ

| a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n} ∪ {I2 → I3},
Riii = {did−i → λ, di →

∏
c∈Ci

c, d−i → λ | 1 ≤ i ≤ n} ∪ {I3 → I1}.

Symbols from Ci are produced from di if and only if it is not annihilated, i.e.,
neither a′ nor b′′ should produce d−i for any a ∈ Ai, b ∈ Bi. Since a′ is annihilated
if and only if a is present, and b′′ is not produced if and only if b is absent, the
simulation of an application of rule i of the R system happens if and only if all
symbols from the first set are present and all symbols from the second set are
absent. The simulation takes 3 steps, using the alphabet of 4k + 2n + 3 symbols
and the set of 3k + 3n+ 3 +

∑
1≤i≤n(|Ai|+ |Bi|) rules.

This construction produces each symbol in multiplicity equal to the number
of rules of S that produced it, not carrying the multiplicative effect to the next
step. If needed, resetting multiplicities can be done costing two more steps, 4k+ 2
additional objects and 4k+2 additional rules. We call this system Π16, and provide
no more details since it is obtained from Π15 exactly as Π14 is obtained from Π13.

5 Non-standard P systems

Some difficulty of simulation of R systems by P systems lie in the difference of
their standard derivation modes. We would like to discuss how varying this may
affect the problem.

First, if we consider P systems with sets instead of multisets, where produc-
tion of a symbol multiple times still yields a single copy of the result, then all
constructions in this paper still hold literally, i.e., no changes in the description
of these P systems is needed. However, some things may become simpler, e.g., in
this case resetting multiplicities to one is done by the model, and does not require
additional time, symbol and rule complexity.

We note that, in a non-distributed case, P systems with sets of objects are no
longer universal, since the number of possible configuration is bounded by two to
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the power of the cardinality of the alphabet. However, universality is not needed
to simulate R systems (which has also been shown in the case of deterministic P
systems with promoters and/or inhibitors).

Second, if we consider P systems which deterministically apply all individually
applicable rules, even with overlapping left sides (i.e., competing for resources),
then of course the existing solutions still literally hold, but in some cases there are
much easier ways: we would have no need to explicitly produce multiple objects
from one. For instance, the constructions in this paper usually involve production
of rule labels di, either from the corresponding reactant ai, or from some “timer”
object Ij , and then have different rules processing these label objects. In this “auto-
replication” mode, these various processing rules could be applied directly to the
corresponding original object ai or Ij , the replication being done by the model
itself. This would definitely simplify the simulation. Let us refer to this aspect as
auto-replication. For example, the set of rules of system Π1 can be simplified to
the following:

{ai → ci|¬bi | 1 ≤ i ≤ n} ∪ {a→ λ | a ∈ V },

i.e., just one step, no additional objects and k additional rules. The problem with
resetting the multiplicities is also simpler:

Π = (O,µ = [ ]
1
, w1, R1 where

O = V ∪ {a′ | a ∈ V } ∪ {I1, I2},
R1 = {I1 → I2} ∪ {ai → (ci)

′|¬bi | 1 ≤ i ≤ n} ∪ {a→ λ | a ∈ V }
∪ {I2 → I1} ∪ {I2 → c|c′} ∪ {c′ → λ | c ∈ V },

i.e., requiring only one more step, k+2 additional symbols and 2k+2 additional
rules (compared to increase of complexity of Π2 over Π1 by one step, 2k+3 symbols
and by 3k + 3 rules).

Third, if we consider P systems where idle objects (i.e., those not consumed
by applied rules) do not contribute to the next configuration, we call this aspect
“no persistence”, then many erasing rules (in particular, all erasing promoted or
inhibited by some “timer” Ij) would no longer be needed, while occasionally some
renaming rules should be added when object was designed to be used later than in
the next step after its production. For instance, in case of no-persistence, all n+k′

erasing rules of Π1 may be removed, leaving just n+ k rules. Similarly, all erasing
rules of Π2 may be removed; hence, the subtask of resetting the multiplicities to
one in this case only needs k + 3 additional rules instead of 3k + 3.

However, testing for presence of some object b by “failing to apply a rule with
inhibitor b and finding the reactant unchanged in the next step” would not work.
The working solution is to use b as an inhibitor in a rule producing some object
b′, and to use b′ as an inhibitor in the next step. Testing for absence by “failing
to apply a rule with a promoter and finding the reactant unchanged in the next
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step” would be no longer possible, so the model with promoters only seems to be
considerably weaker in the case without persistence of idle objects.

We would like to note that, in case of P systems with sets and auto-replication,
the aspect of no-persistence can be simulated as follows: add rules a→ λ for each
a ∈ V ; they will make sure that such objects are not carried over to the next step,
in the same time not adding anything to the result (as for productive objects,
erasing them is just another option, which in the auto-replication case neither
grows nor shrinks the set of objects obtained from them). This simulation takes
one step, k objects and n+ k rules.

And, of course, if we consider P systems with all these differences, i.e., with sets,
auto-replication, and without object persistence, then rule (a, b, c) of R systems
becomes identical to rule a→ c|¬b of P systems, while rule (A,B,C) of R systems
becomes identical to rule

∏
a∈A a →

∏
c∈C c|{¬b|b∈B}, so the simulation is trivial,

requiring one step, k objects and n rules of type (ncoo, pro1,∗ + inh∗,1).

6 Conclusions

We recall that although deterministic P systems with promoters and/or inhibitors
are not universal and have subregular characterizations, their power is sufficient
to simulate R systems.

All constructions presented in this paper (except those in previous section)
simulate R systems (in their standard derivation mode) by P systems (in their
standard derivation mode), with the slowdown by a factor of constant, where
the descriptional complexity of the simulating P system is linear with respect
to the descriptional complexity of the simulating P system. The proportionality
constants vary depending on whether R systems are defined as triples of symbols
or as triples of sets of symbols, and on whether promoters, inhibitors or both are
used in P systems. All constructions are deterministic: while the multiset of rules
to be applied to a given configuration may not be unique, the next configuration
is unique. Indeed, in all these constructions, if two rules have the same left side,
then either their applicability is mutually exclusive (one is being promoted and the
other one is being inhibited by the same symbol), or also the right side is the same
(and thus, if there are multiple choices which object would promote or inhibit the
rule, such choice would not influence the result).

Seventeen constructions are presented, see Table 1: 0)(general and simple in
particular) R systems using single higher-weight promoters together with multi-
ple atomic inhibitors, 1)simple R systems using promoters and inhibitors, 2)sim-
ple R systems using promoters and inhibitors and resetting multiplicities to one,
3)general R systems using promoters and inhibitors, 4)general R systems using
promoters and inhibitors and resetting multiplicities to one, 5)simple R systems
using promoters, 6)simple R systems using promoters and resetting multiplicities
to one, 7)general R systems using promoters, 8)general R systems using promoters
and resetting multiplicities to one, 9)simple R systems using inhibitors, 10)simple
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P R mult features steps |O| |R1|
Π0 s L (ncoo, pro1,1 + inh1,1) 1 n+ k + 1 3n+ k + 1
Π0 G L (ncoo, pro1,∗ + inh∗,1) 1 n+ k + 1 2n+ k + 1 + T ′

Π1 s M (ncoo, pro1,1, inh1,1) 2 n+ k + k′ 2n+ k + k′

Π2 s 1 (ncoo, pro1,1, inh1,1) 3 n+ 3k + k′ + 3 2n+ 4k + k′ + 3
Π3 G L (ncoo, pro1,1, inh1,1) 3 n+ k + 3 n+ k + 3 + T
Π4 G 1 (ncoo, pro1,1, inh1,1) 4 n+ 3k + 4 n+ 4k + 4 + T

Π5 s M (ncoo, pro1,1) 3 n+ k + k′ + 3 2n+ k + k′ + 3
Π6 s 1 (ncoo, pro1,1) 4 n+ 3k + k′ + 4 2n+ 4k + k′ + 4
Π7 G L (ncoo, pro1,1) 3 n+ 2k + 3 n+ 3k + 3 + T
Π8 G 1 (ncoo, pro1,1) 4 n+ 4k + 4 n+ 6k + 4 + T

Π9 s M (ncoo, inh1,1) 2 n+ k + k′ + 2 2n+ k + k′ + 2
Π10 s 1 (ncoo, inh1,1) 4 n+ 3k + k′ + 4 2n+ 4k + k′ + 4
Π11 G L (ncoo, inh1,1) 3 n+ 3k + 4 n+ 4k + 4 + T
Π12 G 1 (ncoo, inh1,1) 5 n+ 5k + 6 n+ 6k + 6 + T

Π13 s M (ncoo, antim/pri) 2 2n+ k 3n+ k
Π14 s 1 (ncoo, antim/pri) 4 2n+ 5k + 4 3n+ 5k + 4
Π15 G L (ncoo, antim/pri) 3 2n+ 4k + 3 3n+ 3k + 3 + T
Π16 G 1 (ncoo, antim/pri) 5 2n+ 8k + 5 3n+ 7k + 5 + T

Table 1. Comparative table of simulation of R systems by P systems

R systems using inhibitors and resetting multiplicities to one, 11)general R systems
using inhibitors, 12)general R systems using inhibitors and resetting multiplicities
to one, 13)simple R systems using antimatter, 14)simple R systems using anti-
matter and resetting multiplicities to one, 15)general R systems using antimatter,
16)general R systems using antimatter and resetting multiplicities to one. The
table below shows the number of steps of simulating P system to simulate one
step of R system, alphabet size and the number of rules in these simulations (n
is the number of rules in S, k is the number of symbols in S, k′ is the number of
symbols that do not appear in the left side of any rule of the simulated system;
by T we denote

∑
1≤i≤k(|Ai| + |Bi|) and by T ′ we denote

∑
1≤i≤k |Bi|). Column

R describes the type of simulated system, where s stands for simple (rules with
triples of symbols) and G stands for general (rules with triples of sets). Column
mult describes the multiplicities of symbols in the simulating P system, where
M stands for multiplicative effect, L stands for last multiplicity, and 1 stands for
multiplicities 0 and 1. Column features describes the kinds of rules used.

Note: in Π6, Π8 and Π9, intermediate objects are removed one step later,
in parallel with the first step of simulation of the next step of evolution of the
simulated R system, but not interfering with it.

Finally, in the previous section we discussed how (qualitatively and quanti-
tatively) adopting some aspects of R systems (such as sets instead of multisets,
auto-replication or no-persistence) into the working model of P systems simplifies
simulation of R systems.
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Summary. We further investigate the computing power of the recently introduced P
systems with Z-multisets (also known as hybrid sets) as generative devices. These systems
apply catalytic rules in the maximally parallel way, even consuming absent non-catalysts,
effectively generating vectors of arbitrary (not just non-negative) integers. The rules may
be made inapplicable only by dissolution rules. However, this releases the catalysts into
the immediately outer region, where new rules might become applicable to them. We
discuss the generative power of this model. Finally, we consider the variant with mobile
catalysts.

1 Introduction

Membrane systems (cell-like, with symbol-objects) have traditionally been viewed
as collections of hierarchically arranged multiset processors [12]. In the list of
open problems disseminated in 2015 [11], Gheorghe Păun suggested going beyond
the traditional setting where symbol multiplicities in multisets are restricted to
non-negative integers. One suggested approach [6] defines generalized multisets as
taking multiplicities from arbitrary finitely generated, totally ordered commutative
groups.

In work [3], a different approach is taken: only catalytic rules are allowed, and
the applicability of a rule only depends on presence of the corresponding catalyst
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in the given region. Consuming an absent non-catalyst makes its multiplicity neg-
ative. While in [3] it was already established that such model is not universal, we
found it interesting to investigate its generative power more precisely.

Since the number of catalysts remains finite and does not change throughout
the computation, this induces a finite set of “rule teams” which can be applied
in parallel in one step. The virtual absence of applicability conditions and the
finiteness of the “teams” hints at the possibility of seeing them as integer vectors;
in this case the P system itself can be seen as evolving by sequentially adding such
vectors (possibly having negative components) to the contents of its membranes.
Paper [2] compares this general model to vector addition systems [5, 9] (adapted
to allow negative vector components [8]) and blind register machines [7].

Here we return to the particular model from [3], discussing the lower bound of
its generative power and giving some results on the variant with target indications.

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing; see [13] for a comprehensive introduction to both. We
only remark that, as common in membrane computing, multisets in O◦ = NO are
represented by strings in O∗, keeping in mind that the order of symbols is not
relevant.

2.1 Extending Multisets

To represent also negative multiplicities, multisets must be extended. A Z-multiset,
allowing integer multiplicities (called a hybrid set in [4]) would be from ZO; it
can be represented by a string in (O ∪ O−)∗, where O− = {a− | a ∈ O} is a
set of symbols that represents objects in multiplicity “negative one”. Note that,
as opposed to P systems with matter-antimatter [1], symbol a− here is not an
actual object, but simply a convenient way to represent a deficit of a, and the
actual multiplicity of a represented by a string w is |w|a − |w|a− . We also do not
distinguish between notations a−k and (a−)k. The superscript − can be used as a
morphism, producing a multiset with opposite multiplicities, e.g., (ak)− represents
the same Z-multiset as the one in the previous sentence. As the strings here are
only used to represent [Z-] multisets, we may write an equality sign between the
strings representing the same [Z-] multiset. For conciseness, let us use the notation
O• = (O ∪ O−)∗. Finally, since it will be always clear from the context, we may
call an element of O• “multiset”, omitting the word “representing”. Assuming an
order is fixed on O, for u ∈ O•, vector (|u|a − |u|a−)a∈O is denoted by ψO(u); the
subscript O may be omitted when it is clear from the context. This vector is called
the Parihkh image of u.
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2.2 Linear Sets

The linear set generated by a set of vectors A = {ai | 1 ≤ i ≤ d} ⊂ Zn and an
offset a0 ∈ Zn is defined as follows:

〈A,a0〉N =

{
a0 +

∑d

i=1
kiai | ki ∈ N, 1 ≤ i ≤ d

}
.

If the offset a0 is the zero vector, we will call the corresponding linear set homo-
geneous; we also will use a short notation 〈A〉N = 〈A,0〉N.

We use the notation ZnLINN =
{
〈A,a0〉N | A ∈ (Zn)d, a0 ∈ Z, m ∈ N

}
, to

refer to the class of all linear sets. Semilinear sets are defined as finite unions of
linear sets. We use the notations ZnSLINN to refer to the classes of semilinear
sets of n-dimensional vectors. In case no restriction is imposed on the dimension,
n is replaced by ∗. We may omit n if n = 1. A finite union of linear sets which
only differ in the starting vectors is called uniform semilinear:

ZnSLINU
N =

{⋃
b∈B〈A,b〉N | A ∈ (Zn)d, B ∈ (Zn)k, d, k ∈ N

}
=
{{

b +
∑d

i=1 kiai | ki ∈ N, 1 ≤ i ≤ d
}
| A ∈ (Zn)d, B ∈ (Zn)k, d, k ∈ N

}
.

Let us denote these sets by 〈A,B〉N.

3 Purely Catalytic P Systems over Integers

In purely catalytic P systems over integers the set of objects is a disjoint union
of catalysts C and the regular objects O. The regular objects are allowed to have
any integer multiplicity, while the catalysts are only allowed to appear in a non-
negative number of copies.

The rules can be of the two following types:

• catalytic rules: cu→ cv, where c ∈ C and u, v ∈ O∗;
• catalytic rules with dissolution: cu → cvδ, where c ∈ C, u, v ∈ O∗, and δ 6∈

C ∪O is the symbol indicating membrane dissolution.

The rules applied in parallel cannot involve more catalysts than available in the
system; the multiplicities of regular objects, on the other hand, do not influence
the applicability of rules. An application of a rule cu→ cv in a region containing
cw (c ∈ C, u, v ∈ O∗, w ∈ O• produces cw(cu)−cv = cwv(u−), or, in terms of
vectors, ignoring the catalyst, vector ψ(w) + ψ(v) − ψ(u) is represented by the
contents of that region after the rule has been applied. An application of a rule
cu → cvδ produces the same effect, and then dissolves the enclosing membrane,
moving the contents of the dissolved membrane into the parent membrane.

Purely catalytic P systems over integers evolve under the maximally par-
allel semantics, so each catalyst enters exactly one rule (non-deterministically
chosen), unless the given region has no rules associated with this catalyst. By
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ZdOZPm(pcatk, δ) we denote the family of sets of d-dimensional vectors of inte-
gers generated by purely catalytic P systems over integers with dissolution, at most
m membranes and at most k catalysts. If any of parameters d,m, k is unbounded,
it is replaced by ∗ in the notation.

We also use notations for extended features (listed in parentheses in the nota-
tion of the sets of Z-vectors generated by the corresponding families of P systems).
Target indications, denoted by tar, allow the non-catalysts to be sent to a different
membrane. In the right side of the rules, sending object a is written by (a, tar),
where tar ∈ {out} ∪ {inj | 1 ≤ j ≤ m}; j here is a label of immediately inner
membrane. In this paper, we may write tarn in the notation of a set of Z-vectors
generated by a family of P systems; this generalization reflects the possibility to
assign targets even to negative multiplicites of objects.

Another feature is mobile catalysts [10], i.e., targets may also be associated to
the catalysts, and thus the catalysts move across the membrane structure; we de-
note this feature by mpcatk since the systems we consider are purely catalytic. We
use the plus sign between the features of catalytic mobility and dissolution when
it is allowed for the same rule to move a catalyst and to dissolve the membrane
currently containing it.

4 Results

4.1 Simplifications and Observations

First, we would like to explicitly allow rules of the form c→ cx, (c ∈ C, x ∈ O•),
i.e., the multiset of regular objects in the left side being empty. This does not
change the model, since any Z-multiset x can be written as u(v−), u, v ∈ O∗, and,
fixing some a ∈ O, c→ cx is equivalent to cau→ av. Moreover, any rule cu→ cv
is equivalent to c → cu(v−), so it suffices to only consider rules of types c → cx
and c→ cxδ (c ∈ C, x ∈ O•).

Second, notice that it is enough to start with a single catalyst in any region,
because it can perform the role of any number of catalysts, and if multiple cat-
alysts are initially in the same region, they will always stay in the same region
(possibly, merged with others). Indeed, take an arbitrary region of an arbitrary
purely catalytic P system over integers, say, it has catalysts ci, 1 ≤ i ≤ d, and each
catalyst ci has associated rules ci → cixi,j , 1 ≤ j ≤ ni, where xi,j ∈ O• ∪ O•δ.
Note that if none of the catalysts has associated rules, then they are equivalent to
a single catalyst with no associated rules, so in the following we assume the con-
trary. If some catalyst ci has no associated rules, it is then equivalent to it having
associated a single rule ci → ci, i.e., xi,1 = λ and ni = 1, so in the following we
assume ni ≥ 1 for 1 ≤ i ≤ d. We can now replace all these catalysts by a single
catalyst c having associated the following set of rules:

{c→ cx1,j1 · · ·xd,jd | 1 ≤ ji ≤ ni, 1 ≤ i ≤ d}.
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On the other side, no catalyst in some region is equivalent to one catalyst with no
associated rules. Therefore, without restricting the generality, in the following we
assume that in the initial configuration of an arbitrary purely catalytic P system
over integers, each membrane region i, 1 ≤ i ≤ m, contains precisely one catalyst,
and we can call it ci.

Third, notice that no information enters membranes, so the outer regions can-
not affect the inner regions in any way. Hence, if the output region i0 is not the
skin, then only the membrane substructure inside i0, including i0 is relevant for the
result, and other membranes are irrelevant and may be removed without affecting
the result, making i0 the skin (unless some rule in some removed membrane had
applicable rules, but could never be dissolved, in which case the generated set of
vectors is empty, which is a degenerate case). So in the following, we assume that
the output region is always the skin.

Fourth, every elementary membrane having no rules associated to the catalysts
available there may be removed from the system without affecting the result (unless
it is the output membrane, in which case a singleton is generated, which is a
degenerate case), so in the following we assume that each elementary membrane
has some applicable rules. Clearly, the P system will not reach the halting until
this membrane is dissolved.

Consider this reasoning starting from the elementary membranes outside, by
induction. Take any non-elementary membrane i which becomes elementary during
a computation. Assume i is not dissolved (i.e., it has no rules associated to any of
the catalysts that were placed within the membrane substructure inside i, including
i), but it is not the output membrane. Then all the computation in the membrane
substructure inside i, including i, does not contribute to the result, and can be
removed from the system without affecting the result.

As a summary of the fourth observation, without restricting the generality
(except, possibly the degenerate cases generating the empty set or some singleton),
we may assume that any purely catalytic P system over integers has applicable
rules associated to all elementary membranes, and all membranes except the skin
must be dissolved at some moment during the computation.

Finally, for every region except the skin, a catalyst ci without associated rules
is equivalent to a catalyst with a rule ci → ci. Hence, without restricting the
generality, we may assume that the catalysts are never idle before the halting is
reached. Clearly, (excluding the degenerate case generating the empty set), the
skin should have no rules associated to any catalyst of the system.

We would like to note that even without pruning the membrane structure by
removing membrane substructures not contributing to the result, the membrane
structure obtained at halting (if at all reachable) is unique.

We recall that in [2], the following generalization approach is taken: There is
a finite number of reachable membrane structures. These could be used as states
of a sequential P system, which may be obtained, separately for each membrane
structure, by combining the behavior of all catalysts in all regions of the P system.
Indeed, having fixed a reachable membrane structure, we know which membranes
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have been dissolved, and thus the resulting location of each catalyst. Then, for each
catalyst, associated rules in its current location are considered and combined, sim-
ilarly to the second observation above, but globally. Having obtained a sequential
system, the catalyst is no longer needed. Then, in [2] it was shown that such a
generalization is nothing else but a sequential blind vector addition system with
states, and it was claimed that it characterizes precisely the family of all semilinear
vectors of integers.

Indeed, in this way any purely catalytic P system over integers can be substi-
tuted by a sequential blind vector addition system with states, so the upper bound
of the family of all semilinear sets of vectors of integers, or, equivalently, the family
of all integer vector sets, generated by blind register machines, holds. However, the
reverse is not necessarily true, i.e., it does not follow that for any sequential blind
vector addition system with states there would exist an equivalent purely catalytic
P system over integers.

Another result in [2] has been obtained for integer vector addition P systems,
namely Theorem 5. That model has been shown to characterize exactly the uniform
semilinear sets. However, since in the model of integer vector addition P systems,
as opposed to purely catalytic P systems over integers, there is no concept of a
catalyst, dissolving a membrane only disables rules of that region, without enabling
rules that, in purely catalytic P systems over integers, are contained in the parent
region and associated to the catalysts that were in the dissolved region. Hence,
the characterization from Theorem 5 of [2] has no direct implication on the power
of purely catalytic P systems over integers.

Therefore, at this point in the present paper we would like to definitely deviate
into the particularities of how dissolution affects the computation, and the lower
bounds.

4.2 Generative Power

We recall that we discuss the family of integer vector sets generated by purely
catalytic P systems over integers, with the usual halting condition.

Since the output region cannot be dissolved by definition and any other appli-
cable rule can never be stopped, single-membrane purely catalytic P systems over
integers are degenerate:

ZdOZP1(pcat∗, δ) = {∅} ∪ {{v} | v ∈ Zd}.

For simplicity, we will not mention these degenerate cases while considering mul-
tiple membranes.

With two membranes, a characterization is still straightforward:

ZdOZP2(pcat∗, δ) = ZdSLINU
N .

Indeed, let A be the finite set of vectors corresponding to the non-dissolving rules
in the elementary membranes, and let B be the finite set of sums of two vectors:
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the one corresponding to the initial configuration and vectors corresponding to the
dissolving rules in the elementary membrane; the skin should have no rules. If the
catalyst in the elementary membrane is c2, then the correspondence mentioned
above is c2 → c2x↔ ψ(x), and similarly with dissolution. An arbitrary computa-
tion of a P system consists of an arbitrary number of applications of non-dissolving
rules and one application of a dissolving rule. Hence, the resulting vector sums up
from the “initial” vector, one arbitrary “dissolving” vector, and an arbitrary linear
combination of “non-dissolving” vectors.

It is worth noting that, by a similar reasoning, for a P system with multiple
membranes, if the chronological order of dissolving membranes is fixed, the result is
still ZdSLINU

N . Indeed, each combination of rules (one for each catalyst) yields one
vector, so all such possible combinations of non-dissolving rules yield a finite set
of vectors, and multiple non-dissolving steps yield a linear set generated by these
vectors. Thus, over the whole computation the result sums up from the initial
configuration, a finite number of dissolution vectors, and a finite number of linear
sets corresponding to the membrane structures reached during that computation.
Since the total number of chronological orders of dissolving membranes is bounded,
the known result already follows:

ZdOZP∗(pcat∗, δ) ⊆ ZdSLINN.

Even with three membranes, in case two of them are elementary, the power of
such purely catalytic P systems over integers is still ZdSLINU

N , but for a different
reason: each elementary membrane contributes with its uniform semilinear set,
and a sum of two uniform semilinear sets is still uniform semilinear.

Let us now examine a P system with three nested membranes – the minimal
number to obtain a set which is not in ZdSLINU

N . Let the vector obtained by
joining the initial contents of all membranes be a, the set of non-dissolving vectors
of the elementary membrane be A3, the set of dissolving vectors of the elementary
membrane be B3, the sets of non-dissolving and dissolving vectors in the middle
membrane associated to catalyst c2 are A2 and B2, and the similar sets associated
to catalyst c3 (which will arrive from the elementary membrane) are A and B. Let
us see what the resulting vector set is built from, besides a.

A non-dissolving computation in three membranes adds at each step (an ele-
ment of) A3 to the elementary membrane and (an element of) A2 to the middle
membrane. Eventually all objects will arrive to the skin, so the three-membrane
phase of the computation will contribute by (an arbitrary element of) 〈A2 +A3〉N.

Then there are two possibilities. If membrane 2 is dissolved first, then the
system continues computing by only applying the rules in membrane 3, and even-
tually dissolving membrane 3, yielding B2 + 〈A3〉N + B3. However, if membrane
3 is dissolved first, then both catalysts are active in membrane 2, eventually dis-
solving it, yielding B3 + 〈A2 +A〉N + (B2 +A ∪A2 +B ∪A+B). The expression
in parentheses corresponds to applying at least one dissolving rule. Therefore, the
set of integer vectors generated by such a purely catalytic P system over integers
with three nested membranes is
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M = a+B3+〈A2+A3〉N+
(
B2+〈A3〉N ∪ 〈A2+A〉N+

(
B2+A ∪A2+B ∪B2+B

))
,

and the power of all three-membrane purely catalytic P systems over integers,
noting that the power of the nested case subsumes the power of the case with two
elementary membranes, is

ZdOZP1(pcat∗, δ) = {M | a ∈ Zd, A2, A3, B2, B3, A,B ∈ FIN(Zd)},

where M is the expression above. Unfortunately, it is not obvious what can be
simplified in it, except B3 can subsume a. So we try to analyze it in details,
possibly going into particular cases.

All terms in the expression M are bounded except three: 〈A3 +A2〉N, 〈A3〉N
and 〈A+A2〉N. These terms are not independent, even though A2, A3 and A are
three independent finite sets of vectors. It is, however, possible to separate them
in a particular case when |A3| = 1, choosing A2 = −A3 and A = C − A2. Since
A3 is a singleton, the identity A3−A3 = {0} holds, so the three unbounded terms
become 〈{0}〉N, 〈A3〉N and 〈C〉N, so we are getting close to obtaining a union of
two particular linear (or even uniform semilinear) sets with different base vectors.

Indeed, if we choose a = 0, B3 = {0}, B2 = {0}, B = {0} and A3 = {e},
expression M simplifies to 〈{e}〉N∪〈C〉N +(C+{e}∪{0}), which can be rewritten
as 〈{e}〉N ∪ 〈C〉N ∪ {e} 〈C〉N.

Alternatively, to avoid dealing with the union of three cases when membrane
2 is divided last, if we choose B2 = A2 and B = A, then the last parenthesis in
the general expression of set M becomes simply A2 + A = C. Choosing a = 0,
B3 = {0}, and A3 = {e}, expression M simplifies to 〈{e}〉N − {e} ∪ 〈C〉N + C.
Since 0 ∈ 〈{e}〉N − {e} and 〈C〉N + C ∪ {0} = 〈C〉N, in this case we can rewrite
M to

−{e} ∪ 〈{e}〉N ∪ 〈C〉N ,
which is a union of any two homogeneous linear sets, such that the first one has
only one generator, united with the opposite vector of that generator. Hence,

ZdOZPn(cat, δ) ) ZdSLINU
N , n ≥ 3.

What if B = ∅, i.e., catalyst c3 has no associated dissolution rules in region 2?
Then the general expression of set M is immediately simplified to

M = a +B2 +B3 + 〈A2 +A3〉N + (〈A3〉N ∪ 〈A2 +A〉N +A),

and in our case of A3 = {e}, A2 = −{e} and A = C + {e}, M becomes

a +B2 +B3 + (〈{e}〉N ∪ 〈C〉N + C + {e}),

and choosing a +B2 +B3 = {−e}, and noticing that C 0 times is covered by e 0
times and 〈C〉N +C ∪{0} = 〈C〉N, we simplify M to {−e}∪ 〈{e}〉N ∪〈C〉N, i.e., an
“almost clean union” we already obtained before. Finally, we notice that we can
equivalently write it as

〈{e},−e〉N ∪ 〈C〉N .
Continuing the current approach with more membranes would only result in more
cases.
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4.3 Communication

We would like to remark that adding target indications to the regular objects
should not increase the power of purely catalytic P systems over integers. Indeed,
looking at a purely catalytic P system over integers, it is easily decidable which
membranes will eventually be dissolved. Hence, the only question is whether the
contents of a region specified by target, after possible dissolutions, will be in the
output. There is no need to examine the future of a moved regular object, since
the resources in purely catalytic P systems over integers are unbounded, and we
can view this copy of a moved object as staying in that region until the end of the
computation.

However, if also the catalysts are allowed to have target indications associated,
it does make a difference. We claim the following characterizations.

ZdOZP∗(mpcatk, tarn) = ZdSLINN, k ≥ 1,
ZdOZP∗(mpcatk + δ) = ZdSLINN, k ≥ 1,
ZdOZP∗(mpcat∗, δ) = ZdSLINN,

The upper bound in either case is easy to see because the number of possible
arrangements of catalysts across the given membrane structure (and any possible
structures obtained from it by membrane dissolutions) is bounded. Hence, purely
catalytic P systems over integers with mobile catalysts are still not more powerful
than blind vector-addition systems with states, which characterize Z∗SLINN, see
[2]. We now proceed to ⊇ inclusions.

Consider an arbitrary semilinear set
⋃

1≤i≤m〈Ai, bi〉N, where for each i, 1 ≤ i ≤
m, Ai is a finite set, Ai ∪ {bi} ⊆ Zd. We construct the following purely catalytic
P system over integers

Π1 = (O,C, µ,w1, · · · , w2m+1, R1, · · · , R2m+1, i0 = 1) where

O = {ai | 1 ≤ i ≤ d}, C = {c},
µ = [ [ [ ]m+2 ]2 · · · [ [ ]2m+1 ]m+1 ]1,

w1 = c, wi+1 = λ, 1 ≥ i ≥ 2m,

R1 = {c→ (c, ini+1)vi | 1 ≤ i ≤ m, ψ(vi) = bi},
Ri+1 = {c→ c(v, out) | ψ(v) ∈ Ai} ∪ {c→ (c, inm+i+1)}, 1 ≤ i ≤ m,

Rm+i+1 = ∅, 1 ≤ i ≤ m.

The work of Π1 consists of a non-deterministic choice of i-th linear set to generate,
by moving catalyst c into membrane i+ 1 and producing bi. After sending to the
skin an arbitrary combination of vectors from Ai, the catalyst enters membrane
m+ i+ 1 and the system halts.

The system Π2 is obtained from Π1 by replacing the sets Ri+1 of rules, 1 ≤
i ≤ m, by

{c→ cv | ψ(v) ∈ Ai} ∪ {c→ (c, inm+i+1)δ}.
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It works just as Π1, with one difference, Here, instead of sending v out (possibly
containing negative multiplicities), the linear combination of vectors from Ai is
generated directly in membrane i+1, and is released into the skin upon dissolution
of membrane i + 1, simultaneously with sending the catalyst into the elementary
membrane m + i + 1. Now consider the following purely catalytic P system over
integers.

Π3 = (O,C, µ,w1, · · · , w3m+1, R1, · · · , R3m+1, i0 = 1) where

O = {ai | 1 ≤ i ≤ d}, C = {ci | 1 ≤ i ≤ m+ 1},
µ = [ [ [ [ ]

2m+2
]
m+2

]
2
· · · [ [ [ ]

3m+1
]
2m+1

]
m+1

]
1
,

w1 = c1, wi+1 = λ, 1 ≤ i ≤ 2m,

w2m+1+i = c1+i, 1 ≥ i ≥ m,
R1 = {c1 → (c1, ini+1)vi | 1 ≤ i ≤ m, ψ(vi) = bi},

Ri+1 = {c1 → c1v | ψ(v) ∈ Ai}
∪ {c1 → (c1, inm+i+1), ci → ciδ}, 1 ≤ i ≤ m,

Rm+i+1 = {c1 → (c1, in2m+i+1), ci → (ci, out)}, 1 ≤ i ≤ m,
R2m+i+1 = {c1 → c1δ}, 1 ≤ i ≤ m.

The basic idea is the same, but the implementation is a little longer. To each
linear set i, 1 ≤ i ≤ n, three nested membranes are associated (i + 1, m + i + 1
and 2m + i + 1). The beginning is just like in the case of Π2, until catalyst c1 is
sent into membrane m+ i+ 1, but membrane i+ 1 is not dissolved yet. Then, c1
enters the elementary membrane 2m+ i+1 and dissolves it, releasing catalyst ci+1

into the surrounding membrane m + i + 1. Clearly, c1 cannot reenter membrane
2m+i+1, which no longer exists, so it has no applicable associated rules. Catalyst
ci, however, is sent out to membrane i + 1, and dissolves it, which releases all
generated regular objects to the skin and halts the computation. This proves the
characterizations.

5 Conclusions

We have reproved that the power of purely catalytic P systems over integers is
contained in the family of all semilinear sets of vectors of integers. We then have
shown that with one membrane purely catalytic P systems over integers give de-
generate results, and with two membranes they are characterized exactly by the
family of all uniform semilinear sets of vectors of integers. With more membranes,
this equality becomes a strict inclusion, and a specific union of linear sets with
different base vectors have been obtained. More specifically, for any vector e ∈ Zd

and any finite set C ⊆ Zd, purely catalytic P systems over integers can generate

〈{e},−e〉 ∪ 〈C〉N .
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The most interesting open question remaining is whether Z∗OZP∗(pcat∗, δ) is
closed under union. While in almost all cases in membrane computing closure
under union is trivial, e.g., by making a non-deterministic choice in the first step
of the computation, the current situation is rather surprising.

Finally, we have considered the variants with mobile catalysts, and showed
a few combinations of features leading to characterizations of semilinear sets of
Z-vectors.
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Summary. In this paper we consider P systems working with multisets with integer
multiplicities. We focus on a model in which rule applicability is not influenced by the
contents of the membrane. We show that this variant is closely related to blind register
machines and integer vector addition systems. Furthermore, we describe the computa-
tional power of these models in terms of linear and semilinear sets of integer vectors.

1 Introduction

P systems have been traditionally viewed as hierarchical processors of multi-
sets [11]. In the list of open problems disseminated in 2015 [10], Gheorghe Păun
suggested going beyond the traditional setting and considering multisets in which
objects would not be restricted to having natural multiplicities. Several possible
approaches have been suggested since then, including the one from [3], which de-
fines generalised multisets as taking multiplicities from finitely generated, totally
ordered Abelian groups.

The work [1] takes a different approach — the objects of the P system are
partitioned into two classes: regular objects, which may have any integer multi-
plicity, and “catalysts”, which may only appear in a bounded number of copies
and cannot be consumed without being immediately reproduced. Thus, the reg-
ular objects cannot influence the applicability of rules, while the always bounded
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catalysts induce a finite set of “rule teams” which can be applied in parallel in
one step. The virtual absence of applicability conditions and the finiteness of the
“teams” hints at the possibility of seeing them as integer vectors; in this case the
P system itself can be seen as evolving by sequentially adding such vectors to the
contents of its membranes.

Even though this vision is quite reminiscent of the folklore vector addition
systems (VAS), the latter model is actually limited to having natural vectors as
configurations [2, 8]. On the other hand, P systems manipulating integer multi-
sets allow symbols with negative multiplicities to appear. It turns out that vector
addition systems without the limitation of having natural configurations (integer
VAS) have received relatively little attention in the literature [7].

Another related model which has received notoriously little attention are the
blind register machines, whose registers are allowed to range over the whole set
of integers. Blind counter automata have been introduced and studied as string
recogniser devices by Sheila Greibach in [6]; their adaptation to recognising vectors
of integer numbers seems quite relevant to the study of multisets with integer
multiplicities.

In the present work we bring together the three models — P systems over inte-
ger multisets as defined in [1], integer vector addition systems, and blind register
machines — and formally show the connections between their different variants.
We also give detailed characterisations of their computing power in terms of linear
and semilinear sets of natural and integer vectors.

The article is structured as follows. Section 2 recalls some notions used through-
out the paper, in particular semilinear sets and vector addition systems. Section 3
gives a general definition of a register machine over a set A, and then defines blind,
partially blind, and conventional register machines within this general framework.
Section 4 defines the model of integer vector addition P systems and gives some
details as to their semantics. Section 5 investigates the power of blind register ma-
chines and gives characterisations in terms of semilinear sets of vectors. Finally,
Section 6 studies the power integer vector addition systems with and without mem-
branes, and compares different variants of the models between themselves and with
blind register machines.

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing; see [12] for a comprehensive introduction to both.

2.1 Linear Sets

The N-linear set of Z-vectors (or just linear set of Z-vectors) generated by a set of
vectors A = {a1, · · · ,ad} ⊆ Zn and an offset a0 ∈ Zn is defined as follows:
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〈A,a0〉N =

{
a0 +

d∑
i=1

kiai

∣∣∣ ki ∈ N, 1 ≤ i ≤ d

}
.

We underline that the vectors are over Z, but the coefficients are from N (we will
also consider the special case when A ∪ {a0} ⊆ Nn; this would be an N-linear
set of N-vectors, or just a linear set, a well-known concept from Formal Language
Theory).

A Z-linear set of Z-vectors

〈A,a0〉Z =

{
a0 +

d∑
i=1

kiai | ki ∈ N, 1 ≤ i ≤ d

}
can be considered, too. It corresponds precisely to the linear vector space notion
from the classic course of Linear Algebra. However, it is also a particular case.
Indeed, it is easy to see that 〈A,a0〉Z = 〈B,a0〉N for

B = {a1, · · · ,ad,−a1, · · · ,−ad}.

If the offset a0 is the zero vector, we call the corresponding linear set homoge-
neous.

A positive-restricted N-linear set of Z-vectors generated by A and an offset
a0 is defined to be the N-linear set of Z-vectors generated by A, restricted to
non-negative vectors only:

〈A, a0〉+Z = {x ∈ 〈A, a0〉Z | x ≥ 0} ,

where x ≥ 0 means that every component of x is non-negative.
We will use the notations ZnLINN, NnLINN, ZnLINZ, and Zn+LINN to refer

to the classes of all N-linear sets of Z-vectors, N-linear sets of N-vectors, Z-linear
sets of Z-vectors, and positive restricted N-linear sets of Z-vectors of dimension n,
correspondingly. Semilinear sets are defined as finite unions of the corresponding
types of linear sets. We will use the notations ZnSLINN, NnSLINN, ZnSLINZ
and Zn+SLINN to refer to the families of N-semilinear sets of Z-vectors, N-
semilinear sets of N-vectors, Z-semilinear sets of Z-vectors, a nd positive-restricted
N-semilinear sets of Z-vectors of dimension n, respectively. In case no particular
restriction is imposed on the dimension, n will be replaced by ∗. We may omit n
if n = 1.

We recall the following general result from number theory known as Bézout’s
identity. Given a set of integers A = {a1, · · · , an} ⊆ Z, there exist integers
x1, · · · , xn ∈ Z such that the following holds:

n∑
i=1

xiai = gcd(a1, · · · , an),

where gcd(a1, . . . , an) in the greatest common divisor of the integers from A. Fur-
thermore, the greatest common divisor is the smallest positive integer which can
be obtained as a linear combination of the elements of A.
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2.2 Vector Addition Systems

A vector addition system (VAS) of dimension n ∈ N is defined to be the pair
(w0,W ), where w0 ∈ Nn is the start vector, and W is a finite set of vectors from
Zn, called addition vectors. An addition vector w ∈ W is said to be enabled in
a vector x ∈ Nn if x + w ∈ Nn, i.e. all the components of the vector x + w are
non-negative. A VAS evolves from the start vector w0 by sequentially iterating
the addition of vectors from W .

A vector addition system with states (VASS) is a VAS equipped with a finite
state control. Essentially, state labels are assigned to addition vectors and a graph
of states is given which defines the possible sequences of application of addition
vectors.

We will use the notation VAS and VASS to refer to the families of sets of
natural vectors which can be generated by VAS and VASS, respectively.

It was shown in [8] that VASS are equivalent in expressive power to VAS
(without states): any n-dimensional VASS can be simulated by an equivalent (n+
3)-dimensional VAS.

A variation on the model of vector addition systems consists in lifting the
restriction that the valid vectors must have non-negative components. This model
has recently been defined in [7].

An integer vector addition system (Z-VAS) of dimension n ∈ N is the pair
(w0,W ), where w0 ∈ Zn is the start vector, and W ⊆ Zn is finite set of addition
vectors. A Z-VAS evolves from w0 by sequentially applying the addition vectors
from W . The set of vectors generated by a Z-VAS is defined to be the set of
reachable vectors.

An integer vector addition systems with states (Z-VASS) is a Z-VAS equipped
with a state control and is defined as a tuple (w0, Q, q0, qh, p, δ), where w0 ∈ Zn
is the start vector, Q is a finite set of state labels, q0 ∈ Q is the starting state,
qh ∈ Q is the halting state, p : Q \ {qh} → Zn is a function assigning a vector to
every state from Q \ {qh}, and δ : Q→ 2Q is a state transition function assigning
to each state the set of possible successor states.

A Z-VASS starts in w0 and in state q0, applies the addition vector p(q0),
and non-deterministically moves into one of the states from δ(q0). This process
is iteratively repeated, until the halting state qh is reached. The vector language
generated by a Z-VASS is defined as the set of all vectors which are reachable in
the halting state qh.

We will use the notations Z-VAS and Z-VASS to refer to the sets of integer
vectors generated by Z-VAS or Z-VASS.

3 Register Machines

Definition 1. A register machine over the set A is the tuple MA =
(n,A,Q, q0, qh, P ), where n ∈ N, A is a (possibly infinite) register alphabet, Q
is a finite set of state labels, q0 is the initial state, qh ∈ Q is the halting state, and
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P is a mapping associating an instruction to every state of MA. An instruction is
a function p : An → An×2Q associating to every n-tuple of values from A another
n-tuple of such values and a set of states from Q. A configuration C ∈ Q×An of
MA is a tuple combining a state and n values from A.

MA can be seen as storing values of type A in its n registers. A configuration
of MA therefore defines its current state and the values of its n registers. When
in state q ∈ Q, MA can execute the instruction P (q), which will compute (1) new
values for all registers of MA and (2) a set of possible new states; MA can non-
deterministically transition into one of these states.

Definition 2. A k-step (finite) computation of the register machine MA = (n,A,Q, q0, qh, P )
is a finite sequence of configurations (Ci)0≤i≤k such that,

1. C0 = (q0,a0), where some of the components of a0 (registers) may contain
input values;

2. Ck = (qh,ak), where some of the components of an (registers) may contain
output values;

3. for every 0 ≤ i < k, Ci = (qi,ai), Cj = (qj ,aj), P (qi)(ai) = (aj , H), and
qj ∈ H.

MA therefore transitions from a configuration to another by sequentially ap-
plying its instructions. Whenever MA is in state qi, it retrieves the corresponding
instruction P (qi) and applies it to the tuple describing the values of the registers.
The result, P (qi)(ai), gives the new values for the registers and a set of states H
from which MA picks qj and moves into it. The last configuration Ch is habitually
referred to as the halting configuration.

Often, in order to be able to express the instructions in a sensible way, one
considers some kind of structure over the set A; one example of such a structure
may be a finitely generated Abelian group. Classical definitions of register machines
rely on (sub)sets of integers and on the associated structure of a linearly ordered
finitely generated Abelian group.

In what follows, we describe the existing models of register machines using
the abstract language we have just introduced, and we show that blind register
machines actually represent the least restricted variant.

Definition 3. A blind register machine is a register machine B over the finitely
generated Abelian group (Z,+). The instructions of blind register machines can be
of the following two types:

1. (ADD(i), q, s)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai + 1, . . . , an), {q, s}

)
, and

2. (SUB∗(i), q)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai − 1, . . . , an), {q}

)
.

The computations of blind register machines are defined as a computation of
the corresponding register machine over (Z,+).
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Definition 4. A blind register machine accepts an input vector by resetting all
registers to zero in the halting configuration. A blind register machine generates
(or computes from an input) a vector of numbers by resetting all registers not
containing the output to zero.

We will use the notation PsZBRM (resp., PsNBRM) to refer to the class
of sets of vectors of integer (resp., natural) numbers accepted by blind register
machines.

All other well known types of register machines can be defined as subtypes of
blind register machines.

Definition 5. A partially blind register machine is a blind register machine whose
registers are only allowed to contain non-negative numbers: for any computation
(Ci)1≤i≤k of a partially-blind register machine and for any Ci = (qi,ai), 1 ≤ i ≤ k,
every component of ai is non-negative.

Thus, if the partially blind register machine B′ decides at some point to decre-
ment a register whose value is already zero, it will produce an illegal configuration
which will render the whole computation invalid. This means that B′ still cannot
check its registers for zero, but it knows that all of them are non-negative at any
given time. The computations of partially blind machines therefore satisfy a con-
dition which renders them strictly stronger than blind register machines [6]: the
registers may never go below zero.

Definition 6. A partially blind register machine accepts an input vector by re-
setting all registers to zero in the halting configuration. A partially blind register
machine generates (or computes from an input) a vector of numbers by resetting
all registers not containing the output to zero in the halting configuration.

We will use the notation PsPBRM to refer to the class of sets of vectors of
natural numbers accepted by partially blind register machines.

We can now also define conventional register machines in our general frame-
work.

Definition 7. A (conventional) register machine is a register machine over (Z,+)
with the following two types of instructions:

1. (ADD(i), q, s)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai + 1, . . . , an), {q, s}

)
, and

2. (SUB(i), q, z)(a1, . . . , ai, . . . , an) ={(
(a1, . . . , ai − 1, . . . , an), {q}

)
, if ai > 0,(

(a1, . . . , ai, . . . , an), {z}
)
, if ai = 0.

Computations of conventional register machines are defined as computations
of the corresponding register machines over (Z,+) with the restriction that, in the
initial configuration, all registers must contain non-negative values.

It follows from the form of instructions allowed in conventional register ma-
chines that their registers contain non-negative values at any time. Therefore, one
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can see such register machines as an even more powerful form of partially blind
register machines (and thus a particular case of blind register machines), in which
the machine is allowed to check whether any given register is zero.

We would like to remark that by considering other types of instructions or
restrictions on the class of valid computations, one can characterise many other
variants of register machines. For example, reversal-bounded counter automata are
register machines in which one can only switch from incrementing to decrementing
a register (and conversely) a bounded number of times [9].

4 Integer Vector Addition P Systems

In the article [10], Gheorghe Păun suggested exploring multisets with negative
multiplicities. Several possible answers were suggested. In [3], the authors define
generalised multisets as having multiplicities from totally ordered Abelian groups.
The work [1] takes a different approach and partitions the alphabet of objects into
two categories: the regular objects, which may have any integer multiplicity, and
the so-called “catalysts”, which are only allowed to appear in a bounded number
of copies. Like in purely catalytic P systems, the “catalysts” in this model are used
to guide the applicability of rules.

In this work, we generalise this model to the concept of integer vector addition
P systems. Before defining this model, we define the following natural extension
of multisets.

Definition 8. A Z-multiset over the (finite) alphabet O is a mapping w : O → Z.
The value w(a) is called the multiplicity of a in w. An object a ∈ O is said to
apear in w if w(a) 6= 0. A multiset w is said to be empty if no objects appear in it.

Thus, Z-multisets can also be seen as vectors of integers, indexed by elements
of O. We will use the notation ZO to refer to the set of all Z-multisets over O.

Definition 9. An integer vector addition P system (Z-VAPS) is the construct

Π = (O, T, µ, w1, . . . , wn, R, hi, ho),

where O is a finite alphabet of objects, T ⊆ O is the set of terminal objects, µ is the
membrane structure injectively labelled by the numbers from {1, . . . , n} and usually
given by a sequence of correctly nested brackets, wi are the Z-multisets giving the
initial contents of every membrane i, 1 ≤ i ≤ n, R is a finite set of rules of the
form r : {1, . . . , n} → ZO, and hi and ho are the labels of the input and the output
membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

Thus, integer vector addition P systems manipulate vectors of integers, indexed
by the objects from O (Z-multisets). A rule r ∈ R assigns such a vector to every
membrane of Π; applying r means adding (by componentwise addition) the vector
r(i) to the vector representing the contents of the membrane i, for every 1 ≤
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i ≤ n. Therefore, one may see r as only having a right-hand side and as being
unconditionally applicable. Such a form comes in naturally, since, as also pointed
out in [3, 1], considering multiplicities over Z renders the usual rule applicability
conditions irrelevant. We also remark that this way of defining the rules generalises
naturally to a tissue-like membrane structure, i.e. a membrane structure which is
not required to be a tree, but can be an arbitrary graph (cf. [5]).

We will use the tuple notation to describe rules of vector addition P systems —
a rule r will be given by the set

{
(i, r(i)) | 1 ≤ i ≤ n, r(i) is not empty

}
.

In [1], the authors use a special symbol δ to command the dissolution of the
membrane in which it is produced. To allow for the same possibility in vector
addition P systems, we will define the rules as functions of the form {1, . . . , n} →
ZO∪{δ}, i.e. as functions assigning Z-multisets over O ∪ {δ} to each membrane. If
r(i)(δ) = 1 for the elementary membrane i, the application of r will dissolve this
membrane after adding the multiplicities of symbols different from δ to its contents.
We may even allow r(i)(δ) = k > 1, in which case k successive membranes in
the hierarchy will be dissolved, but only the contents of the innermost dissolved
membrane will be copied into the corresponding parent membrane (the contents
of the intermediary membranes will be lost).

Allowing dissolution makes it possible to introduce a rule applicability condi-
tion: r is applicable if every membrane i, for which r(i) is not empty, is still present
in the system.

The integer vector addition P system Π evolves by sequentially applying rules
from R until a halting configuration is reached. Remark that, because of the use
of Z-multisets, the only way to use the classical halting condition is to dissolve all
the membranes to which the rules of Π may contribute. This corresponds to the
approach proposed in [1] which consists in dissolving all the working membranes
until the result reaches a membrane without any rules. Thus, the classical halting
condition becomes somewhat degenerate; it is therefore only natural to discuss
other halting conditions, for example:

• unconditional halting — the system may halt at any moment, independently
of rule applicability or contents of the membranes;

• halting by zero — the system halts when it reaches a configuration in which all
multisets representing the contents of all membranes are empty.

One may see unconditional halting as corresponding to the way in which the
language generated by a grammar is defined [4]: essentially, the contents of the
output membrane of Π in any configuration Π can reach, projected on the terminal
alphabet T , is part of the vector language generated by Π. On the other hand,
halting by zero corresponds to the way in which blind register machines recognise
input vectors.

We will use the symbols uncond, zero, and inappl to refer to unconditional
halting, halting by zero, and halting by inapplicability of rules. Similarly, we will
use the symbols acc and gen to refer to the accepting and generating modes. We
will use the notation PsZVAPS(m,h), m ∈ {acc, gen}, h ∈ {uncond, zero, inappl},
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to refer to the class of sets of vectors of integers accepted or generated by integer
vector addition P systems working with the corresponding halting conditions. We
will add the symbol δ to refer to the vector languages associated with Z-VAPS
with dissolution rules (PsZVAPS(m,h, δ)) and the symbol δ∗ to refer to the lan-
guages of Z-VAPS which are allowed to dissolve multiple membranes at a time
(PsZVAPS(m,h, δ∗)). Finally, we will replace Z by N to refer to the languages of
vectors of naturals (non-negative integers).

We immediately observe that PsZVAPS(m, inappl) = {∅}, because if a Z-
VAPS has any rules at all, it can never halt by rule inapplicability.

5 On the Power of Blind Register Machines

In this section, we will focus on relating integer vector addition systems to blind
register machines, as well as on expressing the power of both models in terms
of semilinear vectors of numbers. We will show that blind register machines and
Z-VASS generate exactly N-linear sets of Z-vectors.

The work [2] also discusses the computational power of blind and partially blind
register machines, but it uses a different definition of blindness: a blind register
machine is defined as a partially blind register machine which may halt with any
values in the registers. In the present paper we use a definition which is closer to
Sheila Greibach’s blind and partially register machines [6].

We will start by giving a proof of the quite intuitive result that blind regis-
ter machines recognise exactly the same sets of integer vectors as integer vector
addition systems with states generate.

Theorem 1. PsZBRM = Z-VASS.

Proof. Take a blind register machine B = (n,Z, Q, q0, qh, P ); we will construct
a Z-VASS Γ = (w0, S, s0, sh, p, δ) with w0 = (0, . . . , 0) ∈ Zn, S = Q, s0 = qh,
sh = q0. The set δ(p) will contains all the states of B from which p can be reached:

δ(s) = {q ∈ Q | P (q) = (SUB(i), s) or P (q) = (ADD(i), s, s′)
or P (q) = (ADD(i), s′, s)}.

The vector p(s) associated with a state s ∈ S does the opposite effect of the
instruction associated with the same state in B:

p(s) =

{
1i, if P (s) = (SUB(i), q),

−1i, if P (S) = (ADD(i), q, q′),

where 1i ∈ Zn is a vector whose only non-zero component is the i-th component.
It follows from the construction of Γ that, for every computation of B accepting

an input vector x, there exists a computation of Γ halting on the same vector,
and conversely, which proves that PsZBRM ⊆ Z-VASS.
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To prove the converse inclusion, it suffices to take an arbitrary integer vector
addition system and construct a blind register machine by reversing the arrows in
the state control graph and by simulating the inverse effect of the addition vectors
using multiple states.

The same construction can be used to show that partially blind register machine
are equivalent in power to conventional vector addition systems with states. Taking
into consideration the result on equivalence between (conventional) VAS and VAS
with states from [8], we formulate the following characterisation of the power of
partially blind register machines.

Theorem 2. PsPBRM = VASS = VAS.

We will now show that blind register machines do not recognise more than
N-semilinear sets of Z-vectors.

Lemma 1. PsZBRM ⊆ Z∗SLINN.

Proof. Consider a blind n-register machine B. At every step, B can increment or
decrement a register, independently of the contents of the registers. Consider the
alphabet of actions of B: AB = {ADD(i), SUB(i) | 1 ≤ i ≤ n}; every computation
of B can be represented as a string over this alphabet. Let valid(AB) ⊆ A∗B be
the strings over A∗B which correspond to all computations of B. Pick such a string
w ∈ valid(AB). Since the actions do not depend on the contents of the registers,
any permutation of w which is in valid(AB) will have the same effect as w. In
particular, B will halt with the same values in its registers. Therefore, the set of
vectors B recognises can be described as follows:

N(B) =
{
−(a1, . . . , an) | w ∈ valid(AB), ai = |w|ADD(i) − |w|SUB(i)

}
,

where |w|x is the number of copies of the symbol x ∈ AB in the string w.
Because B cannot read the values of its registers, the set valid(AB) is the

regular language given by the state control of B. Therefore, the Parikh image
Ps
(
valid(AB)

)
is an N-semilinear set. This means that N(B) is an N-semilinear

set of Z-vectors, and so is the set of vectors including only the values of the output
registers of B. Consequently, PsZBRM ⊆ Z∗SLINN, which is the statement of
the lemma.

We will now show that blind register machines can recognise all N-semilinear
sets of Z-vectors.

Lemma 2. PsZBRM ⊇ Z∗SLINN.

Proof. Consider an N-semilinear set A of Z-vectors. There exists a finite collection
of sets of generators Ai ⊆ Zn and offsets ai ∈ Zn such that A =

⋃
i〈Ai,ai〉Z.

Consider a blind register machine B which starts by non-deterministically choosing
a set of generators Ai and the corresponding offset ai. B then repeats the following
procedure until the set Ai is exhausted:



Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems 37

1. remove a generator a from Ai;
2. subtract a from the vector describing the registers of B a number of times

chosen non-deterministically.

At the end, B subtracts the vector ai from its registers. If B manages to reset all
its registers using this procedure, then, by construction, the input vector belongs
to 〈Ai,ai〉Z ⊆ A (and the computation of the machine gives a way to construct
this vector from Ai and ai). This implies the statement of the lemma.

It follows from Lemmas 1 and 2 that blind register machines recognise exactly
the N-semilinear sets of Z-vectors.

Theorem 3. PsZBRM = Z∗SLINN.

Consequently, if one takes only the natural vectors recognised by blind register
machines, one obtains positive-restricted N-semilinear sets of Z-vectors.

Corollary 1. PsNBRM = Z∗+SLINN.

6 On the Power of Z-VA(P)S

In this section we will describe the power of integer vector addition (P) systems
in terms of semilinear sets of vectors and blind register machines. We will start
by pointing out that Z-VAPS without dissolution and with unconditional halting
generate exactly the sets reachable by Z-VAS.

Lemma 3. PsZVAPS(gen, uncond) = Z-VAS.

Proof. The effect of rules of Z-VAPS without dissolution does not depend on the
contents of the membranes. Consider the set of rules R of such a P system Π;
we will construct a Z-VAS Γ whose starting vector is the initial contents of the
output membrane ho of Π, and whose addition vectors are given by the projection
{r(ho) | r ∈ R}. Since Π can halt at any moment, its output is exactly the
reachable vectors of Γ . Therefore PsZVAPS(gen, uncond) ⊆ Z-VAS.

The converse inclusions follows from the fact that any Z-VAS can be seen as a
one-membrane Z-VAPS working with unconditional halting.

The same kind of reasoning allows us to characterise the power of Z-VAPS
working in recognising mode and halting by reaching zero vectors in all membranes.

Lemma 4. PsZVAPS(acc, zero) = Z-VAS.

On the other hand, because of the direct equivalence between Z-VAS and N-
linear sets of Z-vectors, we can write the previous two results in the following
way.

Theorem 4. PsZVAPS(gen, uncond) = PsZVAPS(acc, zero) = Z∗LINN = Z-
VAS.
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Allowing membrane dissolution together with unconditional halting allows gen-
erating at most unions of vector languages generated by families of Z-VAS which
may only differ in their start vectors. We will call such families uniform and will
denote the class of vector languages generated by such families by Z-VAS∪.

Lemma 5. PsZVAPS(gen, inappl, δ) ⊆ Z-VAS∪.

Proof. Consider a Z-VAPS Π with normal membrane dissolution and halting by
inapplicability of rules. First of all, we remark that the contents of the output
membrane ho only depend on the evolution of the membranes located within.
Furthermore, ho must have no rules associated, otherwise the system will never
halt (or will end up dissolving ho if ho is not the skin, in which case no output will
be yielded either). Finally, only those inner membranes of ho which are dissolved
contribute to its final contents.

Consider one of the membranes h located somewhere within ho. If it has no in-
ner membranes, its evolution is described by a Z-VAS. If h has one inner membrane
h′ which is elementary (it contains no other membranes), then we can distinguish
two phases in the evolution of h: before and after the dissolution of h′ (and before
the dissolution of h itself). Given that the contents of h′ must eventually be merged
with those of h, we can just as well consider that, during the first phase, the rules
contributing to h are extended by the corresponding additions carried out by the
rules contributing to h′. Since the order in which the rules of Z-VAPS are applied
does not affect the result, we can consider that h contains no inner membranes at
all, but possesses a double set of contributing rules instead: one which combines
the original rules contributing to h and to h′, and another which only includes the
original rules contributing to h. Therefore, we can correctly describe the evolution
of h by taking at least some of the vectors a Z-VAS can reach.

We remark that the rule dissolving h′ in this case may only be applied once,
and its effect can be simulated by adding the vector it produces to the starting
multiset of the containing membrane h.

The reasoning from the previous paragraphs can be applied to a membrane
which contains multiple elementary membranes, as well as, inductively, to all in-
ner membranes of the output membrane ho: we can replace ho by a new elementary
membrane h′o, and take some of the vectors generated in it into the output lan-
guage. Remark now that the moment at which a membrane is dissolved is not
correlated with its contents and only depends on whether all of its inner mem-
branes have been dissolved already. This means that, if the depth of the membrane
structure contained in ho is d, d steps of evolution are necessary and suffice for dis-
solving all the inner membranes of ho. Therefore, the contents of the membrane ho
in the halting configurations of Π are given by all the vectors that can be reached
in membrane h′o in at least d steps. These are the vectors which can be reached by
the family of Z-VAS {(wi,W ) | wi ∈Wd}, where W contains the addition vectors
defined by the rules contributing to the new membrane h′o, and Wd is the (finite)
set of vectors which h′o can reach in exactly d steps.
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It turns out that this family of Z-VAPS can generate all vector languages from
Z-VAS∪.

Lemma 6. PsZVAPS(gen, inappl, δ) ⊇ Z-VAS∪.

Proof. Consider a finite family of Z-VAS F = {(wi,W ) | 1 ≤ i ≤ n}. We will
define a Z-VAPS Π generating the vectors reachable by the systems from F in
the following way. Π will have two nested membranes and two groups of rules.
The first group of rules will apply the vectors from W to the inner membrane. A
rule of the second group will add one of the vectors wi to the inner membrane
and dissolve it immediately. By construction, the vectors appearing in the halting
configurations of Π are exactly the vectors which can be reached by the Z-VAS
from F , which proves the lemma.

The following theorem summarises the two preceding lemmas.

Theorem 5. PsZVAPS(gen, inappl, δ) = Z-VAS∪.

Interestingly, the class Z-VAS∪ is strictly in between the classes Z-VAS and
Z-VASS.

Lemma 7. Z-VAS ( Z-VAS∪.

Proof. The inclusion is trivial. Consider now two Z-VAS having the axioms (0, 0)
and (0, 1), and sharing the only addition vector (1, 1). The language of vectors
reachable by these two systems is L = {(a, a), (a, a + 1) | a ∈ N}. Suppose there
exists a Z-VAS Γ generating the same vector language L. In order to generate all
pairs of natural numbers (a, a), it must start with the axiom (0, 0) and have an
addition vector of the form (1, 1). Then, in order to generate the pairs (a, a+ 1),
Γ needs to have an addition vector of the form (x, x+ 1). However, applying this
addition vector twice yields the vector (2x, 2x + 2) /∈ L, which contradicts the
supposition and proves that the inclusion from the statement of the lemma is
strict.

The following lemma describes the relationship between Z-VAS∪ and Z-VASS.

Lemma 8. Z-VAS∪ ( Z-VASS.

Proof. The work of a finite family F of Z-VAS can be simulated by a Z-VASS by
non-deterministically choosing a state in which one of the start vectors of F will
be added, and by subsequent direct simulation of the application of the shared
addition vectors.

Consider now the Z-VASS Γ with the starting vector (0, 0), which applies the
addition vector (0, 0) in the starting state q0 and the non-deterministically chooses
between q(1,0) and q(0,1). In q(1,0), Γ may apply the addition vector (1, 0) indefi-
nitely, before transitioning into qh. Similarly, in q(0,1), Γ may apply the addition
vector (0, 1) indefinitely, before moving into qh. Thus, the vector language gener-
ated by Γ is L = {(a, 0), (0, a) | a ∈ N}.
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Suppose there exists a family of Z-VAS which generate the same language. The
shared addition vectors of this family must therefore include both (1, 0) and (0, 1).
But then, this family must also generate vectors in which both components are
non-zero and which therefore do not belong to L. This contradicts our supposition
and proves that the inclusion in the statement of the lemma is strict.

The previous lemma also gives an example of a Z-semilinear set which cannot
be generated by uniform family of Z-VAS systems, which implies the following
result.

Corollary 2. Z-VAS∪ ( Z∗SLINN.

It follows from the Theorem 5, Lemmas 7 and 8, as well as from the charac-
terisations from the previous section, that the languages recognised by Z-VAPS
with normal dissolution and conventional halting are situated strictly in between
N-linear sets of Z-vectors and N-semilinear sets of Z-vectors.

Theorem 6. Z∗LINN ( PsZVAPS(gen, inappl, δ) ( Z∗SLINN.

Finally, we show that allowing dissolution of multiple membranes by one rule
allows generating all Z-semilinear languages and therefore renders such Z-VAPS
equivalent in power to blind register machines.

Theorem 7. PsZVAPS(gen, inappl, δ∗) = Z∗SLINN.

Proof (Sketch). Consider a family F of n Z-VAS, each of which generates a Z-
linear set of vectors. One can construct an integer vector addition P system Π
with multiple dissolution in the following way. Π will have n + 2 membranes
organised in a linear structure. The rules of Π will simulate the i-th Z-VAS in the
membrane at depth i+ 1 (the depth of the skin is 0); moreover, Π will have a rule
producing the start vector wi and introducing n− i copies of δ into the membrane
at depth i + 1, for 1 ≤ i ≤ n. These rule effectively finalise the simulation of the
i-th Z-VAS. Finally, Π will have rules introducing i copies of δ into the innermost
membrane, for 1 ≤ i ≤ n, which will “select” the membrane at depth i + 1 and
will allow it to eventually apply its dissolution rules and put the result into the
skin. Thus, Π generates the semilinear language generated by the family F .

To prove the inverse inclusion, we will rely on Lemma 1. Consider a Z-VAPS
Π with multiple dissolution. We will construct a blind register machine B which
recognises the vector language generated by Π in the following way. B will have
a group of working register per membrane of Π which will represent the mul-
tiplicities of the symbols in this membrane. B will start with the vector x in
its input registers, and will simulate the applications of rules of Π in its working
registers. Whenever Π dissolves a membrane (or multiple membranes), B will non-
deterministically guess the multiplicities of each symbol in the dissolved membrane
and will copy the guessed values into the working registers representing the corre-
sponding parent membrane. When all inner membranes of the output membranes
have been dissolved (B can encode the information about the membrane structure
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in its state), B will simultaneously decrement the working registers representing
the contents of the skin and the input registers. If, earlier during the simulation,
B had guessed the value of a register wrongly, or, at the end of the simulation,
the values of the input registers and the working registers representing the skin
did not match, some registers of B will be zero and the vector x will be rejected.
It follows from the construction that B will accept exactly the vector generated
by Π, which implies the statement of the theorem.

7 Conclusion

In this paper we continued the investigation of P systems with multisets with
integer multiplicities, proposed in [10] and already studied in [3] and [1]. We focused
on the model originally described in [1] and generalised it to integer vector addition
P systems, in which the applicability of rules does not in any way depend on the
contents of the membranes. Interestingly enough, this P system variant exhibits
very strong connection with blind register machines and integer vector addition
systems — two models which have received little to no attention in the scientific
literature up to now.

We studied a number of working modes of and halting conditions for integer
vector addition P systems and gave exact characterisations of the power of the
corresponding variants in terms of linear and semilinear sets over Z and over N. We
also pointed out a number of relations between the classes of languages generated
or accepted by the model.

Some non-trivial open questions are revealed by our research. One of them
concerns the semantics of multiple dissolution. In P systems, dissolution typically
concerns one membrane at a time; in the present paper we suggest considering the
possibility of dissolving multiple containing membranes in one step. The seman-
tics we propose discards the contents of the dissolved intermediary membranes,
so only the multiset of the innermost dissolved membrane is transferred to the
corresponding parent membrane. Other semantics of multiple dissolution may be
possible and are certainly worth exploring.

A very interesting open question concerns the types of semilinear sets. In this
paper we only deal with semilinear sets with generators and initial offsets from Nn
and Zn, restricted to non-negative values or not. It is however possible to consider
the generators, the offsets, and the coefficients to belong to Nn or Zn, alternatively.
This yields 8 possibly different kinds of semilinear sets, not including restrictions
to non-negative values. Exploring the relations between these kinds of semilinear
sets may be useful in further refining certain characterisations.

Finally, we point out that classical halting by inapplicability of rules is not
necessarily well adapted for dealing with generalisations of multisets to integers.
We give examples of different halting conditions inspired by other models of com-
puting, but our list is far from exhaustive and is definitely worth to be extended.
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Summary. We consider (extended) spiking neural P systems with states, where the
applicability of rules in a neuron not only depends on the presence of sufficiently many
spikes (yet in contrast to the standard definition, no regular checking sets are used), but
also on the current state of the neuron. Moreover, a spiking rule not only sends spikes,
but also state information to the connected neurons. We prove that this variant of the
original model of extended spiking neural P systems can simulate register machines with
only two states, even in the basic non-extended variant.

1 Introduction

In the area of P systems, the model of spiking neural P systems was introduced
in [7]. Whereas the basic model of membrane systems, see [11], reflects hierarchical
membrane structures, in spiking neural P systems the cells are arranged in a tissue-
like manner, with the contents of a cell (neuron) consisting of a number of so-called
spikes, i.e., of a multiset over a single object. The rules assigned to a neuron allow
us to send information to other neurons in the form of electrical impulses (also
called spikes) which are summed up at the target neuron; the application of the
rules depends on the contents of the neuron and in the general case is described
by regular sets. As inspired from biology, the neuron sending out spikes may be
“closed” for a specific time period corresponding to the refraction period of a
neuron; during this refraction period, the neuron is closed for new input and cannot
get excited (“fire”) for spiking again.

The length of the axon may also cause a time delay before a spike arrives at
the target. Moreover, the spikes coming along different axons may cause effects
of different magnitude. All these biologically motivated features were included
in the model of extended spiking neural P systems considered in [3], the most
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important theoretical feature being that neurons can send spikes along the axons
with different magnitudes at different moments of time.

In this paper, we consider a variant of the model of extended spiking neural P
systems which not only uses spikes to be sent to other neurons when some neuron
spikes, but also allows for sending some additional information called “state” along
the axons. All these state informations arriving in a neuron then determine the
next state of the neuron. On the other hand, we do not use the regular checking
sets for the current number of spikes in the neuron any more, which decreases
the amount of information a spiking rule may use. Hence, the spiking rules now
depend on the current states of the neurons and the availability of sufficiently
many spikes. This variant of extended spiking neural P systems with states has
been inspired by the variant of spiking neural P systems with polarizations, see [16],
where the states are called polarizations, and the underlying model of extended
spiking neural P systems was the basic one with a fixed connection structure, only
extended by allowing more than one spike to be sent along the axons. There it
was shown that computational completeness (i.e., simulation of register machines)
can be obtained with only three polarizations. In this paper we now show that
computational completeness can already be obtained with only two states, i.e., with
two polarizations, even for the basic non-extended variant as considered in [16],
which solves an open problem raised at the Brainstorming Week on Membrane
Computing in Sevilla at the beginning of February 2016.

The rest of the paper is organized as follows: In the next section, we recall
some preliminary notions and definitions from formal language theory, especially
the definition and some well-known results for register machines. In Section 3
we recall the definitions of the extended model of spiking neural P systems as
considered in [3] and then define the model of spiking neural P systems with states
as considered in this paper. In Section 4, we prove our main result and show that
spiking neural P systems with only two states (0 and 1) can simulate register
machines; the complexity of the construction depends on the features we require
the spiking neural P systems to have, but the result even holds true for the basic
non-extended variant of spiking neural P systems with states, where the connection
structure between the neurons is fixed and does not depend on the spiking rules
applied in the neurons. Moreover, we can use a very simple global state composition
function computing the new state of a neuron from the state information having
arrived from the input neurons in the simplest way by going to the “activated state
1” if and only if at least one such activating signal 1 has come in the previous step.
In Section 5, we show how small universal spiking neural P systems with states
can be constructed based on the results obtained in this paper. A short summary
of the results we obtained concludes the paper.

2 Preliminaries

In this section we recall the basic elements of formal language theory and especially
the definitions and results for register machines; we also refer to the corresponding
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section from [3] and [2]. For the basic elements of formal language theory needed
in the following, we refer to any monograph in this area, in particular, to [14]. We
just list a few notions and notations:

V ∗ is the free monoid generated by the alphabet V under the operation of
concatenation and the empty string, denoted by λ, as unit element; for any w ∈ V ∗,
|w| denotes the number of symbols in w (the length of w). N+ denotes the set of
positive integers (natural numbers), N is the set of non-negative integers, i.e.,
N = N+ ∪ {0}.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems are often based on the simulation of register machines; we refer to [9]
for original definitions, and to [6] for the definitions we use in this paper:

An n-register machine is a tuple M = (n,B, l0, lh, P ), where n is the number
of registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• p : (ADD(r), q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ j ≤ n.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction q or s. This instruction is usually called increment.

• p : (SUB(r), q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ j ≤ n.
If the value of register r is zero then jump to instruction s; otherwise, the value
of register r is decreased by one, followed by a jump to instruction q. The two
cases of this instruction are usually called zero-test and decrement, respectively.

– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(s1, · · · , sβ) of natural numbers if, starting with the instruction with label l0 and
all registers containing the number 0, the machine stops (it reaches the instruction
lh : halt) with the first β registers containing the numbers s1, · · · , sβ (and all other
registers being empty).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate or accept exactly
the sets of vectors of non-negative integers which can be generated by Turing
machines.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [10] and [12]; comprehensive information can be found on the P systems
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web page [15]. Moreover, for the motivation and the biological background of
spiking neural P systems we refer the reader to [7] as well as to the corresponding
Chapter 13 in the Handbook of Membrane Computing [12]. For the definition of
an extended spiking neural P system we refer to [3].

We now extend the model of extended spiking neural P systems to the new
model of extended spiking neural P systems with states, i.e., the neurons can be in
different states, and depending on the current state of a neuron, different spiking
rules may be applicable.

Definition 1. An extended spiking neural P system with states (of degree m ≥ 1)
(an ESNPS system for short) is a construct Π = (N,S, I,R, f) where

• N is the set of cells (or neurons); the neurons may be uniquely identified by a
number between 1 and m or by an alphabet of m symbols;

• S is the set of states;
• I describes the initial configuration by assigning an initial value (of spikes) and

an initial state to each neuron; for the sake of simplicity, we assume that at
the beginning of a computation we have no pending packages along the axons
between the neurons;

• R is a finite set of rules of the form
(
i, si : E/ak → P ; d

)
such that i ∈

{1, · · · ,m} (specifying that this rule is assigned to neuron i), si ∈ S is the
current state of neuron i, E ⊆ REG ({a}) is the checking set (the current
number of spikes in the neuron has to be from E if this rule shall be executed),
k ∈ N is the “number of spikes” (the energy) consumed by this rule, d is the
delay (the “refraction time” when neuron i performs this rule), and P is a (pos-
sibly empty) set of productions of the form (l, w, s, t) where l ∈ [1..m] (thus
specifying the target neuron), w ∈ {a}∗ is the weight of the energy sent along
the axon from neuron i to neuron l, s ∈ S is the state sent along the axon from
neuron i to neuron l, and t is the time needed before the information sent from
neuron i arrives at neuron l (i.e., the delay along the axon);

• f is the state composition function, which for each neuron allows for computing
the new state of a neuron from its current state and the state signals having
arrived in the neuron in the previous step.

Definition 2. A configuration of the ESNPS system is described as follows:

• for each neuron, the actual number of spikes in the neuron is specified;
• in each neuron i, we may find an “activated rule”

(
i, si, E/a

k → P ; d′
)

waiting
to be executed where d′ is the remaining time until the neuron spikes;

• in each axon to a neuron l, we may find pending packages of the form (l, w, s, t′)
where t′ is the remaining time until |w| spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

• for each neuron i, we first check whether we find an “activated rule”(
i, si, E/a

k → P ; d′
)

waiting to be executed; if d′ = 0, then neuron i “spikes”,
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i.e., for every production (l, w, s, t) occurring in the set P we put the corre-
sponding package (l, w, s, t) on the axon from neuron i to neuron l, and after
that, we eliminate this “activated rule”

(
i, si, E/a

k → P ; 0
)
;

• for each neuron l, we now consider all packages (l, w, t′) on axons leading to
neuron l; provided the neuron is not closed, i.e., if it does not carry an activated
rule

(
i, si, E/a

k → P ; d′
)

with d′ > 0, we then sum up all weights w in such
packages where t′ = 0 and add this sum of spikes to the corresponding number
of spikes in neuron l as well as remember the corresponding state signals s for
eventually computing the next state of the neuron; in any case, the packages
with t′ = 0 are eliminated from the axons, whereas for all packages with t′ > 0,
we decrement t′ by one;

• for each neuron i, we now again check whether we find an “activated rule”(
i, si, E/a

k → P ; d′
)

(with d′ > 0) or not; if we have not found an “activated
rule”, we now compute the new state of the neuron by using the state com-
position function for the underlying neuron i. Then we may apply any rule(
i, si, E/a

k → P ; d
)

from R for which neuron i is in state si and the cur-
rent number of spikes in the neuron is in E, and then put a copy of this
rule as “activated rule” for this neuron into the description of the current
configuration; on the other hand, if there still has been an “activated rule”(
i, si, E/a

k → P ; d′
)

in the neuron with d′ > 0, then we replace d′ by d′ − 1

and keep
(
i, si, E/a

k → P ; d′ − 1
)

as the “activated rule” in neuron i in the
description of the configuration for the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence
of configurations starting with the initial configuration given by I. A computation
is called successful if it halts, i.e., if no pending package can be found along any
axon, no neuron contains an activated rule, for no neuron, a rule can be activated,
and no neuron would change its state in the next step (thus making other spiking
rules applicable).

In the original model introduced in [7], we have only one state, so we can omit
the states in the description of spiking rules in this paragraph. In the productions
(l, w, t) of a rule

(
i, E/ak → {(j, wj , tj) | j ∈ J} ; d

)
, only w = a (for spiking rules)

or w = λ (for forgetting rules) as well as t = 0 was allowed (and for forgetting
rules, the checking set E had to be finite and disjoint from all other sets E in
rules assigned to neuron i). Moreover, reflexive axons, i.e., leading from neuron
i to neuron i, were not allowed, hence, for (l, w, t) being a production in a rule(
i, E/ak → P ; d

)
for neuron i, l 6= i was required. Yet the most important extension

was that different rules for neuron i may affect different axons leaving from it
whereas in the original model the structure of the axons (called synapses there)
was fixed. In [3], the sequence of substeps leading from one configuration to the next
one together with the interpretation of the rules from R was taken in such a way
that the original model can be interpreted in a consistent way within the extended
model introduced in that paper. As mentioned in [3], from a mathematical point
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of view, another interpretation would have been even more suitable: whenever
a rule

(
i, E/ak → P ; d

)
is activated, the packages induced by the productions

(l, w, t) in the set P of a rule
(
i, E/ak → P ; d

)
activated in a computation step are

immediately put on the axon from neuron i to neuron l, whereas the delay d only
indicates the refraction time for neuron i itself, i.e., the time period this neuron
will be closed. The delay t in productions (l, w, t) can be used to replace the delay
in the neurons themselves in many of the constructions elaborated, for example,
in [7], [13], and [4]. Yet as in (the proofs of computational completeness given in)
[3], we shall not need any of the delay features in this paper, hence we need not go
into the details of these variants of interpreting the delays in more details. Finally,
we mention that as in [5], the notion of extended spiking neural P systems often
is used only taking into account that more than one spike can be sent along all
axons with one spiking rule.

Depending on the purpose the ESNP(S) system is to be used, some more
features have to be specified: for generating k-dimensional vectors of non-negative
integers, we have to designate k neurons as output neurons; the other neurons then
will also be called actor neurons. As in [3], also in this paper, we take the number
of spikes at the end of a successful computation in the neuron as the output value.

Definition 3. Obviously, extending an already very powerful model with an addi-
tional feature (states) yields a model which is at least as powerful, even with respect
to descriptional complexity. Hence, besides completely omitting delays, as in [16]
we also omit the checking sets (in fact, this means taking all checking sets to be
{a}+). Thus, for a spiking rule

(
i, si : E/ak → P ; d

)
we write i :

(
si, a

k
)
→ P .

Moreover, the set P will not be written as a set, but just by concatenating its el-
ements of the form (l, w, s), where l is the target neuron, w describes the number
of spikes sent to l and s is the state signal sent to l.

The following example illustrates the computational power of ESNPS systems
with two states by showing how exponential number languages can be generated.

Example 1. We will construct the ESNPS system

Π4n = ({σ1, σ′1, σ2, σ′2 }, {0, 1}, I, R, f)

generating the multiset language
{
a4

n | n > 1
}

in the output neuron σ1. Initially,
σ1 and σ′1 are in state 1 and contain one and two spikes, respectively. On the other
hand, neurons σ2 and σ′2 initially are in state 0 and are empty.

The state composition function f , for every neuron, is given as follows: If any
state signal 1 has arrived in the previous step, the state of the neuron is 1, and 0
otherwise.

To illustrate the rules in the ESNPS system, we use the following graphical
notation: Each rule is represented by an arrow with a single tail but with multiple
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heads; the branching point is highlighted by a black bullet. The left-hand side of
the rule is written on the segment preceding the bullet and each right-hand side
on the corresponding arrow head. When writing the right-hand sides, we omit the
names of the target neurons (because they are pointed at by the arrow heads).

Π4n works in a two-phase cycle. In the first phase, all the spikes from σ1 are
transferred in two copies into σ2; this phase is controlled by σ′1. The second phase
is symmetric: the spikes from σ2 are doubled and moved into σ1, under the control
of σ′2.

The first phase is governed by the following rules in neurons σ1 and σ′1:

σ1 : (1, a) →
(
σ2, a

2, 0
)

(σ′1, a, 1) ,

σ′1 : (1, a) → (σ1, λ, 1) ,
σ′1 : (0, a) → (σ2, λ, 1)

(
σ′2, a

2, 1
)
.

The graphical representation of these rules is given in Figure 1.

σ1

σ′1

σ2

σ′2

(1, a)
(a

2 , 0)

(a, 1)
(1, a)

(λ, 1)

(0, a)

(λ, 1)

(a 2
, 1)

Fig. 1. Multiplication by 2 in ESNPS with two states.

The loop between σ1 and σ′1 ensures that, while there are still spikes in σ1, both
neurons stay in state 1. When there are no more spikes in σ1, σ′1 must pass into
state 0 and will have to use its last spike (of the two it normally contains) to apply
the rule (0, a) → (σ2, λ, 1)

(
σ′2, a

2, 1
)
. This rule puts two spikes into the control

neuron σ′2 and switches both neurons σ2 and σ′2 to state 1, thereby starting the
second phase of the cycle. The second phase is totally symmetric and is governed
by the following rules in neurons σ2 and σ′2:

σ2 : (1, a)→
(
σ1, a

2, 0
)

(σ′2, a, 1) ,

σ′2 : (1, a)→ (σ2, λ, 1) ,
σ′2 : (0, a)→ (σ1, λ, 1)

(
σ′1, a

2, 1
)
.

Finally, to ensure that the system halts after the second phase of the cycle, we
add the following rule to the control neuron σ′2:

σ′2 : (0, a)→ (σ1, λ, 0) .
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Thus, σ′2 may choose between restarting the loop by switching the state of σ1 and
σ′1, or just forgetting the last control spike, thus effectively bringing the system to
a halt, with 4n copies of a in σ1, where n is the number of times the cycle has run.

4 Simulating Register Machines with Extended Spiking
Neural P Systems with only Two States

We now consider an arbitrary n-register machine M = (n,B, l0, lh, P ) and provide
a first simple proof how to simulate the computations of such a register machine
by an extended spiking neural P system with only two states:

For all neurons, we use one global state composition function, as in the example,
i.e., if any state signal 1 has arrived in the previous step, the state of the neuron
is 1, and 0 otherwise.

p : (ADD(r), q, s) is simulated by neuron p with the rules

p: (0, a)→ (q, a, 0)(r, a, 0) and
p: (0, a)→ (s, a, 0)(r, a, 0).

meaning that neuron p (always staying in state 0) consumes one spike and sends
one spike and state 0 to neuron q or neuron s and to neuron r (the neuron repre-
senting register r). Figure 2 illustrates these rules graphically.

p r

q

s

(0
, a

)

(a, 0)

(a, 0)

(0, a)

(a, 0)

(a, 0)

Fig. 2. Simulation of ADD relying on a flexible connection structure and on sending
zero spikes.

The rule in register r allowing for simulating SUB-instructions is:
r: (1, a)→

∏
l∈SUB(r) (l′′, λ, 1)

In case the register is non-empty, in the activated state 1 one spike is eliminated
and state 1 is sent to every neuron l′′ for every label l of a SUB-instruction, yet
no spike a is sent.

p : (SUB(r), q, s) is simulated by neurons p, p′, p′′ with the rules

p: (0, a)→ (p′, a, 1) (r, λ, 1),
p′: (1, a)→ (p′′, a, 0), as well as
p′′: (0, a)→ (s, a, 0) and



Extended SNP Systems with States 51

p′′: (1, a)→ (q, a, 0).

The rules are illustrated in Figure 3. The dashed arrow represents the family of
right-hand sides broadcasting spikes from neuron r to neurons l′′, l ∈ SUB(r).

p p′

r

p′′

q

s

(0, a)

(a, 1)

(λ, 1)

(1, a)

(a, 0)

(0, a)

(a,
0)

(1, a)

(a, 0)

(1, a) (λ, 1)

Fig. 3. Simulation of SUB relying on a flexible connection structure and on sending zero
spikes.

The simple construction described above obeys to the following features:

• We only need two states!
• We do not use self-loops.
• We send the same state to all neurons in each rule!
• Exactly one spike is consumed by each rule!
• Wo do not use forgetting rules!
• But on the other hand, we allow to also send zero spikes to a neuron!
• The connection structure only depends on the state in case of deterministic

register machines! Yet by using a more complicated construction for the simu-
lation of non-deterministic ADD-instructions we can even obtain that feature
in general:
p : (ADD(r), q, s) is simulated by neurons p, p′, p′′ with the rules

p: (0, a)→ (p′, a, 0) (r, a, 0),
p′: (0, a)→ (p′′, a, 0) and
p′: (0, a)→ (p′′, a, 1), as well as
p′′: (0, a)→ (q, a, 0) and
p′′: (1, a)→ (s, a, 0).
See Figure 4 for a graphical illustration of these rules.

For comparison with the model considered in [16] (where states are called
polarizations) we have to ask the following question: Can we have a completely
static connection structure even not depending on the state of the neuron?

We first show that a non-deterministic ADD-instruction can be simulated
within a fixed connection structure, now using forgetting rules, yet also using
the initial neuron p in the activated state 1:

p : (ADD(r), q, s) is simulated by neurons p, p′ with the rules

p: (1, a)→ (p′, a, 0) (r, a, 0),



52 A. Alhazov, R. Freund, and S. Ivanov

p p′

r

p′′

q

s

(0, a)

(a, 0)

(a, 0)

(0, a
) (a, 0)

(0, a) (a, 1
)

(0, a)

(a,
0)

(1, a)

(a, 0)

Fig. 4. Simulation of ADD using a connection structure which only depends on states.

p′: (0, a)→
(
0′′q , a, 0

)
(1′′s , a, 0) and

p′: (0, a)→
(
0′′q , a, 1

)
(1′′s , a, 1),

together with the following rules in the neurons 0′′l , 1
′′
l , for every label l ∈ B:

0′′l : (0, a)→ (l, a, 1) and
0′′l : (1, a)→ λ,

1′′l : (1, a)→ (l, a, 1) and
1′′l : (0, a)→ λ.

Figure 5 gives a graphical illustration of these rules. Forgetting rules which
only consume spikes without sending anything anywhere are depicted as dangling
arrows.

p p′

r

0′′q

1′′s

q

s

(1, a)

(a, 0)

(a, 0)

(0
, a

)
(a, 0)

(a, 0)(0, a)
(a, 1)

(a, 1)

(0, a)
(a, 1)

(1, a)

(a, 1)

(1
, a

)

(0, a)

Fig. 5. Simulation of ADD using a fixed connection structure.

Instead of showing how SUB-instructions can also be simulated within a fixed
connection structure, we also attack the last remaining non-standard feature at
the same time, i.e.: Can we avoid sending zero spikes?

p : (SUB(r), q, s) is simulated by the neurons p, p̃, p̃′, p̂, p̂′, p̂′′, p̄, p̄′ with the rules

p: (1, a)→ (p̃, a, 1) (p̂, a, 1) (r, a, 1),
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p̃: (1, a)→ (p̃′, a, 0),

p̃′:
(
1, a2

)
→ (q, a, 1)

∏
l∈SUB(r)\{p}

(
l̂′′, a, 1

)
,

p̃′: (0, a)→ λ as well as

p̂: (1, a)→ (p̂′, a, 1),
p̂′: (1, a)→ (p̂′′, a, 0),
p̂′′: (0, a)→ (r, a, 1) (p̄, a, 1),
p̂′′:

(
1, a2

)
→ λ,

p̄: (1, a)→ (p̄′, a, 1), and

p̄′: (1, a)→ (s, a, 1)
∏
l∈SUB(r)

(
l̂′′, a, 1

)
together with the following rules for the register neuron r and for the additional
neuron r′:

r:
(
1, a2

)
→ (r′, a, 1)

∏
l∈SUB(r)

(
l̃′, a, 1

)
and

r′: (1, a)→
∏
l∈SUB(r)

(
l̂′′, a, 1

)
.

The rules are graphically illustrated in Figure 6. As before, dangling arrows
represent rules sending nothing, while dashed arrows correspond to families of
right-hand sides. For readability, we highlight neurons p, q, and s, which repre-
sent the states of the simulated machine. The dotted line going into neuron p̂′′

represents the family of right-hand sides which broadcast spikes and states to all
neurons l̂′′, except neuron p̂′′ (l ∈ SUB(r) \ {p}). Finally, to avoid line intersec-
tions, the picture uses a “clone” of neuron r (the small grey r between p̂′′ and p̄),
which represents the same neuron r.

The main idea of this construction is to start both decrement and zero-check
case in parallel and then, depending on the signal from r and r′ take the necessary
action, including to reset register r to the 0 if the additional spike sent there did
not lead to a spiking action of neuron r in case the value stored in the register was
zero. Moreover, all actor neurons affected by signals from neuron r not belonging to
the current label p have to be reset without allowing them to act in a non-desired
way:

For the neurons p̃′ this happens automatically as with only one spike a they
cannot spike in state 1, yet after one step the state goes back to 0 and then allows
the spike to be forgotten.

For the neurons p̂′′ this happens if the state signal 1 and the spike from neuron
r′ are accompanied by a second spike which allows for resetting the neuron by
using the forgetting rule

(
1, a2

)
→ λ.

5 Universal (Extended) Spiking Neural P Systems with
Two States

We simulate the strongly universal register machine U22 of Korec, see [8]. Rather
than performing a direct simulation which would yield 9× 1 + 8× 1 + 13× 4 = 69
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p r

p̃

p̂

r′

p̃′

p̂′

q

p̂′′ p̄ p̄′ s

(1, a)

(a, 1)

(a, 1)

(a, 1)

(1, a)

(a, 0)

(1, a2)

(a, 1)

(a, 1)

(0
, a

)

(1, a)

(a, 0)

(0, a)

(a, 0)

(0, a)

(a, 1)

r

(a, 1)

(1, a 2
)

(1, a)

(a, 1)

(1, a)

(a, 1)

(a, 1)(1, a2)

(a, 1)

(a, 1)

(1, a)

(a, 1)

Fig. 6. Simulating SUB using a fixed connection structure and without sending zero
spikes.

rules, we notice that simulation of ADD-instructions does not require separate
rules, because it can be done as a part of the simulation of SUB-instructions. More
exactly, increments are built into the transitions to q and s of p : (SUB(r), q, s).
This has been formalized as generalized register machine (GRM for short), see [1].
The rules of U22 in the GRM form are given below.

q1 : (SUB(1), ADD(7)q1, ADD(6)q4) ,
q4 : (SUB(5), ADD(6)q4, q7) ,
q7 : (SUB(6), ADD(5)q10, q4) ,
q10 : (SUB(7), ADD(1)q7, q13) ,
q13 : (SUB(6), ADD(6)q14, q1) ,
q14 : (SUB(4), q1, q16) ,
q16 : (SUB(5), q18, q23) ,
q18 : (SUB(5), q20, q27) ,
q20 : (SUB(5), ADD(4)q16, ADD(2)ADD(3)q32) ,
q23 : (SUB(2), q32, q25) ,
q25 : (SUB(0), q1, q32) ,
q27 : (SUB(3), q32, ADD(0)q1) ,
q32 : (SUB(4), q1, qh) .

We note that also the first step of the simulation of a generalized SUB-
instruction can be embedded into the last step of the preceding simulation. More-
over, note that in this case we may start with one spike in neuron q′′13. It is easy
to see that it suffices to have 3 rules per each of the 13 generalized conditional
decrement instructions and 1 rule per each of the 8 registers, yielding a total
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of only 47 rules, associated to register neurons, primed instruction neurons and
double-primed instruction neurons.

Register neurons

0 : (1, a)→ (q′′25, λ, 1) ,
1 : (1, a)→ (q′′1 , λ, 1) ,
2 : (1, a)→ (q′′23, λ, 1) ,
3 : (1, a)→ (q′′27, λ, 1) ,
4 : (1, a)→ (q′′14, λ, 1) (q′′32, λ, 1) ,
5 : (1, a)→ (q′′4 , λ, 1) (q′′16, λ, 1) (q′′18, λ, 1) (q′′20, λ, 1) ,
6 : (1, a)→ (q′′7 , λ, 1) (q′′13, λ, 1) ,
7 : (1, a)→ (q′′10, λ, 1) .

The primed instruction neurons have the rules

q′i : (1, a)→ (q′′i , a, 0) for i ∈ {1, 4, 7, 10, 13, 14, 16, 18, 20, 23, 25, 27, 32}.

We give the rules of double-primed instruction neurons in the table below,
the row representing the neuron, the column representing the left side of a rule,
and their intersection containing the right side of that rule.

(0, a) (1, a)
q′′1 (q′4, a, 1) (5, λ, 1)(6, a, 0) (q′1, a, 1) (1, λ, 1)(7, a, 0),
q′′4 (q′7, a, 1) (6, λ, 1) (q′4, a, 1) (5, λ, 1)(6, a, 0),
q′′7 (q′4, a, 1) (5, λ, 1) (q′10, a, 1) (7, λ, 1)(5, a, 0),
q′′10 (q′13, a, 1) (6, λ, 1) (q′7, a, 1) (6, λ, 1)(1, a, 0),
q′′13 (q′1, a, 1) (1, λ, 1) (q′14, a, 1) (4, λ, 1)(6, a, 0),
q′′14 (q′16, a, 1) (5, λ, 1) (q′1, a, 1) (1, λ, 1),
q′′16 (q′23, a, 1) (2, λ, 1) (q′18, a, 1) (5, λ, 1),
q′′18 (q′27, a, 1) (3, λ, 1) (q′20, a, 1) (5, λ, 1),
q′′20 (q′32, a, 1) (4, λ, 1)(2, a, 0)(3, a, 0) (q′16, a, 1) (5, λ, 1)(4, a, 0),
q′′23 (q′25, a, 1) (0, λ, 1) (q′32, a, 1) (4, λ, 1),
q′′25 (q′32, a, 1) (4, λ, 1) (q′1, a, 1) (1, λ, 1),
q′′27 (q′1, a, 1) (1, λ, 1)(0, a, 0) (q′32, a, 1) (4, λ, 1),
q′′32 (qh, a, 0) (q′1, a, 1) (1, λ, 1).

This construction uses a total of 8 + 2 × 13 + 1 = 35 neurons. The halting
neuron qh can be avoided, e.g., by changing the right side of the rule with q′′32 :
(0, a) to, e.g., (4, λ, 1). Indeed, the register machine halts with register 4 being
empty, so the P system will halt after neuron 4 has reset its state to 0. We also
remark that this construction does not respect the requirement of all states on
the right side being equal. This requirement can be fulfilled by replacing (r, a, 0)
by (r′, a, 1) for r ∈ {0, 1, 4, 5, 6, 7} and (2, a, 0)(3, a, 0) by (〈2, 3〉′, a, 1) in the right
sides of the rules above, and adding 7 additional neurons, each having one rule:
r′ : (1, a) → (r, a, 0) for r ∈ {0, 1, 4, 5, 6, 7} and the neuron 〈2, 3〉 with the rule
〈2, 3〉′ : (1, a)→ (2, a, 0)(3, a, 0), yielding a total of 54 rules.
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If we consider the most restricted variant of spiking neural P systems with
states elaborated at the end of Section 4, which is comparable with the model con-
sidered in [16] using the notion of polarizations instead of the notion states, when
again embedding the first step of the simulation of a generalized SUB-instruction
into the last step of the preceding simulation, a straight-forward calculation yields
two neurons and two rules per register as well as 7 neurons and 9 rules per gener-
alized conditional decrement instruction, which yields a total of 16 + 7×13 = 107
neurons as well as 16 + 9× 13 = 133 rules.

It only remains to argue the correctness of the construction. As before, embed-
ded ADD-instructions translate exactly into sending additional spikes to register
neurons by existing rules simulating the SUB-instructions. Hence, we only explain
the latter, i.e., the decrement case and the zero-test case.

Suppose we simulate a rule p : (SUB(r), q, s), and the next instruction performs
the SUB (rq) or the SUB (rs) command, respectively. The configuration of the P
system consists of the description of (the state of and the number of spikes in)
each of its neurons. Clearly, the neurons in state 0 and without spikes present no
interest; we also omit the register neurons different from r. By l we denote any
element of SUBr other than r.

Furthermore, we underline the spikes which are to be removed from the firing
neuron, and we will highlight in bold the neurons which are idle and whose state
switches from 1 to 0.

Step p p̃ p̃′ p̂ p̂′ p̂′′ r r′ l̃′ l̂′′

1 (1, a) (0, anr )

2 (1, a) (1, a) (1, anr−1+2)
3 (1, a2) (1, a) (0, anr−1) (1, a) (1,a)

4 (1, a2) (0, anr−1) (0, a) (1, a2)
5 (0, anr−1)

Fig. 7. The trace of the decrement case.

The trace of the decrement case is presented in Figure 7. What is not reflected
on this figure is that line 4 of the trace of instruction p is superposed with line 2
of instruction q. However, since the neurons are disjoint, no interference happens.
Indeed, the last step of simulation of instruction p removes the spikes from neurons
p̂′′, l̂′′, and l̃′, while the simulation of instruction q acts upon neurons q̃, q̂ and rq.
We observe that (if p 6= q) a spike is removed from q̃′ simultaneously with a spike
being sent to q̃′, which of course causes no interference, since the spikes do not
meet. As mentioned before, the first step is omitted (by embedding it into the
initial configuration and into every preceding step), so the simulation starts at line
2, taking just 2 steps to produce line 2 for the next instruction, and one more step
to remove the superfluous spikes.



Extended SNP Systems with States 57

Step p p̃ p̃′ p̂ p̂′ p̂′′ p̄ p̄′ r r′ l̃′ l̂′′

1 (1, a)

2 (1, a) (1, a) (1,a)
3 (1,a) (1, a) (0, a)
4 (0, a) (0, a) (0, a)
5 (1, a) (1, a2)
6 (1,a) (1, a) (1, a) (1,a)

7 (0, a) (1, a2) (0, a) (1, a2)
8

Fig. 8. The trace of the zero-test case.

The trace of the zero-test case is presented in Figure 8. Similarly to the decre-
ment case, it does not reflect that line 7 of the trace of instruction p is superposed
with line 2 of instruction s. Hence, the arguments about the correctness of the
decrement case also hold for the zero-test case, with the following differences. The
last step of simulation of instruction p also removes two spikes from neuron p̃′.
As mentioned before, the first step is omitted, so the simulation starts at line 2,
taking 5 steps to produce line 2 for the next instruction, and one more step to
remove the superfluous spikes. This completes the explanation of the correctness.

It is easy to see that forgetting rules may be replaced by sending a spike to one
additional dummy neuron.

6 Conclusion

We have shown that only two states (or polarizations as they are called in [16]) are
needed for obtaining computational completeness with (extended) spiking neural
P systems with states, thus solving an open problem raised at the Brainstorming
Week on Membrane Computing in Sevilla at the beginning of February 2016.
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Summary. We consider P systems only allowing rules to be used in at most one copy
in each derivation step, especially the variant of the maximally parallel derivation mode
where each rule may only be used at most once. Moreover, we also consider the derivation
mode where from those sets of rules only those are taken which have the maximal number
of rules. We check the computational completeness proofs of several variants of P systems
and show that some of them even literally still hold true for the for these two new set
derivation modes. Moreover, we establish two new results for P systems using target
selection for the rules to be chosen together with these two new set derivation modes.

1 Introduction

Membrane systems with symbol objects are a theoretical framework of parallel
distributed multiset processing. Usually, multisets of rules are applied in parallel
to the objects in the underlying configuration; for example, in the maximally
parallel derivation mode (abbreviated max), a non-extendable multiset of rules is
applied to the current configuration. In this paper we now consider variants of these
derivation modes, where each rule is only used in at most one copy, i.e., we consider
sets of rules to be applied in parallel, for example, in the set-maximally parallel
derivation mode (abbreviated smax) we apply non-extendable sets of rules, and in
another derivation mode we apply sets of rules which contain a maximal number
of applicable rules (abbreviated maxrule).
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Taking sets of rules instead of multisets is a quite natural restriction and it
arises from different motivations, e.g., firing a maximal set of transitions in Petri
Nets [5, 8] or optimizing an implementation of FPGA simulators [13]. A natural
question arises concerning the power of set-based modes in contrast to multiset-
based ones. The first attempt to go into this direction was done in [10] where it
was shown that in some cases the computational completeness results established
for the max-mode also hold for the smax -mode.

In this paper we continue this line of research and we show that for several
variants of P systems the proofs for computational completeness for max can be
taken over even literally for smax and eventually even for maxrule, but on the
other hand there are also variants of P systems where the derivation modes smax
and maxrule yield even stronger results than the max-mode.

2 Variants of P Systems

In this section we recall the well-known definitions of several variants of P systems
as well as some variants of derivation modes and also introduce the variants of set
derivation modes considered in the following.

A (cell-like) P system is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, fO, fI) where

• O is the alphabet of objects,
• C ⊂ O is the set of catalysts,
• µ is the membrane structure (with m membranes),
• w1, . . . , wm are multisets of objects present in the m regions of µ at the begin-

ning of a computation,
• R1, . . . , Rm are finite sets of rules, associated with the regions of µ,
• fO is the label of the membrane region from which the outputs are taken (in

the generative case)
• fI is the label of the membrane region where the inputs are put at the beginning

of a computation (in the accepting case).

fO = 0/fI = 0 indicates that the output/input is taken from the environment.
If a rule u → v has at least two objects in u, then it is called cooperative,

otherwise it is called non-cooperative. Catalytic rules are of the form ca → cv,
where c ∈ C is a special object which never evolves and never passes through a
membrane, it just assists object a to evolve to the multiset v.

In catalytic P systems we use non-cooperative as well as catalytic rules. In a
purely catalytic P system we only allow catalytic rules.

In the maximally parallel derivation mode (abbreviated by max), in any com-
putation step of Π we choose a multiset of rules from R, defined as the union
of the sets R1, . . . , Rm, in such a way that no further rule can be added to it so
that the obtained multiset would still be applicable to the existing objects in the
regions 1, . . . ,m.
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2.1 Set Derivation Modes

The basic set derivation mode is defined as the derivation mode where in each
derivation step at must one copy of each rule may be applied in parallel with the
other rules; this variant of a basic derivation mode corresponds to the asynchronous
mode with the restriction that only those multisets of rules are applicable which
contain at most one copy of each rule, i.e., we consider sets of rules:

Appl(Π,C, set) ={R ∈ Appl(Π,C, asyn) | |R|r ≤ 1 for each r ∈ R}

In the set-maximally parallel derivation mode (this derivation mode is abbrevi-
ated by smax for short), in any computation step of Π we choose a non-extendable
multiset R of rules from Appl(Π,C, set); following the notations elaborated in [7],
we define the mode smax as follows:

Appl(Π,C, smax) ={R ∈ Appl(Π,C, set) | there is no R′ ∈ Appl(Π,C, set)
such that R′ ⊃ R}

The smax-derivation mode corresponds to the min1-mode with the discrete par-
titioning of rules (each rule forms its own partition), see [7].

The derivation mode maxrulesmax is a special variant where only a maximal
set of rules is allowed to be applied. But it can also seen as the variant of the basic
set mode where we just take a set of applicable rules with the maximal number of
rules in in it, hence, we will also call it the maxrule derivation mode. Formally we
have:

Appl(Π,C,maxrule) ={R ∈ Appl(Π,C, set) | there is no R′ ∈ Appl(Π,C, set)
such that |R′| > |R|}

As usual, with all these variants of derivation modes as defined above, we
consider halting computations. We may generate or accept or even computing
functions or relations. The inputs/outputs may be multisets or strings, defined in
the well-known way.

2.2 The History of the smax-Derivation Mode

In [13], a paper on fast P systems simulators using FPGA, the problem of the
unbounded max-mode was considered as too difficult to be parallelized on this
hardware. In the quest for an efficient solution, the authors proposed to restrict to
the case of the maximal parallelism where each rule can be applied at most once.
The most important advantage of this variant was that the multiset of applicable
rules could be represented as a binary string, i.e., an encoding as a number. More-
over, the paper showed that in many interesting cases it is possible to represent
the language of corresponding binary strings at each step by an automaton. Then
the problem of the simulation of a P system could be solved as follows:
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• Find the size S of the set of multisets of applicable rules (the size of the language
of binary strings).

• Take a random number k ∈ {1..S} and chose the string representing k.

This algorithm allowed for obtain a speed-up of magnitude 105.

The advantages of the set-maximally parallel derivation mode over the un-
bounded maximally parallel derivation mode are:

• A compact representation of the applicable multisets of rules as binary
strings/numbers is obtained.

• Most of the computational completeness results still hold.
• Simpler analysis of the behavior is possible.
• Only a bounded number of (multi)sets of rules has to be computed for each

derivation step.

In [10], the set-maximally parallel derivation mode was called flat maximal
parallel derivation mode, and, for example, P systems with promoters are shown
to be computationally complete using this flat maximal parallel derivation mode
with non-cooperative rules.

2.3 Examples

In the maximally parallel mode, we in addition need target or rule or label agree-
ment to obtain

{
a2

n | n ≥ 0
}

, otherwise only {an | n ≥ 1} can be obtained.

1
environment (0)

2

Initial multiset: a

1 : a→a(here)a(here)

2 : a→a(in)

target/ rule/ label agreement:

the same rule is used for all symbols a

Fig. 1. Example of a P system.
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In the set-maximally parallel mode smax, we in addition need target or rule
or label agreement to obtain {an | n ≥ 1}, otherwise only {a} can be obtained,
because:

• If 2 : a→a(in) is used in the first step, then a is obtained.
• If 1 : a→a(here)a(here) is applied at least once, then from the second step

on it has to be applied infinitely often, as only one copy of a can be sent into
membrane 2 by the second rule 2 : a→a(in).

The same arguments hold for the derivation mode maxrule.

3 Symport/Antiport P Systems

A symport/antiport P system is a construct

Π = (O,E, µ,w0, w1, . . . , wm, R1, . . . , Rm, fO, fI) where

• O is the alphabet of objects,
• E ⊆ O is the set of objects being available in the environment in an unbounded

number,
• µ is the membrane structure (with m membranes),
• w0 is the finite multiset of objects over O \ E present in the environment at

the beginning of a computation,
• w1, . . . , wm are the multisets of objects present in the m regions of µ at the

beginning of a computation,
• R1, . . . , Rm are finite sets of symport and/or antiport rules, associated with

the membranes of µ,
• fO, fI is the label of the membrane region from which the outputs are taken/the

inputs are put in.

Every rule is of the form (u, out; v, in) with u, v ∈ O∗ and uv 6= λ; if u = λ
or v = λ then this rule is called a symport rule, otherwise it is called an antiport
rule. The application of a rule (u, out; v, in) ∈ Ri means sending out u from region
i and taking v into it from the surrounding region.

For (u, out; v, in), max {|u| , |v|} is called its weight and |uv| is called its size;
obviously, for symport rules weight and size are the same.

The families of sets Yγ,δ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc}, and γ ∈
{sequ, asyn,max, smax,maxrule, . . . }, computed by symport/antiport P systems
with at most m membranes, symport rules with maximal weight r as well
as antiport rules with maximal weight w and maximal size s are denoted by
Yγ,δOPm (symr, antiw,s).

3.1 Accepting Antiport P Systems

Theorem 1. For Y ∈ {N,Ps}, β ∈ {max, smax,maxrule},

Yβ,accDOPm (anti2,3) = Y RE.
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Proof. Let M = (m,B, l0, lh, P ) be an arbitrary deterministic register machine.
We now construct an antiport P system simulating M . The number in register r
is represented by the corresponding number of symbol objects or.

• An ADD-instruction p : (ADD(r), q) is simulated by the rule (p, out; orq, in).
• A SUB-instruction p : (SUB(r), q, s) is simulated by the following rules

1. (p, out; p′p′′, in);
2. (p′, out; p̃, in) as well as (p′′or, out; p̄, in) which is executed in parallel if and

only if the register is not empty;
3. (p̃p′′, out; s, in) (if register was empty),

(p̃p̄, out; q, in) (if register was not empty).

As can be seen immediately, in each step only different rules can be applied,
each of them only once. Hence, the proof elaborated for the max-mode literally
also works for the derivation modes smax and maxrule without any restrictions
as well. ut

4 P Systems with Anti-Matter

For any object a (matter), we consider its anti-object (anti-matter) a− and the
corresponding (cooperative) annihilation rule aa− → λ. This rule is assumed to
exist in all membranes.

In the following, we assume these annihilation rules to have (weak) priority over
all other rules, i.e., other rules may only be applied if objects cannot be bound by
an annihilation rule any more.

This type of rules is abbreviated by antim/pri, indicating matter/anti-matter
annihilation rules having weak priority. For further results we refer to [1].

4.1 Matter/Anti-Matter Annihilation Rules Having Priority

The matter/anti-matter annihilation rules are so powerful that we only need the
minimum number of catalysts, i.e., zero (cat(0) = ncoo).

Theorem 2. [1] For any n ≥ 1, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈ {acc, aut},
Z ∈ {Fun,Rel}, and β ∈ {max, smax,maxrule},

Yβ,δOPn (ncoo, antim/pri) = Y RE and
ZYβ,αOPn (ncoo, antim/pri) = ZY RE.

4.2 Deterministic Matter/Anti-Matter Accepting P Systems

In the accepting case, we can even simulate the actions of a deterministic register
machine in a deterministic way, i.e., for each configuration of the system, there
can be at most one multiset of rules applicable to it. Yet the proof exhibited in
[1], even fulfills the condition that every rule is only applied at most once.
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Theorem 3. For any n ≥ 1,Y ∈ {N,Ps}, and β ∈ {max, smax,maxrule},

Yβ,detaccOPn (ncoo, antim/pri) = Y RE and
FunYβ,detaccOPn (ncoo, antim/pri) = FunY RE.

Proof. We only show how the SUB-instructions of a register machine M =
(m,B′, l0, lh, P ) can be simulated in a deterministic way without introducing a
trap symbol and therefore causing infinite loops by them:

Let B = {l | l : (SUB (r) , l′, l′′) ∈ P} and, for every register r,

M̃r =
{
l̃ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̃r
− =

{
l̃− | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r =
{
l̂ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r
− =

{
l̂− | l : (SUB (r) , l′, l′′) ∈ P

}
.

We now take the rules ar
− → M̃r

−M̂r and the annihilation rules arar
− → λ

for every register r as well as l̂l̂− → λ and l̃l̃− → λ for all l ∈ B. Then a SUB-
instruction l1 : (SUB (r) , l2, l3), with l1 ∈ B, l2, l3 ∈ B′, 1 ≤ r ≤ m, is simulated
by

l1 → l̄1ar
−

,

l̄1 → l̂1
−(M̃r \ {l̃1}),

l̂1
− → l2(M̃r

− \ {l̃1−}), and

l̃1
− → l3(M̂r

− \ {l̂1−}).

The symbol l̂1
− generated by the second rule is eliminated again and replaced

by l̃1
− if ar

− is not annihilated.
Again, the proof elaborated for the max-mode literally also works for the

derivation modes smax and maxrule without any restrictions as well. ut

5 Catalytic and Purely Catalytic P Systems

We now investigate proofs elaborated for catalytic and purely catalytic P systems
working in the max-mode for the smax-mode.

5.1 Computational Completeness of Catalytic P Systems

We first check the construction for simulating a register machine M =
(d,B, l0, lh, R) by a catalytic P system Π, with m ≤ d being the number of decre-
mentable registers, elaborated in [3] for the max-mode, and argue why it works
for the smax-mode, too.

For all d registers, ni copies of the symbol oi are used to represent the value
ni in register i, 1 ≤ i ≤ d. For each of the m decrementable registers, we take
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a catalyst ci and two specific symbols di, ei, 1 ≤ i ≤ m, for simulating SUB-
instructions on these registers. For every l ∈ B, we use pl, and also its variants
p̄l, p̂l, p̃l for l ∈ BSUB , where BSUB denotes the set of labels of SUB-instructions.

Π = (O,C, µ = [ ]1, w1 = c1 . . . cmd1 . . . dmp1w0, R1, f = 1),
O = C ∪D ∪ E ∪Σ
∪ {#} ∪ {pl | l ∈ B} ∪ {p̄l, p̂l, p̃l | l ∈ BSUB},

C = {ci | 1 ≤ i ≤ m},
D = {di | 1 ≤ i ≤ m},
E = {ei | 1 ≤ i ≤ m},
Σ = {oi | 1 ≤ i ≤ d},
R1 = {pj → orpkDm, pj → orplDm | j : (ADD(r), k, l) ∈ R}
∪ {pj → p̂jerDm,r, pj → p̄jDm,r, p̂j → p̃jD

′
m,r,

p̄j → pkDm, p̃j → pkDm | j : (SUB(r), k, l) ∈ R}
∪ {cror → crdr, crdr → cr, cr⊕m1er → cr⊕m1 | 1 ≤ r ≤ m},
∪ {dr → #, crer → cr# | 1 ≤ r ≤ m}
∪ {#→ #}.

Here r⊕m1 for r < m simply is r+ 1, whereas for r = m we define m⊕m1 = 1;
w0 stands for additional input present at the beginning.

Usually, every catalyst ci, i ∈ {1, . . . ,m}, is kept busy with the symbol di
using the rule cidi → ci, as otherwise the symbols di would have to be trapped by
the rule di → #, and the trap rule # → # then enforces an infinite non-halting
computation.

In the smax-derivation mode only one trap rule #→ # will be carried
out, but this is the only difference!

Only during the simulation of SUB-instructions on register r the corresponding
catalyst cr is left free for decrementing or for zero-checking in the second step of
the simulation, and in the decrement case both cr and its “coupled” catalyst cr⊕m1

are needed to be free for specific actions in the third step of the simulation.
For the simulation of instructions, we use:

Dm =
∏
i∈[1..m] di,

Dm,r =
∏
i∈[1..m]\{r} di,

D′m,r =
∏
i∈[1..m]\{r,r⊕m1} di.

The HALT-instruction labeled lh is simply simulated by not introducing the
corresponding state symbol plh , i.e., replacing it by λ, in all rules defined in R1.

Each ADD-instruction j : (ADD(r), k, l), for r ∈ {1, . . . , d}, can easily be
simulated by the rules pj → orpkDm and pj → orplDm; in parallel, the rules
cidi → ci, 1 ≤ i ≤ m, have to be carried out, as otherwise the symbols di would
have to be trapped by the rules di → #.

Each SUB-instruction j : (SUB(r), k, l), is simulated as shown in the table
listed below (the rules in brackets [ and ] are those to be carried out in case of a
wrong choice):
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Simulation of the SUB-instruction j : (SUB(r), k, l) if
register r is not empty register r is empty
pj → p̂jerDm,r pj → p̄jDm,r

cror → crdr [crer → cr#] cr should stay idle
p̂j → p̃jD

′
m,r p̄j → pkDm

crdr → cr [dr → #] [dr → #]
p̃j → pkDm

cr⊕m1er → cr⊕m1

In the first step of the simulation of each instruction (ADD-instruction, SUB-
instruction, and even HALT-instruction) due to the introduction of Dm in the
previous step (we also start with that in the initial configuration) every catalyst
cr is kept busy by the corresponding symbol dr, 1 ≤ r ≤ m.

Based on the construction elaborated in [3] and recalled above in sum we have
obtained the following result:

Theorem 4. For any register machine M = (d,B, l0, lh, R), with m ≤ d being the
number of decrementable registers, we can construct a catalytic P system

Π = (O,C, µ = [ ]1, w1, R1, f = 1)

working in the max- or the smax-derivation mode and simulating the computations
of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 5×m+ 1,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R.

5.2 Computational Completeness of Purely Catalytic P Systems

For the purely catalytic case, one additional catalyst cm+1 is needed to be used
with all the non-cooperative rules. Unfortunately, in this case a slightly more
complicated simulation of SUB-instructions is needed, a result established in [12],
where for catalytic P systems

|R1| ≤ 2×ADD1(R) + 3×ADD2(R) + 6× SUB(R) + 5×m+ 1,

and for purely for catalytic P systems

|R1| ≤ 2×ADD1(R) + 3×ADD2(R) + 6× SUB(R) + 6×m+ 1,

is shown. Yet also this proof literally works for the smax-derivation mode as well,
with the only exception that the trap rule #→ # is carried out at most once.
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6 Computational Completeness of (Purely) Catalytic P
Systems with Additional Control Mechanisms

In this section we consider (purely) catalytic P systems with additional control
mechanisms, in that way reaching computational completeness with only one (two)
catalyst(s).

6.1 P Systems with Label Selection

For all the variants of P systems of type X, we may consider to label all the rules
in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H and to take a
set W containing subsets of H. Then a P system with label selection is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H,W, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H is
a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any transition
step in Π we first select a set of labels U ∈W and then apply a non-empty multiset
R of rules such that all the labels of these rules in R are in U in the maximally
parallel way, i.e., the set R cannot be extended by any further rule with a label
from U so that the obtained multiset of rules would still be applicable to the
existing objects in the membrane regions 1, . . . ,m. The families of sets Yγ,δ (Π),
Y ∈ {N,Ps}, δ ∈ {gen, acc}, and γ ∈ {sequ, asyn,max, smax,maxrule, . . . },
computed by P systems with label selection with at most m membranes and rules
of type X is denoted by Yγ,δOPm (X, ls).

The proof of the following theorem is based on the proof given in [6] for the
maximally parallel mode max; the proof can be taken over for the mode smax
word by word; the only difference is that in non-successful computations where
more than one trap symbol # has been generated, the trap rule # → # is only
applied once.

Theorem 5. Yγ,δOP1 (cat1, ls) = YγδOP1 (pcat2, ls) = Y RE for any Y ∈
{N,Ps}, δ ∈ {gen, acc}, and γ ∈ {max, smax}.

Proof. We only prove the inclusion PsRE ⊆ Pssmax,genOP1 (cat1, ls). Let us con-
sider a register machine M = (n+ 2, B, l0, lh, I) with only the first and the second
register ever being decremented, and let A = {a1, . . . , an+2} be the set of objects
for representing the contents of the registers 1 to n + 2 of M . We construct the
following P system:

Π = (O, {c} , [ ]
1
, cdl0, R1, H,W, 0),

O = A ∪B ∪ {d,#} ,
H = {l, l′ | l ∈ B} ∪

{
l〈x〉 | x ∈ {1, 2, 1′, 2′, d,#}

}
,
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and the rules for R1 and the sets of labels in W are defined as follows:

A. Let li : (ADD (r) , lj , lk) be an ADD instruction in I. If r > 2, then the
(labeled) rules

li : li → lj (ar, out) , l′i : li → lk (ar, out) ,

are used, and for r ∈ {1, 2}, we take the rules

li : li → ljar, l′i : li → lkar.

In both cases, we define {li, l′i} to be the corresponding set of labels in W . The
contents of each register r, r ∈ {1, 2}, is represented by the number of objects ar
present in the skin membrane; any object ar with r ≥ 3 is immediately sent out
into the environment.

B. The simulation of a SUB instruction li : (SUB (r) , lj , lk), for r ∈ {1, 2}, is
carried out by the following rules and the corresponding sets of labels in W :

For the case that the register r, r ∈ {1, 2}, is not empty we take the (labeled)
rules

li : li → lj , l〈r〉 : car → c, l〈d〉 : cd→ c#,

(if no symbol ar is present, i.e., if the register r is empty, then the trap symbol #
is introduced by the rule l〈d〉 : cd→ c#).

For the case that the register r is empty, we take the (labeled) rules

l′i : li → lk, l〈r′〉 : car → c#

(if at least one symbol ar is present, i.e., if the register r is not empty, then the
trap symbol # is introduced by the rule l〈r′〉 : car → c#).

The corresponding sets of labels to be taken into W are
{
li, l〈r〉, l〈d〉

}
and{

l′i, l〈r′〉
}

, respectively. In both cases, the simulation of the SUB instruction works
correctly if we have made the right choice.

C. As soon as the final label lh is reached, we apply the rules

lh : lh → λ, l′h : cd→ c

according to the set of labels {lh, l′h} in W . In fact, neglecting the single catalyst c,
we could even obtain a clean result in the skin membrane when leaving the result
objects in the skin membrane instead of sending them out.

D. We also add the labeled rule l〈#〉 : #→ # to R1 and the set
{
l〈#〉

}
to W ,

hence, the computation cannot halt once the trap symbol # has been generated.

In sum, we observe that each computation step in M is simulated by exactly
one computation step in Π; moreover, such a simulating computation in Π halts
if and only if the corresponding computation in M halts (as soon as the label lh
appears, only the set of rules {lh, l′h} can be applied, and afterwards no rule can
be applied anymore in Π, of course, provided that no trap symbol is present).
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If at some moment we make the wrong choice when trying to simulate a SUB
instruction and have to generate the trap symbol #, the computation will never
halt. Hence, we have shown Ps (M) = Ps (Π), which completes the proof for the
catalytic case.

For the purely catalytic case, all the non-cooperative rules are associated with
the second catalyst, which immediately yields the corresponding purely catalytic
P system with two catalysts. ut

6.2 Controlled P Systems and Time-Varying P Systems

Another method to control the application of the labeled rules is to use control
languages (see [9] and [4]). A controlled P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, H, L, f)

where Π ′ = (O,µ,w1, . . . , wm, R1, . . . , Rm, f) is a P system as defined above, H
is a set of labels for the rules in the sets R1, . . . , Rm, and L is a string language
over 2H (each subset of H represents an element of the alphabet for L) from
a family FL. Every successful computation in Π has to follow a control word
U1 . . . Un ∈ L: in transition step i, only rules with labels in Ui are allowed to be
applied (but again in the maximally parallel way, i.e., we have to apply a multiset
R of rules with labels in Ui which cannot be extended by any rule with a label
in Ui such that the resulting multiset would still be applicable), and after the
n-th transition, the computation halts; we may relax this end condition, i.e., we
may stop after the i-th transition for any i ≤ n, and then we speak of weakly
controlled P systems. If L = (U1 . . . Up)

∗
, Π is called a (weakly) time-varying

P system: in the computation step pn + i, n ≥ 0, rules from the set Ui have
to be applied; p is called the period. The family of sets Yγ,δ (Π), Y ∈ {N,Ps},
computed by (weakly) controlled P systems and (weakly) time-varying P systems
with period p, with at most m membranes and rules of type X as well as control
languages in FL is denoted by Yγ,δOPm (X,C (FL)) (Yγ,δOPm (X,wC (FL))) and
Yγ,δOPm (X,TVp) (Yγ,δOPm (X,wTVp)), respectively, for δ ∈ {gen, acc} and γ ∈
{sequ, asyn,max, smax,maxrule, . . . }.

The proof of the following theorem again is taken over for the mode smax word
by word as given in [6] for the maximally parallel mode max.

Theorem 6. Yγ,δOP1 (cat1, αTV6) = Yγ,δOP1 (pcat2, αTV6) = Y RE, for any α ∈
{λ,w}, Y ∈ {N,Ps}, δ ∈ {gen, acc}, and γ ∈ {max, smax}.

Proof. We only prove the inclusion PsRE ⊆ Pssmax,genOP1 (cat1, TV6). Let us
consider a register machine M = (n+ 2, B, l0, lh, I) with only the first and the
second register ever being decremented. Again, we define A = {a1, . . . , an+2} and
divide the set of labels B \ {lh} into three disjoint subsets:
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B+ = {li | li : (ADD (r) , lj , lk) ∈ I} ,
B−r = {li | li : (SUB (r) , lj , lk) ∈ I} , r ∈ {1, 2} ;

moreover, we define B− = B−1 ∪B−2 as well as

B′ =
{
l, l̃, l̂ | l ∈ B \ {lh}

}
∪
{
l−, l0, l̄−, l̄0, | l ∈ B−

}
.

The main challenge in the construction for the time-varying P system Π is that
the catalyst has to fulfill its task to erase an object ar, r ∈ {1, 2}, for both objects
in the same membrane where all other computations are carried out, too; hence,
at a specific moment in the cycle of period six, parts of simulations of different
instructions have to be coordinated in parallel. The basic components of the time-
varying P system Π are defined as follows (we here do not distinguish between a
rule and its label):

Π = (O, {c} , [ ]
1
, cl0, R1 ∪ · · · ∪R6, R1 ∪ · · · ∪R6, (R1 . . . R6)

∗
, 0),

O = A ∪ {a′1, a′2} ∪B′ ∪ {c, h, lh,#} .

We now list the rules in the sets of rules Ri to be applied in computation steps
6n+ i, n ≥ 0, 1 ≤ i ≤ 6:

R1: in this first step of the cycle, especially all the ADD instructions are sim-
ulated, i.e., for each li : (ADD (r) , lj , lk) ∈ I we take

cli → car l̃j , cli → car l̃k for r ∈ {1, 2} as well as cli → c(ar, out)l̃j , cli →
c(ar, out)l̃k for 3 ≤ r ≤ n + 2 (in order to obtain the output in the environment,
for r ≥ 3 we have to take (ar, out) instead of ar); only in the sixth step of the cycle,
from l̃j and l̃k the corresponding unmarked labels lj and lk will be generated;

cl → cl−, cl → cl0 initiate the simulation of a SUB instruction for register 1
labeled by l ∈ B−1, i.e., we make a non-deterministic guess whether register r is
empty (with introducing l0) or not (with introducing l−);

cl → cl̂ marks a label l ∈ B−2 (the simulation of such a SUB instruction for
register 2 will start in step 4 of the cycle);

# → # keeps the trap symbol # alive guaranteeing an infinite loop once #
has been generated;

h → λ eliminates the auxiliary object h which eventually has been generated
two steps before (h is needed for simulating the decrement case of SUB instruc-
tions).

R2: in the second and the third step, the SUB instructions on register 1 are
simulated, i.e., for all l ∈ B−1 we start with

ca1 → ca′1 (if present, exactly one copy of a1 can be primed, but only if a label
l− for some l from B−1 is present) and

l− → l̄−h, l0 → l̄0 for all l ∈ B−1;
all other labels l̃ for l ∈ B block the catalyst c from erasing a copy of a1 by

forcing the application of the corresponding rules cl̃ → cl̃ for c in order to avoid
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the introduction of the trap symbol # by the enforced application of a rule l̃→ #,
i.e., we take

cl̃→ cl̃, l̃→ # for all l ∈ B, and
cl̂→ cl̂, l̂→ # for all l ∈ B−2;
#→ # keeps the computation alive once the trap symbol has been introduced.

R3: for all li : (SUB (1) , lj , lk) ∈ I we take

cl̄0i → cl̃k, a′1 → #, l̄0i → # (zero test; if a primed copy of a1 is present, then
the trap symbol # is generated);

l̄−i → l̃j , ca
′
1 → c, ch → c# (decrement; the auxiliary symbol h is needed to

keep the catalyst c busy with generating the trap symbol # if we have taken the
wrong guess when assuming the register 1 to be non-empty);

cl̃→ cl̃, l̃→ # for all l ∈ B (with these labels, we just pass through this step);

cl̂ → cl̂, l̂ → # for all l ∈ B−2 (these labels pass through this step to become
active in the next step);

#→ #.

R4: in the fourth step, the simulation of SUB instructions on register 2 is
initiated by using

cl̂ → cl−, cl̂ → cl0 for all l ∈ B−2, i.e., we make a non-deterministic guess
whether register r is empty (with introducing l0) or not (with introducing l−);

cl̃ → cl̃, l̃ → # for all l ∈ B (with all other labels, we only pass through this
step);

#→ #,
h → λ (if h has been introduced by l− → l̄−h in the second step for some

l ∈ B−1, we now erase it).

R5: in the fifth and the sixth step, the SUB instructions on register 2 are
simulated, i.e., for all l ∈ B−2 we start with

ca2 → ca′2 (if present, exactly one copy of a2 can be primed) and
l− → l̄−h, l0 → l̄0 for all l ∈ B−2;
c1 l̃→ c1 l̃, l̃→ # for all l ∈ B;
#→ #.

R6: the simulation of SUB instructions li : (SUB (2) , lj , lk) ∈ I on register 2 is
finished by

cl̄0i → clk, a′2 → #, l̄0i → # (zero test; if a primed copy of a2 is present, then
the trap symbol # is generated);

l̄−i → lj , ca
′
2 → c, ch → c# (decrement; the auxiliary symbol h is needed to

keep the catalyst c busy with generating the trap symbol # if we have taken the
wrong guess when assuming the register 2 to be non-empty; if it is not used, it can
be erased in the next step by using h→ λ in R1);

cl̃→ cl, l̃→ # for all l ∈ B;
#→ # .

Without loss of generality, we may assume that the final label lh in M is only
reached by using a zero test on register 2; then, at the beginning of a new cycle,
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after a correct simulation of a computation from M in the time-varying P system
Π no rule will be applicable in R1 (another possibility would be to take cl̄0i → c
instead of cl̄0i → clh in R6).

At the end of the cycle, in case all guesses have been correct, the requested
instruction of M has been simulated and the label of the next instruction to be
simulated is present in the skin membrane. Only in the case that M has reached
the final label lh, the computation in Π halts, too, but only if during the simulation
of the computation of M in Π no trap symbol # has been generated; hence, we
conclude Ps (M) = Ps (Π).

For the purely catalytic case, all the non-cooperative rules are associated with
the second catalyst, which immediately yields the corresponding purely catalytic
P system with two catalysts. ut

7 P Systems with Toxic Objects

In many variants of (catalytic) P systems, for proving computational completeness
it is common to introduce a trap symbol # for the case that the derivation goes the
wrong way as well as the rule #→ # (or c#→ c# with a catalyst c) guaranteeing
that the derivation will never halt. Yet most of these rules can be avoided if we
specify a specific subset of toxic objects Otox.

The P system with toxic objects is only allowed to continue a computation
from a configuration C by using an applicable multiset of rules covering all copies
of objects from Otox occurring in C; moreover, if there exists no multiset of ap-
plicable rules covering all toxic objects, the whole computation having yielded the
configuration C is abandoned, i.e., no results can be obtained from this computa-
tion.

For any variant of P systems, we add the set of toxic objects Otox and
in the specification of the families of sets of (vectors of) numbers generated
by P systems with toxic objects using rules of type X we add the subscript
tox to O, thus obtaining the families Yγ,genOtoxPm (X), for any m ≥ 1, γ ∈
{sequ, asyn,max, smax,maxrule}, and Y ∈ {N,Ps}.

The following theorem stated in [2] only for the max-mode obviously hols for
the smax-mode, too.

Theorem 7. For β ∈ {max, smax},

PsRE = Psβ,genOtoxP1([p]cat2).

In general, we can formulate the following “metatheorem”:

Metatheorem: Whenever a proof has been established for the derivation mode
max and literally also holds true for the derivation mode smax, then omitting
trap rules by using the concept of toxic objects works for both derivation modes in
the same way.
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In the following sections, we now turn our attention to models of P systems
where the derivation mode smax yields different, in fact, stronger results than the
derivation mode max.

8 Atomic Promoters and Inhibtors

As shown in [11], P systems with non-cooperative rules and atomic inhibitors
are not computationally complete when the maximally parallel derivation mode
is used. P systems with non-cooperative rules and atomic promoters can at least
generate PsET0L. On the other hand, already in [10], the computational com-
pleteness of P systems with non-cooperative rules and atomic promoters has been
shown. In the following we will establish a new proof for the simulation of a regis-
ter machine where the overall number of promoters only depends on the number
of decrementable registers of the register machine. Moreover, we also show a new
pretty surprising result, establishing computational completeness of P systems
with non-cooperative rules and atomic inhibitors, and the number of inhibitors
again only depends on the number of decrementable registers of the simulated
register machine. Finally, in both cases, if the register machine is deterministic,
then the P system is deterministic, too.

8.1 Atomic Promoters

We now establish our new proof for the computational completeness of P systems
with non-cooperative rules and atomic promoters when using the derivation mode
smax; the overall number of promoters only is 5m where m is the number of
decrementable registers of the simulated register machine.

Theorem 8. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with atomic
inhibitors

Π = (O,µ = [ ]1, w1 = l0, R1, f = 1)

working in the smax- or maxrule-derivation mode and simulating the computations
of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 7×m,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R; moreover, the number of
atomic inhibitors is 5m. Finally, if the register machine is deterministic, then the
P system is deterministic, too.
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Proof. The numbers of objects or represent the contents of the registers r, 1 ≤
r ≤ d; moreover, we denote BSUB = {p | p : (SUB(r), q, s) ∈ R}.

O = {or | 1 ≤ r ≤ d} ∪ {o′r, cr, c′r, c′′r , c′′′r | 1 ≤ r ≤ m}
∪ (B \ {lh}) ∪ {p′, p′′, p′′′ | p ∈ BSUB}

The symbols from {o′r, cr, c′r, c′′r , c′′′r | 1 ≤ r ≤ m} are used as promoters.
An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p → qor

and p→ sor.
A SUB-instruction p : (SUB(r), q, s) is simulated in four steps as follows:

1. p→ p′cr;
2. p′ → p′′c′r; or → o′r |cr , cr → λ;
3. p′′ → p′′′c′′′r , c′r → c′′r |o′r , o′r → λ;
4. p′′′ → q |c′′r , p′′′ → s |c′r , c′r → λ |c′′′r

, c′′r → λ, c′′′r → λ.

As final rule we could use lh → λ, yet we can omit this rule and replace every
appearance of lh in all rules as described above by λ. ut

8.2 Atomic Inhibtors

We now show that even P systems with non-cooperative rules and atomic promot-
ers using the derivation mode smax can simulate any register machine needing
only 2m + 1 inhibitors where m is the number of decrementable registers of the
simulated register machine.

Theorem 9. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with atomic
inhibitors

Π = (O,µ = [ ]1, w1 = l0, R1, f = 1)

a P system with atomic inhibitors Π = (O,µ = [ ]1, w1 = l0, R1, f = 1) working
in the smax- or maxrule-derivation mode and simulating the computations of M
such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 3×m+ 1,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R; moreover, the number of
atomic inhibitors is 2m+ 1. Finally, if the register machine is deterministic, then
the P system is deterministic, too.

Proof. The numbers of objects or represent the contents of the registers r, 1 ≤
r ≤ d. The symbols dr prevent the register symbols or, 1 ≤ r ≤ m, from evolving.
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O = {or | 1 ≤ r ≤ d} ∪ {o′r | 1 ≤ r ≤ m} ∪ {dr | 0 ≤ r ≤ m}
∪ (B \ {lh}) ∪ {p′, p′′, p̃ | p ∈ BSUB}

We denote D =
∏m
i=1 di and Dr =

∏m
i=1,i6=r di.

An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p→ qorD
and p→ sorD.

A SUB-instruction p : (SUB(r), q, s) is simulated in four steps as follows:

1. p→ p′Dr;
2. p′ → p′′Dd0; in parallel, the following rules are used:
or → o′r |¬dr , dk → λ, 1 ≤ k ≤ m;

3. p′′ → p̃D |¬o′r ; o′r → λ, d0 → λ;
again, in parallel the rules dk → λ, 1 ≤ k ≤ m, are used;

4. p′′ → qD |¬d0 , p̃→ sD.

As final rule we could use lh → λ, yet we can omit this rule and replace every
appearance of lh in all rules as described above by λ. ut

9 P Systems with Target Selection

In P systems with target selection, all objects on the right-hand side of a rule must
have the same target, and in each derivation step, for each region a (multi)set of
rules – non-empty if possible – having the same target is chosen. We show that
for P systems with target selection in the derivation mode smax no catalyst is
needed any more, and with maxrule, we even obtain a deterministic simulation of
deterministic register machines.

Theorem 10. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with non-
cooperative rules working in the smax-derivation mode and simulating the compu-
tations of M .

Proof. As usual, we take an arbitrary register machine M with d registers sat-
isfying the following conditions: the output registers are m + 1, · · · , d, and they
are never decremented; moreover, registers 1, · · · ,m are empty in any reachable
halting configuration. Clearly, these conditions do not restrict the generality. We
construct the following P system Π simulating M .

The correct behavior of the object associated to the simulated instruction of
M is the following. In the decrement case, we have inr + 2, out, in2, idle, out, in2,
here, out, here (9 steps in total), whereas in the zero-test case, we have the same
as before, except that the fourth and the fifth steps are out and here instead of idle
and out, respectively. In case of an increment instruction, we get here, here, here,
here, in2, here, out, here (8 steps in total). We remark that the first four steps
are carried out in the skin, while the last four steps repeat the cases of zero-test
and decrement.
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The value of each register r is represented by the multiplicity of objects or in the
skin. For every decrementable register r, there is a rule sending or into region r+2.
However, this rule may only be applied safely in the first step of the simulation of
the SUB instruction, as otherwise some other object will also enter the same region
as # (either one of e, e′, e′′, ê, ê′, which we will in the following refer to as the
guards, or an object associated to the label of the simulated instruction, which we
will in the following call a program symbol) forcing an unproductive computation,
see the rules in brackets in the tables below.

The “correct” target selection for the inner regions normally coincides with
that of the program symbol (described above) and no rule is applied there if
the program symbol is not there, with the following exceptions. In the first step
of simulating an instruction, object e exits membrane 2, as it is the only rule
applicable there in this step. In the last step of simulating an instruction, object
ē is rewritten into e in membrane 2, as it is the only rule applicable there in this
step. In the fourth step of the decrement case, the program symbol is idle while
object d is erased. The “correct” target selection for the skin coincides with that
of the program symbol, and is here if the program symbol is missing in the skin.
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Π = (O,µ,w1, · · · , wm+2, R1, · · · , Rm+2) where

O = {or | 1 ≤ r ≤ d} ∪ {p̄, p | p ∈ B} ∪ {p′, p′′p̂ | p ∈ BADD}
∪ {p′, p−, p′−, p0, p′0, p′′0 | p ∈ BSUB} ∪ {ē, e, e′, e′′, ê, ê′, d,#},

µ = [ [ ]
2
· · · [ ]

m+2
]
1
,

w1 = l0, w2 = e, wr+2 = λ, 1 ≤ r ≤ m,

R1 =

m+2⋃
i=1

(R1,i,s ∪R1,i,#),

Ri = Ri,1,s ∪Ri,1,# ∪Ri,i,s ∪Ri,i,#, 2 ≤ j ≤ m+ 2,

R1,1,s = {e→ e′, e′ → e′′, e′′ → ê, ê→ ê′, e′ → λ}
∪ {p′0 → p′′0 | p ∈ BSUB} ∪ {p̄→ p | p ∈ B}
∪ {p→ p̃or | p : (ADD(r), q, s) ∈ P}
∪ {p̃→ p′, p′ → p′′, p′′ → p̂ | p ∈ BADD},

R1,2,s = {p′ → (p−, in2), p′ → (p0, in2), p′− → (p′−, in2), p′′0 → (p′′0 , in2)

| p ∈ BSUB} ∪ {p̂→ (p̂, in2) | p ∈ BADD} ∪ {d→ (d, in2)}
R1,r+2,s = {or → (or, inr+2)} ∪ {p→ (p, inr+2)

| p : (SUB(r), q, s) ∈ P}, 1 ≤ r ≤ m,
R1,1,# = {p′ → #, p′′0 → #, p′− → # | p ∈ BSUB} ∪ {p̂→ # | p ∈ BADD}

∪ {#→ #},
R1,2,# = {p′0 → (#, in2), e′′ → (#, in2) | p ∈ BSUB}

∪ {p̄→ (#, in2) | p ∈ B},
R1,r+2,# = {x→ (#, inr+2} | x ∈ {e, e′, e′′, ê, ê′}

∪ {p′0, p′− | P ∈ BSUB} ∪ {p̄ | P ∈ B}}
∪ {p→ (#, inr+2) | p : (SUB(i), q, s) ∈ P, i 6= r}
∪ {p′ → (#, inr+2) | p ∈ BSUB}, 1 ≤ r ≤ m,

R2,1,s = {e→ (e, out)} ∪ {p̄→ (p̄, out) | p ∈ B}
∪ {p0 → (p′0, out), p− → (p′−, out) | p ∈ BSUB},

R2,2,s = {d→ λ, ē→ e} ∪ {| p ∈ B}
∪ {p′′0 → s̄ē, p′− → q̄ē | p : (SUB(r), q, s) ∈ P}
∪ {p̂→ q̄ē, p̂→ s̄ē | p : (ADD(r), q, s) ∈ P},

R2,1,# = {d→ (#, out),#→ (#, out)},
R2,2,# = {p0 → # | p ∈ BSUB} ∪ {p̄→ # | p ∈ B},

Rr+2,1,s = {p→ (p′, out) | p ∈ BSUB} ∪ {or → (d, out}, 1 ≤ r ≤ m
Rr+2,r+2,# = {#→ (#, out)}, Rr+1,r+1,s = Rr+1,r+1,# = ∅.

Most trapping rules, given in brackets in the tables below and listed in rule
groups Ri,j,# above, are only needed to force the “correct” target selection. The
exception are some rules in steps 4 and 5 of the simulation of SUB instructions,
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needed for verifying that the decrement and the zero test have been performed
correctly (the guess is made at step 3 by the program symbol, and is reflected
in its subscript). Indeed, if the zero-test is chosen while d is present (signifying
that the register was decremented), causing a target conflict: either p0 or d will
be anyway rewritten into #. However, if the decrement is chosen while d is absent
(signifying that the register was zero), then p− will appear in the skin in step 4
instead of step 5, causing a target conflict: either p′− or e′′ will be anyway rewritten
into #.

Below we present the tables describing the simulation of instructions of M . An
application of one of the rules given in brackets leads to non-halting computations,
not contributing to the result.

(p : (SUB(r), q, s))

r + 2 1 2
1 - or → (or, inr+2) e→ (e, out)

- p→ (p, inr+2)
[p→ (#, ini+2), i 6= r]

2 p→ (p′, out) e→ e′ -
or → (d, out) [e→ (#, ini+2)]

3 - p′ → (p−, in2) -
p′ → (p0, in2)
d→ (d, in2)
[p′ → #]
[e′ → (#, ini+2)]

1,- 1,0 2,- 2,0
4 e′ → e′′ d→ λ p0 → (p′0, out)

[p− → (p′−, out)] [d→ (#, out)]
[p0 → #]

5 e′′ → ê p′0 → p′′0 p− → (p′−, out) -
[p′− → (p′−, in2)] e′′ → ê
[p′− → #] [p′0 → (#, int)]
[e′′ → (#, int)] [e′′ → (#, int)]
[for t > 1] [for t > 1]

6 p′− → (p′−, in2) p′′0 → (p′′0 , in2) -
[p′− → #] [p′′0 → #]
[p′− → (#, ini+2)] [p′′0 → (#, ini+2)]

7 ê→ ê′ p′− → q̄ē p′′0 → s̄ē
[ê→ (#, ini+2)]

8 ê′ → λ q̄ → (q̄, out) s̄→ (s̄, out)
[ê′ → (#, ini+2)] [q̄ → #] [s̄→ #]

9 q̄ → q s̄→ s ē→ e
[q̄ → (#, int)] [s̄→ (#, int)]
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(p : (ADD(r), q, s))

1 2
1 p→ p̃or e→ (e, out)
2 p̃→ p′ -
e→ e′

3 p′ → p′′ -
e′ → e′′

4 p′′ → p̂ -
e′′ → ê

5 p̂→ (p̂, in2) -
[p̂→ #]

6 ê→ ê′ p̂→ x̄ē
7 ê′ → λ x̄→ (x̄, out)

[x̄→ #]
8 x̄→ x ē→ e

Auxiliary rules
r + 2 1 2
[#→ (#, out)] [#→ #] [#→ (#, out)]

Nearly half of the steps in the preceding constructions is needed for releasing
the auxiliary symbol e in the first step of a simulation from membrane 2, yet in
our construction, e and its derivatives are needed to control the correct target
selection in the skin membrane, and especially to keep the register objects or from
moving into membrane r + 2. ut

We now show that taking the maximal sets of rules which are applicable, the
simulation of SUB-instructions can even be carried out in a deterministic way.

Theorem 11. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with non-
cooperative rules

Π = (O,µ = [ [ ]2 . . . [ ]2m+1 ]1, w1, λ, . . . , λ,R1 . . . R2m+1, f = 1)

working in the maxrule-derivation mode and simulating the computations of M
such that

|R1| ≤ 1×ADD1(R) + 2×ADD2(R) + 4× SUB(R) + 10×m+ 3,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R.



Maximal Variants of the Set Derivation Modes 81

Proof. The contents of the registers r, 1 ≤ r ≤ d is represented by the numbers of
objects or, and for the decrementable registers we also use a copy of the symbol o′r
for each copy of the object or. This second copy o′r is needed during the simulation
of SUB-instructions to be able to distinguish between the decrement and the zero
test case. For each r, the two objects or and o′r can only be affected by the rules
or → (λ, inr+1) and o′r → (λ, inr+1) sending them into the membrane r + 1
corresponding to membrane r (and at the same time erasing them; in fact, we
could also leave them in the membrane unaffected forever as a garbage). These are
already two rules, so any other combination of rules with different targets has to
contain at least three rules.

One of the main ideas of the proof construction is that in the skin mem-
brane the label p of an ADD-instruction is represented by the three objects p and
e, e′, and the label p of any SUB-instruction is represented by the eight objects

p, e, e′, e′′, dr, d
′
r, d̃r, d̃r

′
. Hence, for each p ∈ (B \ {lh}) we define R(p) = pee′ for

p ∈ BADD and R(p) = pee′e′′drd
′
rd̃rd̃r

′
for p ∈ BSUB as well as R(lh) = λ; as

initial multiset w1 in the skin membrane, we take R(l0).

O = {or | 1 ≤ r ≤ d} ∪ {o′r | 1 ≤ r ≤ m} ∪ (B \ {lh})

∪
{
dr, d

′
r, d̃r, d̃r

′
| 1 ≤ r ≤ m

}
∪ {e, e′, e′′}

An ADD-instruction p : (ADD(r), q, s) is simulated by the rules p → R(q)or
and p→ R(s)or as well as the rules e→ λ and e′ → λ. This combination of three
rules supercedes any combination of rules or → (λ, inr+1) and o′r → (λ, inr+1), for
some 1 ≤ r ≤ m.

A SUB-instruction p : (SUB(r), q, s) is simulated in two steps as follows:

1. In R1, for the first step we take one of the following tuple of rules
p→ (p, inr+1), dr → (λ, inr+1), d′r → (λ, inr+1), d̃r → (λ, inr+1),
or → (λ, inr+1), o′r → (λ, inr+1);
p→ (p, inm+r+1), dr → (λ, inm+r+1), d′r → (λ, inm+r+1),

d̃r → (λ, inm+r+1), d̃r
′
→ (λ, inm+r+1);

the application of the rules or → (λ, inr+1), o′r → (λ, inr+1) in contrast to the

application of the rule d̃r
′
→ (λ, inm+r+1) determines whether the first or the

second tuple of rules has to be chosen. Here it becomes clear why we have to
use the two register symbols or and o′r, as we have to guarantee that the target
r+ 1 cannot be chosen if none of these symbols is present, as in this case then
only four rules could be chosen in contrast to the five rules for the zero test
case. On the other hand, if some of these symbols or and o′r are present, then
six rules are applicable superceding the five rules which could be used for the
zero test case.

2. In the second step, the following three or four rules, again superceding any
combination of rules or → (λ, inr+1) and o′r → (λ, inr+1) for some 1 ≤ r ≤ m,
are used in the skin membrane:
e→ λ, e′ → λ, e′′ → λ, and in the decrement case also the rule d̃r

′
→ λ.
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In the second step, we either find the the symbol p in membrane r + 1, if a
symbol or together with its copy o′r has been present for decrementing or in
membrane m+ r + 1, if no symbol or has been present (zero test case).
In the decrement case, the following rule is used in Rr+1: p→ (R(q), out).
In the zero test case, the following rule is used in Rm+r+1: p→ (R(s), out).

We finally point out that the simulation of the SUB-instructions works determin-
istically, hence, although the P system itself is not deterministic syntacticly, it
works in a deterministic way if the underlying register machine is deterministic.
ut

10 Conclusion and Future Work

It is not very surprising that the proofs we have checked in the preceding sections
also work for the derivation mode smax, as many constructions elaborated for the
derivation mode max just “break down” maximal parallelism to near sequentiality
in order to work for the simulation of register machines. On the other hand, we
also have shown that due to this fact some variants of P systems become even
stronger with the modes smax and maxrule.

• There are many models of P systems for which the maximally parallel deriva-
tion mode has been used, especially for showing computational completeness.

• As we have seen by careful inspection of several proofs for computational com-
pleteness, many results established with using the maximally parallel derivation
mode literally hold true as well for the derivation modes smax and maxrule.

• Many other constructions working in the maximally parallel derivation mode
have to be checked carefully if they work for the derivation modes smax and
maxrule, too.

• For some proofs having been established in the maximally parallel derivation
mode we might need completely new proofs or proof techniques for the set-
maximally parallel derivation mode; one such example is the proof for P systems
with target selection.

• Some variants of P systems become even stronger with the mode smax; as
already pointed out by Gheorghe Păun, P systems with non-cooperative rules
and atomic promoters are computationally complete with the smax-mode, also
see [10], and in this paper we have shown a new proof for this computational
completeness result and even shown a similar result for P systems with non-
cooperative rules and atomic inhibitors.

• On the other hand, eventually, some results stablished in the maximally parallel
derivation mode are not valid any more for the set-maximally parallel derivation
mode.
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Summary. We consider P systems that assigns storage costs per step to membranes,
and execution costs to rules. We present an abstract syntax of the new class of membrane
systems, and then deal with costs by extending the operational semantics of P systems
with promoters, inhibitors and registers. We use Priced-Timed Maude to implement the P
systems with costs. By using such a rewriting engine which corresponds to the semantics
of membrane systems with costs, we are able to prove the operational correctness of this
implementation. Based on such an operational correspondence, we can analyze properly
the evolutions of the P systems with costs, and verify several reachability properties,
including the cost of computations that reach a given membrane configuration. This
approach opens the way to various optimization problems related to membrane systems,
problems making sense in a bio-inspired model which now can be verified by using a
complex software platform.

1 Introduction

Membrane computing is introduced in [10] and represents now a well known branch
of natural computing that aims to abstract computing ideas and formal models
from the structure and functioning of living cells, as well as from the organization
of cells in tissues, organs or other higher order structures such as colonies of cells
[11]. Membrane systems (known also as P systems) are parallel and distributed
models working with multisets of symbols in cell-like compartmental architectures.
The existing results in membrane computing refer mainly to the P systems char-
acterization of Turing computability, providing also some polynomial solutions to
NP-complete problems by using an exponential workspace created in a “biological
way”.

Time was introduced and studied in the framework of membrane systems [2].
However, time is not the only quantitative notion of interest; other quantities such
as energy [8] or accumulated cost can be included in such systems. The notions of
energy and cost are connected to (evolution) time, because the longer the system
evolves, the higher the energy and costs are. For simplicity, in this paper we study
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only the (evolution) costs in a membrane system. A membrane system with costs is
essentially a simple membrane system in which object storage costs per evolution
step are assigned to membranes, and execution costs are assigned to rules. Notice
that here we consider the cost only as an external/observer variable, and thus
whether a rule is applicable only depends on available resources (not cost value).
In this paper we present an abstract syntax of the membrane systems with costs,
and then define a structural operational semantics of P systems with costs. We
use a rewriting engine called Priced-Timed Maude to implement these P systems.
After proving an operational correctness of this implementation, we can analyze
properly the evolutions of the P systems involving costs, We look at the cost
of computations reaching a given membrane configuration. This paper represents
a first step towards a more detailed analysis of various costs in the context of
membrane systems.

This class of P systems with costs differs from energy-based P systems [8],
a model of membrane systems whose computations occur by manipulating the
energy associated to the objects, as well as the free energy units occurring inside
the regions of the system. In [8] the energy units are used to transform objects,
while in this paper the costs are used only to compute the evolution cost, and
eventually to return an optimal evolution with respect to its cost.

2 Membrane Systems with Costs

Before describing in a formal way the evolution of a P system with costs, we present
first an inductive definition of the membrane structure, the sets of configurations,
and a definition for the corresponding transition systems.

Configurations are states of a transition system, and a computation consists
of sequences of transitions between configurations terminating (if it terminates)
in a final configuration. A sequence of transition steps represents a computation.
A computation is successful if this sequence is finite, namely there is no rule
applicable to the objects present in the last committed configuration. In a halting
committed configuration, the result of a successful computation is the total number
of objects present either in the membrane considered as the output membrane, or
in the outer region.

In general,operational semantics provides a framework for defining a formal
description of a computing system. It is intuitive and flexible, and it becomes
more attractive during the years by the developments presented in [12] and [9]. In
basic P systems, a computation is regarded as a sequence of parallel applications
of rules in various membranes, followed by a communication step and a dissolving
step. The operational semantics of the P systems emphasises the deductive nature
of the membrane computing by describing the transition steps by using a set
of inference rules [3]. The operational semantics of P systems is implemented by
using the cost extension of the rewriting system called Maude [7]. The relationship
between the operational semantics of P systems and Maude rewriting is given by
certain operational correspondence results.
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Let O be a finite alphabet of objects over which we consider the free commuta-
tive monoid O∗c , whose elements are multisets. The empty multiset is denoted by
empty. Objects can be enclosed in messages together with a target indication. We
have here messages of typical form (w, here), out messages (w, out), and in mes-
sages (w, inL). For the sake of simplicity, hereinafter we consider that the messages
with the same target indication merge into one message:∏

i∈I(vi, here) = (w, here),
∏

i∈I(vi, inL) = (w, inL),
∏

i∈I(vi, out) = (w, out),
with w =

∏
i∈I vi, I a non-empty set, and (vi)i∈I a family of multisets over O.

We use the mapping rules to associate to a membrane label the set of evolution
rules: rules(Li) = Ri, and the projections L, w and c which return from a membrane
its label, its current multiset, and its cost, respectively.

The set M(Π) of membranes for a P system with costs Π, and the membrane
structures are inductively defined as follows:

• if L is a label, c is a cost and w is a multiset over O ∪ (O × {here}) ∪ (O ×
{out})∪{δ}, then 〈L ; c |w 〉 ∈ M(Π); 〈L ; c |w 〉 is called simple (or elementary)
membrane, and it has the structure 〈〉;

• if L is a label, c is a cost and w is a multiset over O ∪ (O × {here}) ∪ (O ×
{inL(Mj)| j ∈ [n]}) ∪ (O × {out}) ∪ {δ}, M1, . . . ,Mn ∈ M(Π), n ≥ 1, where
each membrane Mi has the structure µi, then 〈L ; c |w ; M1, . . . ,Mn 〉 ∈ M(Π);
〈 L ; c | w ; M1, . . . ,Mn 〉 is called a composite membrane having the structure
〈µ1, . . . , µn〉.
We conventionally suppose the existence of a set of sibling membranes denoted

by NULL such that M,NULL = M = NULL,M and 〈L |w ; NULL 〉 = 〈L |w 〉.
The use ofNULL significantly simplifies several definitions and proofs. LetM∗(Π)
be the free commutative monoid generated byM(Π) with the operation ( , ) and
the identity element NULL. We defineM+(Π) as the set of elements fromM∗(Π)
without the identity element. Let M+, N+ range over non-empty sets of sibling
membranes, Mi over membranes, M∗, N∗ range over possibly empty multisets of
sibling membranes, and L over labels. The membranes preserve the initial labelling,
cost and evolution rules in all subsequent configurations. Therefore in order to
describe a membrane we consider its label, its cost and the current multiset of
objects together with its structure.

A configuration for a P system with costs Π is a skin membrane which has no
messages and no dissolving symbol δ, i.e., the multisets of all regions are elements
in O∗c . We denote by C(Π) the set of configurations for Π.

An intermediate configuration is an arbitrary skin membrane in which we may
find messages or the dissolving symbol δ. We denote by C#(Π) the set of interme-
diate configurations. We have C(Π) ⊆ C#(Π).

Each P system with costs has an initial configuration which is characterized
by the initial multiset of objects for each membrane and the initial membrane
structure of the system. For two configurations C1 and C2 of Π, we say that there
is a transition from C1 to C2, and write C1 ⇒ C2, if the following steps are executed
in the given order:

1. maximal parallel rewriting step as in [6];
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2. parallel communication of objects through membranes;
3. parallel membrane dissolving of the membranes containing δ.

The last two steps take place only if there are messages or δ symbols resulting
from the first step, respectively. If the first step is not possible, then neither are
the other two steps; we say that the system has reached a halting configuration.

To illustrate these notions we give in Figure 1 a small example containing only
of a single membrane labelled by 1 and with associated cost 2. This membrane
contains three objects A and three rules with different assigned costs (rule R0 with
cost 10, rule R1 with cost 8 and rule R2 with cost 12). A possible evolution leads
in just one step to a configuration consisting of three objects B and with the cost
of evolution of 30 resulting from applying three times rule R0.

Fig. 1. A Small P System with Costs

1

2

A + A + A

R0 : A
10−→ B

R1 : A
8−→ C

R2 : C
12−→ D

3 Implementing P Systems with Costs by using Maude

Reasoning about the accumulated cost (of energy usage, for instance) during be-
haviours is crucial in biological and embedded systems (e.g., wireless sensor net-
works) where minimizing overall consumed resources is critical. Generally, by using
a rewriting engine called Maude, a formal specification of a system can be auto-
matically transformed into an interpreter. Moreover, Maude provides an useful
new extension called Priced-Timed Maude [4] supporting the formal specification
and analysis of systems in which the cost of performing actions plays a significant
role. The tool offers a search command, a semi-decision procedure for finding fail-
ures of safety properties, and also a model checker. Since the P systems with costs
combine the power of parallel rewriting in various locations (compartments), the
power of local and contextual evolution and the use of rewriting costs, it is natural
to use a rewriting engine and a rewrite theory.

Roughly speaking, a rewrite theory is a triple (Σ,E,R,L), where (Σ,E) is an
equational theory used for implementing the deterministic computation, therefore
(Σ,E) should be terminating and Church-Rosser, R is a set of rewrite rules with
costs used to implement nondeterministic and/or concurrent computations, and L
is a set of tick rules which can model the time elapse in the system. Therefore we
find rewriting logic suitable for implementing these membrane systems.
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For simplicity, in this section we consider only costs added to the evolution
rules. A P system consists of a maximal parallel application of the evolution rules,
the (repeated) steps of internal evolution, communication, and dissolving. This se-
quence of steps uses a kind of synchronization. A P system has a tree like structure
with the skin as its root, the composite membranes as its internal nodes and the
elementary membranes as its leaves. The order of the children of a node is not im-
portant due to the associativity and commutativity properties of the concatenation
operation , of membranes.

In what follows we extend with costs the operational semantics of membrane
systems with promoters, inhibitors [5] and registers [1]. We define an operational
semantics of membrane systems by means of three sets of inference rules cor-
responding to maximal parallel rewriting, sending messages and dissolving. The
notation R ` t→ t′ is used to express that t→ t′ is provable in the theory R using
the inference rules of rewriting logic. We use the syntax of the rewriting engine
Maude extended for systems with costs [4] to describe a rewriting theory which
corresponds faithfully to the semantics of membrane systems with costs.

In rewriting logic we describe a multiset of objects and messages as consisting
of four “bags” of which three are multisets of objects (standing for objects which
are actually in the membrane, objects with message here, objects with message
out), and the fourth containing a multiset of pairs of objects and labels i which
stand for objects with message ini. This representation facilitates the rewriting
logic specification because in this way there is no need for additional sorts with
respect to messages. We first consider the following sorts:

sorts Obj ObjMultiset ObjAddressMultiset Label Rule RuleSet .
subsort Obj < ObjMultiset . subsort Rule < RuleSet .

By emptyMO and emptyMAO we denote the empty multiset of objects, respec-
tively of objects with labels, and use + to denote the addition on both ObjMultiset

and ObjAddressMultiset.
The multiset of objects with addresses is constructed through the operator
op in : ObjMultiset Label -> ObjAddressMultiset.

A rule is constructed through the operator

op _->_|_|_|_|_|_ : ObjMultiset ObjMultiset ObjMultiset
ObjAddressMultiset ObjMultiset ObjMultiset Cost -> Rule [ctor] .

The first slot is for the objects to be consumed (it is the left hand side of the rule);
the second slot is for the objects produced with label ”here”; the third slot is for
the objects produced with label ”out”; the fourth slot is for the objects produced
with label ”in child”; the next two slots are for promoters respectively inhibitors.
The last slot is used to give the cost of applying the rule. The operators which are
used to manipulate the components of a rule are

ops lhs rhsHere rhsOut promoter inhibitor : Rule -> ObjMultiset .
op rhsIn : Rule -> ObjAddressMultiset .
op costOf : Rule -> Cost .
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rulesIn : Label -> RuleSet is used to present the rules inside a membrane.
We work with register membranes even when implementing message passing

and dissolving. This does not modify in any way the semantics. In what follows,
all the membranes are register membranes, even when not explicitly stated.
A register membrane is constructed through the operator

op <_‘[_|_|_|_‘]_>_ : Label ObjMultiset ObjMultiset ObjMultiset
ObjAddressMultiset MembraneSet ObjMultiset -> Membrane [ctor] .

The first slot is for the label; the second slot is for the objects inside the membrane;
the third slot is for the objects with label ”here”; the fourth slot is for the objects
with label ”out”; the fifth slot is for the objects with label ”in child”; the sixth slot
is for the set of children membranes; the last slot is for the register. The operators
which are used to manipulate the components of a rule are

op labelOf : Membrane -> Label .
ops register here : Membrane -> ObjMultiset .
ops content out : MembraneSet -> ObjMultiset .
op inChildren : Membrane -> ObjAddressMultiset .
op children : Membrane -> MembraneSet .

Other operators are _isIn_ which evaluates whether a multiset is contained
in another multiset, mprIrred, msgIrred, dissIrred, eraseDelta, emptyOut and
emptyReg whose names are self-explaining. We also use labelsOf to gather the
membrane labels which appear in the right hand side of a rule, for the same
purpose membraneSetLabels with respect to the membrane sets, and subsetOf

to compare them. These last three functions are used only when evaluating whether
a pair formed of a membrane M and a rule R is valid:

op valid : Membrane Rule -> Bool .
ceq valid(M, R) = true if lhs(R) isIn content(M) /\ promoter(R)
isIn (content(M) + register(M)) /\ labelsOf(rhsIn(R)) subsetOf
membraneSetLabels(children(M)) /\ if (inhibitor(R) =/= emptyMO)
then (inhibitor(R) isIn (content(M) + register(M)) == false)
else true fi .

eq valid(M, R) = false [owise] .

To separate the three stages of evolution of a membrane we use four tags:

sorts evolutionType State .
ops mpr msg diss end : -> evolutionType [ctor] .
op _;_ : MembraneSet evolutionType -> State [ctor] .

where end is used to stop the rewriting once the membrane has stopped evolving.
The maximal parallel rewriting of a membrane is given by the following rules,

where the second one is executed with the cost of the corresponding rule:

crl [1] : M , MM ; mpr => M1 , MM ; mpr if
MM =/= null /\ M ; mpr => M1 ; mpr /\ M =/= M1 .

crl [2] : < L [ W1 | W2 | W3 | A ] MM > W4 ; mpr =>
< L [ W1 - lhs(R) | W2 + rhsHere(R) | W3 + rhsOut(R) | A
+ rhsIn(R) ] MM > (W4 + lhs(R) ) ; mpr with cost costOf(R)
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if mprIrred(MM) /\ R RR := rulesIn(L)
/\ valid(< L [ W1 | W2 | W3 | A ] MM > W4, R) .

crl [3] : < L [ W1 | W2 | W3 | A ] MM > W4 ; mpr =>
< L [ W1 | W2 | W3 | A ] MM1> W4 ; mpr if
mprIrred(MM) == false /\ MM ; mpr => MM1 ; mpr /\ MM =/= MM1 .

These rules impose the following evolution: if in a membrane there is some mpr-
reducible child membrane, then the membrane is replaced by a similar membrane
which has that child rewritten (rules crl [3] and crl [1]); if a membrane has
only mpr-irreducible children, all valid rules are applied one by one (rule crl [2]).
When even the skin membrane is mpr-irreducible, the following rule is applied

crl [4] : M ; mpr => emptyReg(M) ; msg if labelOf(M) == 1
/\ mprIrred(M) .

in order to empty the register and to begin the next evolution stage, that of the
message sending.

This message sending stage is governed by the following rules:

crl [5] : M , MM ; msg => M1 , MM ; msg if
MM =/= null /\ M ; msg => M1 ; msg /\ M =/= M1 .

crl [6] : < L [ W1 | W2 | W3 | A ] MM > W4 ; msg => if L == 1 then
< L [ W1 + W2 + out(MM1) | emptyMO | emptyMO | emptyMAO ]
emptyOut(sendIn(A, MM1)) > W4 ; msg else
< L [ W1 + W2 + out(MM1) | emptyMO | W3 | emptyMAO ]
emptyOut(sendIn(A, MM1)) > W4 ; msg fi
if msgIrred(MM) == false /\ MM ; msg => MM1 ; msg /\ msgIrred(MM1) .

crl [7] : < L [ W1 | W2 | W3 | A ] MM > W4 ; msg => if L == 1 and
W3 =/= emptyMO then < L [ W1 + W2 + out(MM) | emptyMO
| emptyMO | emptyMAO ] emptyOut(sendIn(A, MM)) > W4;msg else
< L [ W1 + W2 + out(MM) | emptyMO | W3 | emptyMAO ]
emptyOut(sendIn(A, MM)) > W4 ; msg fi if msgIrred(MM)
/\ (A =/= emptyMAO) or (W2 =/= emptyMO) or out(MM) =/= emptyMO .

In this stage a membrane evolves in a single rewriting step: if the set MM
of children membranes is msg-reducible, then MM rewrites to a msg-irreducible
MM1(rule crl [5]); the membrane M with objects W1 which contains MM
is rewritten to the membrane M1 with objects W1 + W2 + out(MM1) (i.e. the
objects with messages of form (a, here) are transformed in objects of form a, and
the objects sent out by the set MM1 of membranes are added), and children
emptyOut(sendIn(A,MM1)) (i.e. the objects of form (a, inj) are sent into the
membrane with label j and then the objects with messages of form (a, out) are
erased from every child membrane). The result is msg-irreducible, because the
only objects with messages are in the membrane M1, and they are of the form
(a, out) (if M1 is the skin not even those objects remain). If the set MM of
children membranes is msg-irreducible, then the same process takes place, except
that instead of MM1 it is still MM(rule [7]).
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Rules crl [5], crl [6] and crl [7] correspond to inference rules msg1 and
msg2 . In defining the transition relation Tmsg we treat the case of an elementary
membrane separately, since we prefer to avoid extending Tmsg to sets of mem-
branes. Although rules crl [6] and crl [7] look almost identical, we cannot in-
clude them in a single rule with the conditional part if MM ; msg => MM1 ; msg

because it would lead to an infinite loop of identical rewritings. This happens be-
cause MM ;msg →MM ;msg is provable in rewriting logic.

When the entire membrane system is msg-irreducible, the rule

crl [8] : M ; msg => M ; diss if labelOf(M) == 1 /\ msgIrred(M) .

is applied. This rule starts the next evolution stage, that of dissolving.

The rules for dissolving membranes are:

crl [9] : M , MM ; diss => M1 , MM ; diss if
MM =/= null /\ M ; diss => M1 ; diss /\ M =/= M1 .

crl [10] : < L [ W1 | W2 | W3 | A ] MM > W4 ; diss =>
< L [ W1 + eraseDelta(content(M)) | W2 | W3 | A ]
children(M) , MM1 > W4 ; diss if dissIrred(MM) /\ M , MM2 := MM
/\ delta isIn content(M) /\ MM1 := children(M) , MM2 .

crl [11] : < L [ W1 | W2 | W3 | A ] MM > W4 ; diss =>
< L [ W1 | W2 | W3 | A ] MM1 > W4 ; diss
if dissIrred(MM) == false /\ MM ; diss => MM1 ; diss
/\ dissIrred(MM1) .

If the set MM of children membranes for a membrane M is diss-reducible and
it rewrites to a diss-irreducible set of membranes MM1, then M is rewritten to
the similar membrane M1 which has children membranes MM1 (rules crl [9]

and crl [11]). When the set MM of children membranes is diss-irreducible and
at least one of the membranes in MM contains the special symbol δ, then all the
membranes from MM which contain δ are dissolved (rule crl [10]). Note that
a top membrane M does not dissolve even when it does contain δ. This happens
because the rewriting rules are given with the purpose of describing the evolution
of the skin membrane, which can never dissolve. Rules crl [9], crl [10] and
crl [11] correspond to inference rules msg1 and msg2. Again, we have used the
first rule in this group as a stepping stone towards the rewriting of a set of sibling
membranes, while avoiding to include the rewriting of a set of sibling membranes
in the transition relation Tdiss.

When the skin membrane is diss-irreducible but is mpr-reducible, the rule

crl [12] : M ; diss => M ; mpr if labelOf(M) == 1
/\ dissIrred(M) /\ mprIrred(M) == false .

is applied; it starts once more the maximal parallel rewriting stage of the evolution.
However, if the skin membrane is also mpr-irreducible, rule

crl [13] : M ; diss => M ; end if labelOf(M)==1
/\dissIrred(M)/\mprIrred(M).
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is applied; in this case it ends the rewriting. We do not need to evaluate the
msg-irreducibility of the skin membrane, because the dissolving stage can only be
reached by msg-irreducible membranes.

The correspondence between the operational semantics given by the transition
relation⇒ on one hand, and the rewriting logic implementation on the other hand
is is given by a mapping ψ : Π → State defined by the natural encoding presented
above. By R� we denote the rewrite theory defined by the rewrite rules [1] . . .
[13] together with the operators and equations defining them. The next theorem
emphasizes the correspondence between the dynamics of the membrane systems
with costs and the rewrite theory.

Theorem 1. M
c⇒ N iff RD ` ψ(M)⇒∗ ψ(N) with cost c.

4 Analyzing and Verifying P Systems With Costs

Using the previous operational correspondence provided by Theorem 1, the soft-
ware experiments done in Priced-Timed Maude reflect exactly the evolution of the
encoded membrane systems with costs. In this section we use a simple example of
a membrane system with costs, example that is described in rewriting logic in the
following form:

eq R0 = A -> B | emptyMO | emptyMAO | emptyMO | emptyMO | 10 .
eq R1 = A -> C | emptyMO | emptyMAO | emptyMO | emptyMO | 8 .
eq R2 = C -> D | emptyMO | emptyMAO | emptyMO | emptyMO | 12 .
eq Q = < 1 [ A + A + A | emptyMO | emptyMO | emptyMAO ] null > emptyMO .
eq rulesIn(1) = R0 R1 R2 .
eq S = Q ; mpr .

When entering the rewrite command
(ptfrew {S} in time <= 0 with cost <= 70 .)

Maude presents the following output:

Result PricedTimedSystem :
{< 1[B + B + B | emptyMO | emptyMO | emptyMAO]null > emptyMO ; end}

in time 0 with cost 30

We use priced-time Maude to check if certain configurations of a system can be
reached (reachability problem).

(ptsearch {S} =>* {X:StateStop} with no limits .)

We use the ptsearch command to answer the question: starting from the initial
membrane system S, what are the reachable final states (the ones containing the
end tag)? This is done by searching for states which match a corresponding pattern.
In this example, we use the => ∗ symbol, meaning that we are searching for
several steps. If one is interested in a bounded number of reachable final states,
the command ptsearch[n] can be used to obtain systems reachable in n steps. In
our case, the output is
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Priced-timed search in EXAMPLE
{S} =>* {X:StateStop}

with no time or cost limit and with mode default time increase 10 :

Solution 1
TIME_ELAPSED:Time --> 0 ; TOTAL_COST_INCURRED:Cost --> 30 ;
X:StateStop --> < 1[B + B + B | emptyMO | emptyMO | emptyMAO]null
> emptyMO ; end

Solution 2
TIME_ELAPSED:Time --> 0 ; TOTAL_COST_INCURRED:Cost --> 40 ;
X:StateStop --> < 1[B + B + D | emptyMO | emptyMO | emptyMAO]null
> emptyMO ; end

Solution 3
TIME_ELAPSED:Time --> 0 ; TOTAL_COST_INCURRED:Cost --> 50
X:StateStop --> < 1[B + D + D | emptyMO | emptyMO | emptyMAO]null
> emptyMO ; end

Solution 4
TIME_ELAPSED:Time --> 0 ; TOTAL_COST_INCURRED:Cost --> 60 ;
X:StateStop --> < 1[D + D + D | emptyMO | emptyMO | emptyMAO]null
> emptyMO ; end

No more solutions

It should be noticed that after only two steps, the cost of the reachable config-
urations is very different depending on the rules applied.

In addition to these commands, Priced-Timed Maude allows to find optimal
results such as the earliest state matching a pattern, as well as the cheapest evo-
lution to reach a given configuration. In our case, the earliest reachable states
containing the evolution type end can be found using the following command

(priced find earliest { Q ; mpr} =>* {X:MembraneSet ; end}
with no cost limit .)

that returns the result:

Priced find earliest {X:MembraneSet ; end} in EXAMPLE such that
{Q ; mpr} =>* {X:MembraneSet ; end}

with no cost limit with mode default time increase 10 :

Result: {< 1[B + B + B | emptyMO | emptyMO | emptyMAO]null >
emptyMO ; end} in time 0 with cost 30

Using the command find cheapest, it is possible to detect the cheapest evo-
lution (as cost) to reach a given configuration.

(find cheapest { Q ; diss} =>* {X:MembraneSet ; mpr}
with no time limit . )

This command verifies that indeed reaching a configuration ready to apply maxi-
mal from a configuration ready to apply dissolution rules takes 10 time units with
cost 0.
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Find cheapest in EXAMPLE
{Q ; diss} =>* {X:MembraneSet ; mpr}

with no time limit time and with mode default time increase 10 :

Solution
TIME_ELAPSED:Time --> 10 ; TOTAL_COST_INCURRED:Cost --> 0 ;

X:MembraneSet
--> < 1[A + A + A | emptyMO | emptyMO | emptyMAO]null > emptyMO

5 Conclusions and Future Work

We defined P systems with costs by assigning storage costs to membranes, as
well as and execution costs to rules. We used the Priced-Timed Maude rewriting
engine to implement these P systems with costs. By using such a rewriting en-
gine corresponding to the semantics of membrane systems with costs, we proved
the operational correctness of this implementation. Based on such an operational
correspondence, we can analyze the P systems with costs and verified several in-
teresting properties.

As a future work we plan to deal with Cost Problems in the framework of
membrane systems by considering two variants of the cost problem, namely the
Cost-Threshold Problem (can we obtain an evolution cost under a certain threshold
value) and the Cost-Optimality Problem (compute the minimal evolution cost).
We also intend to study how different evolution strategies influence the computed
cost of reaching a desired configuration.
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On the 14th BWMC
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Attending the 14th Brainstorming Week on Membrane Computing1 has been a
challenge in many ways. A whole week in a place I had never been before, with
a group of people I did not know, and learning about a topic which existence I
completely ignored. With all that, given my initial hesitation, I am glad I decided
to go, because it was worth it. I attended the 14th BWMC with six other Physics
students from University of Barcelona who, like me, were interested in computa-
tional physics and were curious about the workshop, that took place in Seville
from February 1st to 5th, 2016.

First of all, I could say that in some talks I got lost almost at the beginning; they
were aimed for an audience with extensive knowledge on the topic of membrane
computing and a solid background on mathematics and/or computer science. In
other words, as a physicist and undergraduate student I felt a bit out of place.
However, the tutorial sessions, that were meant to introduce membrane computing
to those new to the field, were really useful and allowed me to follow the later
presentations. It was also crucial and appreciated the patience of the workshop
attendants; they answered any questions we asked them and even simplified some
of the talks so students could follow them more easily.

Many specific topics and applications of membrane computing to other fields
were presented during the talks. Some of them were more accessible for me than
others, but in any way I found it interesting to listen to them, and to see how
each attendee exposed about his/her research area. Despite the variety of topics
that were treated, though, I would like to focus my memoir on a simple idea and a
question: the basics of membrane computing, and how can it be applied to physics.

To summarise, membrane computing is a computational model inspired by na-
ture, in which certain processes defined by rules take place in a system or cell that
is hierarchically structured in compartments that are called membranes. This kind
of systems, named P-systems after their creator Gheorghe Păun, are composed of
multisets of objects, membranes delimiting the regions of the system, an environ-
ment, and rules that describe how a number of systems, also called machine (i.e.

1 14th BWMC website: http://www.gcn.us.es/14bwmc.
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the cell), works according to its objects and membranes, and how they interact
with each other. In the simplest case, it is considered that time is the same for all
membranes, so a computational step comprises a series of transitions that occur
regarding to the set of rules that is applied. Furthermore, in every computational
step the maximal number of possible rules is applied in each membrane. The rules
will be applied in each step until no more rules can be applied, in which case the
computation halts.

An interesting characteristic element of those systems is that they present
the possibility of adding a probabilistic factor to the rules, so a transition can
follow different rules with the corresponding probabilities that have been defined.
This introduces the concept of “fuzzy logic”. Another main point of membrane
computing is that it allows us to study a system with a very large number of
initial objects as if all of them evolved independently and in a parallel way, like it
happens on real biological systems, being the computational time proportional to
the number of steps defined by the rules.

With this simple picture of the P-systems in mind, I think that it is impossible
not to think in similar physical systems or in other problems that can be simpli-
fied in order to be modeled with membrane computing. In fact, motivated by the
workshop attendants, which encouraged us to investigate how membrane comput-
ing could involve physics and vice versa, and moved also by our own curiosity,
we thought about the improvements that membrane computing could bring into
physics and in which cases could we apply it.

An important constraint we saw was that any system defined in the continuum
needed to be discarded, because the set of objects that we consider is discrete.
Nevertheless, membrane computing allows us to study certain magnitudes of a
system with no need to define neither positions nor momenta.

The first case we decided to study was the Stern-Gerlach experiment of Quan-
tum Mechanics. It is a simple example that can be modeled by membrane com-
puting, where the magnitude under study is the third component of the spin of
a very large number of incident particles that initially we define as positive and
that after going through a Stern-Gerlach device can change or remain the same
with probabilities that depend on the angle in which the Stern-Gerlach is oriented.
By using a very high number of particles, the final count of positive and negative
third components reproduces, respectively, the probabilities expected, and thus we
show that by taking a measure, the result is altered.

The second example we considered is the uranium-238 decay chain, where we
had to take several simplifications in order to apply what we had learnt from
membrane computing. Initially, we start with n uranium nuclei, that naturally
decay to form thorium-234 nuclei emitting α particles. While this decay takes place,
since the resulting nuclei are also radioactive, they will decay in turn following
the decay chain, until lead-206 is reached, which is a stable nucleus. The evident
problem that this system entails is that, as we begin with n nuclei and not with a
single nucleus, the number of disintegrations that compound the chain depend on
the amount of parent nuclei left at every step of time, so we had to consider that
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a new reaction could not begin until all the parent nuclei of the step before of the
chain had decayed. With that unrealistic but useful approximation, the different
disintegrations or reactions that form the decay chain are uncoupled to each other,
and the resulting system can be easily modeled with membrane computing. A
second simplification we had to take into consideration, which derives essentially
from the first one, is that the time it takes for every reaction to take place must
be constant and proportional to a certain number of time steps.

With those simplifications, all complexity and part of the interest of the system
vanish and we are left with a rather simple problem, so we tried to study it, as in
the first case, as a statistical problem: given that some nuclei can follow different
decay modes that are weighed by some probabilities experimentally determined,
membrane computing allows us to count at the end of the computation, once
all reactions have taken place, the amount of resultant particles of each kind that
have been emitted at every step. Since our nuclei decay mainly following α and β−

decay, we expected alpha particles or antineutrinos and electrons, and therefore we
could see if the amounts of the different kinds of particles (that denoted the decay
mode followed in each step) were the same for every initial U-238 nuclei or showed
variations. Again, this is a very simple case and with a questionable utility, but it
occurred to us that perhaps it could be described with another kind of system that
allowed us to remove the simplifications and consider the real system and how it
evolved in time. For the time being, we are working on it.

The attendees and organizers of the venue were, as I mentioned at the begin-
ning, another remarkable element of the workshop. They not only helped us to
enter into a world of which we knew little or nothing, but also made us feel like
at home and encouraged us to participate more actively in the workshop. That
at the end of the workshop we were presenting the few ideas we had been able to
collect during the week, apart from putting us under pressure and keeping us busy
even in the sparse free hours, was also a great motivation for asking and trying to
understand more deeply.

Last but not least, I would like to emphasize how much I have learnt from my
colleagues. Even though most of us had not met before, we managed to work as
a group, first to help each other to understand what was explained in the talks,
and later to make motivation alive and to work together in our little contribution
to the workshop. We had very similar motivations, and that encouraged us to
naturally build a team to achieve our common goal. And, at least in my case, I
have participated much more in the workshop that what I would have participated
had I gone alone.

To conclude, I think it has been a very rewarding experience, useful to learn
about a new topic and to see how research about it was accomplished, to practice
with team work, and to motivate me to improve in my studies and to head towards
research.
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Summary. This work is about modelling an experiment composed by multiple Stern-
Gerlach devices using Membrane Computing. We will study the behaviour of a set of
independent particles passing through three linked Stern-Gerlach devices and discarting
the spin down particles after passing through the first one, taking profit of the Membrane
Computing’s ability of running parallel processing. Using a cell-like model to describe
the system and testing it using the P-lingua framework we have obtained the theorically
predicted results when the number of initial multisets is high enough.

1 Introduction

In 1998 Gheorghe Păun introduced an alternative computing science paradigm,
Membrane Computing (MC from now on) [4]. P-systems appeared, and with it,
an innovative way to interpret the natural world. Those models are based on the
structure of living cells and how they process compounds within their membranes
(cell-like system) or even how they interact one with the others (tissue-like system).
To model the processes occurring inside them, they make use of rules, which
represent the different reactions or exchanges of the objects inside or through
the membranes. Those rules can be of several types: communication, rewriting,
annihilation, etc. For years, they have been applied to study the evolution of
biological systems, neuronal systems or even complex ecosystems. Nevertheless, the
application of Membrane Computing paradigms in other fields has not been yet so
promoted. Therefore, one of the aims of this project is to extend the Membrane
Computing applicability to physics. Moreover, this article has been used as a excuse
in order to learn about this new computing paradigm and to be able to seek for
possible further applications.
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1.1 Combining MC with Physics

When studying Physics the aim is not to know exactly what things are, but to un-
derstand how they behave, this is the reason why it is so important to model natural
phenomena. The modelling process’ goal is to attain a set of analytical expressions
that describes the studied system reduced into a determined approximation.

Because of the complexity of those analytical expressions, it is commonly useful
to solve them with numerical methods. When dealing with a great number of
particles, even with n→∞, being n the number of particles, the computation time
could become large enough that it would turn inefficient (to use certain numerical
methods). Here is where Membrane Computing provides a really suitable framework,
due to maximal parallelism, one of MC ’s main features.

Membrane Computing is originally based in a model analogous to cells and
tissues. Because of that, it could fit perfectly in a system of discrete particles. By
making the analogy with the structure provided by MC, one could identify particles
with the objects, whereas rules applied in each membrane enable us to model
particles’ behaviour. It is also a useful tool when working with problems involving
non-deterministic processes, i.e. those that can be found in modern physics, such as
quantum mechanics or nuclear physics, where probabilities play an important role.

1.2 Introduction to Quantum Mechanics

For many years, the world was ruled by Classical Mechanics, which considered that
all processes occurred in a deterministic way, i.e. one could predict the position
and momentum of any particle at the same time. It was not until 1900, when Max
Planck published his paper [6], that new phenomena which did not coincide with
classical physics stopped seeming unwarranted, then quantum physics was borned.

Quantum Mechanics is a fundamental branch of Physics that explains the
behaviour of subatomic particles and it is grounded on the idea that measurable
observables are discrete and quantified. In Quantum Mechanics, the mathematical
formalism is based on the Hilbert space, hence the Quantum world is described by
six postulates, whereas the evolution of the body’s movement in classical mechanics
is ruled by Newton’s Law.
Postulate 1. On the representation of the state of a physical system.
The maximum possible information on a physical system at a given time t is
its quantum state ψ, which is represented as a vector |ψ〉 of unitary module and
arbitrary phase in a separable Hilbert space.

Postulate 2. On the representation of measurable magnitudes.
Every measurable magnitude of the system has associated a linear and autoadjoint
operator defined on the vector space of the states. The totality of the eigenvalues is
the spectrum, and the eigenvectors define a base on the Hilbert space.

Postulate 3. On the result of the measure.
The result of measuring the observable A is one of its eigenvalues ai of the spectrum,
the probability of obtaining the result ai is given by:
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P
(ai)
ψ = |〈ai| ψ〉|2

Postulate 4. On the collapse or reduction of the wave function.
Immediately after measuring the observable A with result ai, the new state of the
system is |ai〉, i.e. the corresponding eigenvector.

Postulate 5. On the temporal evolution.
Between measures, the system evolves according to the Schrödinger equation:

ih̄
d
dt |ψ(t)〉 = H(t) |ψ(t)〉

Where H is the Hamiltonian of the system.

Postulate 6. On the Pauli exclusion principle.
The position and momentum operators for fermions satisfy commutative rules that
are directly related to the Pauli exclusion principle, i.e. that two fermions cannot
have the same quantum numbers.

2 Stern-Gerlach experiment

2.1 The basic Stern-Gerlach experiment

The Stern-Gerlach experiment [3] is used to illustrate that particles have intrinsic
properties such as the spin, the orbital momentum, etc. The total momentum of a
particle is the composition of the orbital momentum and the spin, being the last
one the observable that is measured by the Stern-Gerlach device. In particular,
we focus the study on the third component of the spin that it is discrete and
quantifiable, and can only take the values (i.e. eigenvalues) + h̄

2 (denoted as up to
simplify notation) or − h̄2 (down).

The basic Stern-Gerlach experiment is composed by a magnet that creates a
non-uniform magnetic field oriented towards a general direction n̂ that is contained
in the plain surface perpendicular to the particle’s direction of propagation (the
y axis in Figure 1). Once the particle has passed through the magnetic field, the
third component of the spin may have changed.

In the particular case of a Stern-Gerlach (device) oriented towards the z axis
(i.e. the magnetic field too), the third component of the spin is measured after
the particles passes through. While in a more general case (where n̂ is a general
direction as mentioned above), the measured magnitude is the projection of the
spin in that arbitrary direction.

2.2 The experiment modelled with MC

The modelled experiment consists on three Stern-Gerlach devices situated along
the x axis, and a set of particles that go through the three of them and impact
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on a screen. Initially, the incident particles have an undetermined state, i.e. the
third component of the spin may be positive or negative and unknown unless it
is explicitly measured. The first Stern-Gerlach, which is ẑ-oriented, defines the
third component of the spin with a fifty percent of probability of being either
positive (or up, to simplify notation), or negative (down). Then, once a particle
with non-determined spin goes through the first Stern-Gerlach device, which in
Figure 2 is labelled as SG1, the spin-state of the particle becomes determined. This
is what we define as the initial state for the other two Stern-Gerlach devices. Since
we are considering an arbitrary number n of incident particles, after this step we
would obtain 50% particles with third component of the spin up and 50% down if
n is large enough.

S

N

y

x

z

x

z

up

down

Fig. 1: Original Stern-Gerlach experiment, with the magnet parallel to the ẑ axis
so the z component of the spin is measured.

For the second Stern-Gerlach device, we discard the particles with initial spin
down and make the up-particles go through the magnet (labelled as SG2), oriented
with an arbitrary angle θ as shown in Figure 2. In this general case, the probabilities
of obtaining spin up or spin down do not only depend on the initial state of the
particle (now restrained to up), but also on the angle θ between the Stern-Gerlach
device and the z axis. Those probabilities are derived on the following lines.

For n̂ = sin θı̂ + cos θk̂ the direction of the Stern-Gerlach device and σ =
σx ı̂+ σy ̂+ σz k̂ a general vector for the Pauli matrices3, the associated matrix is

3 The Pauli matrices are the most general hermitic matrices of dimension 2 × 2 with
eigenvalues 1 and −1, and are defined as:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
With eigenvalues 1 and −1 and the corresponding eigenvectors:
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non-defined
spin spin up

y
x

z

x

SG 1
initial state

z

SG 2
SG 3

θ

up

down

Fig. 2: Three Stern-Gerlach devices as proposed in this article

n̂σ =
(

cos θ sin θ
sin θ − cos θ

)
Given that the eigenvalues are +1 and −1 as in the Pauli matrices, and imposing
that the corresponding eigenvectors generalised as (α β) should be normal and
therefore satisfy that |α|2 + |β|2 = 1, the eigenvectors found are:

|n̂σ = +1〉 =
(

cos θ/2
sin θ/2

)

|n̂σ = −1〉 =
(
− sin θ/2
cos θ/2

)
And the probabilities4 of obtaining spin up or down for a particle with initial up
state5 are defined by:

|σx = +1〉 = 1√
2

(
1
1

)
|σx = −1〉 = 1√

2

(
1
−1

)
|σy = +1〉 = 1√

2

(
1
i

)
|σy = −1〉 = 1√

2

(
1
−i

)
|σz = +1〉 =

(
1
0

)
|σz = −1〉 =

(
0
1

)
4 More on notation: the first subscript refers to the initial state, and the second one to
the final state, so P↑↓ is the probability of obtaining down spin given a particle with
initial spin up.

5 Notation for the initial states up or down:
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P↑↑ = |〈n̂σ = +1| +〉|2 =
∣∣∣∣(cos θ/2 sin θ/2

)(1
0

)∣∣∣∣2 = cos2 θ

2

P↑↓ = |〈n̂σ = −1| +〉|2 =
∣∣∣∣(− sin θ/2 cos θ/2

)(1
0

)∣∣∣∣2 = sin2 θ

2
Following that same procedure, the probabilities for initial down state particles
are:

P↓↑ = |〈n̂σ = +1| −〉|2 =
∣∣∣∣(cos θ/2 sin θ/2

)(0
1

)∣∣∣∣2 = sin2 θ

2

P↓↓ = |〈n̂σ = −1| −〉|2 =
∣∣∣∣(− sin θ/2 cos θ/2

)(0
1

)∣∣∣∣2 = cos2 θ

2
Finally, the particles will pass through the last SG device (SG3), which is

oriented on the z axis and therefore allows us to measure the third component of
the spin6 and count how many particles have as final state spin up or spin down.
This result, though redundant, shows one of the most important facts of Quantum
Mechanics: that measure alters the system. As we can observe here, though we
considered only the up-particles to go through the second Stern-Gerlach, on the
final state (i.e. the screen) we have recovered the initial distribution of fifty percent
of particles up and fifty percent down. See Figure 3 for an scheme of the proposed
experiment.

SG 1 SG 2 SG 3
u

d

Block

+ u

d
θ

n · P↑↑

n · P↑↓−

Defining the initial state Determine n · P↑↑ and n · P↑↓, in agreement

with their probabilities

Fig. 3: Schematic description of the proposed experiment

3 P-system model

3.1 PDP systems

P systems [2] [5] are an abstraction of the membrane structure inside a cell, which
delimite regions containing objects that can evolve acording to certain rules. In

up: |↑〉 = |+〉 =
(

1
0

)
down: |↓〉 = |−〉 =

(
0
1

)
6 As a reminder, the Stern-Gerlach device basically measures the projection of the spin
in the direction that it is oriented, i.e. a ẑ-SG measures the third component Sz and
so on.
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general, the dynamic of those systems is defined through a non-deterministic and
synchronised mode. Population Dyanmics P systems (PDP) models are a complex
variant of P systems, as they consider a collection of environments, each containing
a cell (all of them with the same membrane structure and rules) connected among
them as a network. Also, in those models, rules are associated with probabilistic
functions and membranes with polarizations. All these ingredients make PDP
systems a useful computational tool to model complex systems.

On this articles, we focus on a reduced version of PDP systems as no envrionment
and polarizations are needed. What follows are the main aspects.

We define a probabilistic P system as a tuple

Π = (Γ, µ,M1, . . . ,Mq, R, {fr|r ∈ R})

where:

• Γ is a finite set, not empty, called alphabet, whose elements are named objects
of Π. The whole of all finite multisets over Γ is denoted by MF (Γ ).

• µ is a tree structure, labelled by {i|1 ≤ i ≤ q}, that describes the membranes’
structure. The skin membrane (also named as tree root) is the only one labelled
by 1.

• Mi ∈MF (Γ ), 1 ≤ i ≤ q, is the initial multiset of objects associated to cell i.
• R is a finite set of evolution rules of the form: u [v]i → u′ [v′]i, where u, v, u′, v′ ∈
MF (Γ ), 1 ≤ i ≤ q, and |u| + |v| 6= 0. With u [v]i being the left-hand side of
the rule.

• For each r ∈ R, fr ∈ [0, 1], describes the probability distribution over the rules
with a same left-hand side. Then

∑
r fr = 1 for all the the rules in R whose

left-hand side is equal.

A rule r ∈ R of the form u [v]i → u′ [v′]i can be applied within a membrane
labelled i if it contains v and its parent membrane contains u. If a rule of this kind is
applied, objects in v and u vanish from membrane i and its parent. Simultaneously,
objects in v′ and u′ are included in membrane i and its parent, respectively.

A configuration for any unit time is a tuple that specifies the multisets of objects
that can be found in each membrane. In every step of time, rules applied are chosen
in a non-deterministic way depending on its left-hand side, taking into account the
probability associated to each of them. A maximal number of rules are applied
simultaneously. Computation is a succession of configurations such that the first
one coincides with the initial configuration and every of the remaining are obtained
from the former using the rules of the system as it has been described above.

3.2 Model

In order to test the designed system we have define it for the simulator given by
the P-lingua framework, using a single cell with two inner membranes. Given n as
the number of particles we want to do the experiment with, we put an object a (in
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membrane 2) n times, i.e., an would be the input multiset.

Let ΠSG = (Γ, µ,M1,M2,M3, R, {fr|r ∈ R}), where:

• Γ = {a, u, d} is the alphabet we use for this multiset.
• µ = [ [ ]2 [ ]3 ]1 is the structure of the membranes.
• Mi = ∅, i ∈ {1, 3}.
• M2 = an.
• The set of rules R, each rule with its corresponding probability, is:

(a) These rules take care of the initial state spin of the particles that is
determined by the first Stern Gerlach device. The particles with spin down
are blocked.
r1 ≡ [a]2

1/2−−→ [d]2
r2 ≡ [a]2

1/2−−→ u[ ]2
(b) Here, we simulate the particles passing through the second and third Stern

Gerlach devices. The spin of the particles is determined according to a
probability given by the angle of the magnetic field of the second Stern
Gerlach with the ẑ axis. The third Stern Gerlach is simulated by introducing
the particles with definite spin within the membrane with label 3, where
the results are collected.
r3 ≡ u[ ]3

cos2(θ/2)−−−−−−→ [u]3,
r4 ≡ u[ ]3

1−cos2(θ/2)−−−−−−−−→ [d]3,

an

[a]2
1/2−−→ [d]2

[a]2
1/2−−→ u[ ]2

u [ ]3
1−cos2 (θ/2)−−−−−−−−→ [d]3

u [ ]3
cos2 (θ/2)−−−−−−→ [u]3

1

2

3

Fig. 4: Visual representation of our P-system
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4 Code

@model<probabilistic>

def Sg(@cos(theta / 2))

{

@mu = [[]’2 []’3]’1;

/* Rules in membrane 2 */

/* Here, we determine the initial state of the particle

by blocking the particles with down spin, which remain

in the region 2*/

[a]’2 --> [d]’2 :: 0.5;

[a]’2 --> u[]’2 :: 0.5;

/* Rules in membrane 3 */

/* Implementation of the second Stern Gerlach 2 and 3*/

u[]’3 --> [u]’3 :: @cos(theta / 2) * @cos(theta / 2);

u[]’3 --> [d]’3 :: 1-@cos(theta / 2) * @cos(theta / 2);

}

def main()

{

call Sg(@cos(theta / 2));

@ms(2) = a*1000;

} /* End of main module */
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5 Results
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(a) θ = π/2.
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(b) θ = π/4.

Fig. 5: Results obtained with n = 103 particles, for two different angles, θ = π/2
and θ = π/4. In both figures, it has been represented how from the inicial n particles
we obtain a first selection of up and down particles, and from the up ones how we
reach the final results. In dashed lines are represented the path to down particles,
whereas in solid lines to the up ones. The cross at the end of the dashed line
represents the block stopping the down particles in the end of the 1st step of time,
as it is shown in Figure 3.

The results obtained:

Number of initial objects, n

101 102 103 104

u d u d u d u d

θ

0 4 0 49 0 489 0 4974 0
π/4 5 0 42 1 440 69 4239 759
π/2 4 2 32 25 259 225 2456 2586

3π/4 0 3 11 39 70 439 782 4309

Table 1: Simulated results for 4 given initial numbers of particles and for different
values of the angle θ.

For θ = 0: As it can be seen from Table 1, the simulated results validate the expected
behavior of the particles. The first Stern-Gerlach device SG1 determinates the initial
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state (spin up or down) and blocks the particles with spin down. As the two consecutive
Stern Gerlach are aligned, the probability of obtaining particles with spin down in
SG2 and SG3 is null. As n→∞, the probability of obtaining up spin particles tends
to 1

2 .
For θ = π

4 : The first Stern Gerlach continues acting as a selector of the particles with
spin up, however the SG2 and SG3 are not aligned, allowing that approximately 7%
of the particles have spin down, as it can be seen in Figure 5b.

For θ = π
2 : due to the block imposed by the SG1, approximately only half the particles

reach SG2 and SG3, and the relative orientation of both devices causes the final
proportion of both spin up and spin down particles to be approximately a quarter of
the total, as it can be seen in Figure 5a.

For θ = 3π
4 : As expected, the numbers of resulting particles with spin up and with spin

down is quite similar to the numbers obtained for θ = π
4 but exchanging the results

for up and down particles.

Summarizating, as the number of particles in the experiment increases, the exper-
imental probability (calculated P exp↑↑ = u/N and P exp↑↓ = d/N) tends to the expected
probabilities (P↑↑ = 1/2 cos2 (θ/2) and P↓↓ = 1/2 sin2 (θ/2)), as shown in Table 2.

n

101 102 103 104∣∣P↑↑ − u
N

∣∣ ∣∣P↑↓ − d
N

∣∣ ∣∣P↑↑ − u
N

∣∣ ∣∣P↑↓ − d
N

∣∣ ∣∣P↑↑ − u
N

∣∣ ∣∣P↑↓ − d
N

∣∣ ∣∣P↑↑ − u
N

∣∣ ∣∣P↑↓ − d
N

∣∣
θ

0 0.1000 0.0000 0.0100 0.0000 0.0110 0.0000 0.0026 0.0000
π
4 0.0732 0.0732 0.0068 0.0632 0.0132 0.0042 0.0029 0.0027
π
2 0.1500 0.0500 0.0700 0.0000 0.0090 0.0250 0.0044 0.0086

3π
4 0.0732 0.1268 0.0368 0.0368 0.0032 0.0122 0.0050 0.0041

Table 2: Simulated results for 4 given initial numbers of particles and for different
values of the angle θ.

6 Conclusions

The results yielded by the designed system (obtained by the P-lingua simulator) are
consistent with the theory, as have been explained above. Therefore, we have achieved our
main objective: showing that P systems can be applied to physics, and more specifically,
they can be used to implement a simplified/theoretical version of the S-G experiment,
and only a little part of the power of such computational systems was used. No other
exceptional consequence was predicted, as we understand that this works basically as a
pedagogical application. Further research could consist in trying to apply these systems to
non-trivial physical phenomena, where an analytic result might not be possible to obtain.
Taking into account the non deterministic approach inherent to the model, as explained



112 Arazo, Barroso, De la Torre, Moreno, A. Ribes, P. Ribes, Ventura, Orellana

before, and the ability to make all the computations and apply all the rules in a parallel
sequence (following the maxpar criterion), it seems a very suitable framework to implement
other experiments from the modern physics world. For example, light polarization works
in a similar way to the Stern-Gerlach experiment; with some modifications to the model
we could simulate how light behaves when passing through a polarizer. Other applications,
however, can be arbitrary hard, as the very nature of the objects used in the membranes
make it very difficult to exemplify a portion of matter, for instance. Also, it is important
to remark that a lot more theory about computation is developed around MC that the one
shown here, taking the subject as far as showing that these cell-like scheme is a universal
Turing machine [1], and thus able to make any computation our normal computers can.
There is no theoretical limit on what can be implemented.
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Summary. The main objective of this article is to modelize the process of decay of
Uranium 238 within the framework of Membrane Computing, so the evolution of great
numbers of particles can be progressively followed and the results of the desintegrations
(nuclei coming from α and β− decays) can be counted.

In order to model the process in an accurate manner, exploiting the properties of
maximal parallelism and non-determinism of Membrane Computing, a Population Dynamic
P system (or PDP for short) restricted to one environment and a P system conformed by
only the skin have been selected.

The difficulty in the characterisation of this reactions lays in the simultaneity of the
different decays, since the number of desintegrations of nucleous of each specie depend on
the number of atoms of the initial population. In order to solve this problem and keep
their attachment, the characteristic time of production of each decay has been translated
into probabilities of deintregration of a nucleous using the decay constant λ.

1 Introduction

In this paper we are considering the Uranium-238 decay, which will be explained
in the following sections. One of the first objectives was to prove that making use
of Membrane Computing and the P-lingua simulation, we could obtain the results
previously known, e.g. the ways that intermediate products of the decay took to
arrive to the final product or the amount of different elements that were produced
during the chain. Nevertheless, during the development of this project another
interesting problem, which will be explained and discussed in later on, appeared:
time implementation. At this point, our main goal was to look for different ways
of modeling the physical process as close as possible to reality. Even so, it is still
interesting to know which products we obtain in each disintegration, so we are able
to proof the most probable ways of decay.
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The problem with half-lifetimes.

During the modeling of the decay processes we found out some problems when
implementing the time involving the reactions, i.e. the disintegration of one element
into another one has an intrinsic half-lifetime associated to it. This parameter T1/2,
found in equations (1) and (2), determines the time that takes for the element
to reduce the number of its nuclei to half of the initial ones. Also, an important
constant is τ , the decay constant, defined as: τ = 1

λ , which represents the probability
of a nucleus to decay, per unit of time.

dN
dt = −λN (1)

T1/2 = ln 2
λ

(2)

Being N the number of nuclei at a given time t, and λ, the number of disinte-
grations per second, which is a constant for a given reaction.

From (1) it can be noticed that the rate of disintegration depends not only
on the constant of disintegration, λ, but also on the population of nuclei at the
time we are calculating the disintegration rate. This is the reason why rather than
considering the rate as the parameter to characterize the reactions, sometimes is
better to consider what we define as half-lifetime, T1/2, which is constant because
it only depends on λ.

These processes occur all at the same time, so to say, from the first moment
when we obtain the second nucleus of the chain, another reaction begins to take
place: it does not wait for all the first elements to react. Taking into account that
P-Systems are based in systems that evolve by steps of time we were aware we
had to find a way to approximate as close as we could to the fact that time is
continuous. To do so while trying not to differ a lot from what happens in reality
we went through different models making some changes in the implementation of
the time. The two methods that we selected, which will be further explained in
following sections, were the following:

• Steps of time: The first approach to the problem of Uranium decay consisted in
translating the half-lifetimes of the different decays of the chain by a logarithmic
scale so the considered range of variation was reduced enough in other to assign
a proportional and arbitrary amount of time for each step. There it has been
considered that one reaction must be applied to all nuclei before beginning
the following reaction of the chain. In this case, index notation was used to
represent the duration of each step. Although not being a model really close
to the real situation, one could obtain the expected results. So, for example,
the first reaction was assigned a counter that went from 1 to 7. This counter
ensured that no reaction could begin before having ended previously the earlier
step in the chain.
In a way, this process roughly simulated the different periods of time required
for each element of the chain to vanish. However it doesn’t allow that different
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elements react at the same time. The next step in the chain has to wait until
the previous one finished. Therefore, although the simulation that implements
this rules approaches reasonably well the amount of particles gathered at the
end of the process, it was not a good approach to reality, as in a real decay
several reactions of the chain take place at the same time.

• Probabilistic model: in which it has been taken into account that once a nucleus
has decayed into the next one, the following reaction can take place for that
recently generated nucleus. This model is a useful way to determine which
particles were generated at each moment, i.e. one could thoroughly examine
the intermediate stages of the decay.

2 Uranium-238 decay chain

2.1 Radioactive series

Nuclear decays [2] are transitions to less energetic —and thus more stable— states.
An initial unstable nucleus can naturally decay into another nucleus, usually but
not necessarily lighter, following different modes characterized by the emitted
particles and the resultant nuclei. The ones concerning our study are the α decay
(3) and the β− decay (4), where the emitted particles can be He nuclei (α particles)
or electrons (along with their corresponding antineutrino).

A
ZX → A−4

Z−2Y + 4
2He (3)

A
ZX → A

Z+1Y + e− + ν̄e (4)

Where A is the mass number and Z the atomic number. Other possible decay
modes are the β+ decay (with emission of positrons and electronic neutrinos), the
gamma emission, and the electronic capture. Of the three kinds of possible emitted
particles (α, β and γ), γ particles have the largest penetrating power, while α
particles interact more with matter.

The resulting nuclei of a nuclear decay can still be unstable and therefore decay
into another nuclei and the corresponding particle. In this way, several decays may
take place until a stable nucleus is reached. This process of chained decays that
begins on a unstable parent nucleus and end on a number of stable nuclei is called
a radioactive series or decay chain.

The parent nuclei of the radioactive series usually have very large lifetimes (i.e.
the time it takes to the initial population to disappear entirely). There are four
main radioactive series (three of them being natural), and all of them end in lead,
which is stable.
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2.2 U-238 decay chain

As we can see in Table 1, the Uranium decay chain consists of 15 main steps (i.e.
decay reactions). This table shows the most probable decay modes, but there are
other decays with an extremely low probability of occurring, showed with more
detail in the second part of Table 1. Nevertheless, independently from the path
chosen, the final product is always lead (Pb-206), which is stable. A diagram of
the whole U-238 decay chain and its less probable decay modes can be found in
Figure 1.
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Parent T1/2 (s) λ (decays/s) τ (s) Decay modes Reaction fr,1

238
92 U (a) 1.41× 1017 4.92× 10−18 2.03× 1017 α (100%): 234

90 Th [a]0 → x[b]0 9.68× 10−1

234
90 Th (b) 2.08× 106 3.33× 10−7 3.00× 106 β− (100%): 234

91 Pa [b]0 → z[c]0 5.33× 10−1

234
91 Pa (c) 2.41× 104 2.87× 10−5 3.48× 104 β− (100%): 234

92 U [c]0 → z[d]0 6.22× 10−1

234
92 U (d) 7.74× 1012 8.95× 10−14 1.12× 1013 α (100%): 230

90 Th [d]0 → x[e]0 2.29× 10−1

230
90 Th (e) 2.38× 1012 2.92× 10−13 3.43× 1012 α (100%): 226

88 Ra [e]0 → x[f ]0 2.53× 10−1

226
88 Ra (f) 5.05× 1010 1.37× 10−11 7.28× 1010 α (100%): 222

86 Rn [f ]0 → x[g]0 3.30× 10−1

222
86 Rn (g) 3.30× 105 2.10× 10−6 4.77× 105 α (100%): 218

84 Po [g]0 → x[h]0 5.70× 10−1

218
84 Po (h) 1.86× 102 3.73× 10−3 2.68× 102 α (99.98%): 214

82 Pb

β− (0.02%): 218
85 At

[h]0 → x[v]0
[h]0 → z[j]0

7.20× 10−1

1.44× 10−4

214
82 Pb (v) 1.62× 103 4.27× 10−4 2.34× 103 β− (100%): 214

83 Bi [v]0 → z[k]0 6.77× 10−1

214
83 Bi (k) 1.19× 103 5.81× 10−4 1.72× 103 β− (99.979%): 214

84 Po

α (0.021%): 210
81 Tl

[k]0 → x [n]0
[k]0 → z [m]0

1.43× 10−4

6.83× 10−1

214
84 Po (m) 1.64× 10−4 4.22× 103 2.37× 10−4 α (100%): 210

82 Pb [m]0 → x[p]0 1.00× 100

210
82 Pb (p) 7.00× 108 9.90× 10−10 1.01× 109 β− (100%): 210

83 Bi

α (1.9×10−6%): 206
80 Hg

[p]0 → x [o]0
[p]0 → z [q]0

7.90× 10−9

4.16× 10−1

210
83 Bi (q) 4.33× 105 1.60× 10−6 6.25× 105 β− (100%): 210

84 Po

α (13.2× 10−5%): 206
81 Tl

[q]0 → x [s]0
[q]0 → z [r]0

7.45× 10−7

5.64× 10−1

210
84 Po (r) 1.20× 107 5.80× 10−8 1.72× 107 α (100%): 206

82 Pb [r]0 → x[t]0 4.98× 10−1

206
82 Pb (t) Stable — — — — —

Other (less probable) decays

218
85 At (j) 1.50 4.62× 10−1 2.16

α (99.9%): 214
83 Bi

β− (0.1%): 218
86 Rn

[j]0 → x [k]0
[j]0 → z [l]0

8.16× 10−1

8.17× 10−4

218
86 Rn (l) 3.50× 10−2 1.98× 101 5.05× 10−2 α (100%): 214

84 Po [l]0 → x[m]0 8.92× 10−1

210
81 Tl (n) 7.80× 101 8.89× 10−3 1.13× 102 β− (100%): 210

82 Pb [n]0 → z[p]0 7.38× 10−1

206
80 Hg (o) 4.99× 102 1.39× 10−3 7.20× 102 β− (100%): 206

81 Tl [o]0 → z[s]0 7.00× 10−1

206
81 Tl (s) 2.52× 102 2.75× 10−3 3.64× 102 β− (100%): 206

82 Pb [r]0 → x[t]0 4.98× 10−1

Table 1: Half-life times, decay constants, mean lifetimes, decay modes, reaction
and probability functions for each reaction in the U-238 decay chain. The letter
in brackets corresponds to the letter assigned to each nucleus for implementation.
Half-lifes and probabilities for the chain decays obtained from [3] [5]; probabilities
for the less probable decays obtained from [4]. The probability function associated
to each transformation rule depends on the decay constant and the decay mode
probability.
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238
92 U

234
90 Th 234

91 Pa 234
92 U

230
90 Th

226
88 Ra

222
86 Rn

218
84 Po 218

85 At 218
86 Rn

214
82 Pb 214

83 Bi 214
84 Po

210
81 Tl 210

82 Pb 210
83 Bi 210

84 Po

206
80 Hg 206

81 Tl 206
82 Pb

α

β− β−

α

α

α

α

α

β−

β− β−

α α

β−

α

β−

α α

α

β−

α

β−

β− β−

Fig. 1: Uranium decay chain.
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3 P-system model

Population Dynamics P systems (PDP systems) [1] are a kind of P systems that
combines the characteristics of both cell-like and tissue-like models. A PDP system
is constituted by (i) a set of connected environments placed in the nodes of a directed
graph (ii) identical cell-like structures of hierarchically arranged membranes placed
inside each environment, (iii) a working alphabet of objects and (iv) a set of rules
which describe how objects evolve and move inside the P systems (R) and among
the environments (Rε).

Formally, a Population Dynamics P system of degree (q,m) with q,m ≥ 1,
taking T time units, T ≥ 1, is a tuple

(G,Γ,Σ, T,Rε, µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})
(5)

where:

• G = (V, S) is a directed graph and V = {e1, . . . , em} are the elements called
environments.

• Γ ∪Σ is the working alphabet.
• T is a natural number that represents the simulation time of the system.
• Rε is a set of communication rules between environments of the form

(x)ej

p(x,j,j1,...,jh)−−−−−−−−−→ (y1)ej1 · · · (yh)ejh
(6)

where x, y1, · · · yh ∈ Γ, (ej , ejl) ∈ S(l = 1, . . . , h) and p(x,j,j1,...,jh)(t) ∈ [0, 1],
for each t = 1, . . . T .
The previous definition means that, when a communication rule is applied,
object x contained in environment ej passes to environments ej1 . . . ejh, possibly
modified into objects y1, . . . yh. If more than one rule can be applied to (x)ej

,
then the rule executed is chosen randomly according to the probabilities
p(x, j, j1, ..., jh).

• µ is the membrane structure of the cells contained in each of them environments
and each consisting on a set of q hierarchically arranged membranes injectively
labeled by 1, . . . q. The skin membrane, or outer membrane is labeled by 1. The
membranes can also have electrical charges or polarizations, EC = {0,+,−}.

• R is a set of evolution rules applied within each cell. They are of the form
r : u[v]αi → u′[v′]α′i where u, v, u′, v′ ∈M(Γ ), i ∈ 1, . . . q, and α′ ∈ EC.

• For each r ∈ R and for each j, 1 ≤ j ≤ m, fr,j is a computable function which
satisfies that, for each u, v ∈ M(Γ ) all the rules r ∈ R whose left-hand side
is (i, α, u, v) and the right-hand side have a polarization α′,

∑
j=1 fr,j(t) = 1

∀t ≤ T .
• M1j , . . . ,Mqj ∈ M(Γ ) are the initial multisets of objects for environments
j = 1, . . .m placed inside the membranes 1, . . . q of µ.

The tuple of multisets of objects present at any moment in the m environments
and at each of the regions of the P systems (cell-like structures) constitutes the a
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configuration of the system at any time. At the initial configuration of the system,
all environments are assumed to be empty and all the membranes have neutral
polarization.

The system evolves from one configuration to another at each time step by
executing simultaneously all the applicable rules of the setR = Rε∪

⋃m
i=1RΠj

3 in a
maximal way. When there are rules acting on overlapping left-hand sides, i.e. u[v]αi ,
u′[v′]αi where u, u′, v, v′ ∈ M(Γ ), u 6= u′ ∨ v 6= v′ and u ∩ u′ 6= ∅ ∨ v ∩ v′ 6= ∅, the
rule which is executed is selected randomly according to the probability associated
with each rule.

Finally, it is interesting to highlight the fact that a global clock is considered in
the system, marking the time for the whole system, so the application of all rules
(both from Rε and R) are synchronized in all environments.

3 Πj = {Γ, µ,R,M1j , . . . ,Mqj} denotes the P system in environment ej and RΠj , the
set of rules defined on the considered P system.
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2,2

3,24,2
b5a2

a6

2,1
3,1

[ab]1 → a2b[ ]1

[a]2
0,2−−→ b[ ]2

[a]2
0,8−−→ a[a]2

[ab]1 → a2b[ ]1

[a]2
0,2−−→ b[ ]2

[a]2
0,8−−→ a[a]2

1,1

1,3

2,3

b7a5

[ab]1 → a2b[ ]1

[a]2
0,2−−→ b[ ]2

[a]2
0,8−−→ a[a]2

b7a5

1,2

2,2
3,2

a5

a3b3

b4a2

(a)2
0,25−−→ (b)1

(a)2
0,75−−→ (a)1

(a)2
0,5−−→ (a)3

(ab2)3 → (a2)1

(ab)3 → (b)2

(a)2
0,5−−→ (b)3

3,3

Fig. 2: A graphical example of a PDP system

4 Implementation

4.1 First model

The Step of time model is the simplest possible modelization of the Uranium decay
problem, as it characterizes the half-lifetime, the characteristic time parameter,
of the nuclear reactions using the clock steps of time defined in the membrane
computing model. This first rought approximation is based on two assumptions:

• The nuclear reaction of a given element cannot begin until all the progenitor
nuclei of this element have reacted.

• The duration of each reaction can be represented assigning different clock steps
to every reaction.
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The timescale of the reactions (characterized by the half-lifetime, T1/2) involved
in the network of nuclear reactions is huge, varying 21 orders of magnitude: the
T1/2 of the fastest reaction is of about ≈ 10−4 s while for the slowest T1/2 ≈ 1017 s.

In order to translate the half-lifetime of each reaction to a number of clock
iterations, a logarithmic scale is considered. The number of clock iterations is
therefore calculated assigning a scaled integer number to each reaction according
to the “weight” of time for each reaction.

The implementation of this model is done therefore in a single cell-like membrane
through rules of the type

[ai → ai+1 1 ≤ i ≤ 7]1
[a8 → b1, z]1
[bi → bi+1 1 ≤ i ≤ 4]1
[b5 → c1, x, y]1

when there’s a single via decay or

[hi −−−−→ hi+1 1 ≤ i ≤ 3]1
[h4

99,98%−−−−→ v1, z]1
[h4

0,02%−−−−→ j1, x, y]1
when competition rules are considered.

The letter assignation is specified at Table 1, as it is the same as the one used
in the probabilistic model. x, y and z represent α particles, e− (electrons) and νe
(electron antineutrino).

As can be seen, after seven clock steps of computation the nuclei a decays into b.
The nuclei b then waits 4 steps of computation before evolving. When competition
rules apply, the nuclei h also waits a given number of computations after evolving
according to a given probability.

Although it is not being a model really close to the real situation, with it
one could obtain the results expected. The main application of the Steps of time
model is then, to obtain the number of nuclei and particles of each kind once the
process has ended, taking into account that some nuclei can decay by different
vias according to a given probability. However, it cannot predict the number of
nuclei of each kind after a given amount of time. The representation of the model
is staggered-like, so it doesn’t represent a continuous and soft process and therefore
the approximation is not accurate.

To sum up, the biggest disadvantage in this modelization was that the next step
in the chain had to wait until the previous one had finished completely. Therefore,
although the simulation which implemented these rules approached reasonably the
amount of particles gathered at the end of the process, it wasn’t a good approach
to reality, as in a real decay several reactions of the chain take place at the same
time.
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4.2 Second model

In order to implement the experiment of the Uranium Decay using the framework
of Membrane Computing, it has been chosen the PDP system model restricted to a
single environment containing a membrane structure composed by a sole membrane
of neutral polarization α = 0, so the system can be described as a P system

Π1 = (Γ = {a, b...z}, µ = [ ],R = {r1,i, i = 1, ..., 38},M1,q=1 = an)

Within this membrane, different objects, which represent the intermediate products
in the decay chain, evolve in each step of the computation using PDP evolution
rules of the type described in the previous section.

The alphabet of objects Γ is composed by all the intermediate products described
in Table 1. A letter has been associated to each decay product in order to enable
an easier modeling of the problem. As discussed in section 2, each decay mode α
or β− generates a different kind of particles, which also have a letter associated (x
for α particles and z for particles generated in β− decay), so the total number of
particles obtained from the α and β− decay can be accounted at the end of the
computation.

In order to model the smooth and continuous decay of every specie in time,
competition rules have been considered. For example, given the first reaction, the
decay of U238

92 into Th234
90 through the α mode.

[a]1
1−fa−−−→ [a]1

[a]1
fa−→ x[b]1

where a and b are the letters associated to U238
92 and Th234

90 respectively. The
rule applied will be chosen taking into account the probability associated with it,
denoted by fa,1 ≡ fa. From this it can be seen why it is so important that the
probability sums up to 1.

The decay of a into b takes place through the α decay mode, so a second product
x (α particle) is generated outside the membrane.
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an

0
an

[a]0
1−fa−−−→ [a]0

[a]0
fa−→ x[b]0

[b]0
1−fb−−−→ [b]0

[b]0
fb−→ z[c]0

[c]0
1−fc−−−→ [c]0

[c]0
fc−→ z[d]0

[d]0
1−fd−−−→ [d]0

[d]0
fd−→ x[e]0

[e]0
1−fe−−−→ [e]0

[e]0
fe−→ x[f ]0

[f ]0
fg−→ x[g]0

[f ]0
1−ff−−−→ [f ]0

[g]0
1−fg−−−→ [g]0

[g]0
fg−→ x[h]0

[h]0
1−fh−−−→ [h]0

[h]0
fhp

α
h−−−→ x[v]0

[h]0
fhp

β
h−−−→ z[j]0

[v]0
fv−→ z[k]0

[v]0
1−fv−−−→ [v]0

[j]0
1−fj−−−→ [j]0

[j]0
fjp

α
j−−−→ x[k]0

[j]0
fjp

β
j−−−→ z[l]0

[k]0
1−fk−−−→ [k]0

[k]0
fkp

α
k−−−→ x[n]0

[k]0
fkp

β
k−−−→ z[m]0

[l]0
1−fl−−−→ [l]0

[l]0
fl−→ x[m]0

[n]0
1−fn−−−→ [n]0

[n]0
fn−→ z[p]0

[m]0
1−fm−−−−→ [m]0

[m]0
fm−−→ x[p]0

[p]0
1−fp−−−→ [p]0

[p]0
fpp

α
p−−−→ x[o]0

[p]0
fpp

β
p−−−→ z[q]0

[o]0
1−fo−−−→ [o]0

[o]0
fo−→ z[s]0

[q]0
1−fq−−−→ [q]0

[q]0
fqp

α
q−−−→ x[s]0

[q]0
fqp

β
q−−−→ x[s]0

[s]0
1−fs−−−→ z[t]0

[s]0
fs−→ z[t]0

[r]0
1−fr−−−→ [r]0

[r]0
fr−→ x[t]0

Fig. 3: Implementation of the model with the rules applied

As λ is a physical parameter constant in time and characteristic of each reaction,
it has proved to be the most suitable magnitude to compute the the probability
functions fr,1. The functions fr,1 have been calculated as the normalized logarithm
of the scaled (> 1) λ ’s.

The most significant difficulty in the assignation of fr,1 to every transformation
rule consisted on the great order of magnitude of the times of decay of the different
reagents, as λ ∈ [5·1018, 5·10−3] decays/s (nearly 21 orders of magnitude). Moreover,
in other to compute the probabilities of each reaction, λ needed to be dimensionless
and normalized in such a way that the probabilities of the rules with the same
left-hand objects sum up to 1.
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In order to solve these problems, some assumptions and approximations have
been made. First of all, all values of λ in Table 1 have been divided between the
order of magnitude of minimum λ. This way, we ensure that when the logarithm is
applied the numbers will always be positive (as λ

λmin
> 1), as well as granting that in

logarithm scale, the order of the numbers is not changed. As have been mentioned,
having such a great range of λ is truly inconvenient for doing the computations,
so the rough solution that has been found consists in applying logarithms to the
dimensionless quotient λ

λmin
. In other to obtain a global probability, which assigns

probability equal to one to the rule with the greatest chance to occur, log(r) is
divided by log(r)max for every rule. When the decay mode is not unique, this
function is also multiplied by the probability of occurrence pγr , with γ = {α, β}
representing the possible decay modes.

The method used for obtaining fr,1 explained above, assigns a probability to the
evolving transformation rules, which transforms a reactive into a different object.
As has been explained in section 3, the sum of all probabilities applied over the
same left-hand object must be one. As a consequence, the probability of occurrence
of the non-evolution transformation rule r: [a]0

1−fr,1−−−−→ [a]1 has been computed as
1− fr,1.

The rules start applying when at least one object of the left-hand side of a rule
is generated and continue applying until all this kind of objects are consumed. So,
as more intermediate products are generated, more reagents begin to evolve in each
computation step, so after a given number of time steps several products of the
decay chain will be evolving at the same time (modeled as discrete clock steps in
the computation). In this manner, the dependence of the decay in the abundances
of each reactive has been roughly simulated in a first approximation. Moreover,
the problem of the first model, when a reactive couldn’t begin to evolve until all
reagents of the previous decay have been consumed has been solved. It’s necessary
to notice that although this model approximates better the decay as a continuous
process, the steps of time are still discrete, represented by each computation step.

5 Code

@model<probabilistic>

def main()

{

@mu=[]’1;

@ms(1) = a*500000;

[a]’1 --> [a]’1 :: 0.968;

[a]’1 --> x[b]’1 :: 0.032;

[b]’1 --> [b]’1 :: 0.467 ;

[b]’1 --> z[c]’1 :: 0.533 ;
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[c]’1 --> [c]’1 :: 0.378 ;

[c]’1 --> z[d]’1 :: 0.622 ;

[d]’1 --> [d]’1 :: 0.771;

[d]’1 --> x[e]’1 :: 0.229;

[e]’1 --> [e]’1 :: 0.747;

[e]’1 --> x[f]’1 :: 0.253;

[f]’1 --> [f]’1 :: 0.67;

[f]’1 --> x[g]’1 :: 0.33;

[g]’1 --> [g]’1 :: 0.43;

[g]’1 --> x[h]’1 :: 0.57;

[h]’1 --> [h]’1 :: 0.28;

[h]’1 --> x[v]’1 :: 0.71856;

[h]’1 --> z[j]’1 :: 0.00144;

[v]’1 --> [v]’1 :: 0.323;

[v]’1 --> z[k]’1 :: 0.677;

[j]’1 --> [j]’1 :: 0.183;

[j]’1 --> x[k]’1 :: 0.816183;

[j]’1 --> z[l]’1 :: 0.000817;

[k]’1 --> [k]’1 :: 0.317;

[k]’1 --> x[n]’1 :: 0.68285657;

[k]’1 --> z[m]’1 :: 0.00014343;

[l]’1 --> [l]’1 :: 0.108;

[l]’1 --> x[m]’1 :: 0.892;

[n]’1 --> [n]’1 :: 0.262 ;

[n]’1 --> z[p]’1 :: 0.738;

[m]’1 --> [m]’1 :: 0.0;

[m]’1 --> x[p]’1 :: 1.0;

[p]’1 --> [p]’1 :: 0.584;

[p]’1 --> x[o]’1 :: 0.4159999921;

[p]’1 --> z[q]’1 :: 0.000000007904;

[o]’1 --> [o]’1 :: 0.30;

[o]’1 --> z[s]’1 :: 0.70;

[q]’1 --> [q]’1 :: 0.436;

[q]’1 --> x[s]’1 :: 0.563999255;

[q]’1 --> z[r]’1 :: 0.000000745;

[s]’1 --> [s]’1 :: 0.286 ;

[s]’1 --> z[t]’1 :: 0.714;
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[r]’1 --> [r]’1 :: 0.502;

[r]’1 --> x[t]’1 :: 0.498;

}

6 Results

The results obtained when running the P-lingua code with a = 5 · 105 are shown in
Figure 4 and Figure 5.

Fig. 4: Number of particles emitted through the different reactions, in logarithmic
scale. It can be seen how both particles, α and the ones emitted through β−

reactions (named as β) reach an almost stationary value, with a larger final number
of α particles, since α reactions take place more frequently. As reactions begin, a
lot of the initial particles evolve giving their products but, as more reactions get
to the final product, lead, less reactions take place at each step, so the number of
particles emitted at each step reduces considerably, changing only one particle per
step so, given the scale of the figure, this becomes imperceptible.

Both figures show the expected behavior of the Uranium decay chain, as they
satisfy that
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• after a large enough number of computation steps, all the emmited particles in
the reaction (α and β− particles) have reached a stable state.

• the decay chain takes place in a staggered way (we cannot see the discrete
increments), as was sought in this second model.

• the slope of the evolution of each product matches the λ coefficients we imple-
mented, showing a correct relationship between the probability functions and
λ.

• the process is faster at generating particles in the beginning and at the end of
the reaction, whereas the middle products last for a while.

Fig. 5: Nuclei population. It is represented the number of particles at each step
of time, in logarithmic scale. It can be seen that the number of initial particles
(Uranium-238) decreases whereas the final product increses until it reaches an
stationary value, the same as the initial number of particles, as expected. As
reactions take place, the new elements are created, showing an impressive increase
that slowly decreases then as reactions continue. As we reach more advanced stages
(Steps of time ≈ 250 and more) a noise in the number of elements appears: this
is because less reactions of the same elements take place simultaneously and so
the number of particles changes sharply at each step, depending on if the reaction
involving that specific element has taken place or not.
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The fluctuations, which can be appreciated in the last steps of time in Figure 5,
are probably due to the overlapping of different reactions in the advanced steps of
the uranium chain which simultaneously produce and consume a certain nucleus,
i.e., as the products evolve, more reactives are generated at the same time that
they are evolving to the next product. That way, a dependence on the decay rate
on the relative abundances of each reactive is appreciated.

7 Conclusions

Decay chains are based in a system of differential equations that once solved allow
to obtain the products at each time, t. However, the solution is reached after
solving a coupled system of numerous differential first order equations, which is
computationally costly. The MC tools allow to reproduce the process and to obtain
the expected final products just by making some slight approximations.

This means that competition rules which appear naturally in MC can assume the
role of the bounds between differential equations almost trivially, so the mentioned
system of differential equations does not need to be solved in order to simulate the
real situation.

In addition, this article attempts different ways of implementing time in a decay
process. Instead of modeling time as an independent parameter, which would be
the model where indexes are used (considering steps of computation as time), it
has finally been introduced as a part of the probability, given by the decay constant
λ. The first method is really unefficient because the system wastes a lot of time
just skipping processes (while indexes change) and so by this time, the program is
not really working on the chain reaction itself.
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On the cellular automata P systems and chain
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This paper has been written after attending the 14th Brainstorming Week on
Membrane Computing as a physics student from University of Barcelona. The
work presented here tries to represent what I have learned during that period, while
trying to apply some of the most innovative concepts shown in the presentations
attended during that week into some interesting situations.

1 Introduction

This brief paper aims to introduce the cellular automata P systems as an example
of ESNP (extended spiking neural P systems) with transmittable states, and then
apply the available rules to simulate a simple model of a random walk in 2D. Let’s
start by formally introducing the system. We have the usual definition:

Π = (O,Q, σ1, ..., σn, in, out) (1)

· whereO = {a}, such that a is called the spike

·Q is a finit alphabet of states

· σi are neurons, defined by: σi = (αi, ni, fi, Ri) where

→ αi ∈ Q, is the initial state

→ ni is the initial number of spikes

→ fi is the state combining function

→ Ri is a finite set of rules

· in is the input neuron

· out is the output neuron
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It is also necessary to explain how the rules work. The most general form is:

α/ac → (t1, a
k1 , β1), ..., (tm, a

km , βm) such that α, βj ∈ Q (2)

that just means that when the state of the given neuron is α, and if the neuron
has exactly c objects ‘a’ inside, it should send kj spikes to the neuron tj , while
also transmitting the state βj , for 1 ≤ j ≤ m. When multiple rules are applied
into the same neuron in the same clock tick (i.e. different states are transmitted
to the same neuron σi), the function fi dictates how they should be combined to
obtain a unique final state.

2 Cellular automata

A cellular automata is defined as a grid of cells, such as every cell can be in
one of a finite number of states. The set of cells next to each one it’s called its
neighborhood. Then, at every generation, some fixed rules determine the new state
of each cell in terms of the current state of the cell and the states of the cells in its
neighborhood. One of the most important applications is the known as “Conway’s
Game of Life”, originally created by the mathematician John Conway in 1970.
Its importance is due to the fact that it can be proven to be a universal Turing
machine (that is, anything that can be computed algorithmically can be computed
within Conway’s Game of Life - even the Game of Life itself!). Rudolf Freund and
Sergiu Ivanov show in their presentation “Extended SNP Systems with States”
that the ESNP with transmittable states is analogue to a cellular automata (with
the only change we are going to do is talk about neurons instead of cells). More
specifically, when only two states are considered, there is an easy set of rules that
enables us to simulate the Game of Life. Thus, they showed that we can obtain
universality with only two states in the ESNP paradigm. The description of such
system can be found on their presentation.

3 Simple nuclear chain reaction model

In order to implement these ideas into something more tangible, we can think of
the following situation: we have an organized grid of atoms (represented by the
neurons), where all of them are stable (in the sense that no rules could be applied
initially, that is, the system would halt immediately). In the position (i, j) we
introduce an unstable atom that will explode in one clock tick, releasing n num-
ber of particles (represented by the objects), that will go to any of its neighbors,
making them unstable, and thus propagating some kind of state (generating the
chain reaction). This is known as a two dimensional random walk. Some attractive
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studies can consist of varying the number of objects an explosion yields, observ-
ing whether the reaction consume all the possible atoms or not (if an atom that
has already exploded is considered to be destroyed insted of being replaced), or
considering some time of interaction in every step. Another interesting behavior
(also more difficult to implement) would be trying to change the geometry of the
system (so the number of neighbors could vary from atom to atom), and see if you
could get more efficiency some way or another.

This is obviously the first iteration of the model one can think of: further
complications can be considered, as making the grid in 3D (just by adding layers
upon layers of atoms), or even trying to add probabilities so further atoms than
the more direct neighbors have a chance of becoming unstable. This model can
be used to simulate the path of a photon that emerges from the Sun’s core and is
trying to reach the surface. A very simple model has been implemented at what
aims to be an ESNP simulator, programmed in Python. It consists of a square grid
of arbitrary dimensions, and an unstable atom in the middle. The initial reaction
lasts two ticks, and send one spike in two random different directions. For the sake
of simplicity, we have used three different states: 0 - stable atom, 1 - unstable atom,
2 - already exploded atom, even if two were already enough, as explained before.
We understand that this model has some difficulties (we only used the most direct
neighbors; this can be extended to have probabilities for all 8 adjoin neurons), and
can even be too simplified (we know that atoms won’t be organized in a rectangular
grid, as shown here, but will have some kind of spatial distribution). But while
modeling this problem, we found out that this could also be implemented as some
kind of A∗ path-finding algorithm or some kind of path algorithm, only halting
the computation when a certain point is reached or if no rules have been applied,
and then letting a lot of systems run in parallel. With a comparison between the
number of rules used, one can actually get a good representation of the optimal
route. Could we explot from the fact that we can acces more states and take
advantage of it, working under the P-systems paradigm? Further research and
modeling must be done to answer this.
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1 Introduction

Membrane computing, initiated in [15], involves models of computations inspired
by structures and functions of various types of biological cells. Models in membrane
computing are known as membrane or P systems. The specific type of P system
we consider in this work are spiking neural P systems, in short, SN P systems. SN
P systems, first introduced in [7], are inspired by the pulse coding of information
that occur in biological neurons. In pulse coding from neuroscience, pulses known
as spikes are indistinct, so information is instead encoded in their multiplicity or
the time step(s) they are emitted.

SN P systems are known to be computationally universal (i.e. equivalent to
Turing machines) in both generative (an output is given, but not an input) and
accepting (an input is given, but not an output) modes. SN P systems can also
solve hard problems in feasible (polynomial to constant) time. Another active line
of investigation on the computability and complexity of SN P systems is taking
mathematical and biological inspirations in order to create new variants, e.g. asyn-
chronous operation, weighted synapses, rules on synapses, structural plasticity. We
do not go into details, and we refer to [7, 9, 14, 17, 5] and references therein.

Software simulators for P systems, whether sequential or parallel, have been
provided. Sequential simulators include for example those implemented using PLin-
gua, a programming language designed for P systems, e.g. [11]. Simulators using
massively parallel processors known as graphics processing units (in short, GPUs)
for cell-like P systems as well as SN P systems include [13], a comprehensive survey
in [12], and [4, 10].

In this work, we report our ongoing efforts to simulate SN P systems on GPUs
manufactured by NVIDIA. In particular, our contributions in this report are as
follows: (a) modified matrix representation of [18] in order to be able to simulate
SNP systems with delays, (b) the entire simulation of SN P systems with delays
is now performed in the GPU, compared to a small portion of the simulation in
[4], and (c) using generalized sorting network of SN P systems, we report up to 51
times speedup in our experiments with a 512 input size network. A preliminary
version of this work is available in [6].

This work is organized as follows: Section 2 provides preliminaries for the re-
mainder of this work; Section 3 provides the definition of SN P systems as well as
their linear algebra representations; Section 4 provides an overview of the NVIDIA
CUDA architecture; Section 5 provides the simulation algorithm for our work;
Section 6 provides experimental results for the sequential and parallel simulators;
Finally, Section 7 provides conclusions from our work as well as future research
directions.

2 Preliminaries

We recall some formal language theory (available in many monographs). We only
briefly mention notions and notations which will be useful throughout the paper.
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We denote the set of natural (counting) numbers as N = {0, 1, 2, . . .}, where N+ =
N − {0}. Let V be an alphabet, V ∗ is the set of all finite strings over V with
respect to concatenation and the identity element λ (the empty string). The set
of all non-empty strings over V is denoted as V +, so V + = V ∗ − {λ}.

A language L ⊆ V ∗ is regular if there is a regular expression E over V such
that L(E) = L. A regular expression over an alphabet V is constructed starting
from λ and the symbols of V using the operations union, concatenation, and +.
Specifically, (i) λ and each a ∈ V are regular expressions, (ii) if E1 and E2 are
regular expressions over V then (E1 ∪E2), E1E2, and E+

1 are regular expressions
over V , and (iii) nothing else is a regular expression over V . With each expression
E we associate a language L(E) defined in the following way: (i) L(λ) = {λ} and
L(a) = {a} for all a ∈ V , (ii) L(E1∪E2) = L(E1)∪L(E2), L(E1E2) = L(E1)L(E2),
and L(E+

1 ) = L(E1)+, for all regular expressions E1, E2 over V . Unnecessary
parentheses are omitted when writing regular expressions. If V = {a}, we simply
write a∗ and a+ instead of {a}∗ and {a}+. If a ∈ V , we write a0 = λ.

3 Spiking Neural P Systems

We assume some familiarity with membrane computing concepts, widely available
online (e.g. [1]) or in print (e.g. [16]). First, we formally define SN P systems,
followed by linear algebra representations of their computations.

3.1 Spiking Neural P System

A Spiking Neural P system Π is of the form:

Π = (O, σ1, ..., σm, syn, in, out)

1. O = {a} is the alphabet containing a single symbole (the spike);
2. σ1, ..., σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m where:

a) ni ≥ 0 is the initial number of spikes contained in σi.
b) Ri is a finite set of rules of the following two forms:

i. E/ac → ap; d where E is a regular expression over O and c ≥ p ≥
1, d ≥ 0.

ii. as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap; d
of type (i) from Ri, we have as 6∈ L(E);

3. syn ⊆ {1, 2, ...,m}x{1, 2, ...,m} with i 6= j for all (i, j) ∈ syn, 1 ≤ I, j ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, ...,m} indicate the input and the output neurons, respectively.

The rules of type (i) as mentioned in the construct of neurons are firing (or
spiking) rules while the type (ii) are called forgetting rules. An SN P system
whose firing rules have p = 1 is said to be of the standard type (non-extended).
Given a spiking rule, it is applied as follows. If a neuron σi contains k spikes, and
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ak ∈ L(E), k ≥ c, then the rule E/ac → ap; d ∈ Ri can be applied. This means
we remove c spikes so that k − c spikes remain in σi, the neuron is then fired and
produces p spikes (1 in the case of standard SN P systems) after d time units.

Spikes are fired after t+ d where t is the current time step of the computation.
For the case that d = 0, the spikes are fired immediately. When the time step of
the computation is between t and t + d, we say that the neuron σ has not fired
the spike yet and σ is closed, meaning it cannot receive spikes from other neuron
connected to it. In the case that a neuron with an in-going synapse to σ fires, the
spike(s) is(are) lost. During the time step t+d, the spikes are fired, and the neuron
is now open to receive spikes. At t + d + 1 the neuron can begin applying rules.
When neuron σi emits the spike, the spikes reach immediately all neuron σj such
that (i, j) ∈ syn and σj is open.

A forgetting rule is applied as follows. If the neuron σi contains exactly s
spikes, then the rule as → λ from Ri can be applied, meaning all of the s spikes
are removed from σi.

For rules of the form E/ac → ap; d of type (1) where E = ac, we write it in the
shortened form ac → ap; d. There are cases when two or more rules are applicable
in a step of the computation, at these cases, only one rule is applied and is non-
deterministically chosen. However, by definition, it is impossible to have a spiking
rule and a forgetting rule to be applied at the same time. In short, for each neuron,
at most one rule will be applied at a time unit.

A configuration or state of the system at time t can be described by Ct =
〈r1/k1, . . . , rm/km〉 for 1 ≤ i ≤ m, where neuron i contains ri ≥ 0 spikes and
remains closed for ki more steps. The initial configuration of the system is there-
fore C0 = 〈n1/0, . . . , nm/0〉. Rule application provides us a transition from one
configuration to another. A computation is any (finite or infinite) sequence of
configurations such that: (a) the first term is the initial configuration C0; (b) for
each n ≥ 2, the nth configuration of the sequence is obtained from the previous
configuration in one transition step; and (c) if the sequence is finite (called halt-
ing computation) then the last term is a halting configuration, i.e. a configuration
where all neurons are open and no rule can be applied.

Two common ways to interpret output of an SN P system are as follows: (1)
obtaining the time interval between exactly the first two steps when the output
neuron σout spikes, e.g. number n = tn − t1 is computed, where σout produced
its first two spikes at steps t1 and tn; (2) counting the number of spikes produced
by σout until the system halts. Note that for (1) the system need not halt, since
we only consider the first two steps when σout spikes. In this work, we consider
systems that produce their output using the manner given in (2).

Spiking Neural Systems are usually represented as a directed graphs. Figure
1 shows an example of an SN P system with 3 neurons. This system is formally
defined as:

Π = ({a}, σ1, σ2, σ3, {(1, 2), (2, 1), (1, 3), (3, 1)}, 1) where:

1. σ1 = (0, {a/a→ a; 0, a2/a2 → λ})
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a

a/a→ a; 1

a/a→ a

a→ a

a2 → λ

a

a/a→ a; 2

1

2 3

Fig. 1: Example of an SN P System

2. σ2 = (1, {a/a→ a; 1, a/a→ a})
3. σ3 = (1, {a/a→ a; 2})

Notice that in σ1, the rule a/a → a; 0 was written a → a which is convention
when L(E) = ap, we can only write ap. Also, we do not write the delay d if it is
equal to 0. In this example, some rules used this convention while others did not
to show the interchangeability between the two.

In Figure 1, there are three neurons, two of which have initial spikes (neurons
σ2 and σ3). Neurons 1 and 3 have synapses between each other, likewise between
σ1 and σ2. A synapse exist from σ1 to the environment to indicate it is the output
neuron. In the first step of computation, σ1 will not fire since it does not contain
any spike. Neuron 3 will fire and consume its spike but it will close and will not
transmit a spike yet since it has a delay. For σ2, we non-deterministically choose
which rule to apply. Assuming we choose the rule a/a → a; 1, the neuron will
consume all of its spikes and similar to σ3, it will close and will not send any
spikes yet.

Therefore, after the first step of computation, there are no spikes in the system.
In the next step of computation, no rules will spike since there are no spikes in
the system but σ2 will release a spike since the delay is done. After this step,
σ1 will contain a spike. At the third step of computation, σ3 will release a spike
that was delayed and σ3 becomes open also. Neuron 1 will send a spike to both
σ2 and σ3. After this step, each neuron will have one spike. Assuming we always
choose to apply the first rule of σ2, this SN P system will cycle every three steps
of computation.

Going back to the first step of computation, assuming we choose to apply the
second rule in σ2, in the next configuration, σ1 will have one spike while σ2 and
σ3 will have zero. Neuron 1 will then fire, sending a spike to σ2. Neuron 3 will
not receive a spike since it is currently closed. In the third step of computation,
assuming we selected the second rule in σ2 again, σ3 will send the delayed spike and
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σ2 will spike immediately. After this step, σ1 will have two spikes. The forgetting
rule will be applied and the computation halts.

3.2 Matrix Representation of Spiking Neural P systems with Delay

In [18], a matrix representation of SN P system without delay was introduced.
In this work we introduce modifications to this representation which allows us to
devise simulations for SN P systems with delay. Let Π be an SN P system with
delay having m neurons and n rules. We use the following definitions, modified
from [18], to represent our simulation algorithm:

Definition 1: (Configuration Vector). The vector C(k) = 〈c1, c2, ..., cm〉 is
called the configuration vector at the kth step of computation where each ci, i =
1, 2, ...,m, is the amount of spikes neuron i contains.

Specifically, the vector C(0) = 〈c1, c2, ..., cm〉 is called the initial configuration
vector of Π, where ci is the amount of the initial spikes present in neuron σi, i =
1, 2, ...,m before the computation starts.

Definition 2: (Spiking Vector). Let C(k) = 〈c1, c2, ..., cm〉 be the kth config-
uration vector of Π. Assume a total order d : 1, ..., n is given for all the n rules, so
the rules can be referred to as s1, ..., sn. A spiking vector S(k) is defined as follows:

S(k) = 〈s(k)1 , s
(k)
2 , ..., s(k)n 〉

s
(k)
i


1, if the regular expression Ei of rule ri is satisfied by

the numbers of spikes cj (rule ri is in neuron σj ) and

rule ri is chosen and applied;

0, otherwise

Definition 3: (Status Vector). The vector St(k) = 〈st1, st2, ..., stm〉 is called
the status vector at the kth step of computation where each sti, i = 1, 2, ...,m,
determines the status of the neuron m.

sti =

{
1, if neuron m is open

0, if neuron m is closed

Note that a neuron is said to be closed when a rule with a delay is activated and
is waiting for that delay to become zero. A neuron that is closed may not receive
any incoming spikes.

Definition 4: (Rule Representation). The set R = {r1, r2, ..., rn} is the set
of rules where each ri, i = 1, 2, ..., n is a vector representing each rule in Π. Each
ri is defined as follows.

ri = 〈E, j, d′, c〉
where:
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1. E is the regular expression for rule i
2. j is the neuron that contains the rule ri

3. d′ =


−1, if the rule is inactive (i.e. not applied)

0, if the rule is fired

≥ 1, if the rule is currently on delay (i.e. σj is closed)
4. c is the number of spikes that neuron σj will consume if it applies ri.

Definition 5: (Delay Vector). The delay vector D = 〈d1, d2, ..., dn〉 contains
the delay value for each rule ri, i = 1, 2, ..., n in Π.

Definition 6: (Loss Vector). The vector LV (k) = 〈lv1, lv2, ..., lvm〉 is the loss
vector where each lvi, for each neuron σi, i = 1, 2, ...,m, contains the number of
spikes consumed, c, if σi applies ri at step k.

Definition 7: (Gain Vector). The vector GV (k) = 〈gv1, gv2, ..., gvm〉 is the
gain vector which contains the total number of spikes gained, gvi, for each neuron
σi, i = 1, 2, ...,m, at the kth step of computation not considering whether the
neuron is open or closed.

Definition 8: (Transition Vectors). Given the total order d : 1, ..., n for all
the n rules, the transition vector Tv of the system Π, is a set of vectors defined as
follows:

Tv = 〈tv1, ..., tvn〉

tvi = 〈p1, ..., pm〉

pj =


p, if rule ri is in neuron σs(s 6= j and (s, j) ∈ syn)

and it is applied producing p spikes;

0, if rule ri is in neuron σs(s 6= j and (s, j) /∈ syn).

The set Tv replaces the spiking transition matrix used in [18] since in [18],
each matrix entry can contain values either from spikes consumed or produced by
each neuron with respect to rules of other neurons. Transition vectors, however,
contain only the p spikes gained from other neurons, otherwise 0.

Definition 9: (Indicator Vector) The indicator vector IV k = 〈iv1, iv2, ..., ivm〉
will be multiplied to Transition Vector, Tv · IV k, in order to get the net number
of spike a neuron will get not considering a neuron’s status.

Definition 10: (Net Gain Vector). Let LV (k) = 〈lv1, lv2, ..., lvm〉 be the
kth loss vector vector, GV (k) = 〈gv1, gv2, ..., gvm〉 is the kth gain vector vector,
and St(k) = 〈st1, st2, ..., stm〉 is the kth status vector vector. The net gain vector
at step k is defined as

NG(k) = GV (k) ⊗ st(k) + LV (k)

4 NVIDIA CUDA

CUDA or Compute Unified Device Architecture is a parallel programming comput-
ing platform and application programming interface model developed by NVIDIA
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[3]. CUDA allows software developers to use a CUDA enabled graphics processing
unit(GPUs) for general purpose processing, an approach known as GPGPU.

Functions that execute in the GPU, known as kernel functions, are executed
by one or more threads arranged in thread blocks. In the CUDA programming
model, the GPU is often referred to as the device, while the CPU is referred
to as the host. The CPU (the host) is the one performing kernel function calls
to be executed on the device (the GPU). CUDA works on an SPMD principle
or the single program multiple data principle. That is, similar code runs on the
threads, and the threads can be accessing multiple (possibly different values of)
data. CUDA also has implements a memory hierarchy, similar to how there exist
memory hierarchies and cache organizations within the CPU.

The host and the device have a separate memory space so copying data from
the host and device memory may be necessary. The memory hierarchy for the
device includes its global memory, shared memory, and constant memory. Each
memory type has its own advantage such as bandwidth size, access speed and
control. The developer has the ability to fine tune the memory use and type for
kernel functions in order to optimize computations. Poor memory management
can cause bottlenecks, e.g. when copying memory from device to host and vice-
versa often. A good memory access pattern would be transferring all the required
data to the device and do all the processing within the device before returning
the computation result to the host. This access pattern prevents the high-latency
transfers between the device and the host.

Optimizing block structure is also important to maximize the parallel structure
of the GPU. The physical execution of threads occur in warps of 32 and a not
optimal block structure could result in serializing of execution. Lastly, the kernel
code itself must be optimized to maximize the use of the threads. GPUs are often
used to accelerate computations involving highly parallelizable tasks such as linear
algebra operations, while the CPU is more efficient with highly sequential tasks.

5 Algorithm for simulating SN P Systems with delay

In our simulation of SN P systems with delays, we consider the following cases
when applying rules in the system:

1. Trivially, the spikes contained in the neuron do not satisfy the regular expres-
sion E of a rule, hence the rule is not applied.

2. When E of a rule is satisfied and the rule applied with a delay d > 0, hence
c spikes are consumed (the neuron becomes closed) and begin the countdown
of the delay until delay becomes 1.

3. When the countdown for the delay in Case 2 reaches 0 (neuron becomes open),
we consider the net number of spikes: those spikes produced to other neurons
and received from other neurons, possibly including previous spikes in the
neuron before the neuron closed.
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4. When a rule applied has d = 0 which is similar to Case 2 and 3 except that we
do not perform any countdown and the neuron for the rule does not become
closed.

We also introduce the operation ⊗, where C = A ⊗ B is the element-wise
multiplication of vectors A and B, i.e., for each xi ∈ A, yi ∈ B, zi ∈ C, zi =
xi ∗ yi. For example, given vector A = 〈2, 6,−4, 3〉 and B = 〈5, 6, 1, 2〉, we have
A⊗B = 〈10, 36,−4, 6〉.

The main simulation algorithm is given in Algorithm 1, which refers to def-
initions given in Section 3.2. The algorithm is devised to return or produce the
(k + 1)th configuration of an SN P system, given the current step k.

1: procedure Simulate SNP (C(k), R, Tv, St(k))
2: Reset(Lv(k))
3: Reset(Gv(k))
4: Reset(NG(k))
5: Reset(Iv(k))
6: Compute S(k)

7: for ri = 〈E, j, d′, c〉 ∈ R do . Check for the cases

8: if S
(k)
i = 1 then . Case 2

9: Lv
(k)
j ← c

10: d′ ← di
11: St

(k)
j ← 0

12: if d′ = 0 then . Case 4
13: Iv

(k)
j ← 1

14: St
(k)
j ← 1

15: end if
16: else if d′ = 0 then . Case 3
17: Iv

(k)
j ← 1 . Set indicator bit to 1

18: St
(k)
j ← 1

19: end if
20: end for
21: Gv(k) ← Tv ∗ Iv(k)
22: NG(k) ← Gv(k) ⊗ St(k) + Lv(k)

23: C(k+1) ← C(k) +NG(k)

24: for ri = 〈E, j, d′, c〉 ∈ R do . Countdown
25: if d′ 6= −1 then
26: d′ ← d′ − 1
27: end if
28: end for

return C(k+1)

29: end procedure

Algorithm 1: Simulation of Π from C(k) to C(k+1).
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Note that Reset(X) for some vector X resets the vector to a 0 vector to prevent
its previous values from interfering with the next iteration of the simulation (i.e. the
next step of the computation). Also, the algorithm does not discriminate between
the firing and the forgetting rule. That is, a forgetting rule is simply treated as a
firing rule that doesn’t produce any spikes.

Algorithm 1 takes in an SN P system Π represented using definitions in Section
3.2. The algorithm accepts the initial configuration vector C(0), the rules represen-
tation R, the transition vectors Tv, and the status vector St(k). After determining
the Spiking Vector S(k), details provided below in Algorithm 2, we check the three
cases defined previously (except the trivial case 1). If case 2 applies, where a rule
is applied, we set the Loss Vector Lv(k) to c (for the corresponding neuron that
contains the rule). Then the counter is started by setting the d′ = di. We then
make sure only one applied rule in a neuron will modify a single element of Lv(k),
based on the semantics of rule application of SN P systems. The element of St(k)

corresponding to the neuron is set to 0, hence closing the neuron.

If the delay of the rule is 0 (case 4), we set the corresponding Iv
(k)
j to 1 and

open the neuron. Also, the corresponding Status vector element St
(k)
j is set to 1.

For case 3, we set Tvj to 1 and open the neuron again by setting St
(k)
j to 1. We

obtain the Gain Vector GV (k) by multiplying the Transistion Vectors Tv (the rules
that released their spikes, i.e. rules where case 3 and 4 applies) to Iv(k). We obtain
the Net Gain vector NG(k) using element-wise multiplication of GV (k) and St(k),
then adding Lv(k).

The Status Vector acts as a selector where a neuron receives spikes based on
its status, after consumed spikes are removed. Finally, we compute for C(k+1) by
adding C(k) to NG(k). We reduce each d′ for 0 ≤ i ≤ n which signifies the count
down. On selecting the Spiking Vector S(k), Algorithm 2 is used.

1: procedure Compute S(k) (C(k), R(k))
2: array n tmp(0 : m) . Initialize an array of size m
3: for ri ∈ R do
4: if St

(k)
j == 0 then

5: S
(k)
i ← 0 . Neuron that owns the rule is closed

6: else if n tmpj == 1 then

7: S
(k)
i ← 0 . Neuron that already has a rule that applied

8: else
9: if L(Ei) matches C

(k)
j then

10: S
(k)
i ← 1 . E of rule matches with C(k)

11: n tmpj ← 1
12: else
13: S

(k)
i ← 0 . E does not match with C(k)

14: end if
15: end if
16: end for
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17: end procedure

Algorithm 2: Computation of Spiking Vector S(k).

Note that Algorithm 2 only computes for one valid spiking vector of the system,
since we only simulate deterministic systems.

6 Results

Algorithms 1 and 2 were implemented in both sequential and parallel code. C++
was used for the sequential implementation while CUDA C for the parallel imple-
mentation. The regular expression E in the rules are represented as integers: ak is
stored as k and a∗ is stored as −1. We are currently at work in order to include
simulations of more general regular expressions, e.g. ai(aj)∗, i, j ≥ 0. Software for
this work is available at [2]. The sequential and parallel implementations simulate
deterministic SN P systems with delays.

For the CUDA implementation, computations in Algorithms 1 and 2 are per-
formed in the GPU, until simulation halts. The recommended technique or work-
flow for GPU computing is to initialize inputs at the host (i.e. the CPU), copy
inputs to the device (i.e. the GPU), finish all computations in the device, and fi-
nally copy results back to the host. This workflow for GPU computing is necessary
in order to prevent the overhead (time delays incurred) of data transfer from host
to device.

SN P systems implementing generalized sorting networks (provided in [8]) were
used as inputs. The input sizes for the sorting networks are of the form 2n for
n = 1, 2, . . . , 9, i.e. from 2 up to 512. The values to be sorted are natural numbers
between 0 and 99, randomly generated. For the case of input sizes greater than
100, there will be repetitions of several numbers to be sorted.

The machine set-up for the experiments performed in this work runs an Ubuntu
15.04 64-bit operating system, with an Intel Core i7-4790 CPU with maximum
frequency of 4 GHz, and 16 GBytes of memory. The GPU of the set-up is an
NVIDIA GeForce GTX 750 with 512 CUDA cores (Kepler microarchitecture) with
maximum frequency of 1084 MHz and 2047 MBytes of memory.

The SN P systems used as inputs for both sequential and parallel simulators
are the systems implementing generalized sorting networks in [8]. In particular, a
sorting network has n input neurons in order to sort n natural numbers. A sorting
network of input size n has input neurons σ1, . . . , σn containing r1, . . . , rn spikes
initially, where the values r1, . . . , rn are the numbers to be sorted (delays are not
used in this case).

Figures 2 and 3 illustrate the running time (vertical axis) versus input size
(horizontal axis) of both the sequential (i.e. C++SNP) and parallel (i.e. CuSNP)
simulators. The 9 inputs, from 2 up to 512, were separated into two charts (given
by Figures 2 and 3) since the running time of C++SNP for a 512-input sorting
network is much greater (approximately 10 minutes) than the remaining smaller
input sizes (under 2 minutes).
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Fig. 2: Runtime Comparison of C++SNP (Sequential) vs CuSNP (Parallel) imple-
mentations, simulating SN P systems as generalized sorting networks with input
sizes 2 up to 128 (continued in Figure 3). Vertical axis is time, given in seconds.

Fig. 3: Runtime Comparison of C++SNP (Sequential) vs CuSNP (Parallel) imple-
mentations, simulating SN P systems as generalized sorting networks with input
sizes 64 up to 512 (continued from Figure 2. Vertical axis is time, given in seconds.
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In Figure 4 we see a chart indicating the speedup, in this case the ratio between
the running time of C++SNP over CuSNP, for each input size of the sorting
network. Following the GPU computing workflow mentioned above, the larger
inputs benefit from being parallelized using CUDA GPUs. It must be noted that
for input size 64 and lower, the sequential simulator C++SNP runs faster than
CuSNP (see Figure 2, due to the overhead mentioned above. However, for input
size 128 and larger, CuSNP overtakes C++SNP in terms of running time as more
parallelism is introduced given larger input. This overtaking is also seen in the
speedup in Figure 4, where the speedup for input size 64 and lower is less than
1, while speedup for input size 128 and above is greater than 1. In particular, the
maximum speedup we obtained is approximately 51 for input size of 512.

Fig. 4: Runtime speedup of C++SNP (sequential) vs CuSNP (parallel) implemen-
tations.

7 Final remarks

In this work we presented our ongoing efforts to simulate SN P systems in NVIDIA
CUDA GPUs. In particular, the software available in [2] includes parallel and se-
quential simulators which simulate SN P systems with delays. We modified the
matrix representation in [18] in order to simulate SN P systems with delays. Our
experiments were performed using systems implementing generalized sorting net-
works form [8], and we achieved speedup values of up to 51 times for a 512-size
input, i.e. for a 512-size sorting network, CuSNP (parallel simulator) is 51 times
faster than C++SNP (sequential simulator). This speedup was obtained, largely
in part due to improved memory access pattern between the host (CPU) and the
device (GPU).
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Much work remains to be done, and we are currently extending the regular ex-
pressions available for both simulators to include more general regular expressions
(using implementations of finite automata). Also, we are currently optimizing the
data types and structures of CuSNP, among other improvements. In a succeeding
work, we will also provide detailed profiles of kernel functions (using tools provided
by NVIDIA) in CuSNP in order to identify further possibilities for optimizations
of simulator performance.
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M. J. Pérez-Jiménez, and A. Riscos-Núñez. A P-Lingua Based Simulator for Spik-
ing Neural P Systems. In M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, and
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Generalized P Colonies with passive environment
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Summary. We study two variants of P colonies with initial content of P colony and
so called passive environment: P colonies with two objects inside each agent that can
only consume or generate objects, and P colonies with one object inside each agent using
rewriting and communication rules. We show that the first kind of P colonies with one
consumer agent and one sender agent can generate all sets of natural numbers computed
by register machines, and hence they are computationally universal in the Turing sense.
Similarly, also the second kind of systems with three agents with rewriting/consuming
rules is computationally complete. The paper improves previously published universality
results concerning generalized P colonies, and it also extends our knowledge about very
simple multi-agent systems capable of universal computation.

Key words: P colony, computational completeness, register machine

1 Introduction

P colony was introduced in [9] as a very simple variant of membrane systems
inspired by so called colonies of formal grammars. See [11] for more information
about membrane systems and [7] for details on grammar systems theory. There are
three basic entities in the P colony model: objects, agents and the environment. A
P colony is composed of agents, each containing a collection of objects embedded
in a membrane. The objects can be placed in the environment, too. Agents are
equipped with programs composed of rules that allow interactions of objects. The
number of objects inside each agent is set by definition and it is usually very low
– 1, 2 or 3. The environment of P colony serves as a communication channel for
agents: an agent is able to affect the behaviour of another agent by sending objects
via the environment. There is also a special type of environmental objects denoted
by e which are present in the environment in an unlimited number of copies.

A specific variant of P colony called eco-P colony with two object inside each
agent, where the environment can change independently on the agents, was in-
troduced in [1]. The evolution of the environment is controlled by a 0L scheme
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applying context free rules in parallel to all possible objects in the environment
which are unused by the agents in the current step of computation.

The activity of agents is based on rules that can be rewriting, communication
or checking; these three types was introduced in [9]. Furthermore, generating,
consuming and transporting rules were introduced in [5].

Rewriting rule a→ b allows an agent to rewrite (evolve) one object a placed inside
the agent to object b.

Communication rule a ↔ b exchanges one object c placed inside the agent for
object d from the environment.

Checking rule r1/r2, where each of r1, r2 is a rewriting or a communication rule,
sets a priority between these two rules. The agent try to apply the first rule
and if it cannot be performed, the agent executes the second rule.

Generating rule a→ bc creates two objects b, c from one object a.
Consuming rule ab→ c rewrites two objects a, b to one object c.
Transporting rule of the form (a in) or (a out) is used to transport one object

from the environment into the agent, or from the agent to the environment,
respectively. The rule is always associated with a consuming/generating rule
to keep a constant number of object inside the agent.

The rules are combined into programs in such a way that all object inside the agent
are affected by execution of the rules in every step. Consequently, the number of
rules in the program is the same as the number of object inside the agent. The
programs that contain consuming rules are called consuming programs and the
programs with generating rules are called generating programs. The agent that
only contains consuming resp. generating programs is called consumer resp. sender.

P colonies with senders and consumers without evolving environment were
studied in [5] and the authors proved their computational completeness (in the
Turing sense), as well as computational completeness of P colonies with senders
and consumers with 0L scheme for the environment. Many papers were devoted to
P colonies with rewriting and communication rules without evolving environment,
e.g., [4, 6, 8], and there are two book chapters in [2] and [11] describing this topic.

In this paper we focus on P colonies with initial content of P colony with
“passive” environment. The paper is structured as follows: The second section is
devoted to definitions and notations used in the paper. The third section con-
tains results obtained during studies of P colonies with senders and consumers.
In the fourth section we study P colonies with one object inside the agent and
rewriting/communication rules. The paper concludes with a summary of presented
results.

2 Definitions

Throughout the paper we assume the reader is familiar with basic of formal au-
tomata and language theory. We introduce notation used in the paper.
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We use N·RE to denote the family of recursively enumerable sets of natural
numbers and N to denote the set of natural numbers.

Σ is a notation for the alphabet. Let Σ∗ be set of all words over alphabet
Σ (including the empty word ε). For the length of the word w ∈ Σ∗ we use the
notation |w| and the number of occurrences of symbol a ∈ Σ in w is denoted
by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns
to each object in V its multiplicity in M . The set of all multisets over the set
of objects V is denoted by V ∗. The cardinality of M , denoted by card(M), is
defined by card(M) =

∑
a∈V f(a). Any multiset of objects M with the set of

objects V = {ai, . . . an} can be represented as a string w over alphabet V with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent M , and ε represents the empty multiset.

The mechanism of evolution of the environment is based on a 0L scheme.
It is a pair (Σ,P ), where Σ is the alphabet of 0L scheme and P is the set of
context free rules fulfilling the condition ∀a ∈ Σ ∃α ∈ Σ∗ such that (a→ α) ∈ P .
For w1, w2 ∈ Σ∗ we write w1 ⇒ w2 if w1 = a1a1 . . . an, w2 = α2α2 . . . αn, for
ai → αi ∈ P, 1 ≤ i ≤ n.

A register machine [10] is the construct M = (m,H, l0, lh, P ) where:
- m is a number of registers, H is a set of instruction labels,
- l0 is an initial/start label, lh is the final label,
- P is a finite set of instructions injectively labelled with the elements

from the given set H.
The instructions of the register machine are of the following forms:

l1 : (ADD(r), l2, l3) Add 1 to the contents of the register r and proceed to the
instruction (labelled with) l2 or l3.

l1 : (SUB(r), l2, l3) If the register r is not empty, then subtract 1 from its contents
and go to instruction l2, otherwise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this instruction.

Without loss of generality, one can assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3) the
labels l1, l2, l3 are mutually distinct. The register machine M computes a set N(M)
of numbers in the following way: we start with all registers empty (hence storing
the number zero) with the instruction with label l0 and we proceed to apply
the instructions as indicated by the labels (and made possible by the contents of
registers). If we reach the halt instruction, then the number stored at that time in
the register 1 is said to be computed by M and hence it is introduced in N(M).
(Because of the nondeterminism in choosing the continuation of the computation
in the case of ADD-instructions, N(M) can be an infinite set.) The family of sets
of numbers computed by register machines is denoted by N·RM.

Theorem 1. [10] N·RM = N·RE.
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2.1 Generalized P colonies

Definition 1. A P colony with capacity c ≥ 1 is the structure

Π = (Σ, e, f, vE , DE , B1, . . . , Bn), where

• Σ is the alphabet of the colony, its elements are called objects,
• e is the basic (environmental) object of the colony, e ∈ Σ,
• f is final object of the colony, f ∈ Σ,
• vE is the initial content of the environment, vE ∈ (Σ − {e})∗,
• DE is 0L scheme (Σ,PE), where PE is the set of context free rules,
• Bi, 1 ≤ i ≤ n, are the agents, every agent is the structure Bi = (oi, Pi), where

oi is the multiset over Σ, it defines the initial state (content) of the agent Bi

and |oi| = c and Pi = {pi,1, . . . , pi,ki} is the finite set of programs of three
types:
(1) generating program with generating rules a → bc and transporting rules

d out - the number of generating rules is the same as the number of trans-
porting rules.

(2) consuming program with consuming rules ab→ c and transporting rules d in
- the number of consuming rules is the same as the number of transporting
rules.

(3) rewriting/communication program can contain three types of rules:
� a→ b, called a rewriting rule,
� c↔ d, called a communication rule,
� r1/r2, called a checking rule; each of r1, r2 is a rewriting or a communi-

cation rules.

Every agent has only one type of programs. The agent with generating pro-
grams is called sender and the agent with consuming programs is called consumer.
The capacity of P colony with senders and consumers must be even number.

The initial configuration of a P colony is the (n + 1)-tuple (o1, . . . , on, vE),
with symbols o1, . . . , on, vE as in Definition 1. In general, the configuration of the
P colony Π is defined as (n + 1)-tuple (w1, . . . , wn, wE), where wi represents the
multiset of objects inside i-th agent, |wi| = c, 1 ≤ i ≤ n, and wE ∈ (Σ − {e})∗ is
the multiset of objects different from e placed in the environment.

At each step of the (parallel) computation every agent tries to find one of its
programs to apply. If the number of applicable programs is higher than one, the
agent non-deterministically chooses one. At each step of computation, the set of
active agents executing a program must be maximal, i.e., no further agent can be
added to it.

By applying programs, the P colony passes from one configuration to another
configuration. Objects in the environment unaffected by any program in the given
step are rewritten by the 0L scheme DE . A sequence of configurations starting
from the initial configuration is called a computation. A configuration is halting if
the P colony has no applicable program. Each halting computation has associated
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a result – the number of copies of the final object placed in the environment in
halting configuration.

N (Π) = {|wE |f | (o1, . . . , on, vE)⇒∗ (w1, . . . , wn, wE)},
where (o1, . . . , on, vE) is the initial configuration, (w1, . . . , wn, wE) is the final con-
figuration, and ⇒∗ denotes reflexive and transitive closure of ⇒.

Let us denote NEPCOL(i, j, k, u, v, w) the family of the sets computing by
P colonies with at most j ≥ 1 agents with i ≥ 1 objects inside the agent and with
at most k ≥ 1 programs associated with each agent such that:

u = check if the P colony uses rewriting/communication rules with
checking rules

u = no-check if the P colony uses rewriting/communication rules without
checking rules

u = s/c/sc if the P colony contains only sender / only consumer / both
sender and consumer agents

v = pas if the rules of 0L scheme are of type a→ a only,

v = act if the set of rules of 0L scheme contains at least one rule of
another type than a→ a,

w = ini if the environment or agents contain initially objects different
from e, otherwise w is omitted,

If a numerical parameter is unbounded, we denote it by a ∗.
In [5] the authors deal with P colonies with senders and consumers with “pas-

sive” environment, they show that

NEPCOL(2, 3, ∗, sc, pas) = N·RE.

In [1] there are results of P colonies with “active” environment:

NEPCOL(2, 2, ∗, c, act, ini) = N·RE

NEPCOL(2, 2, ∗, sc, pas, ini) ⊇ N·RMpb.

Other results are shown for P colonies with “passive” environment and rewrit-
ing/communication rules and with only one object inside the agent in [3]

NEPCOL(1, 4, ∗, check, pas) = N·RE

and in [5]
NEPCOL(1, 6, ∗,no-check, pas) = N·RE.

3 P colonies with senders and consumers

In this section we study computational power of P colonies with two objects inside
the agent - consumer or sender. We extend the previous results reported in [1].
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Theorem 2. NEPCOL(2, 2, ∗, sc, pas, ini) = N·RE.

Proof. Consider register machine M = (m,H, l0, lh, P ). All labels from the set H
are objects in P colony. The content of register r is represented by the number of
copies of objects ar placed in the environment.

Let u be a mapping u : H → {ar | 1 ≤ r ≤ m} ∪ {Li | li ∈ H} defined as

u(li) =

{
ar for li : (ADD(r), lj , lk)
Li for li : (SUB(r), lj , lk)

We construct the P colony Π = (Σ, e, a1, a
w
2 , DE , B1, B2) with:

− Σ = {li, Li, L
1
i , L

2
i ,W

0
i ,W

1
i ,W

2
i , l

0
i , l

1
i | li ∈ H} ∪ {ai | 1 ≤ i ≤ m}∪

∪ {e, C,Q},
− B1 = (l0u(l0), P1),
− B2 = (ee, P2).

At the beginning of computation the agent B1 contains object l0 representing the
label of the initial instruction of M.

An instruction li = (ADD(r), lj , lk) is simulated by agent B1 by using following
programs:

B1 :

1 : 〈li → lju(lj); ar out〉;
2 : 〈li → lku(lk); ar out〉;

The computation is done in the following way: agent B1 (sender) simulates the
addition of one to the content of register r (sending one copy of object ar to the en-
vironment), and it generates the object lj or lk – the label of instruction which will
the simulated register machine M execute next. Simultaneously it “precomputes”
objects for the execution of the next instruction.

An instruction li : (SUB(r), lj , lk) is simulated by the following rules and pro-
grams:

B1 :

3 :
〈
li →W 0

i e, Li out
〉

;
4 :
〈
W 0

i →W 1
i L

1
i , e out

〉
;

5 :
〈
W 1

i →W 2
i L

2
i , L

1
i out

〉
;

6 :
〈
W 2

i → l0j l
0
j , L

2
i out

〉
;

7 :
〈
W 2

i → l0kl
0
k, L

2
i out

〉
;

8 :
〈
l0j → l1je, l

0
j out

〉
;

9 :
〈
l0k → l1ke, l

0
k out

〉
;

10 :
〈
l1j → l2je, e out

〉
;

11 :
〈
l1k → l2ke, e out

〉
;

12 :
〈
l2j → l3je, e out

〉
;

13 :
〈
l2k → l3ke, e out

〉
;

14 :
〈
l3j → lju(lj), e out

〉
;

15 :
〈
l3k → lku(lk), e out

〉
;

B2 :

A : 〈ee→ e;Li in〉;
B : 〈Lie→ Li; ar in〉;
C : 〈Liar → L1

i ;L1
i in〉;

D : 〈Lie→ L2
i ;L2

i in〉;
E : 〈L1

iL
1
i → c; l0j in〉;

F : 〈L1
iL

1
i → q; l0k in〉;

G : 〈L2
iL

2
i → q; l0j in〉;

H : 〈L2
iL

2
i → c; l0k in〉;

I : 〈l0j c→ c;L2
i in〉;

J : 〈l0kc→ c;L1
i in〉;

K : 〈L1
i c→ e; e in〉;

L : 〈L2
i c→ e; e in〉;

M : 〈l0j q → q; e in〉;
N : 〈l0kq → q; e in〉;
O : 〈qe→ q; e in〉;
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If there are objects li (the label of SUB-instruction) and Li inside the agent
B1, the agent sends object Li (using the rule labelled 3) to the environment. This
is the message for the agent B2 to try to consume one copy of object ar from the
environment (try to subtract one from the content of register r.)

If the agent B2 is successful (using the program labelled B), then the second
agent consumes L1

i . If there is no ar in the environment, the agent has to wait one
step and then it consumes object L2

i .
The agent B1 generates object l0j or l0k, non-deterministically choosing the

instruction to be simulated next (program 6 or 7). If the non-deterministic choice
was wrong (the agent generates l0j and register r was empty or the agent generates

l0k and the register was nonempty), the agent B2 would use program labelled O
and the computation never halts.

If the register r stores nonzero value:

B1 B2 Env P1 P2

1. liLi ee axrw 3 −
2. W 0

i e ee Lia
x
rw 4 A

3. W 1
i L

1
i Lie axrw 5 B

4. W 2
i L

2
i Liar L1

i a
x−1
r w 6 or 7 C

5. l0j l
0
j L1

iL
1
i L2

i a
x−1
r w 8 −

6. l1je L1
iL

1
i l

0
jL

2
i a

x−1
r w 10 E

7. l2je cl0j L2
i a

x−1
r w 12 I

8. l3je cL2
i ax−1r w 14 L

9. lju(lj) ee ax−1r w ? −

B1 B2 Env P1 P2

1. liLi ee axrw 3 −
2. W 0

i e ee Lia
x
rw 4 A

3. W 1
i L

1
i Lie axrw 5 B

4. W 2
i L

2
i Liar L1

i a
x−1
r w 7 or 6 C

5. l0kl
0
k L1

iL
1
i L2

i a
x−1
r w 9 −

6. l1ke L1
iL

1
i l

0
kL

2
i a

x−1
r w 11 E

7. l2ke ql0k L2
i a

x−1
r w 13 I

8. l3ke qe ax−1r w 15 O

9. lku(lk) qe ax−1r w ? O

If the register r stores zero:

B1 B2 Env P1 P2

1. liLi ee w 3 −
2. W 0

i e ee Liw 4 A

3. W 1
i L

1
i Lie w 5 −

4. W 2
i L

2
i Lie L1

iw 6 or 7 −
5. l0j l

0
j Lie L1

iL
2
iw 8 D

6. l1je L2
iL

2
i l0jL

1
iw 10 G

7. l2je ql0j L1
iw 12 M

8. l3je qe L1
iw 14 O

9. lju(lj) qe L1
iw ? O

B1 B2 Env P1 P2

1. liLi ee w 3 −
2. W 0

i e ee Liw 4 A

3. W 1
i L

1
i Lie w 5 −

4. W 2
i L

2
i Lie L1

iw 7 or 6 −
5. l0kl

0
k Lie L2

iL
1
iw 9 D

6. l1ke L2
iL

2
i l0kL

1
iw 11 H

7. l2ke cl0k L1
iw 13 J

8. l3ke cL1
i w 15 K

9. lku(lk) ee w ? −

No program is needed in P1 ∪ P2 to simulate the instruction lh :HALT. The
P colony Π starts its computation with object l0 in the environment and it sim-
ulates the instruction labelled l0. By the programs it places and deletes from the
environment the objects ar and it halts its computation only after object lh ap-
pears in the environment. The result of computation is the number of copies of
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object a1 placed in the environment at the end of computation. No other halting
computation can be executed in the P colony.

4 P colonies with rewriting/communication rules

In this section we deal with P colonies with passive environment and with one
object inside each agent. We prove that such a P colony with three agents can
generate every recursively enumerable set of natural numbers.

Theorem 3. NEPCOL(1, 3, ∗,no-check, pas, ini) = N·RE.

Proof. Let us consider register machine M = (m,H, l0, lh, P ). For all labels from
the set H we construct corresponding objects in P colony Π. The content of
register r will be represented by the number of copies of objects ar placed in the
environment.

We construct the P colony Π = (Σ, e, a1, d,DE , B1, B2, B3) with:

− Σ = {li, l′i, l′′i , li, li, li, l1i , l2i , l3i , l4i ,Mi,M
1
i ,M

2
i ,M

3
i ,M

4
i , Ni, N

1
i , N

2
i , N

3
i ,

N4
i | li ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪ {e, d, f, g},

− B1 = (l0, P1),
− B2 = (d, P2),
− B3 = (e, P3).
The object l0 corresponds to the label of the first instruction executed by the

register machine.
The instruction li : (ADD(r), lj , lk) will be simulated by the agents B1 and B2

by using following programs:
B1 :

1 : 〈li → l′i〉 ; 6 :
〈
l′′i → e

〉
;

2 : 〈l′i ↔ e〉 ; 7 :
〈
l′′′i → livi

〉
;

3 :
〈
e→ l′′i

〉
; 8 :

〈
livi → lvi

〉
;

4 :
〈
l′′i → l′′i

〉
; 9 : 〈lvi → lj〉 ;

5 :
〈
l′′i ↔ l′′′i

〉
; 10 : 〈lvi → lk〉 ;

B2 :

A : 〈d↔ l′i〉;
B : 〈l′i → l′′′i 〉;
C : 〈l′′′i ↔ e〉;
D : 〈e↔ l′′i 〉;
E : 〈l′′i → ar〉;
F : 〈ar ↔ d〉;

The simulation of ADD-instruction starts by rewriting the object li to l′i by
the first agent. The agent B2 consumes the object l′i, changes it to l′′′i and sends it
to the environment. The agentB1 rewrites the object e to some l′′j , for lj ∈ H. If this
l′′j has the same index as l′′′i placed in the environment (i.e., i = j), the computation
passes to the next phase. If i 6= j, the agent B1 tries to generate another l′′j . When
the computation gets over this checking step, agent B2 generates one copy of object
ar and places it to the environment (adding 1 to the content of register i). Then
agent B1 non-deterministically chooses to generate object lj or lk.

The instruction li : (SUB(r), lj , lk) is simulated by using the following rules
and programs:
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B1 :

11 : 〈li → l′i〉; 15 : 〈l′′i → l′′i 〉; 19 : 〈livi →Mi〉; 23 : 〈Li ↔ d〉;
12 : 〈l′i ↔ e〉; 16 : 〈l′′i ↔ l′′′i 〉; 20 : 〈Mi ↔ d〉; 24 : 〈d↔ L2

i 〉;
13 : 〈e→ l′′i 〉; 17 : 〈l′′i → e〉; 21 : 〈d↔ Li〉; 25 : 〈L2

i → lj〉;
14 : 〈l′′i → l′′i 〉; 18 : 〈l′′′i → livi 〉; 22 : 〈Li → Li〉; 26 : 〈d↔ L3

i 〉;
27 : 〈L3

i → lk〉;
B2 :

G : 〈d↔ l′i〉; K : 〈l′′i → Li〉; N : 〈ar → h〉; Q : 〈L2
i ↔ d〉;

H : 〈l′i → l′′′i 〉; L : 〈Li ↔ ar〉; O : 〈h↔ Li〉; R : 〈Mi → Ni〉;
I : 〈l′′′i ↔ e〉; M : 〈Li ↔Mi〉; P : 〈Li → L2

i 〉; S : 〈Ni ↔ d〉;
J : 〈e↔ l′′i 〉;

B3 :

A′ : 〈e↔ Ni〉; C ′ : 〈L3
i ↔ Li〉; E′ : 〈e↔ h〉; G′ : 〈y ↔Mi〉;

B′ : 〈Ni → L3
i 〉; D′ : 〈Li → e〉; F ′ : 〈h→ y〉; H ′ : 〈Mi → e〉;

The simulation starts by generating the objects l′′i , l
′′′
i in the same way as in

the addition part described above. Then the agent B2 simulates subtraction (if
the subtracted register is nonzero). If there was some ar in the environment, the
agent generates object L2

i . This object agent B1 can rewrite to lj). If the register
r was empty, the agent B2 generates object Ni and this object can be rewritten
by agent B3 to object L3

i . Finally, agent B1 can rewrite object L3
i to lk.
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If the register r stores nonzero value:

B1 B2 B3 Env P1 P2 P3

1. li d e daxrw 11 − −
2. l′i d e daxrw 12 − −
3. e d e l′ida

x
rw 13 G −

4. l′′i l′i e ddaxrw 14 H −
5. l′′i l′′′i e ddaxrw 15 I −
6. l′′i e e l′′′i dda

x
rw 16 − −

7. l′′′i e e l′′i dda
x
rw 18 J −

8. livi l′′′i e ddaxrw 19 K −
9. Mi Li e ddaxrw 20 L −
10. d ar e MiLida

x−1
r w 21 N −

11. Li h e Midda
x−1
r w 22 − −

12. Li h e Midda
x−1
r w 23 − −

13. d h e LiMida
x−1
r w − O −

14. d Li e hMida
x−1
r w − P E′

15. d L2
i h Mida

x−1
r w − Q F ′

16. d d x L2
iMia

x−1
r w 24 − G′

17. L2
i d Mi dyax−1r w 25 − H ′

18. lj d e dyax−1r w ? − −
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If the register r stores value zero:

B1 B2 B3 Env P1 P2 P3

1. li d e dw 11 − −
2. l′i d e dw 12 − −
3. e d e l′idw 13 G −
4. l′′i l′i e ddw 14 H −
5. l′′i l′′′i e ddw 15 I −
6. l′′i e e l′′′i ddw 16 − −
7. l′′′i e e l′′i ddw 18 J −
8. livi l′′′i e ddw 19 K −
9. Mi Li e ddw 20 − −
10. d Li e Midw − M −
11. d Mi e Liddw 21 R −
12. Li Ni e ddw 22 S −
13. Li d e Nidw 23 − A′

14. d d Ni Liw − − B′

15. d d L3
i Liw − − C ′

16. d d Li L3
iw 26 − D′

17. L3
i d e dw 27 − −

18. lk d e dw ? − −
No program is needed in P1 ∪ P2 ∪ P3 to simulate the instruction lh :HALT.

When lh appears, the computation halts since no agent can execute a program.
The result is the number of objects a1 placed in the environment and it corresponds
to the result of a successful computation of the register machine.

5 Conclusions

In this paper we presented the results obtained during the research of P colonies
with passive environment. We have shown that P colonies with with one consumer
and one sender agent can generate all sets of natural numbers computable by
register machines.

Analogously, if we place three agents with one object inside each of them
and with no-checking rewriting/communication programs into the passive envi-
ronment, the obtained P colony is again computationally complete in the Turing
sense.
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Summary. The 3-COL problem consists on deciding if the regions of a map can be
coloured with only three colors bearing in mind that two adjacent regions must be
coloured with different colors. It is a NP problem and it has been previously used in
complexity studies in membrane computing to check the ability of a model for solving
problems of such complexity class. Recently, tissue P systems with proteins on cells have
been presented and its ability to solve NP-problems has been proved, but it remained
as an open question to know if such model was still able to solve such problems if the
environment was removed. In this paper we provide an affirmative answer to this question
by showing a uniform family of tissue P systems without environment and with proteins
on cells which solves the 3-COL problem in linear time.

1 Introduction

The P versus NP problem is one of the most important unsolved problem in
computer science and it was chosen as one of the seven Millennium Prize Problems
[9]. The precise statement of the problem was introduced in 1971 by Stephen Cook
[5], although it was essentially mentioned in a personal communication between
K. Gödel and J. von Neumann [8].

Whereas the main question is unsolved (i.e., to decide if P and NP are or not
the same complexity class), many efforts have been oriented in the last years in
order to find frontiers of tractability, i.e., to identify some features of the com-
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putational models such that the corresponding device is able to solve or not NP
problems depending if it is endowed or not with such feature.

In membrane computing there is an extensive literature devoted to this issue
(see [21] and the references therein) and the present paper is a novel contribution in
such research line. We consider here a variant of one of the most popular P systems
architectures: tissue P systems. Such model was firstly presented in [13, 14] by
placing the cells in a general graph instead on a tree-like graph as in the cell-like
model. Under the hypothesis P6=NP, Zandron et al. [29] established the limitations
of P systems that do not use membrane division concerning the efficient solution
of NP-complete problems. Under this premise, Gh. Păun et al. presented in [24]
the model of tissue P systems with cell division, able to solve NP-problems. Since
then, many other variants have been presented, e.g., [6, 10, 11, 16, 17].

Recently, tissue P systems with protein on cells have been introduced [25]. Pre-
viously, tissue P systems with proteins on membranes had been presented [22] and
many of their properties have been explored (see, e.g., [23, 26, 27]). Nonetheless,
the model of tissue P systems with protein on cells is quite different to the model
with proteins on membranes: In the first one, proteins can move with multisets of
objects but they cannot change. In the model with proteins on membranes, they
can be changed, but they cannot move between membranes.

Tissue P system with proteins on cells is endowed with cell division and its
ability for solving NP problems has been proved [15, 22], but it is an open question
to know if after dropping some of the features, the model is still able to solve NP
problems. In this paper, we prove that the model of tissue P system with proteins
on cells can solve NP problems if the environment is removed. The environment
in tissue P systems has a singular characteristic which makes it different to any
other region: based on a biological inspiration, cells can take from the environment
the necessary resources for any computation in a similar way that a cell can take
as many oxygen molecules from the atmosphere as it needs. This means that the
number of objects in the environment is not important and the designer does not
need to take care of it. Avoiding the environment is a strong restriction, since all the
resources are inside the cells and nothing is taken from outside. The importance
of the environment in other membrane computing models has been previously
discussed in the literature (see, e.g. [4, 12, 19, 20]). In this paper we provide a
uniform family of P systems with proteins on cells without environment which
solves the 3-COL problem in linear time and hence, we prove that such systems
are able of solving NP problems even the environment is dropped.

The paper is organized as follows: Next we give a formal description of the P
system model used in this paper and recall some basics on recognizer P systems.
In Section 3 we present the uniform family of P systems which solve the 3-COL
problem in linear time and discuss the amount of resources needed. Finally, the
paper ends with some conclusions.
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2 Formal Framework

Tissue P systems with proteins on cells and cell division were introduced in [25].
In the same paper, the definition of recognizer tissue P systems [24] is presented
in this framework. We adapt these definitions to the case where the environment
is not considered.

Definition 1. A tissue P system without environment, with protein on cells and
cell division of degree q ≥ 1 is a tuple of the form

Π = (Γ, P,M1/p1, . . . ,Mq/pq,R, iin, iout),

where:

• Γ, P are finite non–empty alphabets such that Γ ∩ P = ∅; Γ is the working
alphabet and P is the set of proteins;

• Mi are finite multisets over Γ , 1 ≤ i ≤ q;
• pi are elements from P , 1 ≤ i ≤ q;
• R is a finite set of rules of the following types:

– Communication rules: (i, (pk, u)/(pl, v), j), for i, j ∈ {1, . . . , q}, i 6= j,
pk, pl ∈ P , u, v ∈ Γ ∗. The length of a communication rule is the total
number of objects and proteins involved in that rule.

– Division rules: [pj |a]i → [pk|b]i [pl|c]i for i ∈ {1, . . . , q}, pj , pk, pl ∈ P ,
a, b, c ∈ Γ , i 6= iout

• iin, iout ∈ {1, . . . , q}.

A tissue P system without environment, with protein on cells and cell division
can be viewed as a set of q cells, labelled by {1, . . . , q} such that M1, . . . ,Mq rep-
resent the finite multisets of objects initially placed in the q cells of the system
and p1, . . . , pq represent one and only one copy of protein initially placed on the
q cells of the system; iin is the cell where the input is placed in the initial con-
figuration; and iout represents a distinguished cell which will encode the output
of the system. A configuration of the P system at any instant is described by all
multisets of objects over Γ associated with all the cells present in the system and
the proteins presented on all cells. The initial configuration is (M1/p1, . . . ,Mq/pq).
A communication rule of type (i, (pk, u)/(pl, v), j) is applicable to a configuration
at an instant if cell i contains the protein pk and the multiset u of objects, cell j
contains the protein pl and the multiset v of objects (multisets u, v may be empty;
the empty multiset will be denoted by the symbol λ). When applying such a rule,
under the control of the proteins pk on cell i and pl on cell j, both the protein pk
and the multiset u of objects are sent from cell i to cell j, and simultaneously, the
protein pl and the multiset v of objects are sent from cell j to cell i. A division
rule [pj |a]i → [pk|b]i [pl|c]i is applicable to a configuration at an instant if cell i
contains the protein pj and the object a. When applying such a rule, under the
influence of protein pj and the object a in cell i, the cell is divided into two cells
with the same label; in the first copy of the cell the protein pj is replaced by pk
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and the object a is replaced by b, in the second copy of the cell the protein pj is
replaced by pl and the object a is replaced by c; all the remaining objects in the
original cell are replicated and distributed in each of the new cells.

Rules are used in a maximally parallel way: at each step, all cells which can
evolve must evolve and a maximal multiset of rules is applied (no further rule can
be added being applicable). As usual in the variant of tissue P systems, this way
of applying rules has only one restriction: when a cell is divided, the division rule
is the only one which is applied to that cell at that step. The new cells resulting
from division could participate in the interaction with other cells by means of
communication rules at the next step (if they are not divided once again).

2.1 Recognizer Tissue P Systems with Protein on Cells and Cell
Division

We recall the main notions related to the theory of recognizer P systems, which
can be adapted to this model in a natural way. For a detailed description see, e.g.,
[18, 21]. A decision problem X is a pair (IX , θX) such that IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total Boolean
function over IX . In general, in a P system with input and output of any P system
variant we consider a working alphabet Γ , with q membranes labelled by 1, . . . , q,
and initial multisets M1, . . . ,Mq associated with them; Σ, which is an (input)
alphabet strictly contained in Γ ; the initial multisets are over Γ −Σ; and iin, iout
are the labels of two distinguished membranes (input and output). Let Γ be the
working alphabet of Π, µ its membrane structure, and M1, . . . ,Mp the initial
multisets of Π. Let m be a multiset over Σ. The initial configuration of the P
system is (µ,M1, . . . ,Miin ∪m, . . . ,Mq).

A recognizer P system is a P system with input and output such that:

• The working alphabet contains two distinguished elements yes, no.
• All its computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the output region (denoted with la-
bel iout), and only in the last step of the computation. We say that C is an
accepting computation (respectively, rejecting computation) if the object yes
(respectively, no) appears in the output region associated to the corresponding
halting configuration of C.

A decision problem X can be solved in a polynomially uniform way by a family
Π = {Π(n)}n∈N of P systems of type F if the following holds:

• There is a deterministic Turing machine M such that, for every n ∈ N, starting
M with the unary representation of n on its input tape, it constructs the P
system Π(n) in polynomial time in n.

• There is a deterministic Turing machine N that started with an instance I ∈ IX
with size n on its input tape, it computes a multiset wI (called the encoding
of I) over the input alphabet of Π(n) in polynomial time in n.
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• For every instance I ∈ IX with size n, starting Π(n) with wI in its input
membrane, every computation of Π(n) halts and sends out to the environment
yes if and only if I is a positive instance of X.

According to the standard notation, ̂TPDC(k) denotes the class of recognizer
tissue P systems without environment with protein on cells and communication
rules of length at most k and PMC

T̂PDC(k)
the set of all decision problems which

can be solved by means of such class. This class is closed under polynomial time
reduction and under complement.

3 The 3-COL Problem

A k–coloring (k ≥ 1) of an undirected graph G = (V,E) is a function f : V →
{1, . . . , k}, where {1, . . . , k} are interpreted as colors. We say that G is k–colorable
if there exists a k–coloring, f , such that f(u) 6= f(v) for every edge {u, v} ∈ E
(such a k–coloring f is said to be valid).

In particular, when k = 3, we have the well-known 3–coloring problem: given
an undirected graph G, decide whether or not G is 3-colorable; that is, if there exists
a valid 3–coloring of G. For the sake of readability, we will use {R,G,B} instead
of {1, 2, 3} to represent the colors (R, G and B standing for red, green and blue,
respectively). This problem is related to the famous Four Color Conjecture (proved
by Appel and Haken [2, 3]). The NP-completeness of the 3–coloring problem was
proved by Stockmeyer [28] (see [7]).

Next, we will prove that the 3–coloring problem can be solved in a linear time
by a family of recognizer tissue P systems without environment and with proteins
on cells. As usual, we will address the resolution via a brute force algorithm, which
consists in the following stages:

• Generation Stage: All the possible 3–coloring are generated, each of them placed
in a different cell. By using the division rules, an exponential amount of cells
can be obtained in linear time. In parallel, the cell containing initially a copy
of the description of the graph is also divided generating as many copies of the
graph as 3-colorings.

• Checking Stage: If a generated 3–coloring has two objects Ki and Kj (K ∈
{R,G,B}) and the graph has an edge Aij linking the nodes i and j, this coloring
is not valid. Since the number of cells containing a copy of the description of
the graph is large enough, the checking for all the colorings can be done in
parallel by pairing cells encoding 3-colorings with cells encoding copies of the
graph. This stage takes only one step.

• Output Stage: It suffices that one of the possible coloring satisfies the conditions
in order to have a positive answer. If such coloring exists, a distinguished
protein will be send to the appropriate cell. We can control via a counter the
number of steps for it. If such protein occurs in the right cell at the right
moment, the system sends yes to the output cell. If such step is reached and
the protein has not been released, an object no is sent to the output cell.
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Each of the P systems of the uniform family Π = {Πn}n∈N described below
depends only on one parameter n which represents the number of nodes of the
graph. Each of these Πn is supplied with the encoding of a concrete instance of a
graph with n vertices in order to start the computation. The graph will be encoded
by using an input alphabet Σ = {Aij : 1 ≤ i < j ≤ n}, and an object Aij will
belong to the input multiset if and only if there is an edge in the graph linking the
nodes i and j. For the sake of simplicity we drop the subscript in Πn. Formally,
for each n ∈ N, the tissue P system is defined as

Π = (Γ, P,Σ,M1/p1,M2/p2,M3/p3,M4/p4,M5/p5,R, iin, iout),

• Γ = Σ ∪ {Ai, Ri, Gi, Bi, Ui, Vi : 1 ≤ i ≤ n}
∪ {ai : 0 ≤ i ≤ 2n+ 1}
∪ {bi : 0 ≤ i ≤ 2n+ 2}
∪ {T, yes, no}

• Σ = {Aij : 1 ≤ i < j ≤ n}
• P = {pi,j : i ∈ {1, 2} j ∈ {1, . . . , 2n+ 1}

∪ {qi,j : i ∈ {1, 2} j ∈ {1, . . . , 2n}
∪ {p0}

• M1 = {A1, . . . , An} with the initial protein p1,1 in cell 1;
• M2 = {A1, . . . , An} with the initial protein p2,1 in cell 2;
• M3 = {a0} with the initial protein p0 in cell 3;
• M4 = {b0, yes, no} with the initial protein p0 in cell 4;
• M5 = {a1, . . . , a2n+1, b1, . . . , b2n+2} with the initial protein p0 in cell 5;
• R is the following set of rules:

1. Division rules: For i ∈ {1, 2} and j ∈ {1, . . . , n}
r1,i,j ≡ [pi,j |Aj ]i → [qi,j |Uj ]i [qi,j |Vj ]i
r2,i,j ≡ [qi,j |Uj ]i → [pi,j+1|Rj ]i [pi,j+1|Gj ]i
r3,i,j ≡ [qi,j |Vj ]i → [pi,j+1|Bj ]i [pi,j+1|T ]i

2. Communication rules:
r4,i,j,K ≡ (1, (p1,2n+1, Aij)/(p2,2n+1,KiKj), 2)

for i, j ∈ {1, . . . , n}, i < j, K ∈ {R,G,B}
r5,i ≡ (3, (p0, ai)/(p0, ai+1), 5) for i = {0, . . . , 2n}
r6,i ≡ (4, (p0, bi)/(p0, bi+1), 5) for i = {0, . . . , 2n+ 1}
r7 ≡ (2, (p2,2n+1, λ)/(p0, a2n+1), 3)
r8 ≡ (4, (p0, b2n+2 yes)/(p2,2n+1, λ), 3)
r9 ≡ (4, (p0, b2n+2 no)/(p0, λ), 3)

• iin = 1, is the input cell
• iout = 3, is the output cell

3.1 An Overview of the Computation

The system is deterministic and it exploits the parallelism intrinsic to membrane
computing systems and the specific feature of tissue P system with proteins on



Solving the 3-COL Problem . . . 169

cells which fix one and only one protein in each membrane. From the initial con-
figuration, four processes start:

1. Cell 1 is divided by the application of rules r1,1,j , r1,2,j and r1,3,j . The config-
uration C2n has 2n membranes with label 1, each of them containing a copy
of the input and a protein p1,2n+1.

2. Cell 2 is divided by the application of rules r2,1,j , r2,2,j and r2,3,j in parallel
with the cell of label 1. The configuration C2n has 2n membranes with label 2
all of them with the protein p2,2n+1. Some of these membrane contain one or
more copies of the object T . Each of the remaining 3n membranes contain a
3-coloring, i.e., a multiset of objects C1C2 . . . Cn with C ∈ {R,G,B}.

3. Cell 3 interchanges one object with cell 5 during the 2n first steps, so at C2n

it contains the protein p0 and the object a2n.
4. Analogously, cell 4 interchanges one object with cell 5 during the 2n first steps,

so at C2n it contains the protein p0 and the object b2n.

At the configuration C2n, cells 1 contain the protein p1,2n+1 and cells 2 contain
the protein p2,2n+1. If a cell 2 contain two objects KiKj with the same color
(K ∈ {R,G,B}) and there exists an edge Aij in the input, then the rule r4,i,j,K
is applied and the corresponding cells interchange their proteins. Since there are
enough cells with label 1, the following holds:

• If a cell 2 represent a valid coloring, then the rule r4,i,j,K is not applied and
the cell has the protein p2,2n+1 at the configuration C2n+1.

• Otherwise, if the coloring represented in the cell is not valid, then the rule
r4,i,j,K is applied and the cell has the protein p1,2n+1 at the configuration
C2n+1.

• Moreover, at C2n+1, cell 3 has protein p0 and an object a2n+1 and cell 4 has
protein p0 and and object b2n+1

Let us recall that if there exists at least one valid coloring, then the answer to
the 3-COL problem must be affirmative. Let us consider that there exist such
valid coloring and then, at C2n+1 there exists (at least) one cell 2 with protein
p2,2n+1. In such case the rule 7 applied and at C2n+2 the cell 3 contains the protein
p2,2n+1. Otherwise, if none of the cells 2 has the protein p2,2n+1, then the rule 7
is not applied and cell 3 has the protein p0 at C2n+2. In such configuration the
object b2n+2 has reached cell 4. Finally, depending on the protein p0 or p2,2n+1 in
cell 3, rule 8 or rule 9 will be applied sending the right answer to cell 3. No more
rules can be applied and C2n+3 is a halting configuration.

3.2 Computational Efficiency

The amount of resources used in the construction of the P system Πn can be
summarized as follows: The working alphabet Γ is O(n) with 10n + 8 objects;

the input alphabet is O(n2) with n2−n
2 objects; the set of proteins is O(n) with

6n+3 proteins; and the number of rules is O(n2) with 3
2n

2 + 17
2 n+6 rules. All the
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computation halt after 2n+ 3 steps. Finally, the communication rules have length
5 at most. Therefore the main result of this paper holds.

Theorem 1. 3-COL ∈ PMC ̂TPDC(5)

Corollary 1. NP ∪ co−NP ⊆ PMC ̂TPDC(5)

These results hold from the previous construction and the closure under
polynomial-time reduction and under complement of the complexity class.

4 Conclusions

Whereas the P vs. NP is unsolved, the search of new frontiers of tractability allows
us to have a deeper knowledge of the problem. In the framework of membrane
computing, and in natural computing in general, the use of bio-inspired features
in such complexity studies shed a new light on an old problem. In this paper we
present a new solution to the 3-COL problem with tissue P systems with proteins
on cells and without environment which uses communication rules of length at
most 5. By using environment, the solution for the SAT problem proposed in [25]
uses communication rules of length at most 4. In [15] the proposed solution for
the 3-COL problem also uses communication rules of length at most 4. Although
both problems, SAT and 3-COL, are different, it remains open the question if it is
possible to find a solution to a NP problem in the model of tissue P systems with
proteins on cells by removing the environment and using communication rules of
length at most 4.
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8. Hartmanis, J.: Gödel, von Neumann and the P =? NP problem. In: Rozenberg, G.,
Salomaa, A. (eds.) Current Trends in Theoretical Computer Science - Essays and
Tutorials, World Scientific Series in Computer Science, vol. 40, pp. 445–450. World
Scientific (1993)

9. Jaffe, A.M.: The millennium grand challenge in mathematics. Notices of the American
Mathematical Society 53(6), 652 – 660 (2006)

10. Krishna, S.N., Lakshmanan, K., Rama, R.: Tissue P systems with contextual and
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Summary. The integration of symbolic reasoning systems based on logic and connec-
tionist systems based on the functioning of living neurons is a vivid research area in
computer science. In the literature, one can found many efforts where different reasoning
systems based on different logics are linked to classic artificial neural networks. In this
paper, we study the relation between the semantics of reasoning systems based on propo-
sitional logic and the connectionist model in the framework of membrane computing,
namely, spiking neural P systems. We prove that the fixed point semantics of deductive
databases and the immediate consequence operator can be implemented in the spiking
neural P systems model.

1 Introduction

Two of the most well-known paradigms for implementing automated reasoning in
machines are, on the one hand, the family of connectionist systems, inspired in
the network of biological neurons in a human brain and, on the other hand, logic-
based systems, able to represent and reason with well-structured symbolic data.
The integration of both paradigms is a vivid area in artificial intelligence (see, e.g.,
[2, 3, 8]).

In the framework of membrane computing, several studies have been presented
where P systems are used for representing logic-based information and performing
reasoning by the application of bio-inspired rules (see [7, 11]). These papers study
approaches based on cell-like models, as P systems with active membranes, and
deal with procedural aspects of the computation. The approach in this paper is
different in both senses.

On the one hand, the connectionist model of P systems is considered, i.e, the
model of P system inspired by the neurophysiological behavior of neurons sending
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electrical impulses along axons to other neurons (the so-called spiking neural P
systems, SN P systems for short). On the second hand, we consider the semantics
of propositional deductive databases in order to show how SN P systems can deal
with logic-based representing and reasoning systems.

One of the key points of the integrate-and-fire formal spiking neuron models [6]
(and, in particular, of the SN P systems) is the use of the spikes as a support of the
information. Such spikes are short electrical pulses (also called action potentials)
between neurons and can be observed by placing a fine electrode close to the soma
or axon of a neuron. From the theoretical side, it is crucial to consider that all
the biological spikes of an alive biological neuron look alike. This means that we
can consider a bio-inspired binary code which can be used to formalize logic-based
semantics: the emission of one spike will be interpreted as true and the absence of
spikes will be interpreted as false. As we will show below, SN P systems suffice for
dealing with the semantics of propositional logic systems.

The main result of this paper is to prove that given a reasoning system based on
propositional logic it is possible to find an SN P system with the same declarative
semantics. A declarative semantics for a rule-based propositional system is usually
given by selecting models which satisfy certain properties. This choice is often
described by an operator mapping interpretations to interpretations. In this paper
we consider the so-called immediate consequence operator due to van Emden and
Kowalski [5]. It is well-know that such operator is order continuous and its least
fix point coincides with the least model of KB. We adapt the definition of the
immediate consequence operator to a restricted form of SN P system and we prove
that a least fix point, and hence a least model, is obtained for the given reasoning
system.

The paper is organized as follows: firstly, we recall some aspects about SN
P systems and the semantics of deductive databases. In Section 3 we prove that
standard SN P systems can deal with the semantics of deductive databases. Finally,
some conclusions are provided in the last section.

2 Preliminaries

We assume the reader to be familiar with basic elements about membrane comput-
ing and the semantics of rule-based systems. Next, we briefly recall some defini-
tions. We refer to [13] for a comprehensive presentation of the former and [1, 4, 12]
for the latter.

2.1 Spiking Neural P Systems

SN P systems were introduced in [10] with the aim of incorporating in membrane
computing ideas specific to spike-based neuron models. It is a class of distributed
and parallel computing devices, inspired by the neurophysiological behavior of
neurons sending electrical impulses (spikes) along axons to other neurons.
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In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consist of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to send
information to other neurons in the form of spikes which are accumulated at the
target cell. The applicability of each rule is determined by checking the contents
of the neuron against a regular set associated with the rule. In each time unit,
if a neuron can use one of its rules, then one of such rules must be used. If two
or more rules could be applied, then only one of them is non-deterministically
chosen. Thus, the rules are used in the sequential manner in each neuron, but
neurons function in parallel with each other. As usually happens in membrane
computing, a global clock is assumed, marking the time for the whole system, and
hence the functioning of the system is synchronized.

Formally, an SN P system of the degree m ≥ 1 is a construct1

Π = (O, σ1, σ2, . . . , σm, syn)

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) firing rules E/ap → a, where E is a regular expression over a and p ≥ 1
is an integer number;

(2) forgetting rules as → λ, with s an integer number such that s ≥ 1;
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the

directed graph of synapses between neurons.

The rules of type (1) are firing rules, and they are applied as follows. If the neu-
ron σi contains k spikes, k ≥ p, and ak belongs to the language L(E) associated to
the regular expression E, then the rule E/ap → a can be applied. The application
of this rule means removing p spikes (thus only k − p remain in σi), the neuron is
fired, and it produces one spike which is sent immediately to all neurons σj such
that (i, j) ∈ syn. The rules of type (2) are forgetting rules and they are applied as
follows: if the neuron σi contains exactly s spikes, then the rule as → λ from Ri

can be used, meaning that all s spikes are removed from σi. If a rule E/ap → a of
type (1) has E = ap, then we will write it in the simplified form ap → a. In each
time unit, if a neuron σi can use one of its rules, then a rule from Ri must be used.
Since two firing rules, E1/a

p1 → a and E2/a
p2 → a can have L(E1) ∩ L(E2) 6= ∅,

it is possible that two or more rules can be applied in a neuron, and in that case
only one of them is non-deterministically chosen.

The j-th configuration of the system is described by a vector Cj = (t1, . . . , tm)
where tk represents the number of spikes at the neuron σk in such configuration.

1 We provide a definition without delays, input or output neurons because these features
are not used in this paper.
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The initial configuration is C0 = (n1, n2, . . . , nm). Using the rules as described
above, one can define transitions among configurations. Any sequence of transitions
starting in the initial configuration is called a computation. A computation halts
if it reaches a configuration where no rule can be used. Generally, a computation
may not halt. If it halts, the last configuration is called a halting configuration.

2.2 Semantics of Rule-based Deductive Databases

Given two pieces of knowledge V and W , expressed in some language, the rule
V →W is usually considered as a causal relation between V and W . In this paper,
we only consider propositional logic for representing the knowledge. Given a set of
propositional variables {p1, . . . , pn}, a rule is a formula B1 ∧ · · · ∧Bm → A where
m ≥ 0, A,B1, . . . Bm are variables. The variable A is called the head of the rule and
the conjunction of variables B1∧· · ·∧Bm is the body of the rule. If m = 0, it is said
that the body of the rule is empty. A finite set of rules KB is a deductive database.
An interpretation I is a mapping from the set of variables {p1, . . . , pn} to the set
{0, 1}. As usual, we will represent an interpretation I as a vector (i1, . . . , in) with
I(pk) = ik ∈ {0, 1} for k ∈ {1, . . . , n}. The set of all the possible interpretations
for a set of n variables will be denoted by 2n. Given two interpretations I1 and I2,
I1 ⊆ I2 if for all k ∈ {1, . . . , n}, I1(pk) = 1 implies I2(pk) = 1. We will denote by I∅
the interpretation that maps to 0 every variable, I∅ = (0, . . . , 0). The interpretation
I is extended in the usual way, I(B1∧· · ·∧Bm) = min{I(B1), . . . , I(Bm)} and for
a rule2

I(B1 ∧ · · · ∧Bm → A) =

{
0 if I(B1 ∧ · · · ∧Bm) = 1 and I(A) = 0
1 otherwise

An interpretation I is a model for a deductive database KB if I(R) = 1 for all
R ∈ KB. Next, we recall the propositional version of the immediate consequence
operator which was introduced by van Emden and Kowalski [5].

Definition 1. Let KB be a deductive database on a set of variables {p1, . . . , pn}.
The immediate consequence operator of KB is the mapping TKB : 2n → 2n such
that for all interpretation I, TKB(I) is an interpretation

TKB(I) : {p1, . . . , p1} → {0, 1}

such that, for k ∈ {1, . . . , n}, TKB(I)(pk) = 1 if there exists a rule B1∧· · ·∧Bm →
pk in KB such that I(B1 ∧ · · · ∧Bm) = 1; otherwise, TKB(I)(pk) = 0.

The importance of the immediate consequence operator is shown in the follow-
ing proposition (see [9]).

2 Let us remark that, from the definition, if m = 0, I(B1 ∧ · · · ∧ Bm) = 1 and, hence,
for a rule with an empty body, we have I(→ A) = 1 if and only if I(A) = 1.
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Theorem 1. An interpretation I is a model of KB if and only if TKB(I) ⊆ I.

Since the image of an interpretation is an interpretation, the immediate con-
sequence operator can be iteratively applied.

Definition 2. Let KB be a deductive database and TKB its immediate consequence
operator. The mapping TKB ↑: N → 2n is defined as follows: TKB ↑ 0 = I∅ and
TKB ↑ n = TKB ↑ (TKB ↑ (n− 1)) if n > 0. In the limit, it is also considered

TKB ↑ ω =
⋃
k≥0

TKB ↑ k

The next theorem is a well-known result which relates the immediate conse-
quence operator with the least model of a deductive database (see [12]).

Theorem 2. Let KB be a deductive database. The following results hold

• TKB ↑ ω is a model of KB
• If I is a model of KB, then TKB ↑ ω ⊆ I

Example 1. Let us consider the following knowledge baseKB on the set of variables
Γ = {p1, p2, p3, p4}

R1 ≡ → p1
R2 ≡ p1 → p2
R3 ≡ p1 ∧ p2 → p3
R4 ≡ p3 → p4
R5 ≡ p2 → p4

and let us consider the interpretation I : Γ → {0, 1} such that I(p1) = 1, I(p2) = 0,
I(p3) = 0 and I(p4) = 0. Such interpretation can be represented as I = (1, 0, 0, 0).
The truth assignment of this interpretation to the rules is I(R1) = 1, I(R2) = 0,
I(R3) = 1, I(R4) = 1, I(R5) = 1. Since I(R2) = 0, the interpretation I is not a
model for KB. The application of the immediate consequence operator produces
TKB(I) = (1, 1, 0, 0). We observe that TKB(I) 6⊆ I and hence, by Th. 1, we can also
conclude that I is not a model for KB. Finally, if we consider I∅ = (0, 0, 0, 0), the
following interpretations are obtained by the iterative application of the immediate
consequence operator

TKB ↑ 0 = I∅ = (0, 0, 0, 0)
TKB ↑ 1 = TKB(TKB ↑ 0) = (1, 0, 0, 0)
TKB ↑ 2 = TKB(TKB ↑ 1) = (1, 1, 0, 0)
TKB ↑ 3 = TKB(TKB ↑ 2) = (1, 1, 1, 1)

In this case TKB ↑ 3 is a fix point for the immediate consequence operator and
a model for the deductive database KB.
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3 Semantics of Deductive Databases with SN P Systems

The semantics of deductive databases deals with interpretations, i.e., with map-
pings from the set of variables into the set {0, 1} (which stand for false and true)
and try to characterize which of these interpretations make true a whole deductive
database which, from the practical side, may contain hundreds of variables and
thousand of rules. The immediate consequence operator provides a tool for dealing
with this problem and provides a way to characterize such models. In this section
we will explore how this problem can be studied in the framework of SN P systems
and prove that the immediate consequence operator can be implemented in this
model and therefore, membrane computing provides a new theoretical framework
for dealing with the semantics of deductive databases.

Our main result claims that SN P systems can compute the immediate conse-
quence operator and hence, the least model of a deductive database.

Theorem 3. Given a deductive database KB and an interpretation I, a SN P
system can be constructed such that

(a) It computes the immediate consequence operator TKB(I).
(b) It computes the least model for KB in a finite number of steps.

Proof. Let us consider a knowledge database KB, let {p1, . . . , pn} be the propo-
sitional variables and {r1, . . . , rk} be the rules of KB. Given a variable pi, we will
denote by hi the number of rules which have pi in the head and given a rule rj , we
will denote by bj the number of variables in its body. The SN P systems of degree
2n+ k + 3

ΠKB = (O, σ1, σ2, . . . , σ2n+k+2, syn)

can be constructed as follows:

• O = {a};
• σj = (0, {a→ λ}) for j ∈ {1, . . . n}
• σn+j = (ij , Rj), j ∈ {1, . . . n}, where ij = I(pj) and Rj is the set of hj rules

Rj = {ak → a | k ∈ {1, . . . , hj}}
• σ2n+j = (0, Rj), j ∈ {1, . . . k}, where Rj is one of the following set of rules
• Rj = {abj → a} ∪ {al → λ | l ∈ {1, . . . , bj − 1} } if bj > 0
• Rj = {a→ a} if bj = 0.

For a better understanding, the neurons σ2n+k+1 and σ2n+k+2 will be denoted by
σG and σT .

• σG = (0, {a→ a})
• σT = (1, {a→ a})
• syn = {(n+ i, i) | i ∈ {1, . . . , n}}

∪
{

(n+ i, 2n+ j) | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}
and pi is a variable in the body of rj

}
∪
{

(2n+ j, n+ i) | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}
and pi is the variable in the head of rj

}
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∪ {(G,T ), (T,G)}

∪
{

(T, 2n+ j) | j ∈ {1, . . . , k}
and rj is a rule with empty body

}
Before going on with the proof, let us note that the construction of this SN P

system is illustrated in the Example 2. The next remarks will be useful:

Remark 1. For all t ≥ 0, in the 2t-th configuration C2t the neuron σT contains
exactly one spike and the neuron σG does not contain spikes.
Proof. In the initial configuration C0, σT contains 1 spike and σG does not contain
spikes. By induction, let us suppose that in the C2t the neuron σT contains exactly
one spike and σG does not contain spikes. Since the unique incoming synapse in
σT comes from σG and the unique incoming synapse in σG comes from σT and in
both neurons occurs the rule a→ a, then in C2t+1 the neuron σG contains exactly
spike and σT does not contain spikes and finally, in C2t+2 the neuron σT contains
exactly spike and σG does not contain spikes.

Remark 2. For all t ≥ 0 the following results hold:

• For all p ∈ {1, . . . , k} the neuron σ2n+p does not contain spikes in the config-
uration C2t

• For all q ∈ {1, . . . , n}, the neuron σn+q does not contain spikes in the configu-
ration C2t+1

Proof. In the initial configuration C0, for all p ∈ {1, . . . , k}, the neuron σ2n+p

does not contain spikes and each neuron σn+q contain, at most, one spike. Such
spike is consumed by the application of the rule a → a and, since all the neu-
rons with synapse to σn+q do not contain spikes at C0, we conclude that at the
configuration C1, the neurons σn+q do not contain spikes.

By induction, let us suppose that in C2t, for all p ∈ {1, . . . , k}, the neuron σ2n+p

does not contain spikes and for all q ∈ {1, . . . , n}, the neuron σn+q does not contain
spikes in the configuration C2t+1. According to the construction, the number of
incoming synapses in each neuron σ2n+j is bj if bj > 1 and 1 if bj = 0. Such
synapses come from neurons that send (at most) one spike in each computational
step, so in C2t+1, the number of spikes in the neuron σ2n+j is, at most, bj if
bj > 1 and 1 if bj = 0. All these spikes are consumed by the corresponding rules.
Moreover, at C2t+1, all the neurons with outgoing synapses to σ2n+p do not contain
spikes, so we conclude that at C2t+2, for all j ∈ {1, . . . , k}, the neuron σ2n+j does
not contain spikes. We focus now on the neurons σn+q with q ∈ {1, . . . , n}. By
induction, we assume that they do not contain spikes in the configuration C2t+1.
Each neuron σn+q can receive at most hq, since there are hq incoming synapses
and the corresponding neuron sends, at most, one spike. Hence, at C2t+2, σn+q

has, at most, hq spikes. All of them are consumed by the corresponding rule and,
since all the neurons which can send spikes to σn+q do not contain spikes at C2t+2,
we conclude that, for all q ∈ {1, . . . , n}, the neuron σn+q does not contain spikes
in the configuration C2t+3.
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Remark 3. For all q ∈ {1, . . . , n}, the neuron σq does not contain spikes in the
configuration C2t.
Proof. The result holds in the initial configuration. For C2t with t > 0 it suffices to
check that, as claimed in Remark 2, for all q ∈ {1, . . . , n}, the neuron σn+q does
not contain spikes in the configuration C2t+1 and each σq receives at most one
spike in each computation step from the corresponding σn+q. Therefore, in each
configuration C2t+1, each neuron σq contains, at most, one spike. Since such spike
is consumed by the rule a→ λ and no new spike arrives, then the neuron σq does
not contain spikes in the configuration C2t.

Before going on with the proof, it is necessary to formalize what means that
the SN P system computes the immediate consequence operator TKB . Given a
deductive database KB on a set of variables {p1, . . . , pn}, an interpretation on KB
can be represented as a vector I = (i1, . . . , in) with ij ∈ {0, 1} for j ∈ {1, . . . , n}.
Let us consider that such values ij ∈ {0, 1} represent the number of spikes placed in
the corresponding neuron σn+j at the initial3 configuration C0. We will consider
that the computed output for such interpretation is encoded in the number of
spikes in the neurons σ1, . . . , σn in the configuration C3.

The main results of the theorem can be obtained from the following technical
remark.

Remark 4. Let I = (i1, . . . , in) an interpretation for KB and let S = (s1, . . . , sn)
be a vector with the following properties. For all j ∈ {1, . . . , n}

• If ij = 0, then sj = 0.
• If ij 6= 0, then sj ∈ {1, . . . , hj}

Let us suppose that at the configuration C2t the neuron σn+j contains exactly
sj spikes. Then, the interpretation obtained by applying the immediate conse-
quence operator TKB to the interpretation I, TKB(I) is (q1, . . . , qn) where qj,
j ∈ {1, . . . , n}, is the number of spikes of the neuron σj in the configuration C2t+3.
Proof. Firstly, let us consider k ∈ {1, . . . , n} and TKB(I)(pk) = 1. Let us prove
that at the configuration C2t+3 there is exactly one spike in the neuron σk.

If TKB(I)(pk) = 1, then there exists at least one rule rl ≡ Bd1
∧ · · · ∧Bdl

→ pk
in KB such that I(Bd1

∧ · · · ∧Bdl
) = 1.

Case 1: Let us consider that there is only one such rule rl and the body of
rl is empty. By construction, the neuron σ2n+l has only one incoming synapse
from neuron σT ; the neuron σn+j contains exactly sj spikes, j ∈ {1, . . . , n} and
sj ∈ {1, . . . , hj}; and according to the previous remarks:

• In C2t the neuron σT contains exactly one spike.

3 With a more complex design of the SN P system, it may be considered that these
neurons do not contain spikes at the initial configuration and the vector I = (i1, . . . , in)
is provided as a spike train via an input neuron, but in this paper we have chosen a
simpler design and focus on the computation of the immediate consequence operator.
An analogous comment fits for the computed output.
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• For all p ∈ {1, . . . , k} the neuron σ2n+p does not contain spikes in the configu-
ration C2t

• For all q ∈ {1, . . . , n}, the neuron σq does not contain spikes in the configuration
C2t.

In these conditions, the corresponding rules in σT and σn+k are fired and in C2t+1,
the neuron σ2n+k contains one spike. In C2t+2, the neuron σn+k contains one spike
and σk does not contain spikes. Finally, in the next step σn+k sends one spike to
σk, so, in C2t+3, σk contain one spike.

Case 2: Let us now consider that there exists rl ≡ Bd1 ∧ . . . Bdl
→ pk in KB

such that I(Bd1
∧ · · · ∧Bdl

) = 1 and dl > 0. We suppose that I(Bd1
∧ · · · ∧Bdl

) =
1 and this means that I(Bd1

) = · · · = I(Bdl
) = 1 and therefore, in C2t, the

neuron σn+dj
contains sdj

spikes, with sdj
∈ {1, . . . , hdj

}. All these neurons fire
the corresponding rule, and σ2n+k has at C2t+1 exactly bk spikes (since all the
incoming synapses send the corresponding spike). The rule abk → a is fired and
in C2t+2 the neuron σn+k contains at least one spike. It may have more spikes
depending on the existence of other rules with pk in the head, but in any case, the
number of spikes is between 1 and hk. The corresponding rule fires and the neuron
σk contains one spike in C2t+3.

Finally, we prove the statements claimed by the theorem:

(a) The SN P system computes the immediate consequence operator TKB(I).
Proof. It is directly obtained from Remark 4. Let us note that one of the possible
vectors S = (s1, . . . , sn) obtained from the interpretation I is exactly the same
interpretation I = (i1, . . . , in). If we also consider the case when t = 0, we have
proved that from the initial configuration C0 where ik represents the number of
spikes in the neuron σn+k, then the configuration C3 encodes TKB(I).

(b) The SN P system computes the least model for KB in a finite number of
steps.
Proof. Let us consider the empty interpretation as the initial one, i.e., TKB ↑ 0 =
I∅. We will prove that

(∀z ≥ 1)TKB ↑ z = C2z+1[1, . . . , n]

where C2z+1[1, . . . , n] is the vector whose components are the spikes on the neurons
σ1, . . . , σn in the configuration C2z+1. We will prove it by induction.

For z = 1, we have to prove that TKB ↑ 1 = TKB(TKB ↑ 0) = TKB(I∅)
is the vector whose components are the spikes on the neurons σ1, . . . , σn in
the configuration C3. The result holds from Remark 4 and it has been proved
in the statement (a) of the theorem. By induction, let us consider now that
TKB ↑ z = C2z+1[1, . . . , n] holds. As previously stated, this means that in the
previous configuration C2z the spikes in the neurons σn+1, . . . , σ2n can be repre-
sented as a vector S = (s1, . . . , sn) be a vector with the properties claimed in
Remark 4, namely, if the neuron σj has no spikes in C2z+1, then sj = 0 and, if the
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Fig. 1. Graphical representation of the synapses of the SN P system of Example 1.

neuron σj has spikes in C2z+1, then sj ∈ {1, . . . , hj}. Hence, according to Remark
4, three computational steps after C2z, TKB(C2z+1[1, . . . , n]) is computed

TKB ↑ z + 1 = TKB(TKB ↑ z) = TKB(C2z+1[1, . . . , n]) = C2z+3[1, . . . , n]

Finally, it is well-known that for a database KB, TKB ↑ z ⊆ TKB ↑ z + 1 and,
since the KB has a finite number of variables and a finite number of rules, then
there exist n ∈ N such that TKB ↑ n ⊆ TKB ↑ ω and hence, TKB ↑ n is a model
for KB. �

Example 2. Let us consider the deductive database from Example 1. The SN P
system associated with this KB and the interpretation I∅ is

Π = (O, σ1, σ2, . . . , σ13, σG, σT , syn)

where O = {a},

σ1 = (0, {r1,1 ≡ a→ a}) σ5 = (0, {r5,1 ≡ a→ a}) σ9 = (0, {r9,1 ≡ a→ a})
σ2 = (0, {r2,1 ≡ a→ a}) σ6 = (0, {r6,1 ≡ a→ a}) σ10 = (0, {r10,1 ≡ a→ a})

σ3 = (0, {r3,1 ≡ a→ a}) σ7 = (0, {r7,1 ≡ a→ a}) σ11 = (0,

{
r11,1 ≡ a→ λ
r11,2 ≡ a2 → a

}
)

σ4 = (0, {r4,1 ≡ a→ a}) σ8 = (0,

{
r8,1 ≡ a→ a
r8,2 ≡ a2 → a

}
) σ12 = (0, {r12,1 ≡ a→ a})

σ13 = (0, {r13,1 ≡ a→ a})

σG = (0, {rG,1 ≡ a→ a} and σT = (0, {rT,1 ≡ a→ a} with the synapses
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syn =

 (5, 1), (6, 2), (7, 3), (8, 4), (5, 10), (5, 11),
(6, 11), (6, 13), (7, 12), (9, 5), (10, 6), (11, 7),
(12, 8), (13, 8), (G,T ), (T,G), (T, 9)


Let us consider the first steps of the computation

Conf. σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σG σT
C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
C2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
C3 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0
C4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1
C5 1 1 0 0 0 0 0 0 1 1 2 0 1 1 0
C6 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1
C7 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0

We have obtained
TKB ↑ 0 = C1[1, . . . , 4] = (0, 0, 0, 0)
TKB ↑ 1 = C3[1, . . . , 4] = (1, 0, 0, 0)
TKB ↑ 2 = C5[1, . . . , 4] = (1, 1, 0, 0)
TKB ↑ 3 = C7[1, . . . , 4] = (1, 1, 1, 1)

4 Conclusions

Biological neurons have a binary behaviour depending on a threshold. If the thresh-
old is reached, the neuron is triggered and it sends a spike to the next neurons. If
it is not reached, nothing is sent. This binary behaviour can be exploited in order
to design connectionist systems which are able to deal with two-valued logic-based
reasoning systems. In this paper, we have proved that SN P systems are able to
deal with the semantics of deductive databases. Namely, we have proved that the
immediate consequence operator can be iteratively computed with such devices
by using an appropriate representation. This pioneer work opens a door for future
bridges between SN P systems and logic-based reasoning systems.

References

1. Apt, K.R.: Logic Programming. In: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pp. 493–574. The MIT Press (1990)

2. Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration - a structured survey.
In: Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L., Woods, J. (eds.) We
Will Show Them: Essays in Honour of Dov Gabbay, vol. 1, pp. 167–194. King’s
College Publications (2005)



184 D. Dı́az-Pernil and M.A. Gutiérrez-Naranjo
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Summary. In this paper we consider three restricted variants of P systems with active
membranes: (1) P systems using out communication rules only, (2) P systems using ele-
mentary membrane division and dissolution rules only, and (3) polarizationless P systems
using dissolution and restricted evolution rules only. We show that every problem in P
can be solved with uniform families of any of these variants. This, using known results on
the upper bound of the computational power of variants (1) and (3) yields new charac-
terizations of the class P. In the case of variant (2) we provide a further characterization
of P by giving a semantic restriction on the computations of P systems of this variant.

1 Introduction

P systems with active membranes were introduced in [19]. These P systems have
the possibility of dividing elementary (or even non-elementary) membranes. It was
soon discovered that this feature (combined with maximal parallelism) makes this
variant a rather powerful computational device, and efficient solutions of problems
that are complete in NP [10, 19, 24, 30] (or even in PSPACE [1, 28]) were given. In
order to establish the connection between classical complexity classes and P system
families, recognizer P systems were introduced in [23, 25]. Since then recognizer
P systems are considered as the natural framework to study the computational
power of various classes of P system families. Among the many research lines in
Membrane Computing, one is to find efficient solutions of computationally hard
problems by various types of recognizer P systems with active membranes (see e.g.
[2, 3, 4, 17, 18, 22]).

It is not too surprising that membrane division is necessary in these systems
to solve computationally hard problems efficiently [30]. However, in [20] Păun
conjectured that polarization is also necessary. More precisely, Păun conjectured
that polarizationless P systems working in polynomial time can solve only problems
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in P. Although this conjecture has not been proven yet, there are some partial
results. In [8] it was shown that without dissolution rules these systems can solve
exactly the problems in P. The conjecture was also confirmed in the following
cases: when dissolution rules are allowed, but the P systems can employ only
restricted, so-called symmetric, division rules [12], and when the initial membrane
structure is a nested sequence of membranes, and the system can employ only
dissolution and elementary membrane division rules [29].

It was observed in [13] that the P lower bound in the characterization of P in
[8] comes from the polynomial uniformity of the examined P systems. In fact, ac-
cording to [11] the used uniformity condition dominates the computational power
of uniform families of polarizationless P systems with no dissolution rules. This
initiated a sequence of papers where P systems with active membranes under
reasonably tight uniformity conditions were examined [15, 16]. Moreover, several
solutions of problems in P with restricted classes of P systems under tight unifor-
mity conditions were given [5, 9, 14, 15].

In this paper we continue the work in this research line. First we show that
uniform families of P systems with active membranes using out communication
rules only can solve every problem in P. Then we show a similar result when the
applicable rules are the elementary membrane division and the dissolution rules.
The proofs are given by solving a restricted, but still P-complete variant of the
well know HornSat problem, the satisfiability problem of Horn formulas.

Finally, we show that uniform families of polarizationless P systems with active
membranes using dissolution and restricted evolution rules can simulate polyno-
mial time Turing machines efficiently. The restriction made on the evolution rules
is that each rule can introduce at most one object during a computation step.
This result is stronger than the one appearing in [6] since there communication
and not restricted evolution rules were used too. In [15] a solution of a P-complete
problem was given using dissolution and restricted evolution rules only, however
the presented family of P systems was semi-uniform.

Using the P upper bound given in [30], our first and third result give new
characterizations of P in terms of Membrane Computing techniques. In our second
result we use such P systems where the initial membrane structure is a nested
sequence of membranes, and during the computation the number of membranes on
the deepest level is at most two. It can be seen that the set of those problems that
can be solved by those P systems with active membranes which have this semantic
restriction during their computations are in P. This yields another characterization
of the complexity class P.

The paper is organized as follows. In the next section the necessary notations
and notions are recalled. In Section 3 we give the main result of the paper. Finally,
some conclusions are given in the last section.
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2 Preliminaries

Here we recall the necessary notions used later. Nevertheless, we assume that the
reader is familiar with the basic concepts of formal language theory, propositional
logic, and Membrane Computing techniques (for a comprehensive guide to these
topics see e.g. [7, 21, 26], respectively). N denotes the set of natural numbers. For
n,m ∈ N, n < m, [n,m] denotes the set {n, n+ 1, . . . ,m}. If n = 1, then [n,m] is
denoted by [m].

Propositional formulas and the HornSat problem.

A propositional variable is a variable whose value can be either true or false. If it
is not confusing, we will often call propositional variables simply variables. We fix
an infinite set V ar = {x1, x2, x3, . . .} of variables (for the better readability of the
paper we will often denote some of these variables by x, y, z, . . .). For a number
n ∈ N, V arn is the set {x1, . . . , xn}. An interpretation of the variables in V arn is
a function I : V arn → {true, false}.

The propositional variables and their negations are called literals. l is a positive
(resp. negative) literal, if l = x (resp. l = ¬x), for some x ∈ V ar, where ¬ denotes
the operation of negation. A clause C is a disjunction of finitely many pairwise
different literals satisfying that there is no x ∈ V ar such that both x and ¬x
occur in C. A clause C is a positive unit clause if C consists of one positive literal.
A formula in conjunctive normal form (CNF) is a conjunction of finitely many
clauses. Let ϕ be a formula in CNF with variables in V arn (n ∈ N). We will
sometimes consider ϕ as a finite set of clauses, where the clauses are finite sets of
literals. ϕ is satisfiable, if there is an interpretation under which ϕ evaluates true.
Moreover, ϕ is a Horn formula if every clause in ϕ contains at most one positive
literal.

The HornSat problem sounds as follows: given a Horn formula ϕ, decide
if ϕ is satisfiable. It is known that HornSat is P-complete. Let Horn3Sat be
that restriction of HornSat where every clause of the input formula can con-
tain at most three literals. Moreover, let Horn3SatNorm be that restriction of
Horn3Sat where the input formula is in the following normal form: every clause
of the formula is a positive unit clause or it contains exactly two negative literals.
For example, x ∧ (¬x ∨ y) ∧ (¬y ∨ ¬z ∨ u) is an instance of Horn3Sat, but not
of Horn3SatNorm, since (¬x∨ y) neither is a positive unite clause nor contains
exactly two negative literals.

Next we show that Horn3SatNorm is P-complete. The proof resembles to
that of the NP-completeness of the 3Sat problem (the 3Sat problem is the satis-
fiability problem of those formulas in CNF which can have only clauses with three
literals, see e.g. [27]).

Proposition 1. Horn3SatNorm is P-complete.

Proof. Since this problem is a restriction of HornSat, it is in P. Thus, it
is enough to show that HornSat can be reduced using logarithmic space to
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Horn3SatNorm. First we show that HornSat reduces to Horn3Sat. Let ϕ
be a Horn formula over the variables in V arn (n ∈ N). We construct an instance
ϕ′ of Horn3Sat such that ϕ′ is satisfiable if and only if ϕ is satisfiable. Let C be a
clause in ϕ. If C has at most three literals, then let C be a clause of ϕ′. Otherwise,
assume that C = x1 ∨¬x2 ∨ · · · ∨¬xk for some k ∈ [4, n]. It can be easily seen that
C is satisfiable if and only if (x1 ∨ ¬x2 ∨ ¬y) ∧ (y ∨ ¬x3 ∨ · · · ∨ ¬xk) is satisfiable,
where y is a new variable, not included in V arn. In this way we can construct
the formula (x1 ∨ ¬x2 ∨ ¬y1) ∧ (y1 ∨ ¬x3 ∨ ¬y2) ∧ · · · ∧ (yk−3 ∨ ¬xk−1 ∨ ¬xk),
which is satisfiable (over V arn ∪{y1, . . . , yk−3}) if and only if C is satisfiable (over
V arn). To a clause with no positive literal one can give a very similar construction.
Then we add these new clauses to ϕ′. Clearly, ϕ′ is satisfiable if and only if ϕ is
satisfiable, and the mapping ϕ 7→ ϕ′ can be carried out by a deterministic Turing
machine using logarithmic space in the size of ϕ.

Next we show that Horn3Sat reduces to Horn3SatNorm. To this end let ϕ
be an instance of Horn3Sat over the variables in V arn. We construct an instance
ϕ′ of Horn3SatNorm such that ϕ′ is satisfiable if and only if ϕ is satisfiable. For
every clause C of ϕ, if C corresponds to the restrictions made on the instances of
Horn3SatNorm, then let C be a clause of ϕ′. Otherwise we replace C with the
set C′ of clauses defined as follows:

• if C = ¬x, then let C′ = {¬x ∨ ¬y, y},
• if C = x1 ∨ ¬x2, then let C′ = {x1 ∨ ¬x2 ∨ ¬y, y}, and
• if C = ¬x1 ∨ ¬x2 ∨ ¬x3, then let C′ = {¬x1 ∨ ¬x2 ∨ y,¬y ∨ ¬x3},

where y is always a new variable not used yet during the construction. Clearly
the clauses in C′ always have the desired forms, and ϕ′ is satisfiable if and only
if ϕ is satisfiable. Moreover, the described construction can be carried out by a
logarithmic space Turing machine. Thus, since logarithmic space reductions are
closed under composition, we have that HornSat can be efficiently reduced to
Horn3SatNorm, which finishes the proof of the statement.

Turing machines.

In this paper we will use that variant of Turing machines which appears, e.g.,
in [27]. A (deterministic) Turing machine is a 7-tuple M = (Q,Σ, Γ, δ, q0, qa, qr)
where

• Q is the finite set of states,
• Σ is the input alphabet,
• Γ is the tape alphabet including Σ and a distinguished symbol t 6∈ Σ, called

the blank symbol,
• δ : (Q − {qa, qr}) × Γ → Q × Γ × {−1, 1} is the transition function; the

ith component of δ(q,X) (i ∈ [1, 3], q ∈ Q − {qa, qr}, X ∈ Γ ) is denoted by
proji(δ(q,X)),

• q0, qa, and qr are the initial, accepting, and rejecting states, respectively.
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M works on a single infinite tape that is closed on the left-hand side. During
the computation of M , the tape contains only finitely many non-blank symbols,
and it is blank elsewhere. Let w ∈ Σ∗. The initial configuration of M on w is the
configuration where w is placed at the beginning of the tape, the head points to the
first letter of w, and the current state of M is q0. A computation step performed
by M can be described as follows. If M is in state p and the head of M reads
the symbol X, then M changes its state to q and writes X ′ onto X if and only if
δ(p,X) = (q,X ′, d), for some d ∈ {−1, 1}. Moreover, if d = 1 (resp. d = −1), then
M moves its head one position to the right (resp. to the left) (by definition, M can
never move the head off the left-hand end of the tape even if the head points to
the first cell and d = −1). We say that M accepts (resp. rejects) w, if M can reach
from the initial configuration on w the accepting state qa (resp. the rejecting state
qr). We note here that M can stop only in these states. The language accepted by
M is the set L(M) consisting of those words in Σ∗ that are accepted by M .

P systems with active membranes.

In this paper we consider several restricted variants of P systems with active
membranes. In general, a P system with active membranes [19] is a construct of
the form Π = (Γ,H, µ,w1, . . . , wm, R), where m is the initial degree of the system,
Γ is the alphabet of objects, H is a finite set of labels of the membranes; µ is a
membrane structure consisting of m membranes and labelled with elements of H;
w1, . . . , wm ⊆ Γ ∗ are the initial multisets of objects placed in the m regions of µ;
and R is a finite set of rules defined as follows:

(a) [a→ v]eh, for e ∈ {+,−, 0}, h ∈ H, a ∈ Γ, v ∈ Γ ∗
(object evolution rules, associated with membranes and depending on the label
and the charge of the membranes, but not directly involving the membranes,
in the sense that the membranes are neither taking part in the application of
these rules nor are they modified by them);

(b) a[ ]e1h → [b]e2h , for e1, e2 ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(in communication rules, sending an object into a membrane, maybe modified
during this process; also the polarization of the membrane can be modified,
but not its label);

(c) [a]e1h → [ ]e2h b, for e1, e2 ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(out communication rules; an object is sent out of the membrane, maybe modi-
fied during this process; also the polarization of the membrane can be modified,
but not its label);

(d) [a]eh → b, for e ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(membrane dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);

(e) [a]e1h → [b]e2h [c]e3h , for e1, e2, e3 ∈ {+,−, 0}, h ∈ H, a, b, c ∈ Γ
(division rules for elementary membranes; in reaction with an object, the mem-
brane is divided into two membranes with possibly different polarizations; the
object a specified in the rule is replaced in the two new membranes by (possibly
new) objects b and c respectively, and the remaining objects are duplicated).
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As it is usual in membrane computing, P systems with active membranes work in
a maximally parallel manner:

• In one step, any object of a membrane that can be used by a rule must be
used, but one object can be used by only one rule in (a)-(e).

• If an object can be used by two or more different rules, then one of these rules
is non-deterministically chosen.

• A membrane can be the subject of only one rule in (b)-(d) during each step.

We say that an evolution rule [a → v]eh is 1-restricted if |v| ≤ 1 (i, the number
of objects in v is at most one). A layer is a nested membrane structure, that
is a layer has the form [. . . [ ]h1 . . .]hn (n ≥ 1, h1, . . . , hn ∈ H). For two layers
µ1 = [. . . [ ]h1 . . .]hj and µ2 = [. . . [ ]g1 . . .]gk (j, k ≥ 1, h1, . . . , hj , g1, . . . , gk ∈ H),
the composition µ1[µ2] of µ1 and µ2 is the layer [. . . [[. . . [ ]g1 . . .]gk ]h1

. . .]hj
. A

region is a composition of finitely many layers.

Recognizer P systems.

A recognizer P system [23, 25] is a P system Π with a designated input membrane
and having the following properties. The alphabet Γ of objects has two designated
elements yes and no. Every computation of Π halts and sends to the environment
the same object which is either yes or no, and these objects are sent out in the
last step of the computation (if the examined P system model does not have
out communication rules, then the output of the systems appears in the skin
membrane). The input of Π is a multiset over Γ , which is added to the input
membrane of the system in the initial configuration.

Uniform families of P systems.

A family Π = {Π(i)}i∈N of recognizer P systems decides a problem L if, for every
instance x of L with length n, starting Π(n) with an appropriate encoding of x in
its input membrane, Π(n) sends to the environment yes if and only if x ∈ L.

We will use uniform families of recognizer P systems to solve problems in P.
Clearly, we should use such a uniformity condition that is reasonably weak to work
with in class P. According to the widely believed fact that Turing machines using
logarithmic space are strictly weaker than Turing machines working in polynomial
time, we will use logarithmic space uniform families of P systems. We denote by L
the family of functions that can be computed by Turing machines using logarithmic
amount of space.

Assume that a family Π = {Π(i)}i∈N of recognizer P systems decides a problem
L. Π is called (L,L)-uniform if and only if (i) there are functions f, cod ∈ L such
that, for every n ∈ N, Π(n) = f(1n) (i.e., the P system Π(n) can be constructed
by a logarithmic space Turing machine from the unary representation of n); (ii)
for every instance x of L with size n, cod(x) is a multiset encoding x over the
alphabet of objects in Π(n).

For a type F of recognizer P systems, we denote by (L,L)−PMCF the class
of those problems that can be decided by (L,L)-uniform families of P systems
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of type F working in polynomial time. AM+out (resp. AM+e,+d) denotes the
family of P systems with active membranes having out communication (resp. di-
vision and dissolution) rules only. Similarly, AM0

+evo(1),+d denotes the family of
polarizationless P systems having 1-restricted evolution and dissolution rules only.

3 Results

Here we show that recognizer P systems of typeAM+out,AM+e,+d, orAM0
+evo(1),+d

and working in polynomial time are capable to solve every problem in P. First we
consider two solutions of Horn3SatNorm, then we give an efficient simulation of
Turing machines.

3.1 The solution of Horn3SatNorm

By definition, if ϕ is an instance of Horn3SatNorm, then every clause of ϕ is
either a positive unit clause or it has exactly two negative literals. In the rest of this
section by a clause we mean a clause having this property. Using the well known
equivalences of propositional logic, a clause having exactly two negative literals ¬x
and ¬y can be written in the form x∧ y →↓ or x∧ y → z, where z is a variable,→
denotes the operation of implication and ↓ denotes a formula with constant false
truth value. We will often use these expressions to denote the corresponding clauses
of the input formula (in fact, we will often call these expressions clauses, although
strictly speaking they are not clauses). Moreover, for the sake of simplicity, we will
not indicate the sign ∧ of conjunction in the left-hand side of these expressions.

Let ϕ be an instance of Horn3SatNorm. Clearly, if ϕ is true in an inter-
pretation I, then I(x) = true must hold for every positive unite clause {x} in ϕ.
Assume now that C = xy → z is a clause of ϕ, where x, y are variables and z is
either a variable or ↓. We observe that if I(x) = I(y) = true, then C is true in I
if and only if z is true too. That is, if z =↓, then x, y, z cannot be all true in I.
We will use these observations in the following algorithm H3SN, which decides if
an instance ϕ of Horn3SatNorm over variables in V arn (n ≥ 1) is satisfiable or
not. Let N (n) denote the set of those clauses over variables in V arn which contain
exactly two negative literals, and let m = |N (n)|. In the rest of this section we
assume a fixed enumeration c1, . . . , cm of clauses in N (n).

Algorithm H3SN

1. input: ϕ
2. X := {x ∈ V arn | x ∈ ϕ} // x is a positive unit clause in ϕ
3. For i = 1 . . . n do
4. For j = 1 . . .m do
5. If cj = xy → u ∈ ϕ and x, y ∈ X then X := X ∪ {u}
6. If ↓ is in X then return no
7. else return yes
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To demonstrate the work of H3SN consider the following example. Let ϕ = x∧y∧
(xy → z) ∧ (xz →↓). Then, initially, X = {x, y}. Since x, y ∈ X and xy → z ∈ ϕ,
X becomes {x, y, z}. Then, since x, z ∈ X and xz →↓∈ ϕ, X becomes {x, y, z, ↓}.
After this the value of X remains the same until H3SN halts. Thus, since ↓∈ X,
H3SN outputs no. This is correct as ϕ is unsatisfiable.

In this section we give two families of P systems with rather restricted sets
of applicable rules to solve the Horn3SatNorm problem in polynomial time.
Both solutions are based on Algorithm HS3N . In these solutions the P systems
cannot employ evolution and in communication rules. In addition, in the first
solution dissolution and membrane division rules, while in the second solution out
communication rules are also not allowed.

In both solutions the P systems, roughly, work as follows. Let ϕ be an instance
of Horn3SatNorm over the variables in V arn. The initial membrane structure
consists of n regions, and the innermost membrane contains cod(ϕ) (that is, the
encoding of ϕ). A region ri corresponds to the ith round of the main loop in
Algorithm H3SN.

For an arbitrary clause C with variables in V arn, cod(ϕ) contains an object

O∃C or O 6∃C (but not both) according to that C occurs in ϕ or not. Moreover, for
every clause of the form xy → u (x, y ∈ V arn, u ∈ V arn ∪ {↓}), ri has a layer l
whose membranes are indexed by this clause. The objects in the inner membrane
of l go through l (either by out communication or by dissolution rules, according
to the used model), and during this the system performs the following task. It
first checks whether all the objects O∃xy→u, O∃x, O∃y , and O 6∃u were present in the

innermost membrane of l. If yes, then the system rewrites O 6∃u to O∃u. In this way
the system can determine which variables of ϕ must be true in order to make ϕ
true in an interpretation. After performing the above task in all layers of region
rn, the skin contains either O∃↓ or O 6∃↓ . If O∃↓ occurs in the skin, then ϕ cannot be
satisfied and the system introduces object no, otherwise it introduces yes.

Formally, we encode an instance ϕ of Horn3SatNorm with variables in V arn
as follows. First, let

Σ(n) = {Oe | O ∈ V (n) ∪ C(n), e ∈ {∃, 6 ∃}},
where V (n) = {Vu | u ∈ V arn ∪ {↓}} and C(n) = {Cxy→u | x, y ∈ V arn, u ∈
V arn ∪ {↓}}. Then the encoding of ϕ is cod(ϕ) = {O∃c ∈ Σ(n) | c ∈ ϕ} ∪ {O 6∃c ∈
Σ(n) | c 6∈ ϕ} ∪ {V 6∃↓ }. We note here that technically there is no need to dis-
tinguish in the notation between positive unite clauses and clauses having two
negative literals. Nevertheless, we decided to do so to improve the readability of
the constructions. Since the size of ϕ is clearly polynomial in n, it can be seen that
cod is a function in L.

A solution using out communication rules only.

Here we solve
Horn3SatNorm with a family Π = {Π(n)}n∈N of recognizer P systems of type
AM+out, where Π(n) = (Γ (n), H(n), µ(n),W (n), R(n)) is defined as follows:
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• Γ (n) = Σ(n) ∪ {V ∃+x | x ∈ V arn ∪ {↓}} ∪ {yes, no}.
• H = {(xy → u, α) | x, y ∈ V arn, u ∈ V arn ∪ {↓}, α ∈ {a, b, c}} ∪ {sk | k ∈

[m+ n]} ∪ {skin}.
• µ(n) = S[rn[rn−1[. . . r2[r1] . . . ]], where S = [[[ ]s1 . . .]sm+n ]skin and, for every

i ∈ [n], ri is a region defined as follows. ri = lcm [. . . lc2 [lc1 ] . . . ], where, for every
j ∈ [m], the layer lcj has the form [[[ ](cj ,a)](cj ,b)](cj ,c).

• The input membrane is the innermost membrane in the initial membrane struc-
ture.

• W (n) is the sequence of empty initial multisets.
• R consists of the following subsets of rules, where x, y ∈ V arn and u ∈ V arn∪{↓
}:
(1) [C∃xy→u]0(xy→u,a) → [ ]+(xy→u,a)C

∃
xy→u,

[C∃xy→u]0(xy→u,β) → [ ]0(xy→u,β)C
∃
xy→u,

[C 6∃xy→u]0(xy→u,α) → [ ]−(xy→u,α)C
6∃
xy→u (α ∈ {a, b, c}, β ∈ {b, c}).

These rules are used to initialize the layers in the following sense: the first
membranes of those layers that are indexed by a clause in ϕ get positive
charges, the second and third membranes keep their neutral charges, while
all the membranes of the remaining layers get negative charges.

(2) [V ev ]−(xy→u,α) → [ ]−(xy→u,α)V
e
v ,

[Cers→v]
−
(xy→u,α) → [ ]−(xy→u,α)C

e
rs→v

(e ∈ {∃, 6 ∃}, r, s ∈ V arn, v ∈ V arn ∪ {↓}, α ∈ {a, b, c}).
Every membrane with negative charge lets all of the objects to pass through
itself.

(3) [V ∃x ]+(xy→u,a) → [ ]−(xy→u,a)V
∃+
x ,

[V ∃+x ]0(xy→u,b) → [ ]+(xy→u,b)V
∃
x .

If ϕ has a clause xy → u, that is, the membrane with label (xy → u, a) has
positive charge, and V ∃x exists in this membrane, then these rules are used
to store this information in the positive charge of the membrane with label
(xy → u, b).

(4) [V ∃y ]+(xy→u,b) → [ ]−(xy→u,b)V
∃+
y ,

[V ∃+y ]0(xy→u,c) → [ ]+(xy→u,c)V
∃
y .

If the membrane with label (xy → u, b) has positive charge and V ∃y exists
in this membrane, then these rules are used to store this information in the
positive charge of the membrane with label (xy → u, c).

(5) [V 6∃u ]+(xy→u,c) → [ ]−(xy→u,c)V
∃
u .

The positive charge of the membrane with label (xy → u, c) indicates that
xy → u is a clause of the system and that both variables x and y has to be
true in an interpretation in order to make ϕ true. Thus, with this rule the
system rewrites V 6∃u to V ∃u indicating that u must be also true to make ϕ
true.
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(6) [V ∃u ]p(xy→u,α) → [ ]−(xy→u,α)V
∃
u (p ∈ {+, 0}, α ∈ {a, b, c}).

If the system already knows that u must be true to make ϕ true, then the
charges of the corresponding membranes are set to negative.

(7) [V 6∃x ]p(xy→u,α) → [ ]−(xy→u,α)V
6∃
x ,

[V 6∃y ]p(xy→u,α) → [ ]−(xy→u,α)V
6∃
y (p ∈ {+, 0}, α ∈ {a, b, c}).

If any of the variables on the left-hand side of a clause xy → u is not con-
sidered to be true yet, then the charges of membranes of the corresponding
layer are set to negative by these rules, and V ∃u cannot be introduced by
this layer.

(8) [V e↓ ]0sk → [ ]0skV
e
↓ , [V ∃↓ ]0skin → [ ]0skinno, [V 6∃↓ ]0skin → [ ]0skinyes

(k ∈ [m+ n], e ∈ {∃, 6 ∃}).
The first rule is used to move object V ∃↓ or V 6∃↓ towards the skin membrane.
When they arrive at the skin, the system sends to the environment the
correct answer.

Correctness, running time, and (L,L)-uniformity.

First we observe that during the computation of Π(n) the following holds.

1. If all the membranes in a layer l have negative charge, then l does not con-
tribute to the computation, i.e. all objects pass through the membranes of l
without any change.

2. For every C ∈ C(n), either C∃C or C 6∃C (but not both) occurs in the system (the
same object during the whole computation).

3. For every x ∈ V arn∪{↓}, either V ∃x or V 6∃x (but not both) occurs in the system.
Indeed, the rules that can change an object of this form are rules in (3)-(5) (not
counting the rules that introduce yes or no at the last step of the computation).
Rule in (5) removes V 6∃u and introduces V ∃u , thus the observation remains true
after applying it. Concerning rules in (3)-(4), it is enough to observe that if
the first rule can be applied, then the second rule can be applied too in the
next step.

Now consider a layer lxy→u (x, y ∈ V arn, u ∈ V arn ∪{↓}). At the beginning of
the computation every membrane in lxy→u has neutral charge. According to the
objects that pass through this layer we can distinguish the following cases.

1. All of the objects C∃xy→u, V ∃x , V ∃y , and V 6∃u pass through the membranes of

lxy→u. Then the system rewrites the object V 6∃u to V ∃u .
2. Any of the objects C 6∃xy→u, V 6∃x , V 6∃y , or V ∃u passes through the membranes of
lxy→u. Then the charge of every membrane in lxy→u is set to negative, and
thus this layer cannot contribute to the computation. (Notice that in this
case the computation is not deterministic but confluent, i.e., all the possible
computations in the layer yield the same result.)

It follows that the objects passing trough the layer lxy→u simulate step 5 of Al-
gorithm H3SN. Thus, sending objects through a region corresponds to performing
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steps 4−5 of this algorithm. Since the algorithm performs steps 4−5 n times, the
work of the P system in the n regions corresponds to the work of the algorithm.
Thus, V ∃↓ or V 6∃↓ eventually appears in membrane s1. In the next m+ n steps this
object gets to the skin by rules in (8). There the system computes yes or no ac-
cordingly, which is then sent to the environment. It can bee seen that during this
computation all the other objects occurring in the systems arrive to membrane s1,
and the computation halts.

This justifies the correctness of Π(n). Since Π(n) has polynomial number of
objects in the initial configuration and no evolution rules are performed during its
work, sending all the objects through a region takes polynomial steps. Thus the
running time of Π(n) is also polynomial.

It can be seen that all the ingredients of Π(n) can be enumerated and written
onto the output tape by a logarithmic space Turing machine. Thus, using that
Horn3SatNorm is P-complete, we get the following result.

Theorem 1. P ⊆ (L,L)−PMCAM+out
.

A solution using elementary membrane division and dissolution rules
only.

In this subsection we solve Horn3SatNorm with a family Π = {Π(n)}n∈N of
recognizer P systems of type AM+e,+d. The solution is similar to the one given
in the previous subsection, however, there is a substantial difference: here the
presence of the necessary objects to simulate step 5 of Algorithm H3SN are checked
by the application of membrane division rules. Consequently, those objects that
do not take part in the simulation are duplicated several times. In particular, at
certain points of the computation the P system has multiple copies of objects of
the form V 6∃x . However, the correctness of the computation requires that at the
beginning of the work in a layer there is at most one copy of objects of this form.
Therefore we will apply special layers, that will remove those objects that could
cause the system to give incorrect results. The following is the formal definition of
Π(n) = (Γ (n), H(n), µ(n),W (n), R(n)):

• Γ (n) = Σ(n) ∪ {w,w1, w2,#, $} ∪ {yes, no}.
• H(n) = {skin, s} ∪ {(xy → u, α) | x, y ∈ V arn, u ∈ V arn ∪ {↓}, α ∈
{a, b, c, d}} ∪ {dO | O ∈ V (n) ∪ C(n) ∪ {w}}.

• µ(n) is defined as follows. Let C = xy → u be a clause (x, y ∈ V arn, u ∈
V arn ∪ {↓}) and lC be the layer DC [MC ], where DC and MC are defined as
follows:

MC = [ [ [ [ [ [ ](xy→u,a)](xy→u,b)]dw ](xy→u,c)]dw ](xy→u,d)

and DC is a layer containing, for every O ∈ V (n) ∪ C(n), the membrane [ ]dO
fifteen times if O 6= Vu, and once, otherwise. Intuitively, MC is that part of
the layer which is responsible to simulate step 5 in Algorithm H3SN, and layer
DC is used (together with membranes with label dw in MC) to remove those
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objects that are produced by the used division rules, but should be removed in
order to keep the behaviour of the system correct.
To finish the construction, let µ(n) = S[rn[rn−1[. . . r2[r1] . . . ]], where S =
[[ ]s]skin and, for every i ∈ [n], ri is the region lcm [. . . lc2 [lc1 ] . . . ].

• The input membrane is the innermost membrane in the initial membrane struc-
ture.

• W (n) is a sequence of empty initial multisets.
• R consists of the following subsets of rules, where x, y ∈ V arn and u ∈ V arn∪{↓
}:
(1) [V 6∃u ]0(xy→u,a) → [w]−(xy→u,a)[#]−(xy→u,a),

[V ∃u ]0(xy→u,a) → [w1]−(xy→u,a)[#]−(xy→u,a).

These rules are used to decide if V 6∃u or V ∃u is present in a membrane with
label (xy → u, a). If V 6∃u is present, then the system introduces w which
indicates that the system should work further to decide if V ∃u should be
introduced or not. Object w1 indicates that V ∃u is present in the system
and thus it should not be introduced later. # indicates that the membrane
containing it is not used effectively in the computation.

(2) [w]−(xy→u,a) → w, [w1]−(xy→u,a) → w1,

[#]−(xy→u,a) → $.

These rules pass the information computed by rules in (1) to the membrane
labelled with (xy → u, b). $ is a dummy object not used later.

(3) [C∃xy→u]0(xy→u,b) → [C∃xy→u]+(xy→u,b)[C
∃
xy→u]+(xy→u,b),

[C 6∃xy→u]0(xy→u,b) → [C 6∃xy→u]−(xy→u,b)[C
6∃
xy→u]−(xy→u,b).

These rules decide if object C∃xy→u or C 6∃xy→u exists in the system. The
result is stored in the polarizations of the new membranes.

(4) [w]+(xy→u,b) → w, [w]−(xy→u,b) → w2,

[w1]+(xy→u,b) → w1, [w1]−(xy→u,b) → w1.

These rules introduce objects that will control the computation according
to the information computed by the previous subsets of rules. For example,
if w and C 6∃xy→u is present in the inner membrane, then w2 is introduced.

In this case V ∃u will not be introduced at the end of the computation in this
layer (see rules in (8)).

(5) [V ∃y ]0(xy→u,c) → [V ∃y ]+(xy→u,c)[V
∃
y ]+(xy→u,c),

[V 6∃y ]0(xy→u,c) → [V 6∃y ]−(xy→u,c)[V
6∃
y ]−(xy→u,c).

These rules decide if object V ∃y or V 6∃y exists in the system. The result is
stored in the polarizations of the new membranes.

(6) [w]+(xy→u,c) → w, [w]−(xy→u,c) → w2,

[w1]+(xy→u,c) → w1, [w1]−(xy→u,c) → w1,

[w2]+(xy→u,c) → w2, [w2]−(xy→u,c) → w2.
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These rules introduce objects that will control the computation according
to the information computed by the previous subset of rules.

(7) [V ∃x ]0(xy→u,d) → [V ∃x ]+(xy→u,d)[V
∃
x ]+(xy→u,d),

[V 6∃x ]0(xy→u,d) → [V 6∃x ]−(xy→u,d)[V
6∃
x ]−(xy→u,d).

These rules decide if object V ∃x or V 6∃x exists in the system. The result is
stored in the polarizations of the new membranes.

(8) [w]+(xy→u,d) → V ∃u , [w]−(xy→u,d) → V 6∃u ,

[w1]+(xy→u,d) → V ∃u , [w1]−(xy→u,d) → V ∃u
[w2]+(xy→u,d) → V 6∃u , [w2]−(xy→u,d) → V 6∃u .

These rules are used to handle the different cases of possible computations in
a layer. For example, w indicates that at the beginning of the computation
in a layer the system contained objects V 6∃u , C∃xy→u, and V ∃y .

(9) [Oe]0dO → $, [w]0dw → $, [wi]
0
dw
→ $

(O ∈ V (n) ∪ C(n), e ∈ {∃, 6 ∃}, i ∈ [2]).
These rules are used to remove certain objects from the system.

(10)[V 6∃↓ ]0s → [no]−s [$]−s , [V ∃↓ ]0s → [yes]−s [$]−s , [κ]−s → κ (κ ∈ {yes, no}).
These rules are used to send out the computed answer to the environment.

Correctness, running time, and (L,L)-uniformity.

First we observe that during the computation of Π(n) the following holds:

1. The membrane structure has the form [. . . [M ]h1
. . .]hk

(h1, . . . , hk ∈ H(n)),
where M is either a membrane or it is of the form [ ]g1 [ ]g2 (g1, g2 ∈ H(n)),
and

2. objects occur only in the innermost membranes.

The correctness of the system follows from the following lemma.

Lemma 1. Let C = xy → u (x, y ∈ V arn, u ∈ V arn ∪ {↓}) and consider the layer
lC = DC [MC ]. Assume that, for every O ∈ C(n) ∪ V (n), either one copy of O∃

or one copy of O 6∃ occurs in lC. Let O be an object in lC. Depending on O the
following holds:

1. If O ∈ Σ(n) − {V 6∃u }, then after dissolving all the membranes in lC, Π(n)
contains exactly one copy of O.

2. If O = V 6∃u and lC contains all of the objects C∃C , V ∃x , and V ∃y , then after

dissolving all the membranes in lC, Π(n) contains no V 6∃u and exactly one copy
of V ∃u .

3. If O = V 6∃u and lc contains C 6∃C , V 6∃x , or V 6∃y , then after the work in lC Π(n)

contains exactly one copy of V 6∃u .

Proof. By assumption, lC contains exactly one copy of O. Then Statement 1 can
be seen by distinguishing the following two sub-cases:
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Case 1. O 6= V ∃u . Then during the work in MC , O is duplicated by the correspond-
ing rules rules in (1), (3), (5), and (7), and the other rules are not applied to O
in MC . This yields sixteen copies of O in DC . Out of these copies fifteen ones are
removed during the computation in DC .
Case 2. O = V ∃u . Then the second rule in (1) removes first V ∃u and introduces one
copy of w1. After this, membrane (C, a) is dissolved using rules in (2). In the next
two steps, w1 is duplicated first due the division of membrane (C, b) by rules in (3),
then the yielded membranes are dissolved by rules in (4). Thus, at this point of the
computation two copies of w1 are in membrane dw. However, in the next step one
copy is removed due to the corresponding rule in (9). After this, membrane (C, c)
is divided (rules in (5)) and the new membranes are dissolved (rules in (6)). At
this point, two copies of w1 are in membrane dw, and one copy is removed by the
corresponding rule in (9). Finally, w1 is duplicated by rules in (7), and then the
two copies of w1 introduce two copies of V ∃u . During the dissolution of membranes
in DC one copy of V ∃u is removed which proves the statement.

Statement 2 can be seen as follows. The computation starts with removing the
object V 6∃u and introducing one w (first rule in (1)). Then the new membranes with
label (C, a) are dissolved by the corresponding rules in (2). In membrane (C, b) the
first rule of (3) is applied and thus w is duplicated. At this point membranes with
label (C, b) have positive charges, thus only the first rule in (4) can be applied.
After this the corresponding rule in (9) removes one copy of w. During the next
step the first rule in (5) is applied, and then only the first rule in (6) can be used.
Again, one copy of w is removed by the corresponding rule in (9). Then the first
rule in (7) divides membrane (C, d), w is again duplicated, and by the first rule in
(8) each w introduces one copy of V ∃u . During the work in DC , one copy of V ∃u is
removed.

The system has several different computations in the case of Statement 3.
We discuss here only one of them, the remaining ones can be treated similarly.
Assume for example that lC contains C∃C and V 6∃y . Then the computation goes in the
same way as in the case of Statement 2 until the application of the corresponding
dissolution rules in (4). But now the second rule in (5) is applied, and thus, in the
next step, only the second rule in (6) can be applied. Therefore here two copies of
w2 are introduced. Then the computation continues similarly as in Case 2 in the
proof of Statement 1. However here, when rules from (8) are applied the system
has two copies of w2, and thus two copies of V 6∃u are introduced by the fifth and
sixth rules in (8). One of these copies is eliminated during the work in DC .

Clearly, the initial configuration of Π(n) satisfies the conditions of Lemma 1.
Let C be a clause having exactly two negative literals. Let moreover x ∈ V arn∪{↓
}. Then at the end of the computation in layer lC either V ∃x or V 6∃x occurs in
the system. Therefore the computation of the system in a region corresponds to
performing steps 4 − 5 of Algorithm H3SN. Since this algorithm performs steps
4 − 5 n times, the work of Π(n) in the n regions corresponds to the work of the
algorithm. This justifies the correctness of Π(n).



Remarks on the Computational Power . . . 199

Since Π(n) has polynomial number of membranes in layer lC , and in lC the
number of the applied division rules is constant, we have that dissolving all the
membranes in lC takes polynomial time. As in the initial configuration there are
n regions and each region has polynomial number of layers, it follows that the
running time of Π(n) is also polynomial.

Finally, it can be seen that all the ingredients of Π(n) can be enumerated and
written onto the output tape by a logarithmic space Turing machine. Using the
P-completeness of Horn3SatNorm we obtain the following theorem.

Theorem 2. P ⊆ (L,L)−PMCAM+e,+d
.

3.2 Simulating Turing Machines

Here we show that, for every polynomial time Turing machine M , an (L,L)-
uniform family Π of polarizationless recognizer P systems can be constructed
such that the members of Π can simulate the work of M efficiently using only
dissolution and 1-restricted evolution rules.

Let M = (Q,Σ, Γ, δ, q0, qa, qr) be an f(n)-time Turing machine, for some poly-
nomial f(n). Notice that M can use at most f(n) cells of its tape during its
computations. Let k = |Q| and m = |Γ |. Assume that Q = {s1, . . . , sk}, where
s1 = q0, sk−1 = qa and sk = qr. Likewise, assume that Γ = {X1, . . . , Xm}, where
Xm = t. The idea of the simulation is the following. The initial membrane struc-
ture µ is a composition of f(n) regions. The input membrane is the innermost
membrane. During the simulation of the tth step of M , the objects in the in-
nermost membrane will dissolve all the membranes in the tth region as follows.
Assume that after t − 1 steps M is in state si (i ∈ [k − 2]), the position of the
head is p, and the head scans Xj . Then the innermost membrane of the tth region
contains an object O that represents si and p, and another object O′ representing
Xj on the pth position of the tape. The regions are composed from k ·m · f(n)
membranes (that is, in every region, for every state–tape symbol–position triple
there is a corresponding membrane). During the simulation of the tth step of M , O
dissolves all the membranes that correspond to a state si′ with i′ < i or a position
p′ < p. Meanwhile O′ evolves using a counter and at the appropriate time step it
starts to dissolve all the membranes corresponding to si, p, and tape symbol Xj′

with j′ < j. After this the simulation of one step of M is performed using the
value δ(si, Xj). Then the remaining membranes in the tth region are dissolved,
and the system continues with the simulation of the next step of M .

Construction of the P system.

The uniform family of P systems that will perform the above described simulation
is defined as follows. Let w = a1 . . . an be an input of M (a1, . . . , an ∈ Σ) and
N = f(n) · k ·m. Let cod(w) be a multiset over the alphabet

Σ(n) = {(Xj , p, t)
(c), (si, p, t)

(c′) |
j ∈ [m], i ∈ [k], p ∈ [f(n)], t ∈ [0, f(n)], c ∈ [0, N ], c′ ∈ [0, N +m]}
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defined as follows: cod(w) = {(a1, 1, 0)(0), . . . , (an, n, 0)(0)} ∪ {(t, n+ 1, 0)(0), . . . ,
(t, f(n), 0)(0)} ∪ (s1, 1, 0)(0). Intuitively, an object (Xj , p, t)

(c) in Σ(n) represents
the fact that after t steps M has Xj on the pth position of its tape. We call these

objects position objects. Similarly, an object (si, p, t)
(c′) represents the fact that

after t steps M is in state si and the head points to the pth position of the tape.
We call these objects state objects. The indexes c, c′ are counters used for technical
reasons. It can be seen that cod ∈ L.

Let Π = {Π(n)}n∈N be a uniform family of P systems, where Π(n) = (Γ (n),
H(n), µ(n),W (n), R(n)) is defined as follows:

• Γ (n) = Σ(n) ∪ {yes, no}.
• H(n) = {(si, p,Xj , t) | i ∈ [k], p, t ∈ [f(n)], j ∈ [m]}.

Intuitively, a label (si, p,Xj , t) corresponds to the following configuration of M
after t steps on w: the current state is si, the position of the head is p, and the
scanned symbol is Xj . We will often call si, p, and t the state, position, and
time labels of the corresponding membrane, respectively.

• µ(n) is a composition S[rf(n)[. . . [r1]]] of regions, where S = [ ]skin, and a
region rt (t ∈ [f(n)]) is a composition of layers defined as follows. For every
i ∈ [k] and p ∈ [f(n)], let lsi,p,t = [. . . [ ](si,p,X1,t) . . .](si,p,Xm,t), and let rt =
lsk,f(n),t[. . . [lsk,1,t[. . . [ls1,f(n),t[. . . [ls1,1,t] . . .]] . . .]] . . .].

• The input membrane is the innermost membrane in µ(n).
• W (n) is a sequence of empty initial multisets.
• R consists of the following sets of rules:

(1) [(si, p, t)
(0)](si′ ,p′,Xj ,t+1) → (si, p, t)

(0)

(j ∈ [m], i ∈ [k − 2], i′ ∈ [k], p, p′ ∈ [f(n)], t ∈ [0, f(n) − 1], and i′ < i or
p′ < p).
These rules are used to find the first such membrane whose state and posi-
tion labels correspond to the state and position stored in the state object.

(2) [(Xj , p, t)
(c) → (Xj , p, t)

(c+1)](si,p′,Xj′ ,t+1)

(j, j′ ∈ [m], i ∈ [k], p, p′ ∈ [f(n)], t ∈ [0, f(n)− 1], c ∈ [0, N − 1]).
These rules are used to increment the counter c in the position objects.
When this counter equals to N , the system can start to use rules in (3).

(3) [(Xj , p, t)
(N)](si,p,Xl,t+1) → (Xj , p, t)

(N),

[(Xj , p, t)
(N) → (Xj′ , p, t+ 1)(0)](si,p,Xj ,t+1),

[(Xj , p
′, t)(N) → (Xj , p

′, t+ 1)(0)](si,p,X1,t+1)

(j, l ∈ [m], l < j, i ∈ [k − 2], p, p′ ∈ [f(n)], p 6= p′, t ∈ [0, f(n) − 1], and
Xj′ = proj2(δ(si, Xj))).
If the position stored in an object (Xj , p, t)

(N) corresponds to the posi-
tion label of the current membrane, then this object starts to dissolve the
membranes until a membrane whose label stores Xj is found. When this
membrane is found, (Xj , p, t)

(N) evolves according to the value of δ(si, Xj),
its counter is reset, and its component t is incremented. Those position ob-
jects that store a different position than the position label of the current
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membrane evolve immediately such that their counter is reset and their
component t is incremented. Notice that after performing the computations
by these rules, the position objects have no impact on the computation in
region rt+1.

(4) [(si, p, t)
(c) → (si, p, t)

(c+1)](si,p,Xl,t+1),

[(si, p, t)
(N+m) → (si′ , p

′, t+ 1)(0)](si,p,Xl,t+1)

(i ∈ [k − 2], i′ ∈ [k], p ∈ [f(n)], t ∈ [0, f(n) − 1], c ∈ [N + m − 1], l ∈ [m],
si′ = proj1(δ(si, Xl)), p

′ = max{p+ proj3(δ(si, Xl)), 1}).
The counter of the state object is incremented using the first rule. Until
the counter reaches N + m, the appropriate position object can find the
corresponding membrane using rules in (3). Then the state object evolves
according to the value of the transition function of M . Moreover, its counter
is reset and its component t is incremented.

(5) [(si, p, t+ 1)(0)](si′ ,p′,Xj ,t+1) → (si, p, t+ 1)(0)

(i ∈ [k − 2], i′ ∈ [k], p, p′ ∈ [f(n)], j ∈ [m], t ∈ [0, f(n)− 1]).
After simulating a step of M using rules in (1)-(4), the remaining mem-
branes in region rt+1 are dissolved by these rules.

(6) [(sk−1, p, t)
(0) → yes]h, [(sk, p, t)

(0) → no]h,
[yes]h′ → yes, and [no]h′ → no
(p, t ∈ [f(n)], h ∈ H(n), h′ ∈ H(n)− {skin}).
These rules are used to produce the answer of Π(n) according to which
halting state is reached by M on the input.

Correctness, running time, and (L,L)-uniformity.

Let w = a1 . . . an be an input of M (a1, . . . , an ∈ Σ). We show that Π(n) produces
yes started with cod(w) in its input membrane if and only if w ∈ L(M). The work
of Π(n) can be described as follows. Initially, the object (s1, 1, 0)(0) (representing
that M starts its work in its initial state and the head is positioned to the first
letter of the input) is in the innermost membrane of region r1. Now assume that
Π(n) has already simulated t steps of M , that is, the innermost membrane of Π(n)
is the most deeply nested membrane of region rt+1, and this membrane contains
an object (si, p, t)

(0), for some i ∈ [k] and p ∈ [f(n)]. If i ∈ [k − 1, k], i.e., M
has reached one of its halting states, then Π(n), using rules in (6) computes the
answer of the system yes or no accordingly. Otherwise, rules from (1) are applied
until a membrane with label (si, p,X1, t + 1) is reached. Meanwhile, the counter
c in position objects is incremented using rules in (2). By the time this counter
becomes N , the corresponding membrane is reached by the rules in (1).

Now those position objects that store different positions than p evolve by the
third rule in (3) to such objects that will be used next time only in the next region
rt+2 (i.e., in the simulation of the next step of M). Concerning the position object
storing p, assume that this object is (Xj , p, t)

(N). Then (Xj , p, t)
(N) is used to find

that membrane in layer lsi,p,t+1 whose label contains Xj . When this membrane is
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found, (Xj , p, t)
(N) evolves according to the transition function of M . Moreover,

its counter is reset and its time component is incremented. Thus this object is not
used any more in this region.

Meanwhile, rules in (4) are used to increment the counter c of (si, p, t)
(c). By

the time this counter becomes N +m, the position object (Xj , p, t)
(N) has reached

the membrane it searched for. Now the second rule in (4) is used to produce object
(si′ , p

′, t+1)(0) where si′ and p′ are calculated according to the transition function
of M . Finally, (si′ , p

′, t+1)(0) is used to dissolve the remaining membranes of rt+1.
If this is done, the system is ready to simulate the next step of M . With this we
have seen that Π(n) simulates correctly the computation of M on w.

It can be seen that dissolving a region in the membrane structure takes O(N)
steps and N = O(f(n)). Moreover, Π(n) has f(n) regions. Thus the running time
of the system is O(f2(n)), that is, polynomial in n. The (L,L)-uniformity of Π
follows from the observation that the size of Π(n) is also polynomial in n. Thus
we have the following result.

Theorem 3. P ⊆ (L,L)−PMCAM0
+evo(1),+d

.

As we have observed on page 197, our solution of Horn3SatNorm by P
systems of type AM+e,+d is such that every membrane has at most two child
membranes in every configuration of each computation of the system. Let k ≥ 1.
We say that a P system Π is k-bounded, if every membrane has at most k child
membranes in every configuration of each computation of Π. For a type F of
P systems, denote PMCF≤k

the set of those problems that can be decided by
such polynomially uniform families of P systems of type F which have k-bounded
members only. Denote AM−e those P systems with active membranes that do
not employ membrane division rules. It can be seen using the generalization of
the proof of PMCAM−e ⊆ P in [30] that PMCAM≤2

⊆ P also holds. Using the
results obtained in the paper we can give the following new characterizations of
P.

Corollary 1. P = (L,L)−PMCAM+out = (L,L)−PMCAM+e,+d,≤2
= (L,L)−

PMCAM0
+evo(1),+d

.

4 Conclusions

In this paper we have shown that uniform families of the following restricted vari-
ants of P systems with active membranes can solve all problems in P: (1) P systems
where only out communication rules are used, (2) P systems where only elemen-
tary membrane division and dissolution rules are used, and (3) polarizationless
P systems where only dissolution and 1-restricted evolution rules are used. Using
the obtained results concerning variants (1) and (3), and known results about the
upper bound on the power of these variants we could give new characterizations
of P in terms of Membrane Computing techniques.
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It remained an open question if the variant (2) could solve problems outside
of P. It is known that without polarizations of the membranes this is not possible
[29]. It is also an open question if these systems can solve all problems in P
when polarizations of the membranes are not allowed. Nevertheless, we could give
another characterization of P using variant (2) when we made a simple semantic
restriction on the computations of this variant.
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Summary. A kernel P system (kP system, for short) integrates in a coherent and elegant
manner many of the P system features most successfully used for modelling various
applications and, consequently, it provides a framework for analyzing these models. In
this paper, we illustrate the modeling capabilities of kernel P systems by showing how
other classes of P systems can be represented with this formalism and providing a number
of kP system models for sorting algorithms. Furthermore, the problem of testing systems
modelled as kP systems is also discussed and a test generation method based on automata
is proposed. We also demonstrate how formal verification can be used to validate that
the given models work as desired.

1 Introduction

Membrane systems were introduced in [27] as a new natural computing paradigm
inspired by the structure and distribution of the compartments of living cells, as
well as by the main bio-chemical interactions occurring within compartments and
at the inter-cellular level. They were later also called P systems. An account of the
basic fundamental results can be found in [28] and a comprehensive description of
the main research developments in this area is provided in [29]. The key challenges
of the membrane systems area and a discussion on some future research directions,
are available in a more recent survey paper [20].

In recent years, significant progress has been made in using P systems to model
and simulate systems and problems from various areas. However, in order to facil-
itate the modelling, in many cases various features have been added in an ad-hoc
manner to these classes of P systems. This has led to a multitude of P systems
variants, without a coherent integrating view. The newly introduced concept of
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kernel P systems (kP systems) [16, 17] provides a response to this problem. A kP
system integrates in a coherent and elegant manner many of the P system features
most successfully used for modelling various applications and, consequently, it pro-
vides a framework for analyzing these models. Furthermore, the expressive power
of these systems has been illustrated by a number of representative case studies
[19, 17]. The kP system model is supported by a modelling language, called kP-
Lingua, capable of mapping a kP system specification into a machine readable
representation. Furthermore, kP systems are supported by a software framework,
kPWorkbench [21], which integrates a set of related simulation and verification
tools and techniques.

Another complementary method to simulation and verification is testing, a
major activity in the lifecycle of software systems. In practice, software products
are almost always validated through testing. Testing has been discussed for cell-
like P systems and various strategies, such as rule coverage based and automata
based techniques, have been proposed [15, 24]. Until now, however, testing has not
been discussed in the context of kP systems.

In this paper we further illustrate the modeling capabilities of kernel P systems
by showing that other classes of P systems can be represented with this formalisms
and by providing a number of kP system models for sorting algorithms. We present
in this paper the relationship between kP systems and active membrane systems
with electrical charges, whereas in [16, 17, 18] we have also investigated the rela-
tionship with neural-like P systems. We also study here the relationship between
kP systems and P systems with symport/antiport rules. Furthermore, the problem
of testing systems modelled as kP systems is also discussed and a test generation
method based on automata is proposed. We also demonstrate how formal verifi-
cation can be used to validate that the given models work as desired.

2 kP Systems - Main Concepts and Definitions

We consider that standard P system concepts such as strings, multisets, rewriting
rules, and computation are well-known and refer to [28] for their formal notations
and precise definitions. The kP system concepts and definitions introduced below
are from [16, 17]; some are slightly changed and this will be mentioned.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti =
(Ri, σi), 1 ≤ i ≤ s, consists of a set of rules, Ri, and an execution strategy, σi,
defined over Lab(Ri), the labels of the rules of Ri.

Remark 1. The compartments that appear in the definition of the kP systems
will be instantiated from these compartment types. The types of rules and the
execution strategies will be discussed later.

Definition 2. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),
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where A is a finite set of elements called objects; µ defines the initial membrane
structure, which is a graph, (V,E), where V are vertices indicating components,
and E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting
of a compartment type from T and an initial multiset, wi over A; io is the output
compartment where the result is obtained.

2.1 kP System Rules

The discussion below assumes that the rules we refer to belong to the same com-
partment, Ci.

Each rule r may have a guard g which refers to the multiset where the rule is
applied to. Its generic form is r {g}. The rule r is applicable to a multiset w when
its left hand side is contained into w and g is true for w.

The guards are constructed using multisets over A, as operands, and relational
and Boolean operators. Let us first introduce some notations.

For a multiset w over A and an element a ∈ A, we denote by |w|a the number
of objects a occurring in w. Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of
relational operators, γ ∈ Rel, a relational operator, an a multiset and r {g} a
rule with guard g. We first introduce an abstract relational expression which is
evaluated for any multiset where the rule is applied to.

Definition 3. If g is the abstract relational expression γan and w is the multiset
it refers to, then the guard denotes the relational expression |w|aγn. The guard g
is true for the multiset w if |w|aγn is true.

One can consider the Boolean operators ¬ (negation), ∧ (conjunction) and
∨ (disjunction), listed with respect to the decreasing precedence order. Abstract
Boolean expressions are obtained by connecting abstract relational expressions by
Boolean operators.

Definition 4. If g is the abstract Boolean expression and the current multiset
is w, then the guard denotes the Boolean expression for w, obtained by replacing
abstract relational expressions with relational expressions for w. The guard g is
true for the multiset w when the Boolean expression for w is true.

Definition 5. A guard is: (i) one of the Boolean constants true or false; (ii) an
abstract relational expression; or (iii) an abstract Boolean expression.

Example 1. If g is the guard ≥ a5∧ ≥ b3∨¬ > c and w a multiset it refers to, then
g is true in w if it has at least 5 a′s and 3 b′s or no more than one c.

Definition 6. A rule from a compartment Cli = (tli , wli) can have one of the
following types:

• (a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A
and tj indicates a compartment type from T – see Definition 2 – with instance
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compartments linked to the current compartment; tj might also indicate the
type of the current compartment, tli , (in this case it is not present on the right
hand side of the rule); if a link does not exist (i.e., there is no link between the
two compartments in E) then the rule is not applied; if a target, tj, refers to a
compartment type that has more than one instance connected to Cli , then one
of them will be non-deterministically chosen;

• (b) structure changing rules; the following types of rules are considered:
– (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},

where x ∈ A+ and yj ∈ A∗; the compartment Cli will be replaced by p
compartments; the j-th compartment, instantiated from the compartment
type tij contains the same objects as Cli , but x, which will be replaced by yj;
all the links of Cli are inherited by each of the newly created compartments;

– (b2) membrane dissolution rule: []tli → λ {g};
the compartment Cli will be destroyed together with its links;

– (b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};
the current compartment is linked to a compartment of type tlj and x is
transformed into y; if more than one instance of the compartment type tlj
exists then one of them will be non-deterministically picked up; g is a guard
that refers to the compartment instantiated from the compartment type tl1 ;

– (b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};
is the opposite of link creation and means that the compartments are dis-
connected.

The membrane division is defined slightly differently here compared to [16, 17].
Currently, the right hand side of the rule uses simple multisets with no target
compartments, as they were initially introduced in [16, 17].

2.2 kP System Execution Strategies

In kP systems the way in which rules are executed is defined for each compartment
type t from T – see Definition 1 and Remark 1. As in Definition 1, Lab(R) is the
set of labels of the rules R.

Definition 7. For a compartment type t = (R, σ) from T and r ∈ Lab(R),
r1, . . . , rs ∈ Lab(R), the execution strategy, σ, is defined by the following

• σ = λ, means no rule from the current compartment will be executed;
• σ = {r} – the rule r is executed;
• σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be chosen non-

deterministically and executed; if none is applicable then none is executed; this
is called alternative or choice;

• σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times ( arbitrary
parallelism);

• σ = {r1, . . . , rs}> – the rules are executed according to maximal parallelism
strategy x;
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• σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤
s, describes any of the above cases, namely λ, one rule, a choice, arbitrary
parallelism or maximal parallelism; if one of σi fails to be executed then the
rest is no longer executed;

• for any of the above σ strategy only one single structure changing rule is al-
lowed.

Arbitrary parallelism and maximal parallelism for rewriting and communica-
tion rules, as well as for structure changing rules (cell division, dissolution), are
discussed in [29].

Remark 2. In certain cases the operator & will be ignored and the sequential exe-
cution will be denoted as σ = σ1 . . . σs.

Remark 3. A computation, as usual in membrane computing, is defined as a se-
quence of finite steps starting from the initial configuration, with the initial mul-
tisets distributed in compartments. In each step the rules are selected according
to the execution strategy and this is given by the execution strategy in each com-
partment. The result of a computation will be the number of objects collected in
the output compartment. For a kP systems kΠ, the set of all these numbers will
be denoted by M(kΠ).

Remark 4. When a terminal alphabet, F , is considered, the result of a computation
will be the number of objects from F collected in the output compartment and
this will be denoted by Mt(kΠ)

3 kP Systems and Other Classes of P Systems

In this section we will investigate the relationship between kP systems and P
systems with active membranes, but other relevant classes of P systems will be also
considered, especially those with various applications, such as symport/antiport
P systems. In [17, 18] neural-like P systems have been also considered.

3.1 P Systems with Active Membranes versus kP Systems

We study how P systems with active membranes are simulated by kP systems. In
this case we are dealing with a cell-like system, so the underlying structure is a tree
and we have a set of labels (types) for the compartments of the system. The way
the relationship between these P systems is presented in the sequel is a natural
extension of the method proposed in [16, 17, 18]. In the previous investigations the
set of objects from the output compartment has been mixed up with the rest of the
objects of the system. In this investigation we separate the objects corresponding
to the output compartment and provide a more consistent notation for the kP
system involved. We also deal in this investigation with active membrane systems
with an upper bound for the number of active components
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Definition 8. A P system with active membranes of initial degree n is a tuple (see
[29], Chapter 11) Π = (O,H, µ,w1,0, . . . , wn,0, R, i0) where:

• O is an alphabet of objects, w1,0, . . . , wn,0 are the initial strings in the n initial
compartments and i0 is the output compartment;

• H is the set of labels for compartments;
• µ defines the tree structure associated with the system;
• R consists of rules of the following types:

– (a) rewriting rules: [u → v]eh, for h ∈ H, e ∈ {+,−, 0} (set of electrical
charges), u ∈ O+, v ∈ O∗;

– (b) in communication rules: u[]e1h → [v]e2h , for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (c) out communication rules: [u]e1h → []e2h v, for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (d) dissolution rules: [u]eh → v, for h ∈ H\{s}, s denotes the skin membrane
(the outmost one), e ∈ {+,−, 0}, u ∈ O+, v ∈ O∗;

– (e) division rules for elementary membranes: [u]e1h → [v]e2h [w]e3h , for h ∈ H,
e1, e2, e3 ∈ {+,−, 0}, u ∈ O+, v, w ∈ O∗;

The rules are executed in accordance with the maxim parallelism, but in each
compartment only one of the rules (b)-(e) is executed. In the sequel we assume
that the output compartment is neither dissolved nor divided. The result of a
computation, obtained in i0 is denoted by M(Π).

The following result shows how the computation of a P system with active
membranes starting with n1 compartments and an upper bound to the number of
active compartments can be performed by a kP system using only rewriting and
communication rules. A first idea of this result has been given in [16, 17, 18].

Theorem 1. If Π is a P system with active membranes having n1 initial com-
partments and an upper bound to the number of active compartments in any com-
putation, then there exists a kP system, kΠ, of degree 2 and using only rewriting
and communication rules, such that M(Π) = M(kΠ).

Proof. Let Π = (O,H, µ,w1,0, . . . , wn1,0, R, i0) be a P system with active mem-
branes of initial degree n1. Initially, the polarizations of the n1 compartments are
all 0, i.e., e1 = . . . = en1

= 0.
We will build a kP system with two compartments. Compartment C1 will cap-

ture the contents and rules of all the compartments of Π. The other compartment,
C2 will be associated to i0 and this will collect the result.

We will need to keep track of a dynamic system of membranes, since we have
dissolution and division of elementary membranes. We will identify a membrane by
a pair (i, h) where i ∈ I is an index associated with an instance of the membrane
and h ∈ H is its label. We use the index in addition to the label as the same label
might appear several times in the system, especially after a membrane division
rule has been applied. We work under the assumption that I is finite. Its cardinal
is equal to the maximum number of active membranes that may appear in any
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computation – this is assumed to have an upper limit. We let i0 ∈ I and i0 ∈ H.
We will denote by (I×H)c the currently used pairs (i, h). We assume that for any
(i, h) ∈ (I×H)c and (j, h′) ∈ (I×H)c, we have i 6= j. This way we make sure that
the cardinal of (I×H)c is always at most the cardinal of I. Whenever a membrane
dissolution takes place, its index and label are removed from (I × H)c. When a
membrane division rule is applied the index and label of the divided compartment
are removed from (I ×H)c and two new values of indices with the same label are
selected and added to the set (I ×H)c. The tuple (i0, i0) is always in (I ×H)c

We will codify a compartment [w]eh by two tuples < e, i, h > and < w, i, h >,
with (i, h) ∈ (I×H)c, and where, for a multiset w = a1 . . . am, < w, i, h > denotes
< a1, i, h > . . . < am, i, h >. These tuples appear in C1. When h = i0 then in
addition to the tuples present in C1, in C2, for [w]ei0 we have e and w. For a
compartment with label h and electrical charge e in Π there is only one tuple
< e, i, h > in C1, when h 6= i0, or an e in C2, otherwise.

By p(i, h) we denote the parent of the membrane with label h and of index i. If
p(i, h) = (i′, h′) it means that the membrane with label h′ and index i′ is the parent
of the membrane with label h and index i. By < x, p(i, h) > and < e, p(i, h) > we
denote the tuples < x, i′, h′ > and < e, i′, h′ >, respectively.

A new symbol, δ, will be used for the membrane dissolution and division to
control the transfer of objects after these rules have been applied. Hence, we will
use the guard

= δall :=
∧

(¬ =< δ, i, h >| i ∈ I, h ∈ H).

We also introduce a guard checking that the symbols γ1 ans γ2, related with
the communication with the output compartment, i0, do not appear in the current
multiset:

= γall := (¬ = γ1) ∧ (¬ = γ2).

We construct kΠ using T = {t1, t2}, where tj = (R′j , σj) (where R′j and σj
will be defined later), 1 ≤ j ≤ 2, as follows: kΠ = (A,µ′, C1, C2, 2), where the
elements of the system are given below.

• µ′ is the graph with nodes C1, C2 and the edge linking them;
• The alphabet is

A = O ∪{0, 0′,+,+′,−,−′, γ1, γ2}
∪ (

⋃
(i,h)∈I×H({< a, i, h >| a ∈ O ∪ {δ}} ∪ {< e, i, h >| e ∈ {0,+,−}}))

• Cj = (tj , w
′
j,0w

′′
j,0), 1 ≤ j ≤ 2 and C2 is the output compartment.

– The initial multiset, w′1,0w
′′
1,0, is given by

w′1,0 =< w1,0, 1, h1 > . . . < wn1,0, n1, hn1 > wi0,0

where wi0,0 means that wi0,0 does not appear in the initial multiset of C1

(it will appear in C2).

w′′1,0 = {< e1, 1, h1 > . . . < en1 , n1, hn1 > ei0



212 M. Gheorghe et al

where e1 = . . . = en1
= 0, for all the initial multisets and initial membranes

of Π, and, similar to the above case, ei0 means that ei0 does not appear in
the initial multiset. The initial multiset w′2,0w

′′
2,0, is given by

w′2,0 = wi0,0, w
′′
2,0 = ei0 .

Initially, the indices (I × H)1 = {(1, h1) . . . (n1, hn1
)} \ {(i0, i0)} are used

in association with compartment C1 and (i0, i0) for C2. The currently used
indices are (I ×H)c = (I ×H)1 ∪ {(i0, i0)}.

– R′1 and R′2 contain the rules below.
(a.1) For each (i, h) ∈ I × H \ {(i0, i0)} and each rule [u → v]eh ∈ R, e ∈

{+,−, 0}, we add to R′1 the rule < u, i, h >→< v, i, h > {=< e, i, h >
∧= δall ∧= γall}; these rules are applied only when the polarization e
appears in the compartment with index i and label h and none of the
(δ, j, h′), γ1, γ2 appears, i.e., no dissolution or division has started and
no communication with the output compartment, i0, takes place – see
below.

(a.2) For (i, h) = (i0, i0), we add to R′1 the rule < u, i0, i0 >→< v, i0, i0 >
{=< e, i0, i0 > ∧= δall ∧= γall} and the rule u→ v {= e ∧= γall} to
R′2.

(b.1) For each (i, h) ∈ I ×H \ {(i0, i0)}, such that p(i, h) 6= (i0, i0), and each
rule u[]e1h → [v]e2h ∈ R, e1, e2 ∈ {+,−, 0}, we add to R′1 the rule <
u, p(i, h) >< e1, i, h >→< v, i, h >< e2, i, h > {= δall ∧= γall}; these
rules will transform < u, p(i, h) > corresponding to u from the parent
compartment to < v, i, h > corresponding to v from the compartment
with index i and label h; the polarization is changed; as there is only
one object < e1, i, h >, it follows that only one single rule corresponding
to the compartment can be applied at any moment of the computation.

(b.2) When (i, h) = (i0, i0), then the rules added to R′1 are < u, p(i0, i0) ><
e1, i0, i0 >→< v, i0, i0 >< e2, i0, i0 > (ve′2γ1, 2)γ1 {= δall ∧= γall} and
γ1 → λ; and the rules added to R′2 are e′2 → e2{= γ1} and γ1e → λ,
e ∈ {0,+,−}. The first rule apart from simulating the communication
rule, also introduces γ1 in both compartments. In C2 it helps changing
the polarization of it and in C1 it helps with the synchronisation of the
computation. Then the symbol disappears.

(b.3) When p(i, h) = (i0, i0), then we add to R′1 the rules < u, i0, i0 ><
e1, i, h >→< v, i, h >< e2, i, h > (γ2, 2)γ2 {= δall ∧= γall} and γ2 → λ.
The rule uγ2 → λ is added to R′2. Similar to (b.2), γ2 is introduced in
both compartments and in C2 it helps removing u.

(c.1) For each (i, h) ∈ I ×H \ {(i0, i0)}, such that p(i, h) 6= (i0, i0), and each
rule [u]e1h → []e2h v ∈ R, e1, e2 ∈ {+,−, 0}, we add the rule < u, i, h ><
e1, i, h >→< v, p(i, h) >< e2, i, h > {= δall ∧= γall}.

(c.2) When (i, h) = (i0, i0), then we add to R′1 the rule < u, i0, i0 ><
e1, i0, i0 >→< v, p(i0, i0) >< e2, i0, i0 > (e′2γ1, 2)γ1 {= δall ∧ = γall}.
As in (b.2), we use γ1 → λ in R′1 and e′2 → e2{= γ1} in R′2. We need to
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add to R′2 the rule uγ1e→ λ. The rules make sure that in C1 we simulate
the communication rule and in C2 u disappears and the polarization is
changed to e2.

(c.3) When p(i, h) = (i0, i0), then the rule added to R′1 is < u, i, h ><
e1, i, h >→< v, i0, i0 >< e2, i, h > (v, 2) {= δall ∧ = γall}. This rule
simulates the communication rule and introduces v into C2.

(d.1) for each (i, h) ∈ I ×H \ {(i0, i0)}, such that p(i, h) 6= (i0, i0), and each
rule [u]eh → v ∈ R, e ∈ {+,−, 0}, we add to R′1 the rule < u, i, h ><
e, i, h >→< v, p(i, h) >< δ, i, h > {= δall ∧ = γall}; all the objects
corresponding to those from the compartment of index i and label h
must be moved to the parent compartment - this will happen in the
presence of (δ, i, h) when no other transformation will take place; this is
obtained by using in R′1 rules < a, i, h >→< a, p(i, h) > {=< δ, i, h >},
a ∈ O and < δ, i, h >→ λ; the set (I×H)c will change now by removing
the pair (i, h) from it.

(d.2) When p(i, h) = (i0, i0), then the rules above will become < u, i, h ><
e, i, h >→< v, i0, i0 >< δ, i, h > (v, 2) {= δall ∧ = γall} and <
a, i, h >→< a, i0, i0 > (a, 2) {= (δ, i, h)}, a ∈ O.

(e) For each (i, h) ∈ I ×H \ {(i0, i0)} and each rule [u]e1h → [v]e2h [w]e3h ∈ R,
e1, e2, e3 ∈ {+,−, 0}; we add to R′1 the rule < u, i, h >< e1, i, h >→<
v, j1, h >< e2, j1, h >< w, j2, h >< e3, j2, h >< δ, i, h > {= δall ∧
= γall} – the pair (i, h) is removed from (I × H)c and two new pairs
(j1, h) and (j2, h), existing in I×H, with j1 6= j2, are added to (I×H)c
and one < u, i, h > is transformed into < v, j1, h > and < w, j2, h >
and their associated electrical charges; then the content corresponding
to compartment of index i and label h will be moved to those of index
j1 and j2 and the same label h, hence rules < a, i, h >→< a, j1, h ><
a, j2, h > {=< δ, i, h >}, a ∈ O are added to R′1; finally, < δ, i, h >→ λ
is also included in the set of rules of C1; it is clear that only one division
rule for the same compartment is applied in any step of the computation.

We note that in C ′2 there are no rules for dissolution and division as the output
compartment is not afected by these rules.

The execution strategy in both compartments, C1 and C2 is maximal paral-
lelism.

For a sequence of rules applied in Π, we have a corresponding sequence of rules
in kΠ. Obviously the objects obtained in the output compartment of Π are the
same with those obtained in C2 of kΠ.

3.2 P Systems with Symport/Antiport versus kP Systems

The following definition is from [29].

Definition 9. A P system (of degree d ≥ 1) with antiport and/or symport rules
is a construct
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Π = (O,F,E, µ, w1,0, · · · , wd,0, R1, · · · , Rd, i0) where

O is the alphabet of objects; F ⊆ O is the alphabet of terminal objects; E ⊆ O
is the set of objects occurring in an unbounded number in the environment; µ
is a membrane structure consisting of d membranes (usually labelled with i and
represented by corresponding brackets [i and ]i, 1 ≤ i ≤ d); wi, 1 ≤ i ≤ d,
are strings over O associated with regions 1, · · · , d of µ, representing the initial
multisets of objects present in the regions of µ; Ri, 1 ≤ i ≤ d, are finite sets of
rules of the form (u, out; v; in), with u 6= λ and v 6= λ ( antiport rule) and/or
(x, out) or (x, in), with x 6= λ ( symport rules); i0, 1 ≤ i0 ≤ d, specifies the output
membrane of Π.

We will show now that one can construct for any symport/antiport P system a
kernel P system, such that they compute the same result. We will adopt a slightly
different way of computing the result of the kP systems by allowing it to use a set
of terminal objects. In this case, according to Remark 4, the result will be given by
the number of terminal objects from the output compartment. We can now state
the main result of this section.

Theorem 2. For any P system with symport/antiport rules, Π, there is a kP
system, kΠ, using only rewriting and communication rules and having a terminal
set of objects, such that M(Π) = Mt(kΠ).

Proof. Let Π = (O,F,E, µ, w1,0, · · · , wd,0, R1, · · · , Rd, i0) be a P system, of degree
d, with symport and antiport rules as given by Definition 9.

We construct a kP system kΠ of degree one in the following manner. We take
one unique compartment C1. Apart from the d membranes in system Π, numbered
by 1, 2, · · · , d, we think of the environment as a new membrane, with label 0.

The kP system we build is kΠ = (A,F ′, µ′, C1, 1). The alphabet, A, of kΠ will
consist of objects given by pairs < x, i >∈ O × {0, 1, · · · , d}. For a multiset w =
a1 · · · am in membrane i we use the notation < w, i > for < a1, i >, · · · < am, i >.

The initial multiset is

w′1,0 =< w1,0, 1 > · · · < wd,0, d >

i.e., it contains all the pairs having the first element the initial multiset of mem-
brane i and the second one i, 1 ≤ i ≤ d. Initially, the environment associated with
Π does not have any other objects apart from those in E. The set of rules, R′1, of
the kP system, includes the rules below.

• If a rule (u, out; v, in), u 6= λ, v 6= λ, is in membrane i with parent j and j 6= 0,
then we add the rule
< u, i >< v, j >→< u, j >< v, i >.

• If a rule (u, out; v, in), u 6= λ, v 6= λ, is in membrane i with parent j, j = 0,
then we decompose u = u1u2 and v = v1v2, such that u1, v1 ∈ (O \ E)∗ and
u2, v2 ∈ E∗ and add the rule
< u, i >< v1, 0 >→< u1, 0 >< v, i >.



Kernel P Systems Modelling, Testing and Verification 215

If u1 = λ or v1 = λ we interpret < λ, 0 > as λ, i.e. for v1 = λ and u1 6= λ the
rule becomes < u, i >→< u1, 0 >< v, i >.

• If a rule (u, out), u 6= λ, is in membrane i with parent j and j 6= 0, then we
add the rule
< u, i >→< u, j >.

• If a rule (u, out), , u 6= λ, is in membrane i with parent j, j = 0, we add the
rule
< u, i >→< u1, 0 >,
where u = u1u2 with u1 ∈ (O \ E)∗ and u2 ∈ E∗.
If u1 = λ, then again < λ, 0 > is λ, and the rule becomes < u, i >→ λ.

• If a rule (v, in), v 6= λ, is in membrane i with parent j, and j 6= 0, then we add
the rule
< v, j >→< v, i >.

• If a rule (v, in), v 6= λ, is in membrane i with parent j, j = 0, then we add the
rule
< v1, 0 >→< v, i >,
where v = v1v2 with v1 ∈ (O \ E)+ and v2 ∈ E∗.
Note that in this last case v1 6= λ.

Note that the environment (membrane 0) is treated differently by the above
rules. We do not keep track of elements over E in the environment, which are
in an unbounded number, but we must keep track of elements over O \ E in the
environment. If an u must go into the environment, then we decompose u = u1u2
such that u1 ∈ (O \ E)∗ and u2 ∈ E∗, and only < u1, 0 > will appear in the
right-hand side of the rule. Similarly, if a v comes from the environment, we have
v = v1v2 with v1 ∈ (O \ E)+ and v2 ∈ E∗, and < v1, 0 > must be consumed by
the rule.

The execution strategy of kΠ will be maximal parallelism.
The terminal alphabet is F ′ = {< a, i0 >| a ∈ F}. Note that multisets over F ′

obtained in kΠ will correspond to multisets over F obtained in membrane i0 by
Π.

Remark 5. It remains an open problem to devise a kP system with two compart-
ments, where C1 reflects the functioning of the entire system, while C2 simulates
membrane i0.

4 Sorting with kP Systems

Sorting is a central topic in Computer Science (see [25]). A variety of approaches to
sorting have been investigated, for different algorithms, and with different P system
models. A first approach was [3], in which a BeadSort algorithm was implemented
with tissue P systems. Another approach was [6], in which algorithms inspired from
sorting networks were implemented using P systems with communication. Other
papers ([1], [30]) use different types of P systems, and refine the sorting problem
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to sorting by ranking. A first overview of sorting algorithms implemented with P
systems was [2]. A dynamic sorting algorithm was proposed in [7]. The bitonic
sort was implemented with P systems [8], spiking neural P systems were used
for sorting [10], other network algorithms were implemented using P systems [9].
Another overview of sorting algorithms implemented with P systems is provided
by [11]. First implementations of sorting with kP systems were proposed in [16, 17].

The problem can be stated as follows: suppose we want to sort x1, · · · , xn,
n ≥ 1, in ascending order, where xi, 1 ≤ i ≤ n, are positive integer values. Each
such number, xi, 1 ≤ i ≤ n, will be represented as a multiset axi

i , 1 ≤ i ≤
n, where ai is an object from a given set. In the next sections we will present
two sorting algorithms using different representations of the sequence of positive
integer numbers. More precisely, we start with an algorithm already studied in
several other papers, [6, 2] for various types of P systems. Here we implement
it using kP systems, by representing each element xi by axi , 1 ≤ i ≤ n. The
multisets axi , 1 ≤ i ≤ n, are stored in separate compartments, Ci, 1 ≤ i ≤ n
(Section 4.1). In Section 4.2 these positive integer numbers are represented by axi

i ,
1 ≤ i ≤ n, and stored in one compartment C1; an additional one, C2, is used
for implementation purposes. In Section 4.3 it is used again the representation
axi
i , 1 ≤ i ≤ n, but a more complex structure of compartments is provided in

order to maximise the parallel behaviour of the system implementing the sorting
algorithm. The algorithm used in Section 4.1 and Section 4.2 makes comparisons
of adjacent compartments by employing a two stage process. In the first stage all
pairs “odd-even” are compared (C2i−1 with C2i, i ≥ 1) and in the second stage all
pairs “even-odd” are involved (C2i with C2i+1, i ≥ 1).

4.1 Sorting Using kP Systems with an Element per Compartment

The approach presented below follows [16, 17], but stopping conditions have been
also considered and the sequence of numbers is obtained in ascending order.

Let us consider a kP system, kΠ1, having n compartments Ci = (ti, wi,0),
where ti = (Ri, σi), 1 ≤ i ≤ n, and a set of objects A = {a, b, c, p, p′}. In each
compartment, Ci, the initial multiset, wi,0, 1 ≤ i ≤ n, includes the representation
of the positive integer number xi, i.e., axi , the multiset c2(n−1) and the object
p for all odd index values, when n is an even number, and for all odd index
values, but the last, when n is odd. The objects p stored initially in compartments
indexed by odd values indicate that one starts with stage one, whereby “odd-
even” compartment pairs are compared first. The multiset c2(n−1) will be used
in a counting process, in each of the compartments, that will help stoping the
algorithm when the sorting is complete.

Let us consider for n = 6 the sequence 3, 6, 9, 5, 7, 8. Then the initial multisets
are:
w1,0 = a3c10p;w2,0 = a6c10;w3,0 = a9c10p;w4,0 = a5c10;w5,0 = a7c10p;w6,0 =
a8c10. As n is even, p appears in all compartments indexed by odd values, i.e., C1,
C3, and C5.
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In each compartment Ci, ti contains the following set of rules, denoted Ri,
1 ≤ i ≤ n,
r1,i : a→ (b, i+ 1) {≥ p}, i < n;
r2,i : p→ p′;
r3,i : p′ → (p, i + 1), for i odd and i < n, and r′3,i : p′ → (p, i− 1), for i even and
i > 1;
r4,i : ab→ a(a, i− 1), i > 1;
r5,i : b→ a, i > 1.

We also consider the rule r : c → λ. This rule is used for implementing the
counting process mentioned above. By using the two stage process of comparing
“odd-even” pair of compartments and then “even-odd” ones, one needs at most
n− 1 stages to complete the sorting. As it will be explained below, each stage will
involve two steps and consequently after 2(n − 1) steps one expects to stop the
sorting process.

In each compartment Ci, the execution strategy is given by
σi = {r}{r1,i, r2,i, r3,i, r4,i}> {r5,i}>,

if i is odd; for even values of i, r3,i is replaced by r′3,i. The execution strategy, σi,
tells us that a sequence of three sets of rules are executed in each step. The first
one indicates that one single rule is applied and then two sets of rules are used,
each of them applied in a maximal parallel manner.

We assume that any two compartments, Ci, Ci+1, 1 ≤ i < n, are connected.
In the first step, of the “odd-even” stage, in every compartment one c is re-

moved by applying r : c → λ; then the only applicable rules are r1,i, r2,i in all
compartments indexed by an odd value. Given the presence of p in these compart-
ments, rules r1,i move all objects a from each compartment with an odd index
value, i, i < n, to the compartment Ci+1 by transforming them into bs and rules
r2,i transforming p into p′. In the next step, another c is removed from every
compartment and rules r3,i, r4,i, r5,i are then applied. The rules r3,i are applied in
compartments with an odd index value and r4,i are applied in compartments with
an even index value, this means p′ is moved as p from each Ci, i an odd value
and i < n, to compartment Ci+1 and every ab, in each Cj , j an even value and
j > 1, is transformed into an a kept in the compartment and another a moved
to Cj−1. At the end of the step, in each compartment Cj , j an even value and
j > 1, and in accordance with the execution strategy, the remaining b objects, if
any, are transformed into as. These two steps implement comparators between two
adjacent compartments, in this case “odd-even” pairs. If axi from Ci and axi+1

from Ci+1, i < n, are such that xi > xi+1 then the multisets axi is moved to Ci+1

and axi+1 to Ci. In the next step, the first of the second stage, ps appear in even
compartments and the comparators are now acting between pairs of compartments
Ci, Ci+1, where i is even and i < n.

Given that the algorithm must stop in maximum 2(n−1) steps, one can notice
that in step 2(n− 1) the counter, c, disappears, i.e., becomes λ, and the first rule
from the execution strategy, r, is no longer applicable and then the next sets of
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rules are not executed either. Hence, the process stops with the multisets codifying
for positive integer values in asceding order.

The table below presents the first four steps of the sorting process.

Compartments - Step C1 C2 C3 C4 C5 C6

0 a3c10p a6c10 a9c10p a5c10 a7c10p a8c10

1 c9p′ a6b3c9 c9p′ a5b9c9 c9p′ a8b7c9

2 a3c8 a6c8p a5c8 a9c8p a7c8 a8c8p
3 a3c7 c7p′ a5b6c7 c7p′ a7b9c7 a8c7p′

4 a3c6p a5c6 a6c6p a7c6 a9c6p a8c6

Now, one can state the result of the algorithm presented above and the number
of steps involved.

Theorem 3. The above algorithm sorts in ascending order a sequence of n, n ≥ 1,
positive integer numbers in 2(n− 1) steps.

4.2 Sorting Using kP Systems with Two Compartments

In this section we use a representation of the positive integer numbers x1, · · · , xn as
multisets ax1

1 , · · · , axn
n , where a1, · · · , an are from a given set of objects. We consider

a kP system, kΠ2, with two compartments Cj = (tj , wj,0), 1 ≤ j ≤ 2, which are
linked and A = {a1, . . . , an, c}. The initial multisets are w1,0 = ax1

1 · · · axn
n cn−1

and w2,0 = cn−1.
Finally, the kP system kΠ2 will lead to a multiset a

xi1
1 · · · axin

n in compartment
C1, such that xi1 ≤ · · · ≤ xin .

In compartments C1 the rules are
R1,1 = {aiai+1 → (ai, 2)(ai+1, 2) | 1 ≤ i < n & i = 1, 3, ...};
R2,1 = {ai → (ai+1, 2) | 1 ≤ i < n & i = 1, 3, ...};
R3,1 = {ai → (ai, 2) | 1 ≤ i ≤ n}.

We also consider the rule r : c→ λ, like in the previous section.
Compartment C2 has the rules

R1,2 = {aiai+1 → (ai, 1)(ai+1, 1) | 1 ≤ i < n & i = 2, 4, ...};
R2,2 = {ai → (ai+1, 1) | 1 ≤ i < n & i = 2, 4, ...};
R3,2 = {ai → (ai, 1) | 1 ≤ i ≤ n};
and the rule r defined above.

The execution strategies of these compartments are
σj = {r}Lab(R1,j)

>Lab(R2,j)
>Lab(R3,j)

>, j = 1, 2.
In compartment C1 one implements “odd-even” comparison steps and in C2

“even-odd” steps. The process starts with compartment C1. The execution strat-
egy in each compartment starts by decrementing the counter (using r), then the
comparators are implemented by executing first R1,j and then R2,j , j = 1, 2, both
in maximally parallel manner. After that all the pairs ai, ai+1 are sent to the other
compartment and when axi

i and a
xi+1

i+1 are such that xi > xi+1 then ai is trans-
formed into ai+1 and sent to the other compratment, i.e., ai and ai+1 are swapped



Kernel P Systems Modelling, Testing and Verification 219

and sent to the other compartment. In the last part, are moved to the other com-
partment all the objects ai, 1 ≤ i ≤ n, that remained there after comparisons.
This is the case when a pair ai and ai+1 has its objects with their multiplicities,
xi and xi+1, respectively, in the right order, i.e., xi ≤ xi+1.

Clearly after at most n−1 steps the objects a1, · · · , an have their multiplicities
in the ascending order and the sorting process stops as r is no longer applicable
and the execution strategy is not applicable any more.

Theorem 4. The above algorithm sorts in ascending order a sequence of n, n ≥ 1,
positive integer numbers in n− 1 steps.

One can produce a similar implementation whereby the comparison of two
neighbours is made more directly and with simpler rules, but with more complex
guards.

In this case we extend the definition of a guard, by allowing θan to be of the
form θaf(z), where f(z) is a function over the multisets of objects returning a
positive integer value. For the current multiset z, one can define, for instance,
fb(z) = |z|b, Then a rule a → b{> afb(·)} is applicable to z if the guard is true,
i.e., |z|a > |z|b.

The extended definition of the guard allows us to implement a comparator
with simpler rules than in the previous case. We have the pair of integers x1, x2
represented as a1

x1 , a2
x2 . Consider the pair of guarded rewriting rules

a1 → a2{> a1
fa2

(·)} and a2 → a1{< a2
fa1

(·)}

where fa2(w) = |w|a2 and fa1(w) = |w|a1 . Then both guards codify the condi-
tion x1 > x2.

If x1 ≤ x2 the rules are not applicable, while if x1 > x2, then the x1 copies of
a1 are rewritten as a2, and x2 copies of a2 are rewritten as a1, interchanging the
values and achieving eventually x1 ≤ x2.

A kP system, kΠ3, is defined now for sorting the sequence of n, n ≥ 1, positive
integer numbers. It consists of two compartment C1 and C2 which are linked. They
have the same initial multisets like kΠ2. The sets of rules associated with these
compartments are

• R1 consisting of three subsets of rules (R1 is responsible for “odd-even” stages):
– {r | r : c→ λ};
– R1,1 = {ai → (ai+1, 2){> a

fai+1
(·)

i } | i = 1, 3 · · · & i < n};
– R2,1 = {ai+1 → (ai, 2){< a

fai
(·)

i+1 } | i = 1, 3 · · · & i < n};
– R3,1 = {ai → (ai, 2) | i = 1, · · · , n}.

The function fai is defined fai(z) = |z|ai , 1 ≤ i ≤ n, for any multiset z.
Similarly, one defines R2 in compartment C2, which is used to implement

the “even-odd” stage. The execution strategy is given by σj = {r}Lab(R1,j ∪
R2,j)

>Lab(R3,j)
>, j = 1, 2.
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Theorem 5. The above algorithm sorts in ascending order a sequence of n, n ≥ 1,
positive integer numbers in n− 1 steps.

Remark 6. 1. The kP system kΠ3 has simpler rules (non-cooperative) than kΠ2

(cooperative rules), but the guards of the rules in kΠ2 are simpler than those be-
longing to kΠ3.
2. The number of rules applied in each step to interchange axi

i and a
xi+1

i+1 is
max{xi, xi+1} for kΠ2 and xi + xi+1 for kΠ3. Hence, kΠ2 uses less rules than
kΠ3 in each one of the n− 1 steps.

4.3 A kP System for Sorting in Constant Time

We suppose the integers to be sorted x1, · · ·xn distinct.
We use a total of n2 + 2n compartments:

- Ci,j , 1 ≤ i, j ≤ n, where each Ci,j will be responsible for a comparison;
- Ci, 1 ≤ i ≤ 2n, where each Ci, 1 ≤ i ≤ n, will collect the results of comparing

xi to the rest; and Ci, n+ 1 ≤ i ≤ 2n, will collect the sorted result.

The connections between compartments are given by the set of edges

E = ∪ni=1Ei

where

Ei = {(Ci, Ci,j) | 1 ≤ j ≤ n} ∪ {(Ci, Ck) | n+ 1 ≤ k ≤ 2n}, 1 ≤ i ≤ n.

Each Ci,j , 1 ≤ i, j ≤ n, will contain the initial multiset wi,j,0 = ai
xiaj

xja and the
rules
r′i,j : ai → ajF{> ai

fj(·)}; r′′i,j : aj → ai{< aj
fi(·)}; r′′′i,j : a→ a′;

ri,j : a′ → (F, i){≥ F},
where fi(z) = |z|ai and fj(z) = |z|aj .
The execution strategy is σi,j = {r′i,j , r′′i,j , r′′′i,j , ri,j}>.
Note that the rules r′i,j , r

′′
i,j implement a comparator between xi and xj , similar

to the one of the previous section. The modified comparator produces also a symbol
F (False) when xi > xj , signifying that xi ≤ xj is false. If the rewriting rules
r′i,j , r

′′
i,j and r′′′i,j have acted, then a single F will be sent to compartment Ci (by

using the rule ri,j).
In compartment Ci, 1 ≤ i ≤ n, we have the initial multiset wi,0 = ai

xia and
the rules
r′i : a→ a′; r′′i : a′ → a′′;
ri,0 : ai → (a, n + 1){< F ∧ = a′′}; ri,k : ai → (a, n + k + 1){= F k ∧ = a′′},
1 ≤ k ≤ n− 1.

The execution strategy is σi = {r′i, r′′i , ri,0, · · · , ri,n−1}>.
Compartments Ci, n+ 1 ≤ i ≤ 2n, are initially empty and contain no rules.
The functioning of the system is as follows. Initially, in compartments Ci,j , 1 ≤

i, j ≤ n, the rules r′i,j , r
′′
i,j , and r′′′i,j act. If xi > xj the values will be interchanged
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and some F s will be produced (rules r′i,j , r
′′
i,j are used), signifying that xi ≤ xj is

false. Also r′′′i,j is used to transform a in a′. If at least one F is produced in Ci,j ,
then a single F will be sent to Ci, using rule ri,j . In parallel, in each compartment
Ci, 1 ≤ i ≤ n, in the first two steps the rules r′i and r′′i are applied.

After these two steps, no rules are applicable in Ci,j , 1 ≤ i, j ≤ n, and in
Ci, 1 ≤ i ≤ n, the rules ri,k, 0 ≤ k ≤ n − 1, might be applicable, depending
on the number of F s collected.The number of F s tells us how many comparisons
xi ≤ xj , 1 ≤ j ≤ n, are false. If we have k such F s in Ci, it means that xi is
greater than exactly k other values, which means that in the sorted order it must
be the (k+ 1)-th component. This is accomplished by sending axi in Cn+k+1. The
maximum number of F s in Ci is n − 1 because Ci,i will never produce an F . If
there are no F s in Ci, this means that xi is the minimum, and axi will be sent
to Cn+1. Compartments Cn+i, 1 ≤ i ≤ n, collect the result of sorting. Each such
Cn+i will contain at the end of the computation the string axki , xki being the i-th
value in the sorted order. The computation has three steps, the first two ones in
which Ci,j , 1 ≤ i, j ≤ n, work, and a third one in which Ci, 1 ≤ i ≤ n, work.

Theorem 6. The above kP system sorts n integers in 3 steps.

4.4 Sorting in Constant Time with Membrane Division

The algorithm in the previous section uses only rewriting and communication rules.
This solution, although computationally efficient, requires an initial, quite com-
plex, arrangement of compartments and multisets. We present here an algorithm
which creates its working space by using membrane division rules.

We want to sort n distinct integers, x1, · · ·xn, represented as a1
x1 , · · · , anxn .

We start with a total of 3n compartments:

- Ci, 1 ≤ i ≤ n, where each Ci, will collect the results of comparing xi to the
rest;

- Ci, n+ 1 ≤ i ≤ 2n, will collect the sorted result;
- Ck, 2n + 1 ≤ k ≤ 3n, such that C2n+i ⊂ Ci, responsible for creating the

comparator compartments.

The connections between compartments are given by the set of edges

E = ∪ni=1Ei

where
Ei = {(Ci, C2n+i)} ∪ {(Ci, Ck) | n+ 1 ≤ k ≤ 2n}, 1 ≤ i ≤ n.

In compartment Ci, 1 ≤ i ≤ n, we have the initial multiset wi,0 = ai
xia and

the rules
r′i : a→ a′; r′′i : a′ → a′′; r′′′i : a′′ → a′′′;
ri,0 : ai → (a, n + 1){< F ∧ = a′′′}; ri,k : ai → (a, n + k + 1){= F k ∧ = a′′′},
1 ≤ k ≤ n− 1.

The execution strategy is σi = {r′i, r′′i , r′′′i , ri,0, · · · , ri,n−1}>.
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Compartments Ci, n+ 1 ≤ i ≤ 2n, are initially empty and contain no rules.
Compartments C2n+i, 1 ≤ i ≤ n, contain an initial multiset s, where s is a new

object, and the membrane division rules

[s]2n+i → [a1
x1ai

xia]i,1 · · · [ajxjai
xia]i,j · · · [anxnai

xia]i,n, 1 ≤ i ≤ n.

These rules will generate in each Ci the compartments Ci,j , 1 ≤ j ≤ n. In each
Ci,j we will have the multiset aj

xjai
xia, and the rules

r′i,j : ai → ajF{> ai
fj(·)}; r′′i,j : aj → ai{< aj

fi(·)}; r′′′i,j : a→ a′;
ri,j : a′ → (F, i){≥ F},

where fi(z) = |z|ai and fj(z) = |z|aj .
The execution strategy is σi,j = {r′i,j , r′′i,j , r′′′i,j , ri,j}>.
Note that this is the comparator of the previous section, which sends a single

F in Ci if xi ≤ xj is false.
During the first step, in compartment Ci rule r′i is executed, while in C2n+i

the membrane division rule is applied, generating the Ci,j , 1 ≤ j ≤ n. The next
three steps are identical to the ones of the previous algorithm.

Theorem 7. The above kP system sorts n integers in 4 steps.

5 Simulating and Verifying kP Systems

In Section 4, we have illustrated that kP systems provide a coherent and expressive
language that allow us to model various systems that were originally implemented
by different P system variants. In addition to the modelling aspect, there has
been a significant progress on analysing kP systems using various simulation and
verification methodologies. The methods and tools developed in this respect have
been integrated into a software platform, called kPWorkbench, to support the
modelling and analysis of kP systems.

The ability of simulating kernel P systems is an important feature of this tool.
Currently, there are two different simulation approaches, kPWorkbench Sim-
ulator and Flame (Flexible Large-Scale Agent Modelling Environment). Both
simulators receive as input a kP system model written in kP–Lingua and out-
puts a trace of the execution, which is mainly used for checking the evolution of
a system and for extracting various results out of the simulation. The simulators
provide traces of execution for a kP system model, and an interface displaying
the current configuration (the content of each compartment) at each step. It is
useful for checking the temporal evolution of a kP system and for inferring various
information from the simulation results.

Another important analysis method that kPWorkbench features is formal
verification, requiring an exhaustive analysis of system models against some queries
to be verified. The automatic verification of kP systems brings in some challenges
as they feature a dynamic structure by preserving the structure changing rules such
as membrane division, dissolution and link creation/destruction. kPWorkbench
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Prop. Pattern (i) Informal query, (ii) Formal query using patterns

1 Existence
(i) The numbers will be eventually sorted, i.e. the multisets representing the
numbers will be in ascending order in the compartments
(ii) eventually
(c1.a <= c2.a & c2.a <= c3.a & c3.a <= c4.a & c4.a <= c5.a & c5.a <= c6.a)

2 Universality
(i) Counters in different compartments are always sync’ed
(ii) always (c1.c = c2.c & c2.c = c3.c & c3.c = c4.c & c4.c = c5.c & c5.c = c6.c)

3 Steady-state
(i) In the state-state, the numbers are sorted
(ii) steady-state
(c1.a <= c2.a & c2.a <= c3.a & c3.a <= c4.a & c4.a <= c5.a & c5.a <= c6.a)

4 Existence
(i) The algorithm will eventually stop
(ii) eventually (ci.c = 0)

5 Response
(i) An unsorted state of two adjacent compartments will always be followed by
a sorted one
(ii) (ci.a >ci+1.a) followed-by (ci.a <= ci+1.a)

Table 1: List of properties derived from the property language and their representations
in different formats.

employs different verification strategies to allieviate these issues. The framework
supports both Linear Temporal Logic (LTL) and Computation Tree Logic (CTL)
properties by making use of the Spin [22] and NuSMV [13] model checkers.

In order to facilitate the formal specification, kPWorkbench features a prop-
erty language, called kP-Queries, comprising a list of natural language statements
representing formal property patterns, from which the formal syntax of the Spin
and NuSMV formulas are automatically generated. The property language editor
interacts with the kP-Lingua model in question and allows users to directly access
the native elements in the model, which results in less verbose and shorter state
expressions, and hence more comprehensible formulas. kP-Queries also features a
grammar for the most common property patterns. These features and the natural
language like syntax of the language make the property construction much easier.

Some of the commonly used patterns are “next”, “existence”, “absence”, “uni-
versality”, “recurrence”, “steady-state”, “until”, “response” and “precedence”.
The details can be found in [21].

We now illustrate the usage of the query patters on the sorting algorithm
given in Section 4.1. The other algorithms can be considered in a similar manner.
In order to verify that the algorithm works as desired, we have constructed a set of
properties specified in kP-Queries, listed in Table 1. The applied pattern types are
given in the second column of the table. For each property we provide the following
information; (i) informal description of each kP-Query, and (ii) the formal kP-
Query using the patterns. The queries given in Table 1 capture that the algorithm
given in Section 4.1 works as desired.

We note that both kP–Lingua model and the queries are automatically con-
verted into the languages required by the corresponding model checkers. So, the
verification process in kPWorkbench is carried out in automatic manner.
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6 Testing kP Systems Using Automata Based Techniques

In this section we outline how the kP systems obtained in the previous sections
can be tested using automata based testing methods. The approach presented
here follows the blueprint presented in [24] and [15] for cell-like P systems. We
illustrate our approach on kΠ1, the application of our approach on the other kP
system modeling sorting algorithms is similar.

Naturally, in order to apply an automata based testing method to a kP model,
a finite automata needs to be obtained first. In general, the computation of a kP
system cannot be fully modelled by a finite automaton and so an approximate
automaton will be sought. The problem will be addressed in two steps.

• Firstly, the computation tree of a P system will be represented as a determin-
istic finite automaton. In order to guarantee the finiteness of this process, an
upper bound k on the length of any computation will be set and only compu-
tations of maximum k transitions will be considered at a time.

• Secondly, a minimal model, that preserves the required behaviour, will be de-
fined on the basis of the aforementioned derivation tree.

Let Mk = (Ak, Qk, q0,k, Fk, hk) be the finite automaton representation of the
computation tree, where Ak is the finite input alphabet, Qk is the finite set of
states, q0,k ∈ Qk is the initial state, Fk ⊆ Qk is the set of final states, and
hk : Qk × Ak −→ Qk is the next-state function. Ak is composed of the tuples of
multisets that label the transition of the computation tree. The states of Tk corre-
spond to the nodes of the tree. For testing purposes we will consider all the states
as final. It is implicitly assumed that a non-final “sink” state qsink that receives
all “rejected” transitions, also exists.

Consider kΠ1, the kP system in section 4.1, n = 6 and the sequence to be
sorted 3, 6, 9, 5, 7, 8. Then the initial multisets are:
w1,0 = a3c10p;w2,0 = a6c10;w3,0 = a9c10p;w4,0 = a5c10;w5,0 = a7c10p;w6,0 =
a8c10. As kΠ1 is a deterministic kP system, there are no ramification in the com-
putation tree. For k = 3, this is represented below.

Compartments - Step C1 C2 C3 C4 C5 C6

0 rr31,1r2,1 r rr91,3r2,3 r rr71,5r2,5 r

1 rr3,1 rr34,2 rr3,3 rr54,4r
4
5,4 rr3,5 rr74,6

2 r rr61,2r2,2 r rr91,4r2,4 r rr2,6
3 r rr′3,2 rr51,3r5,3 rr′3,4 rr71,5r

2
5,5 rr

′
3,6

Let us denote
α1 = (rr31,1r2,1, r, rr

9
1,3r2,3, r, rr

7
1,5r2,5, r),

α2 = (rr3,1, rr
3
4,2, rr3,3, rr

5
4,4r

4
5,4, rr3,5, rr

7
4,6),

α3 = (r, rr61,2r2,2, r, rr
9
1,4r2,4, r, rr2,6),

α4 = (r, rr′3,2, rr
5
1,3r5,3, rr

′
3,4, rr

7
1,5r

2
5,5, rr

′
3,6).
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Then, for k = 3, Mk = (Ak, Qk, q0,k, Fk, hk), where
Ak = {α1, α2, α3, α4}, Qk = {q0,k, q1,k, q2,k, q3,k, q4,k}, Fk = Qk, and hk, the next-
state function, is defined by: hk(qi−1,k, αi) = qi,k), 1 ≤ i ≤ 4.

As Mk is a deterministic finite automaton over Ak, one can find the minimal
deterministic finite automaton that accepts exactly the language defined by Mk.
However, as only sequences of at most k transitions are considered, it is irrelevant
how the constructed automaton will behave for longer sequences. Consequently,
a deterministic finite cover automaton of the language defined by Mk will be
sufficient.

A deterministic finite cover automaton (DFCA) of a finite language U is a
deterministic finite automaton that accepts all sequences in U and possibly other
sequences that are longer than any sequence in U [4], [5]. A minimal DFCA of U is
a DFCA of U having the least possible states. A minimal DFCA may not be unique
(up to a renaming of its states). The great advantage of using a minimal DFCA
instead of the minimal deterministic automaton that accepts precisely the language
U is that the size (number of states) of the minimal DFCA may be much less than
that of the minimal deterministic automaton that accepts U . Several algorithms
for constructing a minimal DFCA (starting from the deterministic automaton that
accepts the language U) exist, the best known algorithm [26] requires O(n log n)
time, where n denotes the number of states of the original automaton. For details
about the construction of a minimal DFCA we refer the reader to [24] and [26].

A minimal DFCA of the language defined by Mk, k = 3, is M = (A,Q, q0, F, h),
where A = Ak, Q = {q0, q1, q2, q3}, F = Q and h defined by: h(qi−1, αi) = qi,
1 ≤ i ≤ 3 and h(q3, α4) = q0.

Now, suppose we have a finite state model (automaton) of the system we want
to test. In conformance testing one constructs a finite set of input sequences, called
test suite, such that the implementation passes all tests in the test suite if and only
if it behaves identically to the specification on any input sequence. Naturally, the
implementation under test can also be modelled by an unknown deterministic finite
automaton, say M ′. This is not known, but one can make assumptions about it
(e.g. that may have a number of incorrect transitions, missing or extra states).
One of the least restrictive assumptions refers to its size (number of states). The
W -method [12] assumes that the difference between the number of states of the
implementation model and that of the specification has to be at most β, a non-
negative integer estimated by the tester. The W -method involves the selection of
two sets of input sequences, a state cover S and a characterization set W [12].

In our case, we have constructed a DFCA model of the system and we are
only interested of the behavior of the system for sequences of length up to an
upper bound k. Then, the set suite will only contain sequences of up to length k
and its successful application to the implementation under test will establish that
the implementation will behave identically to the specification for any sequence
of length less then or equal to k. This situation is called conformance testing
for bounded sequences. Recently, it was shown that the underlying idea of the
W -method can also be applied in the case of bounded sequences, provided that
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the sets S and W used in the construction of the test suite satisfy some further
requirements; these are called a proper state cover and strong characterization
set, respectively [23]. In what follows we informally define these two concepts and
illustrate them on our working example. For formal definitions we refer the reader
to [23] or [24].

A proper state cover of a deterministic finite automaton M = (A,Q, q0, F, h) is
a set of sequences S ⊆ A∗ such that for every state q ∈ Q, S contains a sequence
of minimum length that reaches q. Consider M the DFCA in our example. Then λ
is the sequence of minimum length that reaches q0, σ1 is a sequence of minimum
length that reaches q1, α1α2 is a sequence of minimum length that reaches q2,
α1α2α3 is a sequence of minimum length that reaches q3. Furthermore, we can use
any input symbol in A \ {α1} to reach the (implicit) “sink” state, for example α2.
Thus, S = {λ, α1, α1α2, α1α2α3, α2} is a proper state cover of M .

A strong characterization set of a minimal deterministic finite automaton M =
(A,Q, q0, F, h) is a set of sequences W ⊆ A∗ such that for every two distinct
states q1, q2 ∈ Q, W contains a sequence of minimum length that distinguishes
between q1 and q2. Consider again our running example. λ distinguishes between
the (non-final) “sink” state and all the other (final) states. A transition labelled α1

is defined from q0, but not from q1, q2 or q3, so α1 is a sequence of minimum length
that distinguishes q0 from q1, q2 and q3. Similarly, α2 is a sequence of minimum
length that distinguishes q1 from q2 and q3 and α3 is a sequence of minimum
length that distinguishes between q2 and q3. Thus W = {λ, α1, α2, α3} is a strong
characterization set of M ,

Once we have established the sets S and W and the maximum number β of ex-
tra states that the implementation under test may have, a test suite is constructed
by extracting all sequences of length up to k from the set

S(A0 ∪A1 ∪ . . . ∪Aβ)W,

where Ai denotes the set of input sequences of length i ≥ 0.
Note that some test sequences may be accepted by the DFCA model - these

are called positive tests - but some others may not be accepted (they end up in
the (non-final) “sink” state) - these are called negative tests.

7 Conclusions

In this paper, we have investigated the relationships between kP systems, on the
one hand, and active membrane systems with polarization and symport/antiport
membrane systems, on the other hand. We have also illustrated the modeling
power of kP systems by providing a number of kP system models for sorting
algorithms. We have also discussed the problem of testing systems modelled as
kernel P systems and proposed a test generation method based on automata.
Namely, we have outlined how the kP systems can be tested using automata based
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testing methods. Furthermore, we have shown how formal verification can be used
to validate that the given models work as desired.

We have also begun a study on the ability of kP aytems to simulate other
particular classes of P systems, We have presented here the case of P systems with
active membranes, and P systems with symport/antiport rules.

In future studies we aim to connect kP systems with other classes of P systems,
especially those utilised in various applications, and to show how other problems
can be solved, tested and verified by using kP systems.
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Computing (Gh. Păun et al., eds.), Lecture Notes in Computer Science, 2597, 146 –
186, 2003.
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Cabrera, M. Garćıa-Quismondo, L. Mierlă, 3-COL Problem Modelling Using Simple
kernel P Systems, International Journal of Computer Mathematics, 90(4), 816 – 830,
2013.
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Kristóf Kántor, György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen
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Summary. We study the computational power of generalized P colony automata and
show how it is influenced by the capacity of the system (the number of objects inside the
cells of the colony) and the types of programs which are allowed to be used (restricted and
unrestricted com-tape and all-tape programs, or programs allowing any kinds of rules).

1 Introduction

P colonies are variants of very simple membrane systems, which are similar to
so-called colonies of simple grammars, a model in the theory of grammar systems,
launched by the introduction of cooperating, distributed systems of grammars in
[4]. One of the grammatical models of the field is the colony of grammars, see [12],
which is a collection of very simple generative grammars, but as a system, they
are able to generate complicated languages. For more on grammar systems and
colonies the interested reader is referred to the monograph [5].

Similarly to the grammar systems variant, P colonies also consist of a collec-
tion of very simple computing agents which interact in a shared environment, see
[13, 14]. The environment and the computing agents are both described by mul-
tisets of objects which are processed by the colony members using rules which
enable the transformation of the objects and the exchange of objects between the
colony members and the environment. The rules are grouped into programs, which
execute the rules they contain in parallel. A computation consists of a sequence of
computational steps during which the colony members execute their programs in
parallel, until the system reaches a halting configuration.

P colony automata, a variant of P colonies characterizing string languages
instead of multiset collections were introduced in [3] where several of its variants
were shown to be computationally complete in. The power of some of those left
open there was further examined in [1].

Generalized P colony automata were introduced in [11] in order to make the
model resemble more to the standard models of membrane computing, in particu-



232 Kristóf Kántor, György Vaszil

lar, to the model of P automata, introduced in [7]. In this case, the computation of
the colony defines an accepted multiset sequence, which is turned into an accepted
string by a non-erasing mapping (as in P automata). In [11] some basic variants
of the model were introduced and studied from the point of view of their compu-
tational power. Here we continue the investigations by examining generalized P
colony automata of capacity one, two, and three, and also take the initial steps in
the study of the relationship of their languages and the languages accepted by P
automata.

2 Preliminaries and Definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V ∗, and
let ε be the empty word. We denote the number of occurrences of a symbol a ∈ V
in w by |w|a.

A two-counter machine, see [9], M = (Σ ∪ {Z,B}, Q, q0, qF , T r) is a 3-tape
Turing machine where Σ is an alphabet, Q is a set of internal states with q0, qF ∈ Q
being the initial and the final states, and Tr is a set of transition rules. The machine
has a read-only input tape and two semi-infinite storage tapes which are used as
counters. The alphabet of the storage tapes contains only two symbols, Z and B
(blank), while the alphabet of the input tape is Σ ∪{B}. The symbol Z is written
on the first, leftmost cells of the storage tapes which are scanned initially by the
tape heads. An integer t can be stored by moving a tape head t cells to the right
of Z. A stored number can be incremented or decremented by moving the tape
head right or left. The machine is capable of checking whether a stored value is
zero or not by looking at the symbol scanned by the tape heads. If the scanned
symbol is Z, then the value stored in the corresponding counter is zero.

Without the loss of generality, we assume that two-counter machines check
and modify only one of their counters during any transition, thus, the rule set Tr
contains transition rules of the form (q, x, i, α)→ (q′, β) where x ∈ Σ ∪ {B} ∪ {ε}
corresponds to the symbol scanned on the input tape in state q ∈ Q, and α ∈
{Z,B}, i ∈ {1, 2} correspond to the symbols scanned on the i-th storage tape. By
a rule of the above form, M enters state q′ ∈ Q, and the i-th counter is modified
according to β ∈ {−1, 0,+1}. If x ∈ Σ ∪ {B}, then the machine was scanning x
on the input tape, and the head moves one cell to the right; if x = ε, then the
machine performs the transition irrespective of the scanned input symbol, and the
reading head does not move.

A word w ∈ Σ∗ is accepted by the two-counter machine if starting in the initial
state q0, the input head reaches and reads the rightmost non-blank symbol on the
input tape, and the machine is in the accepting state qF . Two-counter machines
are computationally complete; they are just as powerful as Turing machines (see
[9] for more details).

We will also need the notion of a register machine, and we also consider a
variant: a register machine with input tape. Such a machine consists of a given
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number of registers each of which can hold an arbitrarily large non-negative integer
number (we say that the register is empty if it holds the value zero), and a set
of labeled instructions which specify how the numbers stored in registers can be
manipulated (see [15] for more information).

Formally, a register machine is a construct M = (m,H, l0, lh, R), where m is
the number of registers, H is the set of instruction labels, l0 is the start label, lh
is the halting label, and R is the set of instructions; each label from H labels only
one instruction from R. There are several types of instructions which can be used.
For li, lj , lk ∈ H and r ∈ {1, . . . ,m} we have

• li : (ADD(r), lj) - add: Add 1 to register r and then go to the instruction with
label lj .

• li : (CHECKSUB(r), lj , lk) - zero check and subtract: If the value of register r
is not zero, subtract one from it and go to instruction lj , otherwise leave it
unchanged and go to lk.

• lh : HALT - halt: Stop the machine.

A register machine accepts a number m if starting the computation with the
instruction labeled by l0 while having m in the first register (and all other registers
empty), it reaches the halting instruction. This way a register machine computes
a set of numbers.

To be able to accept strings, we might also add an input tape to a register
machine, together with a new type of instruction

• li : (READ(a), lj) for a symbol a ∈ Σ of some input alphabet Σ.

Such an instruction can be applied if the reading head scans a symbol a ∈ Σ on
the input tape, and the head moves to the next tape cell after the application of
the instruction.

It is not difficult to see that register machines with input tape characterize
the class of recursively enumerable languages, as they can simulate two-counter
machines. To see this, consider the following. For each transition t : (q, x, i, α) →
(q′, β) of a two-counter machine M2c, construct the instructions for a register
machine MR as follows.

Let MR have a register rq for each state q ∈ Q, and a register ri for each counter
ci of M2c. Initially the register for the initial state contains the value one, and all
other registers are empty. The transition t is simulated by several instructions of
MR.

The simulation starts with lt : (READ(x), lt,1), and then continues with lt,1 :
(CHECKSUB(q), lt,2, ltrap) where ltrap is a “trap” label with a “trap” instruction
ltrap : (ADD(q), ltrap). Then lt,2 : (ADD(q′), lt,3) follows for the new state q′. Now,
if α = B, then the next instructions are lt,3 : (CHECKSUB(i), lt,4, ltrap), and lt,4 :
(ADD(i), lt,5), if α = 0 then lt,3 : (CHECKSUB(i), ltrap, lt,5). These instructions check
the required state of the ith register. If β = 0, then lt,5 can be replaced by the
label lt′ for a new transition t′ (starting with the state q′) of M2c. If β = −1, then
lt,5 : (CHECKSUB(i), lt′ , ltrap), if β = +1, then lt,5 : (ADD(i), lt′).
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If we define the instructions of MR in such a way that each accepting transition
of M2c can also lead to the halting instruction, then MR accepts an input word if
and only if M2c does.

Now we define the notions related to multisets as follows. If the set of non-
negative integers is denoted by N, then a multiset over a set V is a mapping
M : V → N which assigns to each object a ∈ V its multiplicity M(a) in M .
The support of M is the set supp(M) = {a | M(a) ≥ 1}. If V is a finite set,
then M is called a finite multiset. A multiset M is empty if its support is empty,
supp(M) = ∅. We will represent a finite multiset M over V by a string w over
the alphabet V with |w|a = M(a), a ∈ V , and ε will represent the empty multiset
which is also denoted by ∅.

We say that a ∈M if M(a) ≥ 1, and the cardinality of M , card(M) is defined
as card(M) = Σa∈MM(a). For two multisets M1,M2 : V → N, M1 ⊆M2 holds, if
for all a ∈ V , M1(a) ≤M2(a). The union of M1 and M2 is defined as (M1 ∪M2) :
V → N with (M1∪M2)(a) = M1(a)+M2(a) for all a ∈ V , the difference is defined
for M2 ⊆M1 as (M1 −M2) : V → N with (M1 −M2)(a) = M1(a)−M2(a) for all
a ∈ V .

A P system, see [17], is a structure of hierarchically embedded membranes
(a rooted tree), each having a unique label and enclosing a region containing a
multiset of objects. The outmost membrane is called the skin membrane.

An antiport rule is of the form (u, in; v, out), where u, v ∈ V ∗ are finite multisets
over V . If such a rule is applied in a region, then the objects of u enter from the
parent region and, in the same step, objects of v leave to the parent region.

A P automaton, see [6]Π = (V, µ, w1, . . . , wk, P1, . . . , Pk) is a membrane system
with object alphabet V , membrane structure µ, initial contents (multisets) of the
ith region wi ∈ V ∗, 1 ≤ i ≤ k, and sets of antiport rules Pi, 1 ≤ i ≤ k.

The configurations of the P automaton can be changed by transitions in the se-
quential mode (seq) or in the non-deterministic maximally parallel mode (par). In
the first case one rule is applied in each region in every step, in the second case as
many rules are applied simultaneously in the regions at the same step as possible.
Thus, a transition in the P automaton Π is (v1, . . . , vm) ∈ δΠ,X(u0, u1, . . . , um),
where δΠ,X denotes the transition relation, X ∈ {seq, par}, u1, . . . , uk are the con-
tents of the k regions, u0 is the multiset entering the system from the environment,
and v1, . . . , vk, respectively, are the contents of the k regions after performing the
transition in the working mode.

In this way, there is a sequence of multisets which enter the system from the
environment during the steps of its computations. If the computation is accept-
ing, that is, if it halts, then this multiset sequence is called an accepted multiset
sequence, and denoted by A(Π) for a P automaton Π.

Before giving the definition of the accepted string languages of P automata,
we define the notion of a generalized P colony automaton (genPCol automaton in
short).

Definition 1. A genPCol automaton of capacity k and with n cells, k, n ≥ 1, is a
construct Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) where
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• V is an alphabet, the alphabet of the automaton, its elements are called objects;
• e ∈ V is the environmental object of the automaton;
• wE ∈ (V − {e})∗ is a string representing the multiset of objects different from

e which is found in the environment initially;
• (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is a multiset over V , it

determines the initial contents of the cell, and its cardinality |wi| = k is called
the capacity of the system. The sets Pi of programs are formed from k rules of
the following types:

– tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and
communication tape rules, respectively; or

– nontape rules of the form a→ b, or c↔ d, called rewriting (nontape) rules
and communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.
• F is a set of accepting configurations of the automaton which we will specify

in more detail below.

A genPCol automaton reads an input word during a computation. A part
of the input (possibly consisting of more than one symbols) is read during each
configuration change: the processed part of the input corresponds to the multiset
of symbols introduced by the tape rules of the system. This process is defined more
precisely as follows.

A configuration of a genPCol automaton is an (n + 1)-tuple (uE , u1, . . . , un),
where uE ∈ (V − {e})∗ represents the multiset of objects different from e in the
environment, and ui ∈ V ∗, 1 ≤ i ≤ n, represent the contents of the i-th cell.
The initial configuration is given by (wE , w1, . . . , wn), the initial contents of the
environment and the cells. The elements of the set F of accepting configurations
are given as configurations of the form (vE , v1, . . . , vn), where

• vE ⊆ (V − {e})∗ represents a multiset of objects different from e being in the
environment, and each

• vi ∈ V ∗, 1 ≤ i ≤ n, is the contents of the i-th cell.

To describe the computation process formally, for any rule r we define the

following multisets. Let X ∈ {T, ε}, and if r = a
X→ b, or r = a

X↔ b, then let
left(r) = a, right(r) = b. Let us extend this notation also for programs. For α ∈
{left, right} and for any program p, let α(p) =

⋃
r∈p α(r) where the union denotes

multiset union (as defined above), and for a rule r and program p = 〈r1, . . . , rk〉,
the notation r ∈ p denotes the fact that r = rj for some j, 1 ≤ j ≤ k. Moreover, for
any tape program p we also define read(p) as the multiset of symbols (different from
e) on the right side of rewriting tape rules and on the left side of communication
tape rules, that is, read(p) =

⋃
r∈p,r=a T→b,b6=e

right(r) ∪
⋃
r∈p,r=a T↔b,a6=e

left(r).

Thus, left(r) and right(r) are the multisets consisting of the symbol on the left
or right side of the rule r. For a program p, left(p) and right(p) are the collection
(multiset) of symbols on the left or right sides of the rules in the program p. Finally,
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read(p) is the multiset (collection) of symbols (different from e) on the right side
of rewriting tape rules or the left side of communication tape rules.

We also denote by export(p) and by import(p) the multisets export(p) =⋃
r∈p,r=aX↔b,a6=e

a and import(p) =
⋃
r∈p,r=aX↔b

b, and by create(p) the multiset

create(p) =
⋃
r∈p,r=aX→b

b. So by export(p) and import(p), that were defined for

communication rules of a given program p, we indicate the objects that are sent
out to the environment and brought inside the cell, respectively. Whereas create(p)
is the multiset of symbols produced by the rewriting rules of program p.

Let the programs of each Pi be labeled in a one-to-one manner by labels from
the set lab(Pi), 1 ≤ i ≤ n, lab(Pi)∩ lab(Pj) = ∅ for i 6= j. In the following, for the
sake of brevity, if no confusion arises, we designate programs and their labels with
the same letters, thus, for a label p ∈ lab(Pi), we also write p ∈ Pi.

Let c = (uE , u1, . . . , un) be a configuration of a genPCol automaton Π, and
let UE = uE ∪ {e, e, . . .}, thus, the multiset of objects found in the environment
(together with the infinite number of es which are always present). We call a set
of programs, Pc, applicable in configuration c, if the following conditions hold.

• At most one program is selected for each cell, that is, if p, p′ ∈ Pc, p 6= p′ and
p ∈ Pi, p′ ∈ Pj , then i 6= j;

• the selected programs are applicable in the cells (the left sides of the rules
contain the same symbols that are present in the cell), that is, for each p ∈ Pc,
if p ∈ Pi then left(p) = ui;

• the symbols which are brought inside the cells by the programs are present in
the environment, that is,

⋃
p∈Pc

import(p) ⊆ UE ;
• Pc is maximal, that is, if any other program is added to it, then some of the

above conditions are not satisfied.

A configuration c = (uE , u1, . . . , un) is changed to a configuration c′ =
(u′E , u

′
1, . . . , u

′
n) and is denoted by c =⇒ c′ by applying the set Pc of applica-

ble programs if the following properties hold:

• If there is a p ∈ Pc such that p ∈ Pi, then u′i = create(p)∪import(p), otherwise
u′i = ui, 1 ≤ i ≤ n; and

• U ′E = UE −
⋃
p∈Pc

import(p)∪
⋃
p∈Pc

export(p) (where U ′E again denotes u′E ∪
{e, e, . . .} with an infinite number of es).

We denote the reflexive and transitive closure of =⇒ by =⇒∗.
The general idea behind the above definitions is that instead of the different

computational modes used in [3], we have a system with programs and we apply
the programs in the maximally parallel way as usual in P colonies, that is, in each
computational step, every component cell must non-deterministically choose and
apply one of its applicable programs. Then we look at those rules which were tape
rules (in the applied set of programs) and collect all the symbols that they “read”:
this multiset (of the collected symbols) is the multiset read by the system in the
given computational step. A successful computation defines this way an accepted
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sequence of multisets: the sequence of multisets entering the system during the
steps of the computation.

Definition 2. Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) be a genPCol automa-
ton. The set of input sequences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ (V − {e})∗, 1 ≤ i ≤ s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE , w1, . . . , wn), cs ∈ F, and

ci =⇒ ci+1 with
⋃
p∈Pci

read(p) = ui+1 for all 0 ≤ i ≤ s− 1}.

Now we define the accepted string languages for both genPCol automata, and
“ordinary” P automata.

Definition 3. Let Π be a genPCol automaton or a P automaton, and let f :
(V − {e})∗ → 2Σ

∗
be a mapping, such that f(u) = ε if and only if u is the empty

multiset.
The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

From now on, we are going to consider the mapping: fperm defined for any
multiset x ∈ (V − {e})∗ as

f(x) = {y ∈ (V − {e})∗ | y ∈ perm(x)}

where perm(x) ⊆ V ∗ denotes the set of strings representing the multiset composed
of the symbols of x, or in other words, perm(x) is the set of strings obtained by a
permutation of the symbols of the multiset x.

Concerning the power of P automata with the mapping fperm, the reader is
referred to [8] and [10]. In general, they characterize a language class that is
strictly included in the class of languages that can be accepted by logarithmic
space bounded Turing machines that read their input tape from left to right only
once.

For genPCol automata, their working modes, or in other words, the types
of programs that they are allowed to use, greatly influence their computational
power. Let us refine and extend the definition of the program types defined in [11]
as follows.

Definition 4.

• L(genPCol,F , com-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where all
the communication rules are tape rules,

• L(genPCol,F , all-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where all
the programs must have at least one tape rule,
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• L(genPCol,F , ∗(k)) is the class of languages accepted by generalized PCol
automata with capacity k and with mappings from the class F where programs
with any kinds of rules are allowed.

For all-tape and com-tape languages we also define their restricted variants,
L(genPCol,F , restricted all-tape(k)) and L(genPCol,F , restricted com-tape(k)),
respectively. These are accepted by systems with programs not having any rules
of types

e
T→ e, a

T→ e, and e
T↔ e, e

T↔ a,

for arbitrary a ∈ V , where e is the special environmental object. Note that systems
which accept languages of these restricted classes must read nonempty multisets
in each computational step.

In the following, we will be considering systems with the permutation mapping
fperm defined above. For the sake of easier readability, we denote the languages of
systems with this type of mapping as

• Lperm(genPCol, X(k)), where X ∈ {com-tape, all-tape, ∗}.

3 Languages Accepted by genPCol Automata

The following are immediate consequences of the definitions.

Proposition 1 For any class of mappings F , we have

1. L(genPCol,F , com-tape(k)) ⊆ L(genPCol,F , ∗(k)) and
L(genPCol,F , all-tape(k)) ⊆ L(genPCol,F , ∗(k) for any k ≥ 1;

2. L(genPCol,F , restricted X(k)) ⊆ L(genPCol,F , X(k)) for any k ≥ 1 and
X ∈ {com-tape, all-tape, ∗}; and

3. L(genPCol,F , X(k)) ⊆ L(genPCol,F , X(k + 1)) for any k ≥ 1 and X ∈
{com-tape, all-tape, ∗}.

Proof. The first inclusions hold, as com-tape systems are special cases of all-
tape systems, which are both special cases of the unrestricted variant. The second
inclusion holds for a similar reason, while the third inclusion can be seen to hold if
we consider that adding the of object e to the initial cell contents, and a rule e→ e
to the programs of all cells in a system, does not change the accepted language.

�

3.1 The Capacity of genPCol Automata

First we consider genPCol automata of capacity one. In the case of P colonies, all
recursively enumerable sets of integers can be characterized by systems of capacity
one, see [2]. This is also true for genPCol automata with languages obtained by
permutation mappings, if programs with any kind of rules are allowed.
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Theorem 2. Lperm(genPCol, ∗(1)) = L(RE).

Proof. In Theorem 1 of [2] P colonies of capacity one are shown to be able to
simulate register machines. The idea of the simulation is to have an object in the
environment corresponding to the label of the instruction which is to be simulated
next. The cells of the system “process” the instruction label in such a way that
the necessary modifications of the configuration are implemented, and the label of
the next instruction is sent to the environment.

Based on this construction, we can show that genPCol automata can sim-
ulate register machines with input tape (see section 2 for the definitions), and
thus, characterize the class of recursively enumerable languages. In addition to
the construction in Theorem 1 of [2], we need to simulate the instructions of type
li : (READ(a), lj). To do this, we add one cell (e, Pli) to the system for each such
instruction of the register machine with the programs

Pli = {〈e↔li〉, 〈li
T→ a〉, 〈a→lj〉, {〈lj↔e〉}.

These programs can be applied when li appears in the environment. They read
an input symbol a while exchanging li for lj in the environment. �

The power of systems with capacity one decreases considerably if not all kinds
of programs are allowed. The next theorem examines the relationship of regular
languages and languages of genPCol automata with all-tape programs.

Theorem 3. Lperm(genPCol, all-tape(1)) is incomparable with the class of regular
languages.

Proof. First we show that there is a nonregular language in Lperm(genPCol, ∗(1)).
Let L1 = {{a, $}2n{c, $}2{b, $}2n+2 | n ≥ 0} be the non-regular language over
Σ = {a, b, c, $}, where by {x, y}m we denote the string w1w2 . . . wm with wi being
either xy or yx, 1 ≤ i ≤ m.

Consider Π = (Σ ∪ {e}, e, wE , (e, P1), (e, P2), (e, P3), F ), the genPCol automa-
ton with the sets of programs as

P1 = {〈e T→ $〉, 〈$ T↔ e〉},

P2 = {〈e T→ a〉, 〈a T↔ e〉, 〈e T→ c〉, 〈c T↔ $〉},

P3 = {〈b T↔ c〉, 〈c T→ b〉, 〈b T↔ a〉, 〈a T→ b〉},

and set of accepting configurations: F = {(u, e, $, b) | u ∈ (Σ \ {a})∗}.
It is easy to see, that the first cell starts producing $ objects indefinitely, while

the second cell reads 2n (n ≥ 0) as, while sending as in the environment n times.
After stopping, the third cell starts to work, eliminating every a in the environment
while reading two bs.

Next, we show that L2 = {bbc, c} cannot be accepted by any Π genPCol
automaton with capacity one, working in all-tape mode, using the fperm mapping.
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Let V = {b, c} ∪ {e, e′} be the alphabet of a genPCol automaton. Note that
these are the only symbols that might appear in the programs, and e′ can only
serve as the initial cell contents. It is clear, that the automaton must accept bbc
and c. We show that it is impossible to accept these and only these strings. Let us
examine the cases:

1. There is only one cell: Π = (V, e, wE , (w0, P0), F ). In this case there are
three subcases:

1.(a) w0 = e′. In order to decide whether to read c or bbc, Π must create two

pathways. To do this, P0 must contain the following programs: 〈e′ T→ e〉, 〈e T→
c〉, 〈e T→ b〉 or 〈e′ T→ c〉, 〈e′ T→ b〉. If nondeterministically Π decides to read b, it

should be able to read one more b. To do this, we can either add 〈b T→ b〉 or 〈b T↔ e〉
program to P0, but it would create a nondeterminism, so that the automaton could
read strings other than bbc or c.

1.(b) w0 = b or w0 = c. In this case we would need to have the program 〈b T→ b〉
again, or P0 would contain 〈b T↔ e〉 or 〈c T↔ e〉. Since we have one cell, one of these
rules automatically decides which string we would like to start reading, therefore
it is impossible to accept both bbc and c strings.

1.(c) The only remaining option in this case is w0 = e. Here P0 must contain

〈e T→ b〉 and 〈e T→ c〉. If Π nondeterministically chooses 〈e T→ b〉, then it would
be still left to read bc. There are three different rules that could be used at the
moment: 〈b T→ b〉, 〈b T→ e〉, 〈b T↔ e〉, however these cases lead to nondeterminism,
where Π could read strings other than bbc or c.

2. There are n ≥ 2 cells: Π = (V, e, wE , (w0, P0), . . . , (wn, Pn), F ).We are able
to define the ith (0 ≤ i ≤ n) cell in three different ways. Please note that in order
to decide whether to read c or bbc, Π must create two pathways. In these cases Π
would create the pathways using two or more cells:

2.(a) wi = b or wi = c. Hence the maximal parallelism, the ith cell would
immediately read c or b, therefore restricting to accept only bbc or c.

2.(b) wi = e. Pi could contain 〈e T↔ b〉 or 〈e T↔ c〉, but these cases require to
have b or c in the environment, which is impossible because of the previous case.

Thus Pi must contain one or more of these programs: 〈e T→ e〉, 〈e T↔ e〉, 〈e T→ b〉 or

〈e T→ c〉. Please note that in all of these cases, Π would be able to accept strings
other than bbc or c, therefore it would be impossible to accept bbc and c.

2.(c) wi = e′. In this last subcase, Pi could contain 〈e′ T→ e〉, 〈e′ T→ b〉 or

〈e′ T→ c〉. Choosing 〈e′ T→ e〉 would lead to the previous case, where wi = e. The
two remaining programs would immediately read strings other than bbc or c.

3. The last case that is left to be examined is when there are n ≥ 2 cells, and
Π creates the nondeterministic pathways in one cell. Let the 0th cell be the one
that creates the nondeterministic pathways. Hence case (1), w0 = e and P0 must

contain 〈e T→ b〉 and 〈e T→ c〉. If the 0th cell decides to read b, we must ensure that
Π would read bc and then stop. If an other cell would continue to read, the only
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logical scenario would be to have b or c in the cell at start and the cell might only

use a program in the following form: 〈k1 ∈ {b, c}
T↔ k2 ∈ ({b, c} ∪ {e′})〉, but it is

impossible to have k2 in the environment without reading k2. Thus the 0th cell is

to continue to read b, which can happen by one of the following programs: 〈b T→ b〉
or 〈b T↔ e〉, however both of them lead to unnecessary nondeterminism.

We have covered the possible ways to construct Π. It is now easy to see, that
it is impossible to construct Π in any way to accept {bbc, c}. �

Now we show that for systems with capacity at least three, their all-tape and
com-tape languages include any recursively enumerable language. Given a recur-
sively enumerable language L, the idea is to take a system of capacity two which,
when any kind of programs are allowed, accept L (we refer to [11] for such a sys-
tem), and transform it to a system of capacity three having a communication tape
rule in each program by adding “dummy” tape rules which do not interfere with
the work of the rest of the system.

Proposition 4 Lperm(genPCol, X(3)) = L(RE) for X ∈ {com-tape, all-tape}.

Proof. The construction is based on the proof of Theorem 3 in [11] where a gen-
PCol automaton of capacity two with no restriction on the type of programs is
presented. Modifying such a system, we can easily construct a genPCol automa-
ton of capacity three with all-tape or even com-tape type of programs by simply

putting one more e object into each cell, and add the rule e
T↔ e to every program.

�

3.2 Variants of genPCol Automata of with Capacity Two

In [11] we have started the study of genPCol automata languages that can be
accepted by systems of capacity two with the mapping fperm. We have shown that
if they use restricted all-tape or restricted com-tape programs, then similarly to
“ordinary” P automata, they characterize a language class that is strictly included
in the class of languages that can be accepted by logarithmic space bounded Turing
machines that read their input tape from left to right only once.

On the other hand, even genPCol automata with restricted all-tape or re-
stricted com-tape programs are more powerful than P automata using the mapping
fperm.

If we denote by LX(fperm, PA) the class of languages characterized by P au-
tomata with X ∈ {seq, par} for parallel or sequential rule application, then we
have the following.

Theorem 5. Lperm(genPCol, restricted all-tape(2))\LX(fperm, PA) 6= ∅ for X ∈
{seq, par}.

Proof. Consider the language L = {(ab)n(cd)n | n ≥ 1} which, according to [10]
cannot be accepted by any P automaton using the mapping fperm. The following
genPCol automaton accepts L with fperm.
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Let Π = ({a, b, c, d}, e, ∅, (ee, P ), F ) with F = {(u, ad) | u ∈ d∗}, and

P = {〈e T→ a, e↔e〉, 〈e T→ b, a↔e〉, 〈b T→ a, e↔e〉, 〈b T→ c, e↔e〉,

〈c T→ d, e↔a〉, 〈a T→ c, d↔e〉}

In the first phase of its functioning, the system above reads a string (ab)n while
sending n copies of a into the environment. Then in the second phase, as many
cds are read, as the number of as that can be found in the environment. �

Next we show that if we only require that all programs contain at least one
tape rule (but unlike in the restricted case, they can also use the environmental
symbol e), then any recursively enumerable language can be accepted also with
systems of capacity two.

Theorem 6. L(genPCol, fperm, all-tape(2)) = L(RE).

Proof. Let L ⊆ Σ∗ be an arbitrary recursively enumerable language, and let
M = (Σ ∪ {Z,B}, Q, q0, qf , T r) be a two-counter machine with L = L(M), as
defined in section 2.

Construct the genPCol automaton Π = (V, e, wE , (w0, P0), . . . , (wn, Pn), F ) of
capacity two, where V = Σ ∪ Q ∪ {t, t′, t′′, t′′′ | t ∈ Tr} ∪ {c1, c2, A}, the initial
contents of the cells are w0 = q0e, wi ∈ {ee, te, t′′e}, 1 ≤ i ≤ n, as we will specify
later, and F = {(u, qfe, w1, . . . , wn) | u ∈ V ∗}.

For any α ∈ {B,Z}, β ∈ {−1, 0,+1}, we define the disjoint sets of transitions
Trα,β ⊆ Tr as follows: t ∈ Trα,β , if and only if, t : (q, x, i, α)→ (q′, β), x ∈ Σ∪{ε},
i ∈ {1, 2}. Thus, Tr = TrB,−1 ∪ TrB,0 ∪ TrB,+1 ∪ TrZ,0 ∪ TrZ,+1.

For every t ∈ TrB,+1 the proof will need three cells each, whereas for each
t ∈ (TrB,−1∪TrB,0∪TrZ,0∪TrZ,+1) only two cells are required, thus n = 3k1+2k2,
where k1 = |TrB,+1| and k2 = |(TrB,−1 ∪ TrB,0 ∪ TrZ,0 ∪ TrZ,+1)|.

As the cells in the constructed system correspond to transitions of the simulated
two-counter machine, in the following we will index the cells Ci = (wi, Pi) (except
C0) with two indices: the transition and an integer (the integer will be 1, 2, or 3,
depending on how many cells the simulation of the given transition requires). The
sets of programs are defined as follows:

Let w0 = q0e, and let

P0 = {〈q0 ↔ e; e
T→ e〉, 〈e T→ e; e↔ qf 〉}.

For every t ∈ (TrB,0 ∪ TrB,−1) we will have two cells. The initial contents of
the first cell is wt,1 = ee, whereas the set of programs is the following:

Pt,1 = {pt1 : 〈e↔ q; rt1〉, pt2 : 〈q T→ e; rt2〉, pt3 : 〈e→ t′; ci
T→ e〉,

pt4 : 〈t′ ↔ e; e
T→ e〉, pt5 : 〈e T→ e; e↔ t′′′〉,

pt6 : 〈t′′′ → q′; e
T→ e〉, pt7 : 〈q′ ↔ e; e

T→ e〉},
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where rt1 and rt2 are the rules e
T→ a and a↔ ci, respectively, if the transition is

such that the input symbol is x = a ∈ Σ, otherwise if x = ε, then rt1 = e
T→ e and

rt2 = e↔ ci.
For every t ∈ TrB,−1 the initial contents of the second cell is still wt,2 = ee,

but the set of programs is different:

Pt,2 = {pt8 : 〈e↔ t′; e
T→ e〉, pt9 : 〈t′ → t′′′; e

T→ e〉, pt10 : 〈t′′′ ↔ e; e
T→ e〉}.

Next, the initial contents of the first cell for every t ∈ TrB,+1 is wt,1 = te, and
the set of programs is the following:

Pt,1 = {pt1 : 〈t↔ q; rt1〉, pt2 : 〈q T→ e; rt2〉, pt3 : 〈ci ↔ e; e
T→ e〉,

pt4 : 〈e→ t′; e
T→ e〉, pt5 : 〈e T↔ t; t′ ↔ e〉},

where rt1 and rt2 are the rules e
T→ a and a↔ ci, respectively, if the transition is

such that the input symbol is x = a ∈ Σ, otherwise if x = ε, then rt1 = e
T→ e and

rt2 = e↔ ci.
For every t ∈ (TrB,0∪TrB,+1) the initial contents of the second cell is wt,2 = t′′e

and the set of programs is as follows:

Pt,2 = {pt8 : 〈t′′ ↔ t′; e
T→ e〉, pt9 : 〈t′ → ci; e

T→ e〉, pt10 : 〈ci ↔ e; e
T→ e〉,

pt11 : 〈e→ t′′′; e
T→ e〉, pt12 : 〈e T↔ t′′; t′′′ ↔ e〉}.

The initial contents of the third cell for every t ∈ TrB,+1 is wt,3 = ee, and the
set of programs is the following:

Pt,3 = {pt13 : 〈e↔ t′′′; e
T→ e〉, pt14 : 〈t′′′ → q′; e

T→ e〉, pt15 : 〈q′ ↔ e; e
T→ e〉}.

For every t ∈ (TrZ,0 ∪ TrZ,+1) the initial contents of the first cell is wt,1 = ee
and the set of programs is as follows:

Pt,1 = {pt1 : 〈e↔ q; rt1〉, pt2 : 〈q → t′; rt2〉, pt3 : 〈t′ ↔ e; e
T→ t〉,

pt4 : 〈e T↔ ci; t→ A〉, pt5 : 〈e T↔ t′′′; t→ q′〉, pt6 : 〈t′′′ T→ e; q′ ↔ e〉},

where rt1 and rt2 are the rules e
T→ a and a

T→ e, respectively, if the transition is

such that the input symbol is x = a ∈ Σ, otherwise if x = ε, then rt1 = e
T→ e and

rt2 = e
T→ e.

For every t ∈ TrZ,0 the initial contents of the second cell is wt,2 = ee and the
set of programs is as follows:

Pt,2 = {p7 : 〈e T↔ t′; e→ t′′′〉, p8 : 〈t′′′ ↔ e; t′
T→ e〉}.

Last, but not least, for every t ∈ TrZ,+1 the initial contents of the second cell
is wt,2 = t′′e and the set of programs is as follows:
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Pt,2 = {pt8 : 〈t′′ ↔ t′; e
T→ e〉, pt9 : 〈t′ → t′′′; e

T→ e〉, pt10 : 〈t′′′ ↔ e; e
T→ e〉,

pt11 : 〈e→ ci; e
T→ e〉, pt12 : 〈e T↔ t′′; ci ↔ e〉}.

The genPCol automaton Π simulates the work of the two-counter machine M
by reading the input symbols with its tape programs and keeping track of the
contents of the i-th counter as the number of ci, i ∈ {1, 2} objects present in the
environment.

Each transition of M is simulated separately. At the first step, the 0th cell
contains and object that corresponds to q0 ∈ Q, which is then sent to the envi-
ronment. The environment keeps track of the current internal state of M . One
transition rule is simulated by the interplay of programs of two or three cells from
Π, if and only if M changes its state from q to q′ while the counter contents are
also checked and modified accordingly.

A transition t : (q, x, i, B) → (q′,−1) ∈ TrB,−1 is simulated by two cells Ct,1,
Ct,2 with the sets of programs Pt,1 and Pt,2. First, q enters the first cell Ct1 from
the environment by program pt1 , activating the simulation of the transition. Then
ci enters the first cell (program pt2), and by programs pt3 and pt4 , object t′ is sent
to the environment. Now the programs of the second cell Ct2 are activated, t′ is
changed to t′′′ and sent to the environment by the programs pt8 , pt9 , and pt10 .
Now by pt5 , pt6 of the first cell, t′′′ is changed to q′ denoting the next state of M ,
and it is sent to the environment by pt7 .

A transition t : (q, x, i, B)→ (q′, 0) ∈ TrB,0 is also simulated by two cells with
the sets of programs Pt,1 and Pt,2. Now the initial contents of the second cell is t′′e.
The first four steps are identical with the previous case described above. When t′

appears in the environment, the programs of the second cell exchange it with t′′

and send ci and t′′′ to the environment by the programs pti , 8 ≤ i ≤ 12, then t′′′

is exchanged with the object q′ (denoting the next state of M) in the environment
by pt5 , pt6 , and pt7 of the first cell.

A transition t : (q, x, i, B)→ (q′,+1) ∈ TrB,+1 is simulated by three cells with
the sets of programs Pt,1, Pt,2 and Pt,3. The initial contents of the three cells are
te, t′′e, and ee, respectively. In the first five steps the programs of the first cell are
active, but besides the object t′, this time the cell also sends ci to the environment.
When t′ appears in the environment (after the application of Pt,5, the programs of
the second cell take over. They are identical to the previous case, they exchange
t′ with t′′ and send ci and t′′′ to the environment as above. Finally the third cell
becomes active, and t′′′ is exchanged with the object q′ (denoting the next state
of M) in the environment by pt13 , pt14 , and pt15 .

A transition t : (q, x, i, Z) → (q′, 0) ∈ TrZ,0 is simulated by two cells with the
sets of programs Pt,1 and Pt,2. The initial contents of both cells are ee. The first
three steps, the first cell exchanges q to t′ in the environment while the second cell
remains inactive. When t′ appears in the environment, the programs of the second
cell exchange it with t′′′ in the next computational step. During this step, the first
cell is either inactive, or imports an object ci from the environment, if there is at
least one such object is present there. In this later case, the transition cannot be
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applied in a simulation of the two counter machine M , as the value stored the ith
counter is not zero. This is reflected by program pt,4 which introduces a a “trap
object” A. If the transition is applicable in M , that is, if there is no ci present in
the environment. Then after two inactive steps, t′′′ is exchanged with the object
q′ (denoting the next state of M) in the environment by pt5 and pt6 of the first
cell.

Finally, a transition t : (q, x, i, Z) → (q′,+1) ∈ TrZ,+1 is simulated by two
cells with the sets of programs Pt,1 and Pt,2. The initial contents of the two cells
are ee and t′′e, respectively. The first three steps is identical with those in the
previous case. When t′ appears in the environment, the programs of the second
cell exchange it with t′′, send an object t′′′ and then an object ci (in exchange
with t′′) to the environment. These are done by programs pt5 and pt6 . Similarly
to the previous case, during the fourth computational step, the first cell is either
inactive, or imports an object ci from the environment (by program pt4 , if there is
at least one such object is present there). In the later case, the transition cannot
be applied in a simulation as the value stored the ith counter of M is not zero (so
the “trap object” A is introduced). If there is no ci present in the environment (the
transition is applicable in a simulation), then after three steps (in which the first
cell is inactive), t′′′ is imported into the first cell, and then the object q′ (denoting
the next state of M) is sent to the environment by pt5 and pt6 , respectively.

According to these considerations, we have seen that having the object q in the
environment, the genPCol automaton Π replaces it with q′, and either simulates
a transition of the two-counter machine M from state q to state q′ (checking and
adjusting the multiplicity of the objects corresponding to the counter contents
accordingly), or its computation is not successful. Thus, starting with q0 in the
environment (q0 is sent to the environment by the first program in P0 in the
very first step of Π) the genPCol automaton produces qacc, the accepting state
of the two-counter machine M in the environment if and only if its computation
corresponds to an accepting computation of M . Having qacc in the environment,
Π can reach its final configuration by importing it into the cell C0 by using the
second program of P0. �

4 Conclusions

We have studied the effect of the capacity of generalized P colony automata on
their computational power using the all-tape and com-tape variants of programs
used. We have shown that even with capacity one, if we do not place additional
restrictions on the types of programs allowed to be used by the system, genPCol
automata characterize the class of recursively enumerable languages. On the other
hand, for systems with capacity three, even the use of most restrictive program
types does not result in any decrease of the computational power. The most inter-
esting cases are the ones in between these two: the restricted variants of capacity
one and capacity two. These require further study, especially interesting would be
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to refine the relationship of the model with P automata, as they are very closely
related, but not as similar as one might expect at the first glance.
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Summary. We show that recogniser P systems with active membranes can be
augmented with a priority over their set of rules and any number of membrane
charges without loss of generality, as they can be simulated by standard P systems
with active membranes, in particular using only two charges. Furthermore, we
show that more general accepting conditions, such as sending out several, possibly
contradictory results and keeping only the first one, or rejecting by halting without
output, are also equivalent to the standard accepting conditions. The simulations
we propose are always without significant loss of efficiency, and thus the results of
this paper can hopefully simplify the design of algorithms for P systems with active
membranes.

1 Introduction

P systems with active membranes [10] have been extensively investigated
as computing devices, both from the computability and the computational
complexity standpoints.

By analysing the algorithms for P systems with active membranes described
in the literature, it is possible to identify a number of useful and recurring
techniques or “design patterns”. A standard one is using elementary membrane
division to produce all assignments of a set of variables x1, . . . , xn [10]; the
results of evaluating a Boolean formula under those assignments can then be
combined in several ways:

• by disjunction, allowing the solution of the SAT problem, and thus all NP-
complete problems [15];

? This work was partially supported by Fondo d’Ateneo (FA) 2015 of Università degli
Studi di Milano-Bicocca: “Complessità computazionale e applicazioni crittografiche
di modelli di calcolo bioispirati”.
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• by counting the number of satisfying assignments against a threshold,
allowing the solution of counting problems in the class PP [12];

• by alternating disjunctions and conjunctions by means of a tree-shaped
membrane structure of depth n, allowing the solution of PSPACE-complete
problems [14].

Other techniques involve simulating register machines [4] or Turing machines [2],
also in their nondeterministic version, by simulating nondeterminism with
parallelism as above for solving NP-complete problems [6]. Membranes at
different nesting levels can also be employed as “subroutines”, simulating
multiple Turing machines and becoming functionally equivalent to oracles for
subproblems [6].

While the main ideas behind those constructions are generally straightfor-
ward and show clear affinity with techniques from the theory of traditional
computing devices, their implementation unfortunately often involves a number
of technical details which obfuscate the big picture. One of the main culprits
are the ubiquitous timer objects, which keep the different parts of the P sys-
tem synchronised and allow the halting of the computation immediately after
producing the output, a condition that is usually imposed by the definition of
recogniser P systems and that often requires extra work to be met.

One of the crucial aspects of the definition of P systems with active mem-
branes is the number of possible membrane charges, which is 3 in the original
definition. Although charges are not needed to solve PSPACE-complete prob-
lems in polynomial time2 [3] and two charges suffice to achieve universality [1],
having access to a number of charges growing with the size of the input allows a
simpler implementation of many algorithms. For instance, when this is allowed,
the simulation of bounded-tape Turing machines becomes trivial [6]. In that
paper, an arbitrary number of charges was reduced to three without loss of
efficiency, but only in a very restrictive set of circumstances (essentially, no
communication with adjacent membranes is allowed, and the membrane must
behave deterministically).

The purpose of this paper is twofold. On the one hand, we want to un-
derstand which features of recogniser P systems with active membranes are
actually essential to characterise their behaviour. On the other hand, we want
to provide an array of useful extensions which can be added to P systems
with active membranes but can be simulated by the original model without
loss of efficiency. This will hopefully reduce the amount of “boilerplate code”
(repetitive rules unrelated to the main algorithm) in proofs and allow focusing
on a higher-level description of P systems, such as dividing membranes working
in parallel and their communication patterns.

The formally redundant but convenient features we describe in this paper
are the ability to use any number of charges, any partial priority ordering of
rules (as in the original definition of transition P systems [9]), and the ability
2 However notice that, in the absence of membrane dissolution rules, the lack of
charges seems to reduce the efficiency of P systems [5].
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to output the result of the computation in less restrictive ways, such as not
requiring the P system to halt after having sent out the result, or rejecting by
halting without output. Furthermore, we show that all these enhancements
can be simulated efficiently by standard recogniser P systems with active
membranes using only two charges (even when working in super-polynomial
time).

2 Basic notions

We recall the formal definition of P systems with active membranes using weak
non-elementary division rules [10, 16].

Definition 1. A P system with active membranes with weak non-elementary
division rules of initial degree d ≥ 1 is a tuple

Π = (Γ,Λ, µ, wh1
, . . . , whd

, R)

where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called
objects;

• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of Λ in
a one-to-one way;

• wh1
, . . . , whd

, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial
multisets of objects placed in the d regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another at-
tribute called electrical charge, which can be either neutral (0), positive (+) or
negative (−) and is always neutral before the beginning of the computation.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labelled by h, having charge α
and containing an occurrence of the object a; the object a is rewritten into
the multiset w (i.e., a is removed from the multiset in h and replaced by
the objects in w).

(b) Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and
such that the external region contains an occurrence of the object a; the
object a is sent into h becoming b and, simultaneously, the charge of h is
changed to β.
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(c) Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h
to the outside region becoming b and, simultaneously, the charge of h
becomes β.

(d) Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labelled by h, having charge α and
containing an occurrence of the object a; the membrane is dissolved and
its contents are left in the surrounding region unaltered, except that an
occurrence of a becomes b.

(e) Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α,
containing an occurrence of the object a but having no other membrane
inside (an elementary membrane); the membrane is divided into two
membranes having label h and charges β and γ; the object a is replaced,
respectively, by b and c, while the other objects of the multiset are replicated
in both membranes.

(f’) Weak non-elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α,
and containing an occurrence of the object a, even if it contains further
membranes; the membrane is divided into two membranes having label h
and charges β and γ; the object a is replaced, respectively, by b and c,
while the rest of the contents (including whole membrane substructures)
is replicated in both membranes.

The instantaneous configuration of a membrane consists of its label h, its
charge α, and the multiset w of objects it contains at a given time. It is
denoted by [w]αh . The (full) configuration C of a P system Π at a given time
is a rooted, unordered tree. The root is a node corresponding to the external
environment of Π, and has a single subtree corresponding to the current
membrane structure of Π. Furthermore, the root is labelled by the multiset
located in the environment, and the remaining nodes by the configurations [w]αh
of the corresponding membranes.

A computation step changes the current configuration according to the
following set of principles:

• Each object and membrane can be subject to at most one rule per step,
except for object evolution rules: inside each membrane, several evolution
rules can be applied simultaneously.

• The application of rules is maximally parallel : each object appearing on
the left-hand side of evolution, communication, dissolution or division rules
must be subject to exactly one of them (unless the current charge of the
membrane prohibits it). Analogously, each membrane can only be subject
to one communication, dissolution, or division rule (types (b)–(f’)) per
computation step; these rules will be called blocking rules in the rest of the
paper. In other words, the only objects and membranes that do not evolve
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are those associated with no rule, or only to rules that are not applicable
due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• In each computation step, all the chosen rules are applied simultaneously
(in an atomic way). However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps as follows. First, all evolution rules are applied inside the elementary
membranes, followed by all communication, dissolution and division rules
involving the membranes themselves; this process is then repeated to
the membranes containing them, and so on towards the root (outermost
membrane). In other words, the membranes evolve only after their internal
configuration has been updated. For instance, before a membrane division
occurs, all chosen object evolution rules must be applied inside it; this way,
the objects that are duplicated during the division are already the final
ones.

• The outermost membrane cannot be divided or dissolved, and any object
sent out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence ~C = (C0, . . . , Ck)
of configurations, where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable
in Ck. A non-halting computation ~C = (Ci : i ∈ N) consists of infinitely many
configurations, again starting from the initial one and generated by successive
computation steps, where the applicable rules are never exhausted.

P systems can be used as language recognisers by employing two distin-
guished objects yes and no: we assume that all computations are halting, and
that either object yes or object no (but not both) is sent out from the outermost
membrane, and only in the last computation step, in order to signal acceptance
or rejection, respectively. If all computations starting from the same initial
configuration are accepting, or all are rejecting, the P system is said to be
confluent. If this is not necessarily the case, then we have a non-confluent
P system, and the overall result is established as for nondeterministic Turing
machines: it is acceptance iff an accepting computation exists.

In order to solve decision problems (or, equivalently, decide languages),
we use families of recogniser P systems Π = {Πx : x ∈ Σ?}. Each input x is
associated with a P system Πx deciding the membership of x in a language L ⊆
Σ? by accepting or rejecting. The mapping x 7→ Πx must be efficiently
computable for inputs of any length, as discussed in detail in [7].

Definition 2. A family of P systems Π = {Πx : x ∈ Σ?} is (polynomial-
time) uniform if the mapping x 7→ Πx can be computed by two polynomial-time
deterministic Turing machines E and F as follows:

• F (1n) = Πn, where n is the length of the input x and Πn is a common
P system for all inputs of length n with a distinguished input membrane.
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• E(x) = wx, where wx is a multiset encoding the specific input x.
• Finally, Πx is simply Πn with wx added to its input membrane.

The family Π is said to be (polynomial-time) semi-uniform if there exists a
single deterministic polynomial-time Turing machine H such that H(x) = Πx

for each x ∈ Σ?.

Any explicit encoding of Πx is allowed as output of the construction, as
long as the number of membranes and objects represented by it does not
exceed the length of the whole description, and the rules are listed one by
one. This restriction is enforced in order to mimic a (hypothetical) realistic
process of construction of the P systems, where membranes and objects are
presumably placed in a constant amount during each construction step, and
require actual physical space proportional to their number; see also [7] for
further details on the encoding of P systems.

In this paper we also take advantage of rule priorities, as in the original
paper introducing P systems [9]. A priority is any partial order � of the set of
rules such that, whenever a conflict between rules arises, only those with higher
priority can be applied; as usual, when two rules are incomparable with respect
to �, any conflict is resolved via a nondeterministic choice. Furthermore, we
also allow generalised charges, that is, any set Ψ ⊇ {+, 0,−} of charges may
be used [6]. Rule priorities and generalised charges will be proved redundant
in Section 4.

3 Generalised Acceptance Conditions

In this section we propose a more flexible variant of recogniser P system, where
we do not require a single output object at the last step of the computation, or
even the halting of the P system itself. This allows the omission of a number
of technical details from membrane computing solutions, which are sometimes
unrelated to the main algorithm but are still required in order to ensure
compliance to the formal definition of recogniser P systems. We prove that
there is no loss of generality in using these variants of accepting condition, as
it can always be simulated without significant loss of efficiency by the standard
one; we show this result first for P systems with priority and generalised
charges, and in a later section for standard P systems.

Definition 3. A generalised recogniser P system Π is a P system employing
two distinguished objects yes and no and behaving in any of the three following
ways:

1. It sends out an instance of object yes from its outermost membrane before
sending out any instance of object no; it can later send out any combination
of objects yes and no, and is not required to halt.
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2. It sends out an instance of object no from its outermost membrane before
sending out any instance of object yes; it can later send out any combination
of objects yes and no, and is not required to halt.

3. It halts without sending out neither an instance of yes, nor an instance
of no.

The P system Π is said to accept in case 1, and to reject in case 2. The
behaviour of 3 can be interpreted as either accepting or rejecting, according to
a specified convention.

It is trivial to observe that a standard recogniser P system [11] is a special
case of generalised recogniser P system, always halting and sending out exactly
an instance of yes or no and only in the last computation step. Furthermore,
other acceptance conditions proposed in the literature [8] are also special
cases of generalised recogniser P systems; in particular, we have acknowledger
P systems (which accept by sending out one or more instances of yes and
reject by halting without output) and recogniser≥1 P systems (which accept
by sending out one or more instances of yes and reject by sending out one
or more instances of no). The only notable case not covered by the notion of
generalised recogniser P systems is accepting by outputting yes while rejecting
by not halting; since P systems are known to be universal [1], this acceptance
condition characterises the whole class of recursively enumerable sets.

3.1 Ensuring Output on Halting

We can now show that standard recogniser P systems with priority and
generalised charges solve exactly the same problems as generalised recogniser
P systems using the same features with polynomial slowdown. Priority and
generalised charges will then be eliminated, also without loss of efficiency, in
Section 4. We begin by reducing case 3 of Definition 3 to one of the other two
cases: case 2 if halting without output is interpreted as rejecting, or case 1 if
it is interpreted as accepting. The idea is to have a timer located inside the
outermost membrane, which is sent out as a no object if it does not receive a
signal for 2d consecutive steps, where d is the depth of the membrane structure.
This signal indicates that at least one rule was applied in the P system in
the last 2d steps, and is propagated as an object ♣ towards the outermost
membrane.

Let Π be the generalised recogniser being simulated, and let Π ′ be the
standard recogniser simulating it; both P systems have priority and generalised
charges. The initial membrane structure of Π ′ is identical to that of Π. Inside
each membrane, besides the original multiset, we place an instance of ♦ and
one of ♥; finally, the outermost membrane also contains an instance of the
timer object Td.

The rules of Π are modified in Π ′ so that their application is always
detectable; in order to do so, we always either change the charge of a membrane
where a rule was applied to a new, specific charge (for rules involving the
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membranes themselves) or produce an extra object on the right-hand side (for
object evolution rules). Assuming h ∈ Λ, α, β, γ ∈ Ψ , a, b, c ∈ Γ , and w ∈ Γ ?,
the new rules are

[a→ w]αh becomes [a→ w ♣]αh (1)

a [ ]αh → [b]βh becomes a [ ]αh → [b]β̃h

[a]αh → [ ]βh b becomes [a]αh → [ ]β̃h b

[a]αh → b remains identical

[a]αh → [b]βh [c]γh becomes [a]αh → [b]β̃h [c]γ̃h

Here the new charges of the form α̃, with α ∈ Ψ , encode the new charge of
the membrane and the information that a rule involving that membrane was
applied in the previous step. If object evolution rules were applied, then a
corresponding number of objects ♣ appear.

In membranes where no blocking rule was applied, the charge is not of the
form α̃. In that case, the following rule (which has lower priority) is applied
instead:

[♥]αh → [ ]α
′

h # for h ∈ Λ and α ∈ Ψ

The object ♥ is restored at each computation step by the following rules:

[♦ → ♦ ♥]αh for h ∈ Λ and α ∈ Ψ
[♦ → ♦ ♥]α̃h for h ∈ Λ and α ∈ Ψ

[♦ → ♦ ♥]α
′

h for h ∈ Λ and α ∈ Ψ

(Notice that these rules impede the halting of the P system, but this is allowed
by case 2 of Definition 3.)

Now each membrane has either a charge of the form α̃ or one of the form α′.
This denotes that we will now perform a signal propagation step, rather than
a step simulating rules of Π. All instances of ♣, both those just created by
applying rule (1) and those created in previous steps, are propagated one level
up (except for the outermost membrane k) and simultaneously change all
charges α̃ and α′ to plain α:

[♣]α̃h → [ ]αh ♣ for h ∈ Λ− {k} and α ∈ Ψ (2)

[♣]α
′

h → [ ]αh ♣ for h ∈ Λ− {k} and α ∈ Ψ (3)

The following rule, with priority lower than (2) and (3), create and immediately
propagate a new signal object if a rule involving the membrane was applied
and no object ♣ was already present:

[♥]α̃h → [ ]αh ♣ for h ∈ Λ− {k} and α ∈ Ψ



A Toolbox for Simpler Active Membrane Algorithms 255

If a membrane has charge α′ (no rule involving that membrane was applied in
the previous step) and there is no ♣ to propagate, then ♥ changes the charge
to α with the following rules with lower priority:

[♥]α
′

h → [ ]αh # for h ∈ Λ and α ∈ Ψ

Any extra occurrence of ♥ is always deleted by the following rules, which have
minimal priority:

[♥ → ε]αh for h ∈ Λ and α ∈ Ψ
[♥ → ε]α̃h for h ∈ Λ and α ∈ Ψ

[♥ → ε]α
′

h for h ∈ Λ and α ∈ Ψ

Any extra occurrence of ♣ is deleted only in the propagation steps by the
following rules with minimal priority (which are thus only enabled if the signal
is already propagated from the current membrane):

[♣ → ε]α̃h for h ∈ Λ and α ∈ Ψ

[♣ → ε]α
′

h for h ∈ Λ and α ∈ Ψ

The timer object Tt (with 0 ≤ t ≤ d) in the outermost membrane k counts
down in the simulation steps, when the charge of the that membrane is one of
the original ones:

[Tt → Tt−1]
α
k for α ∈ Ψ and 0 < t ≤ d

In order to reset the timer when a signal ♣ reaches the outermost membrane,
that object changes the charge, currently of the form α̃ or α′, to a new
charge α♣, whose presence denotes that the charge of the outermost membrane
of Π is α and at least one rule was applied in the last d simulated steps:

[♣]α̃k → [ ]
α♣
k # for α ∈ Ψ

All original rules related to the outermost membrane, which have a plain
charge α ∈ Ψ on the left-hand side, must be duplicated in order to maintain
the same behaviour when the left-hand charge is α♣ (the right-hand side must
remain unchanged, i.e., the subscript ♣ is removed when changing the charge
to one of the form β̃ or β′).

When the charge of the outermost membrane k has the form α♣, the
counter is reset to d:

[Tt → Td]
α♣
k for α ∈ Ψ and 0 < t ≤ d

If, however, the timer reaches 0 while the charge of the outermost membrane k
has no subscript ♣, this means that no rule of Π was simulated by the
P system Π ′ in the last d steps. We can thus assume that Π has halted, and
send out the timer as a no object:
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[T0]
α
k → [ ]α̃k no for α ∈ Ψ

If, on the other hand, halting without output is interpreted as accepting, we
send out a yes object instead:

[T0]
α
k → [ ]α̃k yes for α ∈ Ψ

If no object yes or no has been previously sent out, this no (or yes) object
becomes the result of the computation, otherwise it does not change the
previous result according to cases 1 and 2 of Definition 3.

The computation time of the P system Π ′ is as follows: if Π sends out a yes
or no object at step t, then the same object is sent out by Π ′ at step 2t− 1
(the corresponding simulation step); if, on the other hand, Π rejects by halting
after t steps without output, then Π ′ sends out a no object at time 2t− 1+2d,
i.e., the time required for simulating the t steps of Π, plus the time required
to propagate the signal from the deepest membrane and the time for a last
timer cycle, before the final output step.

Discutere dissoluzione

3.2 Ensuring Halting on Output

Having reduced case 3 to case 2 of Definition 3, we still need to ensure that
a single output object is sent out of the P system, and only in the last
computation step in cases 1 and 2, in order to prove that each generalised
recogniser can be replaced by a standard recogniser without significant loss
of efficiency. We can further ensure that the all membranes of the simulating
system have a new, distinguished charge ♠ with no associated rules in the last
configuration, denoting that the P system is halting; this technical detail will
prove useful in Section 4.

Let Π be a generalised recogniser P system which always produces output
(i.e., accept either by case 1 or 2) but not necessarily a unique output, and
that does not necessarily halt. We design a recogniser P system Π ′ satisfying
the requirements above.

The initial configuration of Π ′ is exactly the same as Π, except that each
membrane contains as many instances of the new object ♠ as the number of
its children membranes, and the outermost membrane contains an instance of
the new object Rd. The rules and the alphabet of Π ′ include all those of Π,
except as described below.

The P system Π ′ executes all rules of Π, with the same priority, except for
those sending out the result of the computation from the outermost membrane,
while simultaneously doubling the amount of ♠ contained inside each membrane
by using the following rules, which are only enabled by the original charges
of Π:

[♠ → ♠ ♠]αh for h ∈ Λ and α ∈ Ψ (4)
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Notice that these rules do not compete with the original rules of Π, since they
are object evolution rules.

When Π sends out the result object yes or no from the outermost mem-
brane k by means of a rule of the form

[a]αk → [ ]βk yes [a]αk → [ ]βk no

the P system Π ′ applies instead a rule of the form

[a]αk → [ ]yesk # [a]αk → [ ]nok # (5)

These update rules maintain the same priority as the original ones.
The final result of the computation is thus temporarily stored in the

charge of the outermost membrane, and a “junk” object is sent out instead.
Notice that, since the charges yes and no are new, the objects of the original
alphabet Γ of Π cannot apply any rule inside the outermost membrane. The
other membranes might continue computing; we now propagate the information
about having produced output towards the internal membranes in order to
stop the computation.

Notice that the number of objects ♠ has always been kept at least equal
to the number of children membranes during the computation, even when
taking membrane division into account (the membranes can at most double in
number during each step). When the charge of the outermost membrane of Π ′
becomes yes or no, the rules (4) becomes disabled for the outermost label, and
the following rules with priority lower than (4) but higher than the simulated
rules of Π become now applicable:

♠ [ ]αh → [#]♠h for h ∈ Λ and α ∈ Ψ (6)

The charge of each children membrane thus changes to ♠. Notice that the
objects ♠ in excess of the number of children membrane become inert, since all
their rules are now disabled (all reachable membranes now having charge ♠).
The new charge ♠ also disables the rules of type (4) for membrane h, enabling
those of type (6) for its children membranes. This propagates the charge ♠ to
the next level, and so on.

The P system reaches a configuration where all membranes, except the
outermost one, have charge ♠ exactly d steps after applying one of the rules
in (5). The timer Rd inside the outermost membrane k, also enabled when
rule (5) is applied, counts these d steps, using the rules

[Ri → Ri−1]
yes
k [Ri → Ri−1]

no
k for 0 < i ≤ d

When reaching zero, the object R0 is finally sent out as the result of the
computation while setting the charge of the remaining membrane to ♠:

[R0]
yes
k → [ ]♠k yes [R0]

no
k → [ ]♠k no
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Notice that Π ′ has exactly the same number of computations as Π and with
the same result; indeed, the new rules do not interfere with the simulation
of Π while this is still running, and the last phase, where all charges become ♠,
is deterministic. Furthermore, if Π sends out its first result object at time t,
then Π ′ sends out the same result and halts at time t+ d+ 1.

By combining the results of Sections 3.1 and 3.2 we obtain:

Lemma 1. Let Π be a confluent (resp., non-confluent) generalised recog-
niser P system with priority and generalised charges working in time t. Then,
there exists a standard confluent (resp., non-confluent) recogniser P system
with priority and generalised charges having the same result and working in
time O(t+ d), where d is the depth of both P systems. ut

By using a variant of the proof techniques of Section 3.1 and 3.2 it is
possible to employ even other accepting conditions. For instance, it is possible
to keep the last output object (before halting) as the result of the computation,
rather than the first one, by storing the last of the sequence of output objects
in the charge of the outermost membrane, but only outputting it when the
original P system halts. Even more generally, we can collect the sequence
of output objects and combine them by applying any computable function
(exploiting the universality of P systems).

4 Charges and Priority

We will now show how confluent P systems Π with priority and any number of
charges can be efficiently simulated by confluent P systems Π ′ without priority
and using only two charges. The idea is to give a total ordering of the set of
rules of Π compatible with its original priority, say r1 � r2 � · · · � rm; we
decompose each computation step of Π into m micro-steps, each one applying
exactly one rule in the whole system as much as possible. The computation is
thus sequential across the set of rules, but each rule ri is applied in a maximally
parallel way in all membranes involved in ri. Halting in Π ′ is triggered by the
halting of Π, assuming that each membrane of the latter system has charge ♠,
as proved possible in Section 3.2.

Notice that a linear priority does not make the P system Π deterministic,
since send-in rules choose an arbitrary membrane among a set of different
but externally indistinguishable ones having the same label (this will be the
only form of nondeterminism for Π with priority � and thus for Π ′). On the
other hand, using a total priority ordering of the rules requires, in general, the
simulated P system Π to be confluent, since only a subset of its computations
are simulated by Π ′. Non-confluent P systems Π can be simulated using our
construction if they already have a total priority ordering (in that case, the
simulating P system Π ′ is also non-confluent).

The membrane structure of Π ′ is, once again, identical to that of Π. A con-
figuration C at time t of Π is encoded as a configuration C′ at time something
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of Π ′ as follows: if C contains a membrane having configuration [w]αh , then the
corresponding membrane in C′ has configuration [w α]0h, that is, the original
charge is encoded as an object in C′. We can view this as an invariant main-
tained by the simulation for all time steps t of Π. Notice it is trivial to recover
the original configuration C from C′ (and vice versa).

Simulating each step of Π begins with an initialisation phase of four steps
of Π ′. First we rewrite the charge-object α as α′ ⊕:

[α→ α′ ⊕]0h for h ∈ Λ and α ∈ Ψ

Each membrane of Π ′ has now the configuration [w α′ ⊕]0h. The object ⊕
changes the charge of the membrane to + (it will always have this behaviour
in the rest of the paper), while α′ is rewritten into α′′ �:

[⊕]0h → [ ]+h # for h ∈ Λ
[α′ → α′′ �]0h for h ∈ Λ and α ∈ Ψ

This leads to the configuration [w α′′ �]+h . The object � changes the charge
to 0 (here and in the rest of the paper), while the objects in the original
alphabet Γ gain a prime; the object α′′ is rewritten into α′′′ •, where • is �
if rule r1 has membrane h and charge α on the left-hand side, and • is ⊕
otherwise:

[�]+h → [ ]0h # for h ∈ Λ
[a→ a′]+h for h ∈ Λ and a ∈ Γ
[α′′ → α′′′ •]+h for h ∈ Λ and α ∈ Ψ

The current configuration is thus [w′ α′′′ •]0h, where w′ is w with all objects
primed. The object • is then sent out, setting the charge of h to + (if • is ⊕)
or 0 (if • is �), while all remaining objects take a subscript 1:

[�]0h → [ ]0h # for h ∈ Λ
[α′′′ → α1]

0
h for h ∈ Λ and α ∈ Ψ

[a′ → a1]
0
h for h ∈ Λ and a ∈ Γ

This leads either to configuration [w1 α1]
0
h or [w1 α1]

+
h , depending on whether

rule r1 has the right label and charge on the left-hand side.
We now establish a second invariant: for each 1 ≤ i ≤ m, we have four

possible forms of configurations at time something:

1. [wi αi]
0
h denotes that we have already tried to apply rules r1, . . . , ri−1 in

sequence (each of them in a maximally parallel way), but no blocking rule
for h has been applied during the simulation of the current step of Π.
The membrane contains the multiset of objects wi, where each object has
subscript i, and the charge of the simulated membrane is α. Furthermore,
rule ri has label h and charge α on the left-hand side.
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2. [wi αi]
+
h is as in 1, but rule ri has either the wrong label or the wrong

charge on the left-hand side.
3. [wi αi,j ]

0
h is as in 1, but a blocking rule rj for h, for some j < i, has been

previously applied during the simulation of the current step of Π, and ri
is necessarily an object evolution rule.

4. [wi αi,j ]
+
h is as in 1, but a blocking rule rj for h, for some j < i, has been

previously applied during the simulation of the current step of Π, rule ri is
either an object evolution rule with wrong label or charge on the left-hand
side, or it is any blocking rule.

Let us consider the four types of possible configuration separately.

4.1 Configuration of the Form [wi αi]
0
h

The behaviour of the P system Π ′ when the configuration at time whatever
is [wi αi]0h depends on the type of rule ri of Π to be simulated.

Applicable Send-Out Rules

Suppose that ri is a send-out rule of Π of the form [a]αh → [ ]βh b; also suppose
that the simulated membrane h contains at least one instance of a, i.e., that
the configuration of the membrane in Π ′ is [ai vi αi]

0
h for some multiset vi.

The rule is implemented by first sending out an object ai as b̃i; the tilde here
denotes that that instance of object bi has already been subject to a rule during
this simulated step of Π. The charge of the membrane is also changed to +
in order to signal that rule ri was actually applied (i.e., that the membrane
contained at least one instance of ai):

[ai]
0
h → [ ]+h b̃i (7)

At the same time, the object αi is primed:

[αi → α′i]
0
h

The configuration of the membrane is now [ui α
′
i]
+
h , where ui is vi with any

extra objects received from children membranes3, and the object b̃i is now
managed by the outer membrane. When the membrane becomes positive, each
original object of Γ (possibly in a tilded version) gains a prime, while α′i
becomes α′′i,i, storing in its second subscript the index i of the blocking rule
that has actually been applied:
3 This is not actually possible with standard P systems, since the children of a
membrane always have a different label, and thus cannot apply any rule while ri is
being applied. However, we will prove later that we can replace labels by charges;
therefore, we will consider this case anyway.
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[ci → c′i]
+
h for c ∈ Γ

[c̃i → c̃′i]
+
h for c ∈ Γ

[α′i → α′′i,i]
+
h (8)

This leads us to the configuration [u′i α
′′
i,i]

+
h , where u

′
i is ui with all objects

primed. The object α′′i,i is now rewritten as follows:

[α′′i,i → α′′′i,i �]+h

The configuration is now [u′i α
′′′
i,i �]

+
h . The object � sets the charge to 0:

[�]+h → [ ]0h #

while α′′′i,i produces •, where • is � if rule ri+1 is an evolution rule with
label h and charge α (i.e., ri+1 is potentially applicable), and • is ⊕ otherwise
(i.e., ri+1 is not applicable due to the label, the charge, or the membrane h
having already been used):

[α′′′i,i → α′′′′i,i •]+h

The configuration is thus [u′i α′′′′i,i •]0h. In the last step, we need to increase the
rule counter i to i+1, remove all primes, and update the charge of h according
to •:

[α′′′i,i → αi+1,i]
0
h

[c′i → ci+1]
0
h for c ∈ Γ

[c̃′i → c̃i+1]
0
h for c ∈ Γ

[�]0h → [ ]0h #

[⊕]0h → [ ]+h #

We have thus reached the configuration [ui+1 αi+1,i]
0
h or [ui+1 αi+1,i]

+
h after 5

steps of Π ′, thus restoring the invariant.

Applicable Send-In Rules

If ri is a send-in rule a [ ]αh → [b]βh and the outer membrane contains an instance
of object a that is actually assigned to this rule for the current membrane,
the computation proceeds exactly as for applicable send-out rules, in 5 steps,
except that rule (7) is replaced by the symmetrical rule

ai [ ]
0
h → [̃bi]

+
h
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Applicable Division Rules

If ri is a weak (elementary or non-elementary) division rule [a]αh → [b]βh [c]γh
and membrane h contains an instance of a, then the computation evolves
again as for applicable send-out rules, in 5 steps, with the following variations.
Rule (7) is replaced by the send-out rule

[ai]
0
h → [ ]+h #

This rule sets the charge to +, thus signalling that the rule is actually being
applied. This fact is recorded by the object α′i using rule (8); the actual
division does not happen immediately, but is delayed until the end of the
iteration across all rules. The reason for this delay is to comply with the usual
semantics of P systems, where internal membranes logically evolve before
external ones: if division happened immediately, the internal membranes may
evolve differently in the two copies of the membrane, due to the nondeterminism
possibly introduced by send-in rules.

Applicable Dissolution Rules

A dissolution rule ri = [a]αh → b is simulated in 5 steps as a send-out rule
followed by a delayed dissolution; this is recorded, as for division rules, in the
second subscript of the object α′′i,i. The actual dissolution is delayed because
further object evolution rules might be applicable.

Object Evolution Rules

An object evolution rule ri = [a→ x]αh , with x ∈ Γ ?, is simulated in a slightly
different way than blocking rules: since they are applied in parallel to all
objects a contained in h, this rule cannot change the charge of the membrane
to signal its application. The object αi must thus evolve without knowing if
and to how many objects the rule ri is being applied.

In the first step the actual evolution occurs:

[ai → x̃i]
0
h (9)

[αi → α′i]
0
h

where x̃i is x with all objects tilded and subscripted by i. This leads to the
configuration [vi α

′
i]
0
h, where vi is the multiset wi updated according to rule (9).

In the second step the following rule is applied:

[α′i → α′′i ⊕]0h

leading to configuration [vi α
′′
i ⊕]0h. The charge is then set to +:

[⊕]0h → [ ]+h #

[α′′i → α′′′i �]0h



A Toolbox for Simpler Active Membrane Algorithms 263

leading to [vi α
′′′
i �]

+
h . The objects in Γ and their tilded versions are now

primed, while the charge becomes 0:

[ci → c′i]
+
h for c ∈ Γ

[c̃i → c̃i
′]+h for c ∈ Γ

[�]+h → [ ]0h #

[α′′′i → α′′′′i •]+h

where • works as described above. This leads to the configuration [v′i α
′′′′
i •]0h.

The last step is as for applicable send-out rules, and leads to [vi+1 αi+1]
0
h

or [vi+1 αi+1]
+
h depending on ri+1.

Non-Applicable Blocking Rules

If ri is a blocking rule with label h and charge α, but the object on the
left-hand side of the rule is missing, we reach the configuration [vi α

′
i]
0
h after

one step, where vi is wi except for any objects coming from or sent in children
membranes. The object α′i detects that rule ri was not applied by observing
the neutral charge of the membrane. The membrane can then evolve as for
object evolution rules, leading to configuration [vi+1 αi+1]

0
h or [vi+1 αi+1]

+
h

(depending on ri+1) in 5 computation steps.

4.2 Configuration of the Form [wi αi]
+
h

If the P system reaches configuration [wi αi]
+
h , then rule ri is not applica-

ble either because it involves a label different from h, or a charge different
from α on the left-hand side. In that case, the P system must reach config-
uration [vi+1 αi+1]

0
h (or [vi+1 αi+1]

+
h if ri+1 has the wrong label or charge),

where v is w except for any object coming from or sent in children membranes,
after exactly 5 steps, in order to keep all membranes synchronised. In this par-
ticular configuration, unlike the previous one, the objects of Γ and their tilded
counterparts have their subscript incremented without first being primed.

First the object αi waits for two steps, and then produces a �; the object αi
is also tilded to record the fact that rule ri is not being applied at this time:

[αi → α̃′i]
+
h [α̃′i → α̃′′i ]

+
h [α̃′′i → α̃′′′i �]+h

While the charge is set to 0, the object • (which is either � or ⊕ according to
the label and charge of ri+1) is produced:

[�]+h → [ ]0h # [α̃′′′i → α̃′′′′i •]+h

Finally, all subscripts are incremented:
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[α̃′′′′i → αi+1]
0
h

[ci → ci+1]
0
h for c ∈ Γ

[c̃i → c̃i+1]
0
h for c ∈ Γ

This leads to the configuration for rule ri+1.
Notice that the fact that the objects in Γ (both in plain and tilded versions)

are not primed in this simulated micro-step allows them to be sent into a
children membrane if rule ri requires so.

4.3 Configuration of the Form [wi αi,j]
0
h

If the configuration has the form [wi αi,j ]
0
h, then a blocking rule rj , with j < i,

has already been applied to that membrane, and ri is thus necessarily an object
evolution rule with label h and charge α. The computation then proceeds as for
object evolution rules in Section 4.1, except that the second subscript j of αi,j
is also preserved, thus reaching configuration [vi+1 αi+1,j ]

0
h (or [vi+1 αi+1,j ]

+
h )

after 5 steps, where v is w updated according to ri and any object coming
from or sent in children membranes.

4.4 Configuration of the Form [wi αi,j]
+
h

If the configuration has the form [wi αi,j ]
+
h , then a blocking rule rj , with j < i,

has already been applied to that membrane, and ri either has the wrong label
or charge, or it is another blocking rule (and thus it is not applicable). In
this case, the computation proceeds as in Section 4.2, except that the second
subscript j of αi,j is preserved.

4.5 Concluding the Simulation of One Step

After having simulated all rules r1 � r1 � · · · � rm in priority order, the
subscripts of the objects inside each membrane will reach the value m + 1.
Suppose that all membranes have been set to neutral at that time (as if
the non-existing rule rm+1 were always applicable). In order to restore the
outer invariant of Section 4, we need to remove the subscripts and the tildes,
update the objects representing the charges, and completing the application
of dissolution and division rules.

The objects in Γ and their tilded counterparts can be immediately rewritten
into their final form:

[cm+1 → c]0h for h ∈ Λ and c ∈ Γ
[c̃m+1 → c]0h for h ∈ Λ and c ∈ Γ

If a dissolution rule rj involving the membrane being simulated was applied
during this simulated step, the actual dissolution can now take place (recall
that the object b on the right-hand side of the rule has already been sent out):
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[αm+1,j ]
0
h → #

If a weak (elementary or non-elementary) division rule rj involving membrane h
was applied, then we can first perform the actual division:

[αm+1,j ]
0
h → [α′m+1,j ]

0
h [α′′m+1,j ]

0
h

and then update the simulated charges and create the right-hand side objects
in the two copies of h:

[α′m+1,j → β b]0h [α′′m+1,j → γ c]0h

If a blocking rule rj of the remaining types (send-in or send-out) was applied
to the membrane, then we just need to update the charge object to β, the
right-hand side charge of rj ; however, this must take two steps to maintain
synchronisation with membranes where division was applied:

[αm+1,j → α′m+1,j ]
0
h [α′m+1,j → β]0h

Finally, if no blocking rule was applied in membrane h, then we must keep the
same charge as in the previous step of Π; once again, this must take two steps
to maintain all membranes synchronised:

[αm+1 → α′m+1]
0
h [α′m+1 → α]0h for h ∈ Λ, α ∈ Ψ

The new configuration of Π ′ then corresponds to a reachable configuration
of Π according to the encoding described above.

4.6 Halting and Output

In the simulation of this section, detecting whether a membrane of Π has
stopped computing paradoxically requires us to iterate across all rules, thus
preventing the simulating P system Π ′ to halt. However, according to the
results of Section 3, we can always assume the simulated P system Π to be
a standard recogniser, and that all membranes assume charge ♠ when they
stop computing. Thus, we simulate each membrane as described above until it
assumes the charge ♠. When this happens, the simulating membrane contains
the object ♠; however, by construction the children of this membrane, if any,
have not yet assumed the charge ♠, as this will propagate there by send-in
in the next computation step. Hence, when a simulated membrane reaches
charge ♠, we must perform a last iteration across the rules of Π in order to
simulate those send-in rules, and then the simulating membrane can finally
halt. This last iteration is needed in order to update the subscripts of the
objects ci (with c ∈ Γ ). Another small modification to be made involves
sending out the yes or no object: in Π, the corresponding rules do not generally
have the lowest priority, and thus the actual sending out of the result object
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must be delayed in order to be the last action performed by the simulating
P system Π ′.

Halting the simulation of a membrane can thus be performed by simply
deleting the object ♠m+1 obtained after the last iteration across the rules:

[♠m+1 → ε]0h for h ∈ Λ (10)

The outputting of yes or no by Π ′ at the last step can be achieved by replacing
any outermost membrane output rules rj of the forms

[a]αk → [ ]βk yes [a]αk → [ ]βk no

of Π by a rule of the form

[a]αk → [ ]βk # [a]αk → [ ]βk #

During the subscript-deleting phase of Section 4.5 we can perform the actual
output by using one of the following rules:

[αm+1,j ]
0
k → [ ]0k yes [αm+1,j ]

0
k → [ ]0k no (11)

Since, by hypothesis, the rest of the P system Π has already halted, the
simulation of Π ′ in the worst case completes the last iteration across the rules
of Π for the innermost membranes by applying a rule of type (10) exactly
when an output rule (11) is applied. The P system Π ′ halts immediately after.

4.7 Main Result

The only remaining detail to consider is the amount of resources needed in
order to perform the simulations described in this section and in Section 3. It
suffices to observe that all rules of the final P system are obtained by repeating
simple patterns with parameters ranging over sets of polynomial size with
respect to the description of the simulated P system (e.g., the set of rules of
the original P system, its set of labels, the set of integers up to the membrane
nesting dept, . . . ).

For example, the rules of type (6) can be output by using two nested loops
as follows:

for h ∈ Λ do
for α ∈ Ψ do

output “♠ [ ]αh → [#]♠h ”
end

end

The construction of Π ′ can thus be performed in polynomial time. This leads
immediately to our main result:
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Theorem 1. Let Π be a generalised confluent recogniser P system using pri-
ority and generalised charges working in time t. Then, there exists a standard
confluent recogniser P system Π ′ without priority and using only two charges
having the same result as Π and working in time O(r× (d+ t)), where r is the
number of rules of Π and d its depth. Furthermore, the mapping Π 7→ Π ′ can
be computed in polynomial time with respect to the length of the description
of Π. ut

4.8 A Note on Rule Types

The construction used to prove Theorem 1 necessarily requires evolution, send-
in and send-out rules. Any other type of rule (dissolution, elementary and weak
non-elementary division) is only necessary if the original P system Π being
simulated employs it. This construction might, in principle, be extended in
order to simulate other kinds of rules, provided that the simulating P system Π ′

is also allowed to use them. The technical details are, however, necessarily
dependent on the specific type of rule.

5 Conclusions

The results of this paper show that the number of charges (as long as it is at
least two) and the exact accepting conditions of recogniser P systems with
active membranes are immaterial, and can always be reduced to two charges
and to the standard definition of recogniser without loss of efficiency. This
allows us to use as many charges as are convenient for the solution of the
current problem, to employ more relaxed halting conditions, and even to add a
rule priority. Hopefully, these tools will yield algorithms having less irrelevant
technical details and a better focus on the novel techniques and ideas employed.

We conjecture that results analogous to those presented in this paper may
also be proved for other classes of P systems, therefore further simplifying
membrane computing algorithms. For instance, it would be interesting to
explore which features (such as charges, rule priorities and accepting conditions)
may be added to tissue P systems [13] without changing their computing power
or efficiency.
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Summary. In this work, we present the building of two well-known membrane com-
puters (squares generator and divisor test). Although they are very basic machines they
present problems common to every P system (competition, parallel execution of rules,
membrane dissolution, etc.) that have to be solved in order to get real emulations for
them. The presented designs mimic the systems operation in a realistic way, by achieving
both maximum parallelism and non-determinism, and demonstrating for the first time
that a membrane computer can actually be built in silico. Our architectures fully emu-
late the membranes behaviour yielding to a performance of one transition per clock cycle,
supposing a real physical realization of the mentioned machines.

Key words: membrane computing, P system, digital circuit design, parallel computing,
reconfigurable hardware, FPGA.

1 Introduction

Membrane computing was introduced in 2000 by Gheorghe Păun [12]. This topic
is based on living cells and the first models are defined as an hierarchical structure
of compartments (membranes), which contains objects (chemicals), which evolve
according to applicability rules (chemical reactions). However, membrane com-
puting has a very important problem: implementation. This kind of computing
is extremely powerful but is a machine-oriented solution so current efforts in this
way have been focused on improve the simulation of such system on both software
and hardware platforms.

Several works exist on membrane computing from the hardware point of view.
All of them have been focused on FPGA designing, trying to mimic the internal
structure of P systems, in one way or another, into an electronic device.

Firstly, in [13], authors present a development in which the membranes of the
system evolve in a parallel way although, internally, rules in each membrane are
executed sequentially. Also, the general functioning of the system is deterministic:
rules are applied by following a pre-established order.
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Secondly, in [1], after some works on this topic [5, 6], authors achieve an archi-
tecture based on grouping rules into macro-rules and generating a new power set of
macro-rules (each macro-rule is conformed by one or more of the original rules). In
this way, they calculate this power set by including all the possible combinations
of the original rules and, following a non-deterministic process, the architecture
chooses one macro-rule and apply it in a maximal way. This process continues se-
quentially until none macro-rule can be applied. So, they achieve a certain degree
of parallelism between the execution of the original rules.

Thirdly, in [10, 11], after a considerable amount of works [7, 8, 9], authors finally
present two architectures that simulate P systems: the first one is focused on rules
and the second one is focused on membranes. This second architecture mimics
very well the structure of P systems but it suffers from important limitations: it
allows systems in which competing rules (rules that consume the same objects)
are prioritized what yields to deterministic systems only. Also, object selection is
done sequentially so parallelism is set aside in this way.

Fourthly, in [15, 14], a very important advance on the topic is presented. These
works cover the emulation of P systems on reconfigurable hardware, observing
both parallelism (in terms of competing rules and object selection) and non-
determinism. Authors present a development capable of automatically generate
the hardware equivalent to a given P system that can compute each of its transi-
tions in constant time (5 clock cycles). The problem with this approach is that the
architecture supports min1 transition mode only (rules can be applied one time
maximum [3]).

In conclusion, although several authors have performed relevant efforts on the
topic of electronic realization of P systems, until now, nobody has achieved an
structure that mimics the fully parallel and non-deterministic behaviour of such
machines.

Exactly in this aspect, our current work tries to contribute something relevant.
We have adopted a very different point of view: membrane computing is a machine-
oriented computational model so we think it is impossible to design a machine (or
architecture) that solves all the problems. In the same way that we need to develop
new algorithms to solve new problems in an algorithm-oriented computational
model, we think it is necessary to design a new specific machine for each P system
when needed. At least, while being important to observe the inherent features of
this kind of systems: i.e. non-determinism and maximal parallelism. So, following
this idea, we have started our work by trying to build the very first membrane
computers we all know (Fig. 1 and Fig. 2: the ones presented in the foundational
paper [12]).

The rest of the paper is organized as follows: in Sect. 2, we explain in detail the
developed architectures and the designs employed to exactly emulate maximum
parallelism and non-determinism of the chosen P systems, in Sect. 3, we present
the operation results obtained by the built emulators, and finally in Sec. 4, we
finish with the main conclusion of this work.
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Fig. 1. Computer 1: n2 generator (n >= 1).

Fig. 2. Computer 2: Divisor test (Does k divide n?).
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2 Design

With the exposed idea, we have developed architectures for the both mentioned
P systems. However, there are common aspects that are interesting to be exposed
firstly.

The main problem in the implementation of P systems is the application of
rules, moreover when they are competing for common objects. So, the basic struc-
ture we have employed is shown in Fig. 3. It does not represent a rule corresponding
to any of the chosen systems but illustrates how we have oriented the design of
rules. In this figure, a very simple rule is shown: the REG block stores the amount
of available f objects while the Logic block (associated to rule r1) calculates how
many times the rule has to be applied in order to consume all f objects. Finally,
there is a feedback operation in which the object amount is adjusted according to
rule applications. This construct allows the execution of the rule multiple times
in a single clock cycle. From this basic case, we are going to show how we have
addressed with competition in the chosen P systems.

r1 : f → ff

Fig. 3. Basic structure emulating object and rule.

Competition in Computer 1 (Fig. 1) comes from the two first rules in mem-
brane 3. They consume a same object a. In this case, object a maintains its amount
until the second rule is triggered (then membrane 3 is dissolved). So, in this sys-
tem, we have included a random number generator (based on an maximum-length
Galois linear-feedback shift register, LFSR [2, 4]) that ensures all possible execu-
tions are performed in a non-deterministic way. The LFSR determines the cycle
in which the second rule is applied. Note that, being a maximum-length LFSR,
it allows the system to go through all the possible executions without repeating
anyone. The hardware structure corresponding to these rules is shown in Fig. 4.

Competition in Computer 2 (Fig. 2) comes from the two first rules in mem-
brane 2. They consume a same object a and an specific object (c or c′ in each
case). In this membrane, it is necessary to distribute object a randomly between
the two rules, also taking into account the amount of objects c and c′ available in
the system. The hardware employed to mimic this behaviour is presented in Fig. 5
and it is based on the following algorithm:
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r1 : a→ ab′

r2 : a→ b′δ

Fig. 4. Structure resolving competition case in Computer 1.

r1 : ac→ c′

r2 : ac′ → c

Fig. 5. Structure resolving competition case in Computer 2.

1. Randomly let:
a = a1 + a2

2. Let:
λ1 = max{0; a1 − c}, λ2 = max{0; a2 − c′}
τ1 = min{c; a1 + λ2}, τ2 = min{c′; a2 + λ1}

3. Apply r1 × τ1 times and r2 × τ2 times.

It is important to denote that the algorithm describes only the idea under the
design but the hardware structure calculates τ1 and τ2 in a combinational way (i.e.
in a single clock cycle).
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The rest of rules on both machines have been designed following the structure
described in Fig. 3. They do not imply competition so they can be constructed in
a direct way.

Finally, the machines interfaces are shown in Fig. 6 and 7. In the case of
Computer 1, the Reset signal launch a new system computation (performing one
transition per Clock cycle). The Master Reset and Seed inputs are employed at
first only in order to initialize the LFSR by the user (the seed is obtained from the
time past since the circuit was powered on; by using a 50 MHz counter). Then,
the machine works continuously generating, in a non-deterministic way, all the
squares existing in its computing range. Each time a square is produced, its value
is presented through the Answer output bus and the Data Valid signal is activated
(yielding to a new Reset and a new execution).

In the case of Computer 2, the Clock, Reset, Master Reset, and Seed signals
work in a similar way to Computer 1. Also, Number n and Number k pass to the
system the test inputs. Once the numbers have been tested, Data Valid is activated
and the Answer signal indicates True or False as a response.

Fig. 6. Computer 1 interface.

Fig. 7. Computer 2 interface.
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3 Results

Both machines have been tested in both software and hardware ways. On the one
hand, the software testing has been performed with Xilinx ISE v11.4. In Fig. 8
we present an operation detail of Computer 2 having k = 21 and n = 63. The
machine starts having 63 a objects and 21 c objects inside membrane 2. In the
first transition, rule r1 is applied 21 times, giving us a new configuration without
c objects and 42 a objects and 21 c′ objects. In the second transition, rule r2 is
applied 21 times, giving us a new configuration without c′ objects and 21 a objects
and 21 c objects. In the third transition, rule r1 is applied 21 times (again), giving
us a new configuration without a and c objects and 21 c′ objects. In the fourth
transition neither rules r1 nor r2 can be applied, so membrane 2 is dissolved (rule
r3), giving us a new configuration with 21 c′ objects and 1 d object inside mem-
brane 3. Finally, rule r4 can not be applied because the lack of c objects inside
the membrane, so system is halted. At this moment, DV (data valid) signal acti-
vates and the Answer output indicates True (k divides n). As we have mentioned
previously, each transition is processed in a single clock cycle.

Fig. 8. Simulation detail of Computer 2 testing if k = 21 divides n = 63.

On the other hand, the machines have been tested on hardware by program-
ming them into both Digilent Basys 2 training boards equipped with Spartan
3E-1200 FPGAs.

Operation of Computer 1 board (Fig. 9) is started by pressing the Master Re-
set button what feeds a random seed to the LFSR (also lightning on the Master
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Reset indicator). Then, the machine starts computing executions of the P system,
yielding the calculated answers to the 4-digit 7-segment display. These executions
are carried out in a non-deterministic order but they cover all the possible combi-
nations and generate all squares existing between 12 and 632. Once all squares are
shown, the machine halts and the Finish indicator is lighted on. For demonstration
purposes only, the board clock frequency has been reduced to a human-visible one
(ca. 25 Hz) and can be observed through the Clock indicator.

Fig. 9. Computer 1 training board emulator: Clock indicator (LD7), Finish indicator
(LD6), Master Reset indicator (LD0), Answer (7-segment display), and Master Reset
button (BTN0).

In a similar way, operation of Computer 2 board (Fig. 10) is also started by
pressing the Master Reset button what feeds a random seed to the LFSRs present
in the circuit. Then, the machine starts computing executions of the P system (each
time a execution finishes the Data Valid indicator is lighted on). The executions
are fed with random inputs and the machine shows them continuously on the 7-
segment display (Numbers n and k). In order to facilitate humans to understand
results, the board pauses execution when the division test is successful during
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enough time to read the display. Also for demonstration purposes only, the board
clock frequency has been reduced to a human-visible one (ca. 25 Hz) and can be
observed through the Clock indicator.

Fig. 10. Computer 2 training board emulator: Clock indicator (LD07), Data Valid in-
dicator (LD1), Master Reset indicator (LD0), Number n (first two digits of 7-segment
display), Number k (last two digits of 7-segment display), and Master Reset button
(BTN0).

The hardware details are presented in Table 1 and the device utilization is
shown for both cases in Table 2 and Table 3 respectively. As we can observe, both
computers consume a small portion of the available resources showing themselves
as a very efficient design also in terms of hardware needs. Also, it is noticeable
that register width has an important impact on resource utilization: 64-bit in the
case of Computer 1 what yields to a maximum amount of ca. 1019 objects of each
type (register values are of signed type). These register widths has been chosen
according to the 4-digit displays available on the training boards.
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Computer 1 Computer 2

Target Device xc3s1200e-4fg320
Clock Frequency 50 MHz
Performance 50 Mtransition/s
Register Width 64-bit 16-bit

Table 1. Hardware details.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 625 17344 3%
Number of 4 input LUTs 2434 17344 14%
Number of occupied Slices 1345 8672 15%
- Number of Slices containing only related logic 1345 1345 100%
- Number of Slices containing unrelated logic 0 1345 0%
Total Number of 4 input LUTs 2479 17344 14%
- Number used as logic 2434
- Number used as route-thru 45
Number of bonded IOBs 18 250 7%
- IOB Flip Flops 2
Number of BUFGMUXs 2 24 8%
Number of MULT18X18SIOs 10 28 35%
Average Fanout of Non-Clock Nets 2.27

Table 2. Device utilization for Computer 1.

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 269 17344 1%
Number of 4 input LUTs 842 17344 4%
Number of occupied Slices 503 8672 5%
- Number of Slices containing only related logic 503 503 100%
- Number of Slices containing unrelated logic 0 503 0%
Total Number of 4 input LUTs 958 17344 5%
- Number used as logic 842
- Number used as route-thru 116
Number of bonded IOBs 19 250 7%
- IOB Flip Flops 1
Number of BUFGMUXs 2 24 8%
Number of MULT18X18SIOs 4 28 14%
Average Fanout of Non-Clock Nets 3.25

Table 3. Device utilization for Computer 2.
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4 Conclusion

In this work, we have shown that it is possible to fully emulate a P system without
loosing its intrinsic features of maximal parallelism and non-determinism. With
that aim, machines presented in the foundational paper of the discipline (square
generator and divisor test) have been built. Our designs mimic the internal struc-
ture of the P systems allowing the resulting hardware to perform as the theoretical
system should: processing one transition per clock cycle. The systems evolve in a
non-deterministic way and rules are applied in a maximal parallel derivation mode;
what, to the best of our knowledge, supposes the first real emulation of a P system
in-silico.
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Three weeks ago we, a group of students from the University of Barcelona, were
given the possibility of going to Seville, in order to attend a Workshop on Mem-
brane Computing. The seven of us that went to the Workshop are all physics stu-
dents and until the day we received the mail making us aware of that event, I had
never heard about Membrane Computing, so I was kind of surprised the first time
I read about it. In the university we have learned how to program with Python
and Fortran. It was mostly on how to deal with physics problems, and how to
find a solution using numerical methods. But what we saw when we arrived there
was completely different, it was like entering another world of computation. While
dealing with physics we are always reminded of how important is to keep in mind
the physical part of the problem (i.e. how a given system is supposed to react
when a field is applied, or if the result makes sense with what we can see in the
reality), when programming with that new computational way you try to think
how to model things but once you get it, you abstract (somehow) from reality and
work with maths, or that is what I understood the first days. It was really difficult,
specially at the beginning, as I was completely lost and maybe it could have been
a better idea to have been previously informed about what the talks were about,
or even to have an idea of what Membrane Computing meant.

During the days I spent there I got to know that this picturesque way of com-
puting is based on a system analogous to how alive cells behave or how elements in
these ones evolve, using P-Systems (a computational model based on the structure
of living cells that permits to perform calculations). Indeed, the inspiration came
from how processes take place in cells. This new computing paradigm makes use
of the structure of the cells, working with their different membranes and even with
the environment. But it is not only something involving one cell, they also work
with multiple ones, and so there are different models on which they can work. The
most usual one is the cell-like system, which is the one I have already talked about.
There are also other kinds of models, such as tissue-like or neural-like systems; the
first ones are typically used to represent interaction between cells, or better said to
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implement exchanges of elements between cells. The second one is used to analyse
the behaviour of neurons, and tries to represent synapsis’ process.

To work with all that stuff, a new language is needed, and so P-lingua takes
action. P-lingua is a programming language to define P-Systems and it is highly
used, as it is a language close to scientific notation, as well as from my point of
view really visual of what it is going on. While we were attending the talks, we
were invited to participate by doing a small project where we could use what we
were learning, so our first idea was how could we use it in our own field, physics.
We decided to reproduce two physical situations in order to see the process: the
final result as well as their intermediate stages. These two projects were about:
i) the Stern-Gerlach experiment, by modifying it a bit and ii) the Uranium-238
Decay Chain. At the beginning of our project, we tried to program a small code
to get a bit used to the language, and I was truly surprised when I saw that it was
not that weird to write it, and that by following one example one could understand
almost perfectly what we were expressing. Nevertheless, I am aware that I only
got a small view of how it works and that, for sure, it turns more difficult when
you keep on programing more advanced things.

However, even though it was not easy to understand most of the parts of the
talks, people was extremely nice with us. One of my biggest fears was to break
the dynamic of the event, as we could probably slow down the pace of it with
our low level, but it surprised me a lot when everyone was inviting us to make as
many questions as we wanted. Of course I did not want to disturb the pace of the
event, but sometimes it was almost impossible to follow explanations, although I
consider I learned a lot during that week, so to say, we got a slight insight on the
general topic, but nothing really deep.

Most of the conferences were interesting as it was another way of thinking, one
which we are not so used to. Nevertheless, there was one that made me think of
other fields and possible further applications. It was about the concept of Eco-P
colonies. It is based on systems of only one membrane and in each of them we
can find the objects that we want to study or see the final product of evolution.
In Eco-P colonies, these objects do interact with a shared environment and this
was the main point of the talk, titled P Colonies with Dynamic Environment. In
order to evolve, the objects inside the membrane interact with the environment by
some rules, specially rewriting and communication ones. The first ones basically
transform the object into another one, or even into multiple objects. They are also
called evolution rules and are basically applied inside the same membrane/entity
(or even called agent), whereas the second kind of rules are based in an exchange
between objects inside the membrane and objects outside it (environmental ob-
jects, usually symbolized by e). To sum up, Eco-P colonies would be a way to
show mechanisms of generation and consumption from the environment. The sys-
tem halts when no more rules can be applied to the objects, or no more exchange
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between the agents and the environment can be done.

In fact, before the talk began, Petr Sośık, who gave the conference, showed
us a video where we could see some bacterias multiplying, and we could see how
the growth was really fast. This reminded me of a conference we were given some
months ago, about cancer cells and which are their mechanisms to propagate can-
cer. I was wondering, when I heard about Eco-P colonies and their rules, if they
could have some applications to Medicine, by adapting some of their rules to how
cancer cells behave, or even in other cases. In fact, Membrane Computing mod-
elizes non-deterministic processes, so somehow we could be able to implement the
probabilities of a possible mutation (that produces the beginning of the disease).

Another thing that surprised me was the characteristic of maximal parallelism
when working with P-systems. At what we are used to, we have an order, so the
first written commands are the first to be displayed, whereas in maximal paral-
lelism, more than one rule can be executed at the same time. Indeed, it is based
in the fact that the maximum number of rules that can be applied in each step,
are applied, maximizing the number of processes that can be done at one time.

To sum up, this experience has been really advantageous. First of all because
I still do not know which is the field that interests me the most, but I have seen
that computation keeps attracting me, and now even more than ever. Secondly,
going there has made me realize of how vast this area can be and that it does
not only reduce to solve some problems by numerical approximations but they are
also a useful tool to visualize some difficult experiments or processes. And to end
up with, it was a kind of personal growth, where we got to work together as a
team and got the chance to talk with great people that taught us about science in
general and more about research.
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Summary. A series of open problems and research topics are formulated, about numer-
ical and spiking neural P systems, initially prepared as a working material for a three
months research stage of the second and the third co-author in Curtea de Argeş, Roma-
nia, in the fall of 2015. Further problems were added during this period, while certain
problems were addressed in this time; some details and references are provided for such
cases.

1 Introduction

In membrane computing there are numerous open problems and research top-
ics in circulation, many of them also collected in systematic lists, compiled,
for instance, for the yearly Brainstorming Week on Membrane Computing, see
http://ppage.psystems.eu and www.gcn.us.es. Because the present list had
initially a working material character, we do not provide here complete references.
Furthermore, as the reader is supposed to be a researcher in membrane computing,
we do not give basic definitions either (but we give details for the new classes of
P systems considered). As a general reference we refer to the Handbook [8].

The list deals only with numerical P systems (in short, NP systems, [7]) and
spiking neural P systems (in short, SNP systems, [3]). Some problems are more
specific, many others are just general ideas, so that the first step in approaching
them implies a formal definition (possibly, of new classes of NP or SNP systems).
We recall some details from several papers written in Curtea de Argeş during the
mentioned period of time.
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2 Bridging NP and SNP

The two “exotic” classes of P systems (their “biochemistry” is not very closely
related to the biological one) have many common and, also, many different char-
acteristics. Of the first type is the fact that both of them process numbers and a
specific “production” of a cell is distributed among neighboring cells. Thus, it is
just natural to check whether features of one class can be extended to the other
class, and conversely. This proves to be a very fruitful idea.

Here are a few more precise suggestions of this kind.

A. NP with SNP features. Three main ingredients of SNP systems can be
exported also to NP systems: the tissue-like arrangement of membranes, the regular
expressions which control the application of spiking rules, and the replication of the
production to all the adjacent cells. However, further features can be considered –
only a few suggested below, so this is already a general research issue.

B. Passing from the cell-like membrane structure of usual NP systems to tissue-
like NP systems is just an extension which will also extend all computing power
results and computational complexity properties. As the distribution of the produc-
tion of a compartment is done with a precise identification of the target variables, a
simple (real-time?) mutual simulation between cell-like and tissue-like NP systems
is expected.

C. What about using, in the tissue-like NP systems, weights on “synapses”
instead of repartition coefficients? The simulation of NP systems with weights by
systems with repartition coefficients and conversely is a natural research topic.
What about using both repartition coefficients and weights on “synapses”? (This
might also have economic interpretations, thus bringing the model closer to the
initial motivation, the economics.)

D. Associating a regular expression with each evolution program seems to be a
non-trivial extension of the enzymatic control from [6]. (Note that we can compare
the values of two variables, even in terms of regular expressions, in the following
way: (x1x2)∗x∗2 can be interpreted as x2(t) ≥ x1(t), meaning that the value of x2
at time t is greater than or equal to the value of x1 at time t.) In what cases can
this intuition be confirmed? A good candidate is the descriptional complexity of
various NP systems, for instance, constructed for controlling robots.

E. While considering a regular expression looks like adding computing power,
distributing the production of a cell to all neighboring variables, replicated, on the
one hand, increases the total values of variables in the system, on the other hand,
removes the control possibilities provided by the repartition coefficients. Which
is the power (and the efficiency) of NP systems with such a repartition protocol
remains to be checked.

F. Directly related to the previous idea is the following problem: what about
NP systems with an “egalitarian” repartition, i.e., with all distribution coefficients
equal in each evolution program/in each compartment/in the whole system? A
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particular case is that of considering all distribution coefficients equal to 1. Are
such restricted NP systems still universal?

G. Continuing with the restrictions, what about considering NP systems with
only k ≥ 1 variables in the distribution protocols? Is any difference in power
between NP systems with k variables and those with k + 1 variables, for various
values of k? (It is expected that k = 1 is, indeed, a special case.) What about
NP systems with both egalitarian distribution and at most k variables in each
distribution protocol?

H. SNP with NP features. This is the “reverse” of problem A, again with
(at least) three basic directions: considering SNP systems with a cell-like membrane
structure, using a production function instead of spiking rules, and considering a
distribution protocol for communicating the produced spikes. What else, it remains
to imagine.

I. SNP systems with a cell-like membrane structure look “non-natural” from a
biological point of view, but it is mathematically interesting, especially in view of
the children-parent membrane interaction; remember that circularity is not allowed
in standard SNP systems.

This idea was explored in [14]; we recall some details.
A cell-like SN P system (in short, a cSN P system), of degree m ≥ 1, is a

construct
Π = (O,µ, n1, . . . , nm, R1, . . . , Rm, io),

where O = {a}, µ is a hierarchical membrane structure with m membranes, ni, 1 ≤
i ≤ m, is the number of spikes present in compartment i of µ at the beginning of
the computation, Ri, 1 ≤ i ≤ m, is the finite set of rules from compartment i, and
io indicates the output region (this is the environment if io = env).

Besides forgetting rules of the form as → λ, s ≥ 1, the sets Ri contain spiking
rules of the (extended) form E/ac → u, where E is a regular expression over O,
c ≥ 1, and u is a sequence of couples of the form (ap, tar), where p ≥ 1 and tar
is a target indication specifying the destination of the p associated spikes. This
target can be here, out, in, inj , where j is the label of a membrane, with the usual
meaning in cell-like P systems, or inall, with the meaning that the p spikes will
be sent, replicated, to all immediately inner membranes (each of them will receive
p spikes). Of course, in the case of non-extended rules, when only one spike is
produced by a rule, only one couple of the form (a, tar) will be used.

The computations in a cSN P system are defined as in usual SN P systems:
(at most) one rule in each compartment is applied, but the compartments work
in parallel, synchronously. The result can be obtained as the number of the spikes
in region io in the moment when the computation halts, and this can be inside
the system or outside, when io = env. We denote by Nin(Π) the set of numbers
computed (generated) by the system Π in the internal mode. We will not consider
here also the external output in the form of the number of spikes sent out, as this
is a direct dual of the inner mode, but, like in SN P systems, we also consider as
the result of a computation the distance in time between the first two steps when
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the system sends spikes out; this can be done by rules introducing couples (ap, out)
used in the skin region of Π, hence in this case the indication of io is omitted. We
denote by N2(Π) the set of numbers computed by Π in this sense, by means of
halting or non-halting computations. (By convention, number 0 is computed by a
computation which sends out spikes only once.)

It is important to note that in the previous definition we have imposed no
restriction on the number of produced spikes, that is, it can be greater than the
number of consumed spikes. Actually, we need rules for producing more spikes
than consumed, otherwise we cannot increase the number of spikes in the system
– unless if we use the replication target command inall.

We denote by NαcSNPm(forg, here, int, inall), α ∈ {2, in}, the family of
sets of numbers Nα(Π) computed by cSN P systems Π with at most m mem-
branes, using forgetting rules and target indications of the types here, int, inall,
together with indications in, out. We explicitly write only forg and the indications
here, int, inall because these features are powerful and they can be avoided in cer-
tain cases (this also happens in standard SN P systems with forg). When all spiking
rules E/ac → u have c greater than or equal to the number of spikes in u we write
NαcSN

′Pm(...) instead of NαcSNPm(...). When the number of membranes is not
bounded, we replace the subscript m with ∗.

Here are the results reported in [14]:

1. NincSNP4(here, int) = NRE.
2. NincSNP7(int) = NRE.
3. NincSNP7 = NRE.
4. NincSN

′P∗(int, inall) = NRE.
5. N2cSNP4(here, int) = NRE.
6. N2cSN

′P∗(here, int, inall) = NRE.

Several open problems and research topics were formulated in [14].
First, a large research area is open just by checking whether the results obtained

for usual SN P systems can be extended to cSN P systems. Many questions are of
interest: looking for small (as the number of membranes) universal cSN P systems,
adding anti-spikes, working in a parallel way also in the membranes, working
asynchronously, and so on and so forth. In [14] one starts directly with extended
systems (without delay). Which is the power of non-extended cSN P systems? In
this case we need a way to replicate spikes. In [14] inall it is used to that aim;
what else can be imagined? Look for restrictions which lead to characterizations
of sub-universal families of numbers (such as NREG) or of languages (in the case
of the external output; note that the spike train can be also a sequence of symbols
over an arbitrary alphabet).

The languages generated by cell-like SN P systems were investigated in [13] –
many results were obtained, but also many questions remain to be further exam-
ined. We do not enter into details.

J. Replacing the spiking rules with a production function (of one variable if only
spikes are considered, of two variables if also anti-spikes are used; the interplay
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with the annihilation rule is also of interest – useful seems to be to apply the
annihilation rule after computing the production, of both spikes and anti-spikes).
The production function can be a polynomial, as in usual NP systems, but we can
try to capture also other neural ingredients, such as the sigmoid function on which
the functioning of the biological neuron is based.

K. Using a distribution protocol, for SNP systems with “standard” spiking
rules looks easy: just associate distribution coefficients to synapses. This add “pro-
gramming” possibilities, hence simpler proofs than for usual SNP systems are ex-
pected.

3 Further Problems for NP

The investigations on NP systems reported so far only deal with the basic systems
and with the enzymatic ones, but there are many possibilities for considering fur-
ther classes. Some ideas were mentioned also before, a few others will be suggested
below, but the reader can imagine many more.

L. For instance, we can consider NP systems with restricted communication,
in the sense that the production of a compartment is distributed only to variables
from one or two levels out of the three used so far: here, down, up. For “one-way”
systems it is expected to obtain rather restricted families of numbers generated in
this way. Which cases still lead to universality?

M. A very natural idea is, instead of having the variables associated with
compartments, to move variables across variables by associating with them the
usual target indications here, in, out.

Numerical P systems with migrating variables (in short, MNP systems) were
considered in [17] in the following form:

Π = (m,H, µ, V ar, (Pr1, V ar1(0)), . . . , (Prm, V arm(0)), (xi0 , j0)),

where:

• m ≥ 1 is the number of membranes;
• H is an alphabet (of labels for membranes in µ);
• µ is a hierarchical (cell-like) membrane structure with m membranes labeled

with the elements of H;
• V ar = {x1, x2, . . . , xn} is a set of variables for the system;
• V ari ⊂ V ar, 1 ≤ i ≤ m, is a set of variables from V ar, initially present in

region i;
• V ari(0), 1 ≤ i ≤ m, is a vector which indicates the values of the initial variables

in region i;
• Pri, 1 ≤ i ≤ m, is the finite set of programs in region i; each program has the

following form:
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Fj,i(xp1 , . . . , xpk)→ cj,1|(xr1 , tar1) + . . .+ cj,q|(xrq , tarq),

where Fj,i(xp1 , . . . , xpk) is the production function, cj,1|(xr1 , tar1) + . . . +
cj,q|(xrq , tarq) is the repartition protocol of the program and tar1, . . . , tarq ∈
{here, out, in}; the symbols here, out, in are called target commands or target
indications; all the variables xp1 , . . . , xpk and xr1 , . . . , xrq are from V ar.

• xi0 ∈ V ar, j0 ∈ H.

The variables initially placed in membrane i have non-zero values speci-
fied by V ari(0), 1 ≤ i ≤ m. A variable equal to zero is simply supposed not
to be present in a membrane. This is called the NZP assumption. A program
Fj,i(xp1 , . . . , xpk)→ cj,1|(xr1 , tar1)+ . . .+cj,q|(xrq , tarq) can be applied only when
all variables xp1 , . . . , xpk (“production variables”) are present in membrane i at
that time with non-zero values. By using the production function, the system
computes a production value which is distributed to variables specified by the
repartition protocol. An important observation is that variables involved in the
production function are reset to zero after computing the production value.

The application of programs is as usual in numerical P systems, with the fol-
lowing specific points. After the application of the program, the variables involved
in the repartition protocol are moved to the region indicated by the target com-
mand associated with them. Specifically, here means the variable will be placed
in the same region i where the program is applied; out means the variable will
be moved to the region immediately outside membrane i – this region can be the
environment in the case when i is the skin membrane; in means the variable should
be moved to a membrane immediately inside membrane i, non-deterministically
chosen.

When a program is applied, for a variable involved in the program there are five
cases to consider: i) if the variable appears in the production (it must be present in
the membrane for the program to be applied) and not also in the repartition proto-
col, then this variable is zeroed and removed from the membrane; ii) if the variable
appears both in the production function (with a non-zero value) and in the repar-
tition, then it is first zeroed, then the variable with the contribution received from
the repartition protocol is moved to the membrane indicated by the associated
target; iii) if the variable appears in the repartition protocol and is not present
in the membrane (hence it must not appear in the production function), then the
variable with its contribution received from the repartition protocol is moved to
the membrane as the associated target indicates; iv) if the variable appears in
the repartition protocol and it was initially present in the membrane but not in
the production, then the initial value plus the contribution it receives is moved
to the membrane indicated by its associated target; v) if the variable appears in
several repartition protocols, then, in order to avoid any conflicts/complications,
we restrict to applying programs where the same variable has associated the same
target indication in all programs; then, each program separately changes the vari-
able as stated above and the variable, with the summed value, is moved to the
associated target.
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After moving variables to the target membranes, all the values of the same
variable received from different membranes are added up, and the sum is the value
of this variable in the destination membrane. If the sum is zero, then the variable is
simply removed from the membrane. (Another possibility is to immediately move
variables with the value received from each program to the associated targets and
to sum the values at the destination.)

MNP systems can evolve in the all-parallel mode (at each step, in each mem-
brane, all programs which can be applied are applied, allowing that several pro-
grams share the same variable), in the sequential mode (at each step, only one
program is applied in each membrane; if more than one program in a membrane
can be used, then one of them is non-deterministically chosen), or in the one-
parallel mode (apply programs in the all-parallel mode with the restriction that
one variable can appear in only one of the applied programs; in the case of multiple
choices, the programs to apply are chosen in the non-deterministic way). In the
one-parallel mode, where more than one program can be applied in a membrane,
one can also impose the restriction that there is no conflict between the targets
associated with variables in the repartition protocols of the applied programs.

Besides programs as above (called non-enzymatic), numerical P systems also
have enzymatic programs of the form Fj,i(xp1 , . . . , xpk)|ej,i → cj,1|(xr1 , tar1)+. . .+
cj,q|(xrq , tarq), where ej,i is a variable present in membrane i and different from
xp1 , . . . , xpk and xr1 , . . . , xrq . Such a program is applied at time t only if ej,i(t) >
min(xp1(t), . . . , xpk(t)). Note that ej,i(t) remains unchanged in the program where
it appears as an enzymatic variable; in other programs, ej,i can appear as a usual
variable in production functions or repartition protocols, and it can be “consumed”
or receive “contributions”.

If every program is enzymatic, we call the system purely enzymatic.
Using the programs in the way mentioned above, we obtain transitions among

configurations. A sequence of such transitions forms a computation. If no program
can be applied in the current configuration, we say that the system halts. When
the system halts, the value taken by the special variable xi0 in membrane j0 is the
number generated by the computation.

The set of natural numbers generated by a system Π working in the one-parallel
or sequential mode is denoted by Nα(Π), α ∈ {one, seq}, where one stands for one-
parallel, seq stands for sequential. We use NαM

0βNPDm (polyn(r), V ark1 , P rok2),
to denote the family of all sets Nα(Π), α ∈ {one, seq}, β ∈ {E, pE,−} of numbers
generated by β numerical P systems Π with migrating variables (E = enzymatic,
pE = purely enzymatic; if the system is non-enzymatic, then β is omitted), with at
most m membranes, at most k1 variables, and at most k2 programs, with produc-
tion functions which are polynomials of degree at most n, with integer coefficients,
with at most r variables in each polynomial; D indicates the use of determinis-
tic systems (we remove it when the systems may also be non-deterministic); the
superscript 0 means the system works under the NZP assumption. If this assump-
tion is removed, hence the variables can be present also with value zero, and the
programs can be applied if the variables are present in the membrane, does not
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matter whether or not their values are zero (we say that we work without the
NZP assumption), then the superscript 0 is removed. If one of the parameters
m,n, r, k1, k2 is not bounded, then we replace it with ∗.

Here are part of the results proved in [17]:

1. NαM
0NP1(poly1(1), V ar2, P ro2)− SLIN+

1 6= ∅, α ∈ {one, seq}.
2. SLIN+

1 ⊂ NαM0NP1(poly1(1), V ar∗, P ro∗), α ∈ {one, seq}.
3. NoneM

0NP1(poly1(3), V ar∗, P ro∗) = NRE.
4. NseqM

0NP2(poly1(3), V ar∗, P ro∗) = NRE.
5. NoneMENP1(poly1(3), V ar∗, P ro∗) = NRE.
6. NseqMENP2(poly1(3), V ar∗, P ro∗) = NRE.

Also the possibility to generate strings with these systems was explored in [17].

N. Associate a language to a computation in an NP system. For instance,
the values of a variable can form a string – in general, over an infinite alphabet
(like in [2]), or on a finite alphabet. For instance, we can consider the binary string
obtained by marking with 0 and 1 the odd and the even values of the distinguished
variable. We can also “read” the natural numbers modulo a given constant k ≥ 2,
so that we can obtain strings over an alphabet with k letters.

O. In particular, we can associate a language to an NP system by considering
an external output: we add a variable also to the environment, which gets parts
of the production of the skin compartment. This can be used both for computing
numbers and strings (in the latter case, following the suggestions from the previous
question).

NP systems used as string generators were considered in [16]. A string is asso-
ciated with a computation in a way somewhat similar to that adopted for spiking
neural P systems: one just considers a special variable out in the environment
which can appear in the repartition protocol of programs in the skin region of a
numerical P system. At each step its value is first reset to zero, then it receives a
new value. If at one step it receives several values from several programs, all these
values are added up and the sum is the value it receives at this step. If the value is
a number i between 1 to q, for some constant q, then the symbol bi is added to the
generated string. If at any step variable out receives a value which is greater than
q or smaller than 0, then this computation aborts, no result is associated with it.

In order to define the generated string, we need to define its end. This is clear
in the case when the computation halts (no further program can be applied), and
this can be taken as a definition of successful computations in purely enzymatic P
systems. In non-enzymatic and in (non-purely) enzymatic systems the computa-
tions never halt, and then we define the end of the string by means of a signal, e.g.,
the step when the system sends out value 0. Because for purely enzymatic systems
we have halting at our disposal, in this case we avoid sending out value 0, that is,
this case is simply ignored. (For a general definition, however, a decision should
be made also for value 0 sent out. A possibility is to proceed as in spiking neural
P systems, where in such a case a special symbol, b0, is added to the string.)
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It still remains a case not covered: the steps when the system sends no value
to variable out. We have two choices: to forbid such steps, by the definition of
correct computations, or to proceed as in the case of spiking neural P systems and
to associate the string λ to the generated string (the string is not increased, the
system can continue working).

In this way, we define two languages generated by a numerical P system Π.
If at each step a positive value is sent to variable out (with the exception of the
last step, for non-enzymatic and for enzymatic P systems, when value 0 is sent
out, marking the end), then we denote the generated language by Lres(Π) (with
res coming from restricted). If in the steps when no value is sent out (neither 0)
we interpret that the system adds λ to the generated string, then the generated
language is denoted by Lλ(Π).

For an easier remembering, we synthesize the previous conventions/definitions
in a table:

Sending out Non-enzymatic & Enzymatic Purely enzymatic
1, 2, . . . , q bi bi
< 0 or > q abort abort

0 end signal ignored here
nothing λ or forbidden (res) λ or forbidden (res)

We denote by LαβNP γm(polyn(r), V ark1 , P rok2), α ∈ {res, λ}, β ∈ {E, pE,−},
γ ∈ {hal, fin}, the family of languages Lα(Π), generated by β numerical P sys-
tems Π (E = enzymatic, pE = purely enzymatic; if the system is non-enzymatic,
then β is omitted) with at most m membranes, at most k1 variables, and at most
k2 programs, with production functions which are polynomials of degree at most
n, with integer coefficients, with at most r variables in each polynomial; the su-
perscript γ = hal is used for purely enzymatic systems, to indicate that the result
is obtained when the system reaches a halting configuration; in the case when the
end of the computation is defined by means of a signal (sending value 0 out), then
we replace hal by fin. If one of the parameters m,n, r, k1, k2 is not bounded, then
we replace it with ∗.

Here are some of the results proved in [16]:

1. LresβNP γ∗ (poly ∗ n(∗), V ar∗, P ro∗) ⊆ REC, β ∈ {E, pE,−}, γ ∈ {hal, fin}.
2. LresNP fin1 (poly1(1), V ar1, P ro2)− FIN 6= ∅.
3. REG ⊆ LresNP fin1 (poly1(1), V ar∗, P ro∗).

4. LresNP fin1 (poly1(4), V ar4, P ro4)−REG 6= ∅..
5. LresNP fin1 (poly1(4), V ar7, P ro6)− CF 6= ∅.
6. The family LresNP fin1 (poly1(4), V ar4, P ro7) contain non-semilinear lan-

guages.
7. LrespENPhal1 (poly1(1), V ar2, P ro2)− FIN 6= ∅.
8. FIN ⊂ LrespENPhal1 (poly1(1), V ar∗, P ro∗).
9. REG ⊆ LrespENPhal1 (poly1(2), V ar∗, P ro∗).

10. LrespENPhal1 (poly1(1), V ar6, P ro4)−REG 6= ∅.
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11. LrespENPhal1 (poly1(1), V ar9, P ro6)− CF 6= ∅.
12. The family LrespENPhal1 (poly1(1), V ar7, P ro6) contains non-semilinear lan-

guages.
13. RE = LλpENPhal1 (poly1(2), V ar∗, P ro∗).
14. The family LresENPhal1 (poly1(2), V ar4, P ro6) contains non-semilinear lan-

guages.

P. The external variable can be useful also for considering an NP system as a
decidability device: an instance of a decision problem is encoded in the values of
certain variables, and the values of a specified variable – maybe the external one
(which is not used in any production function) – at a well defined moment (in a
halting configuration, if halting can be defined and ensured) is the yes/no answer
to the problem instance. Using NP systems in this way, as decidability devices, is a
general research topic of definite interest. Which is the efficiency of this approach?
Can NP-complete problems be solved in polynomial time in this framework? If
not, which ingredients can help?

Q. In general, what about NP systems with “active membranes”, i.e., with pos-
sibilities of dissolving, creating, dividing membranes? Are these operations useful
for speeding-up the computations?

R. Related also to the previous questions is the natural one of looking for
interesting sequences of numbers and for interesting functions which can be com-
puted by NP systems. Are there hard sequences/functions (hard with respect to
Turing machines) which can be computed in a more efficient way with NP systems
(maybe endowed with membrane manipulating rules)?

S. The answer to the previous question can have a practical interest, e.g., for
robot controllers. In this context, an exercise is natural: passing from robots acting
in a 2D space, as those considered so far in membrane computing area, to 3D robots
(drones, satellites). This is, expectedly, only a programming issue/exercise, but of
interest in view of the popularity of 3D machineries which need an automatic
(maybe intelligent) controller.

T. In robot control there were useful numerical P systems with enzymes con-
trolling the applicability of programs. A natural idea is to count the variables
used as enzymes, then to try to keep this number as small as possible without
diminishing the computing power (without losing the universality). The numbers
of enzymes used so far in proofs is surprisingly large: For instance, the result in
[11] can be written as

NRE = NgenE∗NP∗(poly
1(2), oneP )

= NgenE776NP254(poly2(253), allP )

(the subscript of E indicates the number of enzymes used) whereas the improve-
ment of the last equality given in [10] can be written as
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NRE = NgenE427NP4(poly1(6), allP ).

The improvements of the above results in [4] are also not concerned with keeping
under control the number of variables used as enzymes.

In [18], the following – again surprising – results were obtained:

NRE = NaccE1NP1(poly1(2), allP )

= NgenE2NP1(poly1(2), oneP )

= NaccE1NP1(poly1(2), oneP ).

What other results about enzymatic numerical P systems remain to be im-
proved from this point of view? (What about small universal numerical P sys-
tems?)

U. The previous problem is related to another way to control the use of pro-
grams, namely by means of thresholds, constants associated with programs, com-
pared with the current values of variables in the production function or with the
value of the production itself. See precise definitions in [19] and [15]. Universality
results with a small number of thresholds are obtained in these papers.

4 Further Problems for SNP

V. In the same way as NP systems can compute (also for robot controllers) func-
tions f : Nn −→ Nm, such a function can be computed also by SNP systems. Can
such systems be used for designing robot controllers? Which is the (practical and
theoretical) efficiency of such an approach?

W. On the one hand, the brain is supposed to be a non-Turing “computer”, on
the other hand, it is supposed to have a deterministic conscious part and a non-
deterministic unconscious part, the first one problems problems to the latter, this
one proposing solutions, which are evaluated by the conscious part, and the process
is iterated until either finding the right solution, or the problem is abandoned. Can
such a strategy be implemented in terms of SNP systems? Is it possible to devise
such a hybrid SNP system able of computing beyond Turing?

X. What about extending to SNP systems other ideas currently explored in
hypercomputing, see, e.g., [9]? Can they be formulated for SNP systems in such
a way to make them compute beyond Turing (as – again – the human brain is
supposed to do)?

For instance, what about accelerated SNP systems, where the neurons “learn”
during the functioning of the system. First time when a neuron uses a rule, the
application of the rule lasts one time unit (the time is measured by an external
clock, the user clock). Next time (does not matter how many steps the neuron is
not working in between), the rule is applied in half of a user time unit – and so
on, always half of the duration of the previous rule application.
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Thus, a neuron which works each step, in two external time units will perform
an infinity of steps.

The example in figure below shows an SN P system with only one spike inside,
with neurons 1 and 4 working only once, but with neurons 2 and 3 working each
step from step 2 on. Thus, in at most 2 external time units, neurons 2 and 3 send
to neuron 4 any number of spikes. When m spikes are present in neuron 4, neuron
4 fires and the computation halts.

Thus, irrespective how large is m, starting with only one spike inside, this
system will produce m spikes (sent outside) in at most 4 external time units (but
working internally a number of steps which depends on m).
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Conjectures:

1. Using the acceleration, we can solve NP-complete problems in polynomial
time. (The first step is to find a suitable problem to be addressed in this
framework.)

2. Accelerated P systems can go beyond Turing (can solve the halting problem –
see the example of [1]); can this result be extended to SN P systems?

Both these conjectures are, metaphorically, supported by the fact that the brain
is efficient and “non-Turing”.

Y. Add to SNP systems further biologically-inspired features, to get closer
to the brain. Ideally, bring enough further features to the SNP systems so that
processes taking place in the “real” brain can be modeled/simulated (at the level
of biologists interest).

Z. We have left to the end a very promising new class of SNP systems, which
are no longer using regular expressions for controlling the application of spiking
rules, but instead polarizations are associated with the neurons and the rules. The
idea was explored in [12]. For the reader convenience, we recall the definition with
full details.
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A spiking neural P systems with polarizations (in short, a PSN P system) of
degree m ≥ 1 is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (αi, ni, Ri), 1 ≤ i ≤ m,

where:
(a) αi ∈ {+, 0,−} is the initial polarization of neuron σi;
(b)ni is the initial number of spikes contained in σi;
(c) Ri is a finite set of rules of the following two forms:

(i) α/ac → a;β, for α, β ∈ {+, 0,−}, c ≥ 1 (spiking rules);
(ii)α/as → λ;β, for α, β ∈ {+, 0,−}, s ≥ 1 (forgetting rules);

3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, . . . ,m} indicate the input and output neurons, respectively.

Note that the definition of PSN P systems is the same as the usual definition
of SN P systems given in the literature, with two differences: the applicability of
a rule is not determined by checking the total number of spikes contained in the
neuron against a regular expression associated with the rule, but the neurons have
charges and a rule can be applied only if the neuron has the charge indicated in
the left hand side of the rule. Of course, in order to use a rule, the total number
of spikes inside the neuron should not be less than the number of spikes consumed
by the rule. Moreover, the neurons not only send out spikes, but also charges, even
when using forgetting rules.

A spiking rule α/ac → a;β is used as follows. If the neuron σi has the charge α
and it contains at least c spikes, then the rule can be applied, and its application
means that c spikes are consumed, the neuron fires and produces a spike, which
carries the charge β. The spike is replicated and each neuron σj such that (i, j) ∈
syn receives the spike and the charge β.

The output neuron also sends spikes out of the system, but no electrical charge
is sent out (it is “lost” in the environment).

A forgetting rule α/as → λ;β is applied when the neuron has the charge α and
contains at least s spikes; s spikes are removed from the neuron and the charge β
is sent to all neurons σj such that (i, j) ∈ syn. (Note that we do not necessarily
forget all spikes, as in the case of usual SN P systems, where exactly s spikes
should be present in order to use a forgetting rule as → λ.)

After a neuron receives charges from other neurons, we perform a computation
of charges inside the neuron as described below:
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1. several positive charges (+), several neutral charges (0), several negative
charges (−) lead to one positive charge (+), one neutral charge (0), one negative
charge (−), respectively;

2. a positive charge (+) and a negative charge (−) cancel each other and give the
neutral charge (0);

3. a positive charge (+) or a negative charge (−) is not changed by a neutral
charge (0).

We stress that (i) the computation of charges takes no time; (ii) step 1 of the
above computation of charges is done first. For example, if a given neuron which
is initially neutral receives two positive charges and one negative charge, then first
the two positive charges lead to one positive charge, after that the positive charge
and the negative charge cancel each other, thus the neuron remains neutral.

As usual in SN P systems, a global clock is assumed, marking the time for the
whole system, hence the functioning of the system is synchronized. In each time
unit, if a neuron σi can use one of its rules, then a rule from Ri must be used. If
several rules can be used at the same time in a neuron, then the one to be applied
is chosen non-deterministically. Thus, the rules are used in a sequential manner in
each neuron, but the neurons function in parallel with each other.

The configuration of the system is described by both the number of spikes
and the charge of each neuron; thus, the initial configuration of the system is
C0 = 〈n1, n2, . . . , nm;α1, α2, . . . , αm〉. Using the rules as described above, one can
define transitions among configurations. A transition between two configurations
C1, C2 is denoted by C1 ⇒ C2. Any sequence of transitions starting from the initial
configuration is called a computation. A computation is successful if it reaches a
configuration where no rule can be used in any neuron of the system. We say that
the computation is halting.

A PSN P system can be used as a generative, an accepting, or a computing
device.

With any computation, halting or not, we associate a spike train, the sequence
of symbols 0 and 1 describing the behavior of the output neuron: 1 indicates a
spiking step, 0 indicates a step when no spike exits the system. With a spike train,
a result of a computation can be defined in several ways. For instance, the result of
a computation can be defined as usual in general SN P systems: we only consider
the first two time instances t1 and t2 that neuron out spikes and we say that the
number t2 − t1 is computed/generated by Π. The set of all numbers generated in
this way by a PSN P system Π is denoted by N2(Π) (the subscript 2 indicates
that the computation result is encoded by the time distance between the first two
spikes of any computation).

In the generative case, the neuron with label in is ignored. In the accepting
mode, the neuron with label out is ignored. A number n is introduced in the system,
by introducing a sequence 10n−11 in neuron in (two spikes are introduced, at a
time distance of n steps) and this number is accepted if the computation halts.

When both an input and an output neuron are considered, the PSN P systems
can be used to compute numerical functions. In order to compute a function f :
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Nk → N, k natural numbers n1, . . . , nk are introduced into the system by “read-
ing” from the environment a spike train of the form z = 10n1−110n2−11 . . . 10nk−11.
Note that exactly k+1 spikes are “read”, that is, after the last spike, it is assumed
that no further spike is sent to the input neuron. The result of the computation
is also encoded as the distance between the first two spikes emitted by the output
neuron with the restriction that the system outputs exactly two spikes and halts
(maybe some further steps after the second spike), hence it produces a spike train
of the form 0b10r−110d for some b, d ≥ 0 with r = f(n1, n2, . . . , nk). The system
outputs no spike in the b ≥ 0 steps from the beginning of the computation until
the first spike.

We denote N2PSNP (chp) the family of all sets of numbers N2(Π) generated
by PSN P systems with at most p charges.

The two results proved in [12] are the following:

1. NRE = N2PSNP (ch3).
2. There exists a universal PSN P system (with three charges) for computing

functions, having 164 neurons.

The proofs are rather complex, at least in comparison with the proofs of the
corresponding results for usual SN P systems, and this is due to the fact that the
polarizations provide a much weaker control on the applicability of the rules in
neurons than the regular expressions.

Again, many research topics remain to be explored. Practically the whole pro-
gram of investigation carried on usual SN P systems has to be explored also for
the new type of spiking neural P systems: normal forms (can we get rid of forget-
ting rules?), using extended rules (producing more than one spike can help, e.g.,
in simplifying the proofs?), generating strings or infinite sequences, considering
asynchronous computations or a parallel/exhaustive use of spiking rules in each
neuron, adding astrocytes or other biology inspired ingredients, and so on and so
forth. Another idea is to consider cell-like PSN P systems; polarized cell-like SN
P systems seem to be challenging to investigate (maybe not universal).

There also appear specific open problems. Of a definite interest is the question
whether or not the number of electrical charges considered in the universality proof
from [12], three, can be decreased. Which is the power of PSN P systems with 2
charges, or even without any charge? Is any of the corresponding classes of com-
puting devices sub-universal? If so, which are the properties (size, closure, decid-
ability) of the corresponding family of sets of numbers or of languages generated?
Finally: can the number of neurons in universal PSN P systems be (significantly)
decreased? (We are pessimistic about this, as clever codifications in terms of the
number of spikes, as usual for standard SN P systems, do not seem to help in the
absence of regular expressions.)

Definitely, we believe that SN P systems with polarizations deserve further
research efforts.
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Summary. The main objective of this memory is to stand out one of the research
methods for developing new P system models observed during the 14th Brainstorming
Week on Membrane Computing. Firstly, a general overview of P systems is provided. To
continue, the use of register machines in order to justify completeness and universality is
justified. And to end up, an example of the method is provided.

1 Motivation and experience

The motivation for investigating further into this subject arose when observing that new
computational model could be proposed. However, computability (the model’s capability
of acting as a computer) was always required, meaning that each new proposed model
was tested versus Turing completeness. i.e., every proposed model should be demostrated
to be capable of performing a computation.

The proof of the universality of the P systems can be attained using different methods,
but the utilization of the Register Machines was widely promoted. Moreover, through
’Rudi’s fancy homework ’ we learned that register machines were in fact, simple but
really useful interesting devices.

2 General Overview

Membrane computing is a biologically-inspired research branch in the field of computer
science which starts from the assumption that processes taking place in the structure of a
living cell can be interpreted as a computation and it gathers the study of different kinds
of P systems. P systems are the devices used in this new computing paradigm which
performs calculations based on the idea of a hierarchical arrangement of membranes
acting as channels of communication. These systems are inspired in cellular structures,
being the cell-like, tissue-like and Spiking Neural P systems current developed models [1].
All three models are based on cells, but seems important to recall that they are formal
models which should not be considered as representations of the truth.
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Membrane computer models share the same structure composed by membranes, ob-
jects, catalysts and a multiset of rules (i.e, evolution, communication, dissolution or divi-
sion rules)[2] which are applied on the objects in each region delimited by a membrane.
The computation works from an initial starting state or configuration to an end state
through a number of discrete steps or transitions between configurations. The evolution
rules are used in a non-deterministic and maximally parallelism way, i.e., in any com-
putational step of the P system Π, a multiset of rules from the sets R1,...,Rm is chosen
in a non-deterministic way such that no further rule can be added to it. The obtained
multiset will still be applicable to the existing objects in the membrane regions 1, . . .
,m. When no more rules can be applied, the computation ends (it is said to halt), leaving
the result of the process in a given membrane or in the environment.[3]

Membrane computing was first developed in order to solve NP-complete problems.
The research in this field moves in two different directions. On the one hand, theoretical
models are being developed. This branch of research tries to find a theoretical foundation
for new P system models and works in computational complexity, which tries to find
an efficient solution to hard problems and works on the P conjecture. On the other
hand, a practical approach is postured, including simulations in silico (for example, using
MeCoSim)[4] as well as research in order to implement P systems in vitro.

3 Register machines as reference model for computational
completeness and universality

Most P system variants (such as purely catalytic P systems, extended Spiking Neural
P systems, P systems with anti-matter...) can be demonstrated to be computationally
universal or Turing complete, i.e, the system of data-manipulation rules can be used to
simulate a single-taped Turing machine.

A Turing machine is a hypothetical device with an infinite memory capacity, which
manipulates symbols on a supposedly infinite strip of tape according to a set of rules. The
Church-Turing thesis conjectures that any function whose values can be computed by an
algorithm can be computed by a Turing machine, and therefore that any real computer
is equivalent to a Turing machine.

The register machines are known to be computationally complete and equal in power
to (non-deterministic) Turing machines. Consequently, register machines provide a simple
universal computational model, which can be used to provide the proofs of the compu-
tational completeness of P systems based on the simulation of this kind of machines.

Formally, a register machine is a tuple M = (m,B, l0, lh, P ), where m is the number
of registers, b is the set of labels, l0 ∈ B is the initial label, lh ∈ B is the final label and
P is the set of instructions bijectivly labeled by elements of B. The instructions of M
can be of the following forms:

• l1: (ADD(j), l2, l3) with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of the register j by one, followed by a non-deterministic jump to
instructions l2 or l3. This instruction is usually called increment.

• l1: (SUB(j), l2, l3) with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m .
If the value of the register j is 0 then jumps to l3 (instruction called zero-test),
otherwise the value of the register j is decreased by one, followed by a jump to
instruction l2 (decrement).
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• l2: HALT: stops the execution of the register machine.

A specific model of a P system should be called computationally complete or univer-
sal if for any (generating, accepting, computing) register machine M we can effectively
construct an equivalent P system Π of that type simulating each step of M in a bounded
number of steps and yielding the same result.[5]

Once a new P system model has been proposed, the main goal to achieve is to deter-
mine that effectively it can perform all the calculations computable by a real computer
and not just the operation it was first thought to perform.

The rule complexity of universal P systems depends on the objects as well as on the
specific types of rules.

3.1 Example: SN P systems with States

Let’s consider a particular SN P system with states and a single neuron stP1 Π. It’s
formal definition is given by

Π = (1, O = OT = {a}∗, Q = B, δ, fI , fO, qi = l0, F = lh, Ci = 0) (1)

The stP1 starts with the initial configuration computed by the input function fI , the
initial state qi = l0 and the input object a ∈ O, which are equal to the set of terminal
objects OT . The transitions between configurations and states are computed by δ to the
new ones until the computation reaches a final state f = lh ∈ F .

The computations of the register machine M = (m,B, l0, lh, P ) can be simulated by
the stP1 Π working with multisets as follows (the states of a single neuron represent the
instruction labels of the register machine) [6]

δ(p, (w)) = {({q, s}, {(a→ apr ,maxpar)})} (2)

for p: (ADD(r),q,s) ∈P, w∈ {a}∗

δ(p, (w)) = {(q, {(apr → a,maxpar)})} (3)

for p: (SUB(r),q,s)∈P, pr/|w|
δ(p, (w)) = {(s, 0)} (4)

for p: (SUB(r),q,s) ∈ P, not pr/|w|

To sum up, as can be seen from the example above, a SN P system acting in the
maximally parallel derivation mode (maxpar) is in fact computationally complete, as the
rules which define the system can be simulated using a Turing machine.

References
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Summary. The objectives of this memory are, on one hand, to provide a general
overview about the topic of Membrane Computing, answering basic questions as what
is it, which are its basic elements, which problems it allows to solve, its current limita-
tions... and, on the other hand, to provide a more specific information about the model of
Spiking Neural P systems in both its original formulation and on the variant of the model
suggested on the 14th edition of the Brainstorming Week on Membrane Computing, the
Extended Spiking Neural P systems with Transmittable States.

The motivation to further explore the topic of Spiking Neural P systems (SN P
systems for short) comes from the idea that they could be a really suitable framework
in order to model chain-reaction processes as the fission of 235U taking place inside a
nuclear reactor.

1 General overview

Membrane computing is a branch of Natural computing, which, based on the idea
that the processes within a cell can be interpretated as computations, abstracts
computing models from the architecture of living cells and their organisation in
tissues, organs, . . . Devices of this model are called P systems and are defined as
cell-like structures consisting on a set of hierarchically arranged membranes where
multisets of objects (that represent the chemicals in the cell) evolve following sets
of rules which only apply in the membrane where they are implemented. [1]

Just as in a biological cell, the rules in a P system are applied at random,
which often results in multiple solutions being encountered if the computation is
repeated, thus P-systems are non-deterministic. Furthermore, all the rules which
can be applied in a computation step are executed whenever they are applicable,
so the system evolves in each step until no more rules can be implemented, i.e. the
rules are applied in a maximally parallel manner.

A computation in this kind of system is a sequence of instantaneous transitions
between configurations guided by the rules executed, until it reaches a state where
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no further reactions are possible, which marks the end of the computation. Its
result is all those objects contained in a particular ’results’ membrane.

So far, the implementation of this biological computers ”in vitro” has not been
achieved and technical problems such as the fact that the theoretical model is based
on the assumption that all the reactions within each step of computation lasts the
same time while within a real cell each reaction is completed in a characteristic
time, has not yet been solved.

However, on the lasts years, simulators as MeCoSim have been developed
[2] and, within the computational complexity theory, Membrane Computing has
proven itself a really powerful tool to solve NP-complete problems in polynomial
even linear time. Finally, P-systems have also been used lately to model biological
phenomena within the framework of Computational Systems Biology.

2 Spiking Neural P Systems: basic concepts

Spiking Neural (SN) P systems are a class of neural-like P systems in which one-
membrane cells (called neurons) placed in the nodes of a directed graph send
electric signals or spikes (represented by a single object denoted s) under certain
conditions (given by the rules defined on each cell) along their axons to all the
neurons connected by synapses (arcs of the graph). [3]

A computation in this model starts by fixing the number of spikes in the input
neurons, which propagate the spikes through the net of connected cells. Each
neuron fires after having accumulated a certain number of spikes and the result of
the computation is the number of steps elapsed between two spikes of the labeled
output neuron have been sent to the environment.

It is interesting to recall that the rules defined in each neuron are applied in
a non-deterministic but sequential mode with at most one rule used in each step,
though the maximal parallelism condition is implemented at a system level, since
in each step of the computation all neurons which can evolve (use a rule) have to
do it. In this model only two different kind of rules are defined: firing or spiking
rules and forgetting rules.

On the one hand, spiking rules are of the form E/sr → s; t, where E represents
the required content of the neuron for the rule to apply and r ≥ 1, the spikes
consumed when the rule is executed. Once the neuron is fired, it produces a spike
which will be sent to other neurons after t ≥ 0 time steps and the cell is assumed
closed in the period between firing and spiking (which represents the refractory
period).

On the other hand, forgetting rules are of the form sk → λ, which means that,
when the neuron contains exactly k ≥ 1 spikes, k spikes are removed (”forgotten”).

Finally, on [4] SN P systems are shown to be computationally complete when
the number of spikes inside each neuron is not bounded, i.e., when the cell can
accumulate an arbitrary number of spikes inside. However, it is also shown that,
if a more realistic model with a bounded number of spikes present in any neuron
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along a computation is considered, these devices lose their capacity to generate all
Turing computable set of numbers.

3 Extended Spiking Neural P systems with Transmittable
States

Since the emergence of the SN P systems in [4] in 2006, many variants of this
model have been proposed. Particularly, in the 14th edition of the Brainstorming
Week on Membrane Computing a new variant was suggested, so in this section a
brief analysis of the new proposals is discussed, explaining its advantages from the
point of view of the computational completeness.

Formally, Extended Spiking Neural P systems with Transmittable States are
defined [5] as

Π = (O,Q, σ1, σ2, . . . , σn, in, out) (1)

being

• O = {s} the objects conforming the system, with s a spike.
• Q is a finite alphabet of states, where polarizations ⊆ states
• σi are the neurons of the systems, defined as σi = (αi, ni, fi, Ri) where

– α ∈ Q is the initial state.
– ni is the initial number of spikes
– fi is the state combining function
– Ri is a finite set of rules of the form

α/ac → (t1, a
k1 , β1), . . . , (tm, a

km , βn) (2)

1. send kj spikes to neuron tj after having accumulated ac spikes, for 1 ≤
j ≤ m,

2. send state bj to neuron σj , combine them using fi and set the new state
of neuron σi, combine them using fi, and set the new state of neuron
σi.

and
α/ac → λ (3)

Comparing this definition with the given for SN P systems on the previous section,
the new contributions can be appreciated. Firstly, the firing rules incorporate the
elements α and β, which denote the initial and final states of a neuron after each
step of the computation. This incorporation modifies the process of spiking, since
now not only a spike, but the state of the neuron, is sent along the axon in the
firing process.

Secondly, the state combining function, fi is added in the definition of the neu-
rons conforming the system in order to compute the state of the neuron receiving
states of all those connected to it through synapses.
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For instance, if the states being passed are polarisations Q = {+,−, 0} (which
represent the electrical charge of the membrane), a possible state combining func-
tion would assign positive polarisation to the neuron receiving the spikes if more
positive than negative polarisations were received, negative polarisation in the op-
posite case and null polarisation if the number of received + and − polarisations
were the same.

Finally, the time between firing and spiking is 0 for all the neurons.
In contrast with SN P systems, where computational completeness is achieved

by allowing the non-realistic notion that the number of spikes within each cell is
not bounded, the ESN P systems with Transmittable States are powerful enough
for universal computation considering the number of spikes in each active neuron
reduced to 1 and replacing the unbounded number of spikes to an unbounded
number of neurons.

This model can reproduce the rules of Conway’s Game of Life using only 2
states Q = {0, 1} (which represent ”dead” and ”alive”) and, since this kind of
cellular automata has the power of a universal Turing machine, by reproducing
the rules of the Game, the computational completeness of the ESN P systems with
Transmittable States is proved.
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Summary. We are going to present a polynomially uniform solution to the Quantified
3SAT decision problem with restricted instances where the quantifiers alternate, based
on recognizer P systems with active membranes and no input membrane, having three
polarizations using only dissolution and division rules.

1 Introduction

In the twelfth chapter of “The Oxford Handbook on Membrane Computing” [3]
the following question can be found: What is the efficiency of P systems with ac-
tive membranes and electrical charges where evolution and communication rules
are forbidden? The answer to this question is that one can give a uniform solution
to the PSPACE-complete Quantified 3SAT decision problem (having a restricted
quantification, which does not alter its complexity class) using such systems. Sim-
ilar result is obtained by Alberto Leporati et al. in their [1] article. They gave
a semi-uniform solution for the Q3SAT decision problem using polarisationless
P systems.

In the second section we will recall the definition of the recognizer P systems
with active membranes, together with the definition of uniform solution. In the
third section, the Q3SAT decision problem will be defined. In the fourth section
we will describe the main result of this paper, namely the uniform solution to the
restricted Q3SAT decision problem. In the fifth section we are going to draw the
conclusions.

2 Recognizer P systems with active membranes

We are going to use P systems with the above mentioned properties through the
rest of the paper, so now we give the definition of such systems. For more detailed
description see [2].
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Definition 1. A P system with active membranes, having three polarizations using
only dissolution and division rules, of degree q ≥ 1 is a tuple

Π = (Γ,H, µ,w1, . . . , wq, h0, R)

where

• Γ is the finite alphabet of objects,
• H is the alphabet of labels for the membranes,
• µ is the initial membrane structure of degree q, with all membranes labeled with

the elements of H and with electrical charges (positive, negative or neutral)
associated with them,

• w1, . . . , wq are strings over Γ specifying the multisets of objects present in the
compartments of µ,

• h0 ∈ {0, 1, . . . , q} indicates the region where the result of a computation is
obtained (0 represents the environment),

• and R is a finite set of rules.

The rules are of the following types.

• Dissolution rules of the form

[a]αh → b

where h ∈ H, α ∈ {+,−, 0} and a, b ∈ Γ . Here, every membrane in the
membrane with label h together with every other object in it goes into the upper
neighbor.

• Division rules for elementary membranes:

[a]α1

h → [b]α2

h [c]α3

h

where h ∈ H, α1, α2, α3 ∈ {+,−, 0} and a, b, c ∈ Γ . Here, every membrane
and other objects in the initial h labeled membrane are copied into both newly
created h labeled membranes.

• Division rules for non-elementary membranes:

[[ ]α1

h1
. . . [ ]α1

hk
[ ]α2

hk+1
. . . [ ]α2

hn
]αh

→

[[ ]α3

h1
. . . [ ]α3

hk
]βh [[ ]α4

hk+1
. . . [ ]α4

hn
]γh

for k ≥ 1, n > k, h, h1, . . . , hn ∈ H, α, β, γ, α1, . . . , α4 ∈ {+,−, 0} and
{α1, α2} = {+,−}. Here, every object and the membranes with neutral po-
larity in the h labeled membrane are copied into both newly created h labeled
membranes.

A configuration in a P system can be described by its actual membrane struc-
ture together with the multisets of objects present in the regions. A computational
step changes the current configuration according to the following principles.
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• Each membrane can be subject to at most one rule per computation step. Newly
created membranes cannot be the subjects of rules in the actual computational
step. The skin membrane should not dissolve or divide.

• The rules are applied in a maximally parallel manner. This means, that every
membrane which could be the subject of a rule must be the subject of exactly
one rule. When there is more than one rule which we can apply, then the choice
should be nondeterministic.

• The rules are applied “from bottom up”, so first the rules are applied on the
innermost membranes, then on their upper neighbors, and so on until the skin
membrane.

We are going to use a recognizer P system. This means, that the Γ alphabet
has two distinguished objects representing “yes” and “no”, and if one of these
objects reach the membrane with label h0, then the computation halts. The result
of the computation is acceptance in the former-, and rejection in the later case.

The computation of such P system is the sequence of its configurations starting
from its initial configuration. Every configuration of such computation should be
reached from the previous configuration using the principles described above. Such
computation can be finite, arriving to a configuration where one of the “yes” or
“no” objects enter the h0 labeled membrane, or it can be infinite if this does
not happens. We will only consider confluent recognizer P systems, in which all
computations starting from the initial configuration halt and agree on the result.

We are going to build the initial membrane structure according to the given
instance of the examined problem. We will show, that this can be done in a poly-
nomial amount of steps which means that our solution is polynomially uniform.
In the following definition, IX denotes the possible instances for the problem X.

Definition 2. A family Π = {Π(w)|w ∈ IX} of recognizer membrane systems
without input membrane is polynomially uniform by Turing machines if there exists
a deterministic Turing machine working in polynomial time which constructs the
system Π(w) for the instance w ∈ IX .

3 The Quantified 3SAT decision problem

The Boolean satisfiability problem (abbreviated as SAT) can be stated as the fol-
lowing. Lets consider the x1, . . . , xn Boolean variables. An instance of SAT consists
of conjunctions of clauses, which are disjunctions of literals, occurrences of xi or
¬xi. An interpretation of the variables is a mapping, which associates a truth value
to the variables. The Boolean satisfiability problem asks the following question: is
there an interpretation of the given Boolean variables for which interpretation the
conjunction of the clauses evaluates to true? For the rest of the paper, we assume
that the literals in the clauses are ordered by the indexes of their variables.

The 3SAT decision problem is a variant of the SAT problem, where the clauses
contain only three literals. An instance of the Quantified 3SAT decision problem is
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a well-formed Boolean formula (Q1x1) . . . (Qnxn)φ (x1, . . . , xn), where Qi ∈ {∃,∀}
and φ is an instance of 3SAT over the variables x1, . . . , xn. This decision problem
asks that the given quantified formula is true or false. It can be shown that the
Q3SAT decision problem is PSPACE-complete, even when restricted to instances
where the quantifiers alternate the

∃x1∀x2∃x3∀x4 . . . ∃x2i−1∀x2i . . . ∃xn−1∀xnφ(x1, . . . , xn)

way, where n is even.

4 Solving Q3SAT with restricted instances

We are going to describe a recognizer P system without an input membrane,
which decides the satisfiability of a given instance of the restricted Q3SAT decision
problem. With the following initial membrane structure construction, the number
of objects and the number of rules, this will give us a polynomially uniform solution
to the restricted Q3SAT decision problem. The required objects, rules and the
initial membrane structure together with the initial membrane contents will be
given as we describe the system part by part.

4.1 Construction of the initial membrane structure

The initial membrane structure can be seen in figure 1. For the ith universally
quantified variable, we introduce the membranes with εti and εfi labels having
neutral polarity, together with two membranes with δ label having positive po-
larity, except for the last variable, where we only introduce one such δ labeled
membrane. The membranes labeled ε and δ give us 2n − 1 membranes in the
initial membrane structure.

The clauses are encoded in the membranes with Cip,jp,kp labels. We are going
to call the nested membrane structure of the membranes representing the clauses
a clause-chain. The encoding is similar to the one which is used by Porreca et al.
in [4] and [5]. We can represent the Cp = (lp,1∨ lp,2∨ lp,3) clause with a membrane
labeled Cip,jp,kp having neutral polarity, where ip (resp. jp and kp) is the index
of the variable in lp,1 (resp. lp,2 and lp,3) with a negative sign if the variable is
negated. So for example if our clause is (x1 ∨ ¬x2 ∨ x3), then the corresponding
membrane will be the label C1,−2,3. Using this encoding, the upper bound on the
number of membranes with Cip,jp,kp labels in our initial membrane structure is
8
(
n
3

)
. Also, the rules for these membranes can be given in advance (we will do this

in section 4.4), so for a restricted Q3SAT instance we only have to construct the
initial membrane structure.

The steps required for the generation of the interpretations are n + 1 and
one step is required for the evaluation of the quantified formula. So the c labeled
membranes should form a chain of polynomial length greater than n+ 2. We will
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discuss the reason for this in more details in section 4.4, but the short explanation
is that this way, the n object will arrive to the skin membrane right on time.

Summing up the parts, one can see that the size of the initial membrane struc-
ture is polynomially bounded.

4.2 Creation of the interpretations

We included the d1 object in the initial membrane structure. This object initiates
the creation of the interpretations. We are going to use the

[di]
0
h → [di+1]0h[en+1−i]

0
h (i = 1, . . . , n) (1)

[dn+1]0h → [d]0h[d]0h (2)

[d]0h → d (3)

rules to generate the e objects. These objects will create the variable interpretations
with the

[ei]
0
h → [ti]

+
h [fi]

−
h (i = 1, . . . , n) (4)

[ti]
0
h → ti (i = 1, . . . , n) (5)

[fi]
0
h → fi (i = 1, . . . , n) (6)

rules. The membranes with labels h and b and the membranes representing the
clauses are split with the

[[ ]+h [ ]−h ]0b → [[ ]0h]+b [[ ]0h]−b (7)

[[ ]+b [ ]−b ]0Ci1,j1,k1
→ [[ ]0b ]

+
Ci1,j1,k1

[[ ]0b ]
−
Ci1,j1,k1

(8)

and

[[ ]+Cip−1,jp−1,kp−1
[ ]−Cip−1,jp−1,kp−1

]0Cip,jp,kp

→ (9)

[[ ]0Cip−1,jp−1,kp−1
]+Cip,jp,kp

[[ ]0Cip−1,jp−1,kp−1
]−Cip,jp,kp

p = 2, . . . ,m rules.

Lemma 1. Starting from the initial membrane structure, applying rules (1)-(9)
from step to step, after the (5) and (6) rules are applied on the [t1]0h and [f1]0h
membranes, the membrane structure contains all the possible interpretations of
the variables in the leaves.

Proof. We are going to give a proof by induction. Figure 2 shows the beginning of
the creational process. In the general case, we are going to look at a clause-chain
with the
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[ ]0s

[ ]0εt2

[ ]0εf2

[ ]+δ

[ ]+δ

[ ]0εt4

[ ]0εf4

[ ]+δ

[ ]+δ

. . .

[ ]0εtn−2

[ ]0εfn−2

[ ]+δ

[ ]+δ

[ ]0εtn

[ ]0εfn

[ ]+δ

[ ]0Ci1,j1,k1

. . .

[ ]0Cim,jm,km

[ ]0b

[d1]
0
h

[ ]0c

. . .

[ ]0c

[n]0c

Fig. 1. The initial state. The membrane with the h label is the hatchery, we create
the interpretations of the variables here. The membrane with the b label is a bound-
ary membrane. The membranes with the Cip,jp,kp labels are the ones that evaluate the
clauses. The δ membranes manage the creation of the quantification tree. The ε mem-
branes check the universal quantifiers. The c contradictory membranes delay the entering
of the n symbol into the skin membrane.
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[di]
0
h[en+2−i]

0
h[tn+3−i]

+
h [fn+3−i]

−
h xnxn−1 . . . xn+4−i (10)

membranes in the innermost membrane labeled b, where i = 4, . . . , n and xp could
be either tp or fp. The polarity difference induces a non-elementary membrane
division according the (7) rule. In the membrane with label b and positive polarity,
we will have the

[di]
0
h[en+2−i]

0
h[tn+3−i]

0
hxnxn−1 . . . xn+4−i (11)

content and in the membrane with label b and negative polarity we will have the

[di]
0
h[en+2−i]

0
h[fn+3−i]

0
hxnxn−1 . . . xn+4−i (12)

content. The non-elementary membrane divisions are propagated upwards in the
structure according the rules (8) and (9), forming two clause-chains. After the
divisions stopped, a new step begins and (11) becomes

[di+1]0h[en+1−i]
0
h[tn+2−i]

+
h [fn+2−i]

−
h xnxn−1 . . . xn+4−itn+3−i

and (12) becomes

[di+1]0h[en+1−i]
0
h[tn+2−i]

+
h [fn+2−i]

−
h xnxn−1 . . . xn+4−ifn+3−i,

so in the innermost membrane with label b of both clause-chains, the same state
appeared as in (10) just with the additional truth objects tn+3−i and fn+3−i. Note
that this way, every possible xnxn−1 . . . xn+4−i variable interpretation is extended
with the mentioned truth objects. This holds in every iteration of the recursion.

At the end, the t1 and f1 objects are generated, the (5)-(6) rules are applied,
and the t1, f1 objects enter the b membranes. At this point, every possible inter-
pretation is generated at the bottom of the membrane structure. Because of the
(2) rule, there will be no more e objects introduced into the membrane structure.
ut

Notice that the d objects get into the membranes with label b the same time
when the t1 and f1 objects get into the mentioned membranes with b label.

4.3 Creation of the quantifier tree

We introduced the membranes with δ label having positive polarity in the initial
membrane structure. These membranes delay the non-elementary membrane di-
visions, so instead of forming chains, we are going to generate a tree structure as
the new variable interpretations are created. We add the

[[ ]+Ci1,j1,k1
[ ]−Ci1,j1,k1

]+δ → [[ ]0Ci1,j1,k1
]0δ [[ ]0Ci1,j1,k1

]0δ (13)

[[ ]+εti
[ ]−εti ]+δ → [[ ]0εti

]0δ [[ ]0εti
]0δ (i = 2, 4, . . . , n) (14)

[[ ]+δ [ ]−δ ]+δ → [[ ]0δ ]
0
δ [[ ]0δ ]

0
δ (15)
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2.a . . .

[ ]0Ci1,j1,k1

. . .

[ ]0Cim,jm,km

[ ]0b

[d1]
0
h

2.b . . .

[ ]0Ci1,j1,k1

. . .

[ ]0Cim,jm,km

[ ]0b

[d2]
0
h [en]

0
h

2.c . . .

[ ]0Ci1,j1,k1

. . .

[ ]0Cim,jm,km

[ ]0b

[d3]
0
h [en−1]

0
h [tn]

+
h [fn]

−
h

2.d . . .

[ ]0Ci1,j1,k1

. . .

[ ]0Cim,jm,km

[ ]+b

[d3]
0
h [en−1]

0
h [tn]

0
h

[ ]−b

[d3]
0
h [en−1]

0
h [fn]

0
h

2.e . . .

[ ]0Ci1,j1,k1

. . .

[ ]0Cim,jm,km

[d4]
0
h [en−2]

0
h [tn−1]

+
h [fn−1]

−
h tn

. . .

[ ]0Ci1,j1,k1

. . .

[ ]0Cim,jm,km

[d4]
0
h [en−2]

0
h [tn−1]

+
h [fn−1]

−
h fn

Fig. 2. The beginning of the creation of the variable interpretations. The bottom of the
initial membrane structure can be seen on figure (a). The (b) figure shows the structure
after one step. We applied the [d1]0h → [d2]0h[en]0h rule. The (c) figure shows the beginning
of the second step. Here, the [d2]0h → [d3]0h[en−1]0h rule and the [en]0h → [tn]+h [fn]−h rule
were applied. The polarity difference induces a non-elementary membrane division, which
induces another non-elementary membrane division on the next level, etc. The state after
the first division can be seen on figure (d). On figure (e), the non-elementary divisions
are finished. The upper membranes are affected by the divisions too, but we are going
to describe that in section 4.3. This figure showes the state after the application of the
[d3]0h → [d4]0h[en−2]0h, [en−1]0h → [tn−1]+h [fn−1]−h and [tn]0h → tn, [fn]0h → fn rules. One
can see how the recursion goes after comparing this figure with figure (c).
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rules to the system. These rules change the initial positive polarity of a membrane
with label δ to neutral polarity. In this case, we will say that the δ membrane
activates. The activation of a δ labeled membrane pair can be seen on figure 3.
The activated membrane with label δ will propagate the polarity difference just
as the other membranes do with the

[[ ]+Ci1,j1,k1
[ ]−Ci1,j1,k1

]0δ → [[ ]0Ci1,j1,k1
]+δ [[ ]0Ci1,j1,k1

]−δ (16)

[[ ]+εti
[ ]−εti ]0δ → [[ ]0εti

]+δ [[ ]0εti
]−δ (i = 2, 4, . . . , n) (17)

[[ ]+δ [ ]−δ ]0δ → [[ ]0δ ]
+
δ [[ ]0δ ]

−
δ (18)

rules, as it can be seen in figure 4. The ε membranes split by using the

[[ ]+δ [ ]−δ ]0εfi
→ [[ ]0δ ]

+
εfi

[[ ]0δ ]
−
εfi

(19)

[[ ]+εfi
[ ]−εfi ]0εti

→ [[ ]0εfi
]+εti

[[ ]0εfi
]−εti (20)

rules (i = 2, 4, . . . , n), so they propagate the polarity difference upwards. Notice
that both the activated membranes with δ label and the membranes with label ε
propagate the polarity difference upwards, while the not activated δ membranes
halt this propagation.

Now we are going to show that when a new variable interpretation is created at
the bottom of the tree structure (so the [ti]

+
h and [fi]

−
h membranes are introduced),

then at the beginning of the next step, after the (5)-(6) rules are applied, the in-
terpretations in the leaves are ordered. By ordered, we mean that when examining
the fi and ti objects in the leaves of the tree structure from right to left, there
is only fi objects in the rightmost leaf, the object representing the nth variable
negate (fn changes to tn and tn changes to fn) from leaf to leaf, and the object
representing the ith variable negate when the object representing the (i + 1)th
variable changes from ti+1 to fi+1. For example, the

t1t2t3 t1t2f3 t1f2t3 t1f2f3 f1t2t3 f1t2f3 f1f2t3 f1f2f3 (21)

sequence of objects in the leaves form an ordered sequence.

Lemma 2. When we apply the (4) rule for the kth time, in the same step, the kth
membrane with label δ from the bottom of the membrane structure activates.

Proof. We are going to give a proof by induction. Initially, every membrane with
label δ have positive polarity, so they are not activated.

• When the [en]0h → [tn]+h [fn]−h rule is applied, the lowest membrane with label
δ activates. According the (13) rule, this membrane will not propagate the
polarity difference.

• In the general case, when the (4) rule is applied for the (k+ 1)th time, the kth
membrane with label δ is already activated according the induction, so it will
propagate this polarity difference. We have two case here.
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– When the (k+1)th membrane with label δ is the upper neighbor of the kth
membrane with label δ, then the former membrane activates according the
(15) rule.

– When there are ε labeled membranes between the (k + 1)th and the kth
membranes labeled δ, then according the (19) and (20) rules, the polarity
difference is propagated to the (k + 1)th membrane with label δ from the
kth, so it activates.

ut

Beside from the activation, one can see the process how given membranes
permute their lower neighbors on figures 3, 4 and 5. By permutation we mean
what we give in the descriptions of the mentioned figures: some membranes go
to the opposite subtree from their original subtree. We are going to show exactly
which membranes permute their lower membranes.

3.a . . .

[ ]+δ

[ ]+δ

. . .

3.b . . .

[ ]+δ

[ ]0δ(1)

. . .

[ ]0δ(2)

. . .

3.c . . .

[ ]+δ

[ ]+δ(1+)

. . .

[ ]−δ(1−)

. . .

[ ]+δ(2+)

. . .

[ ]−δ(2−)

. . .

3.d . . .

[ ]0δ

[ ]0δ(1+)

. . .

[ ]0δ(2+)

. . .

[ ]0δ

[ ]0δ(1−)

. . .

[ ]0δ(2−)

. . .

Fig. 3. On the (a) figure, one can see the initial state of two δ labeled membranes.
A polarity difference on the lower level splits the bottom δ labeled membrane as one
can see in figure (b). Another polarity difference in the bottom membranes splits the
activated δ labeled membranes in figure (c). Temporarily we denoted the number and
the polarity of the given membranes, so one can trace them. On figure (d) one can see
that the membranes with positive polarity go into the left subtree, while the membranes
with the negative polarity go into the right subtree. This only influences the δ(1−) and
δ(2+) membranes: they go to the opposite subtree from their original place.

Lemma 3. Only the (2i+1)th membranes with label δ (i > 1) and the membranes
with label εfi (i = 2, 4, . . . , n) perform permutation on non-elementary membrane
division.
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4.a . . .

[ ]0δ

[ ]0δ(1)

. . .

[ ]0δ(2)

. . .

4.b . . .

[ ]0δ

[ ]+δ(1+)

. . .

[ ]−δ(1−)

. . .

[ ]+δ(2+)

. . .

[ ]−δ(2−)

. . .

4.c . . .

[ ]+δ

[ ]0δ(1+)

. . .

[ ]0δ(2+)

. . .

[ ]−δ

[ ]0δ(1−)

. . .

[ ]0δ(2−)

. . .

4.d . . .

[ ]0δ

[ ]0δ(1+)

. . .

[ ]0δ(2+)

. . .

. . .

[ ]0δ

[ ]0δ(1−)

. . .

[ ]0δ(2−)

. . .

Fig. 4. On the (a) figure, we can see an activated δ labeled formation. We denote the
number and the polarity again for better traceability. Only one polarity difference in each
bottom δ labeled membrane can cause the whole structure to split in two, see figures (b),
(c) and (d). Notice, that the δ(1−) and δ(2+) membranes go to the opposite subtree from
their original subtree. Furthermore, notice that we arrived at a state where we duplicated
the state on figure (a).

Proof. Notice that permutation can occur only in the membranes where more than
two membranes are present with polarity difference. This can only happen in the
mentioned membranes. These membranes perform permutations as it can be seen
in figures 3, 4 and 5. ut

Lemma 4. When we apply the (4) rule for the kth time, in the same step, only
the membranes not higher in the membrane structure than the kth membrane with
label δ perform permutation.

Proof. The yet not activated membranes with δ label halt the propagation of the
polarity difference, so we should examine the membrane structure from the bottom
only until the last activated δ labeled membrane. Applying the (4) rule for the kth
time results in the activation of the kth δ labeled membrane according lemma 2, so
the membranes lower than this membrane perform their permutation. According
to this, we only have to deal with the actually activated membrane with δ label
and according lemma 3, we can concentrate on the (2i + 1)th membranes with
label δ (i > 1). But examining figure 3, one can see that these membranes perform
their permutation on activation. ut

Lemma 5. Applying the (4) rule in the tree structure when there is an ordered
sequence of interpretations in the leaves, at the beginning of the next step, after
the (5)-(6) rules are applied, the interpretations in the leaves will be ordered again.
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Proof. When applying the (4) rule for the kth time, according lemma 2 the kth
membrane with δ label activates and according lemma 4 only the membranes not
higher in the membrane structure than the kth membrane with label δ perform
permutation. According this, we are going to give a proof by induction on the
number of activated membranes with δ label.

• No permutation happens when the first membrane with δ label activates. At
the beginning of the next step, after the (5)-(6) rules are applied, there is two
leaves, having tn in the left leaf and fn in the right leaf, so the ordering property
holds.

• In general either the 2kth or the (2k + 1)th (k > 0) membrane with δ label
activates. For the former case see figure (6.a) and (6.b), for the later case see
figure (6.c) and (6.d).
ut

5.a . . .

[ ]0εfi

[ ]+δ

. . .

5.b . . .

[ ]0εfi

[ ]0δ(1)

. . .

[ ]0δ(2)

. . .

5.c . . .

[ ]0εfi

[ ]+δ(1+)

. . .

[ ]−δ(1−)

. . .

[ ]+δ(2+)

. . .

[ ]−δ(2−)

. . .

5.d . . .

[ ]+εfi

[ ]0δ(1+)

. . .

[ ]0δ(2+)

. . .

[ ]−εfi

[ ]0δ(1−)

. . .

[ ]0δ(2−)

. . .

5.e . . .

[ ]0εfi

[ ]0δ(1+)

. . .

[ ]0δ(2+)

. . .

. . .

[ ]0εfi

[ ]0δ(1−)

. . .

[ ]0δ(2−)

. . .

Fig. 5. This figure shows how a membrane with εfi permutes the lower neighbors. The
membrane with label δ activates in figure (a) and (b). Another polarity difference in
the lower neighbors split the membrane with εfi label. Notice that the δ(1−) and δ(2+)

membranes go to the opposite subtree from their original subtree.

Using the result of lemma 1 and lemma 5, we know that after the application of
the [e1]0h → [t1]+h [f1]−h rule, at the beginning of the next step, after the (5)-(6) rules
are applied, we will have all the possible interpretations in an ordered sequence in
the leaves of the membrane structure.
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6.a . . .

[ ]+δ(2k)

[ ]0εt

[ ]0εf

[ ]0δ(2k−1)l

. . .

[ ]0δ(2k−1)r

. . .

6.b . . .

[ ]+δ(2k)

[ ]0εt

[ ]0εf

[ ]+δ(2k−1)l

. . .

[ ]−δ(2k−1)l

. . .

[ ]+δ(2k−1)r

. . .

[ ]−δ(2k−1)r

. . .

6.c . . .

[ ]0εf

[ ]+δ(2k+1)

[ ]0δ(2k)l

. . .

[ ]0δ(2k)r

. . .

6.d . . .

[ ]0εf

[ ]+δ(2k+1)

[ ]+δ(2k)l

. . .

[ ]−δ(2k)l

. . .

[ ]+δ(2k)r

. . .

[ ]−δ(2k)r

. . .

Fig. 6. These figures serve as a part of the proof of lemma 5. We omitted the indexes
from the εt and εf labels for simplicity. In figure (a) we can see the state when the 2kth
membrane with δ label is the next one to be activated, and we have not applied the (4)
rule yet. In this case, the interpretations in the leaves of the membrane structure form
an ordered sequence. The first half of the ordered sequence is in the subtree under the
δ(2k−1)l labeled membrane, the second half of the ordered sequence is in the subtree under
the δ(2k−1)r labeled membrane. In figure (b), after the application of the (4) rule when the
membranes with δ(2k−1)l and δ(2k−1)r labels split, according the induction the positively
charged membrane with δ(2k−1)l label contains the first half of the interpretations from the
sequence, each one concatenated with [tn+1−2k]0h and the negatively charged membrane
with δ(2k−1)l label contains the first half of the interpretations from the sequence, each
one concatenated with [fn+1−2k]0h. The same holds for the membranes with δ(2k−1)r

labels, just with the second half of the sequence. The permutation performed by the
membrane with εf label exchanges the negatively charged δ(2k−1)l labeled membrane with
the positively charged δ(2k−1)r labeled membrane. No more permutations are performed
after this one in this step. So in the beginning of the next step, after the (5)-(6) rules
are applied, the interpretations in the leaves will form an ordered sequence. In figure
(c) we can see the state when the (2k + 1)th membrane with δ label is the next one
to be activated, and we have not applied the (4) rule yet. Here we can follow the same
reasoning as in the previous case.
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4.4 Evaluation

The evaluation stage starts when the d objects get into the b labeled membranes.
As we have mentioned, this happens the same time when the t1 and f1 enter the
b labeled membranes. The evaluation initiates with the use of the

[d]0b → d (22)

rule, which sends every object form a b labeled membrane to the upper neighbor.

For evaluating the clauses we introduce the

[tp]
0
Ci,j,k

→ tp if p ∈ {i, j, k} (23)

[fp]
0
Ci,j,k

→ fp if p ∈ {−i,−j,−k} (24)

rules where p = 1, 2, . . . , n and i, j, k ∈ {1, 2, . . . , n}∪ {−1,−2, . . . ,−n} satisfying

|i| < |j| < |k|. So for example if our clause membrane is labeled with C1,−2,3, then

[t1]0C1,−2,3
→ t1

[f2]0C1,−2,3
→ f2

[t3]0C1,−2,3
→ t3

will be the rules for this membrane. The upper bound on the number of the

possible clauses is 8
(
n
3

)
, and for every clause we introduce 3 rules, so an upper

bound on the number or rules introduced with this reasoning is 24
(
n
3

)
which is

still polynomial.

An interpretation dissolves a clause membrane if one of the truth values (rep-
resented by objects) in it evaluates the given clause to a true truth value. The
interpretations propagate upward, and they only get into the quantifier tree if
they satisfy the formula. For the ε labeled membranes, we introduce the

[ti]
0
εti
→ ti (25)

[fi]
0
εfi
→ fi (26)

rules for i = 2, 4, . . . , n and for the membranes with δ labels, the

[ti]
0
δ → ti (27)

[fi]
0
δ → fi (28)

rules where i = 1, . . . , n.
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Lemma 6. Membranes with εti and εfi label dissolve during the evaluation stage
if and only if ∃x1 . . . ∃xi−1∀xi . . . ∃xn−1∀xnφ(x1, . . . , xn) is true. (Here, the vari-
ables x1, . . . , xi−2 are existentially quantified, then existentially and universally
quantified variables come alternately.)

Proof. We are going to give a proof by induction.

⇒ Here we assume that the membranes with εti and εfi label dissolve during the
evaluation stage.

– Let i = n. In the membrane labeled εfn , there is x1 . . . xn−1tn in the leaf
on the left side of the branch and x1 . . . xn−1fn in the leaf on the right side
of the branch. (Here xp is either tp or fp.) Because the membranes with
εtn and εfn dissolve, we know that the interpretations passed through the
clause-chain which means that the interpretations satisfy φ. From this, we
get that ∃x1 . . . ∃xn−1∀xnφ(x1, . . . , xn) is true.

– Let i = n − 2. Because the membranes with εtn−2
and εfn−2

dissolve, we
know that ∃x1 . . . ∃xn−1∀xnφ(x1, . . . , xn) is true (because one have to dis-
solve membranes with εtn and εfn labels to achieve this) with tn−2 and
some xn−1, and it is also true with fn−2 and some (probably different)
xn−1, which means that ∃x1 . . . ∃xn−3∀xn−2∃xn−1∀xnφ(x1, . . . , xn) is true.

– In the general case, lets assume that the statement is true for the membranes
with εti and εfi labels. Because of this and the induction, we know that
∃x1 . . . ∃xi+1∀xi+2 . . . ∃xn−1∀xnφ(x1, . . . , xn) is true with ti and some xi+1,
and it is also true with fi and some (probably different) xi+1, which means
that ∃x1 . . . ∃xi−1∀xi . . . ∃xn−1∀xnφ(x1, . . . , xn) is true.

⇐ Here we assume that ∃x1 . . . ∃xi−1∀xi . . . ∃xn−1∀xnφ(x1, . . . , xn) is true.
– Lets assume that ∃x1 . . . ∃xn−1∀xnφ(x1, . . . , xn) is true. This means that

two clause-chains under the same membrane with εfn label dissolve, because
the interpretations in the leaves satisfy φ. Both interpretations get into εfn
which dissolves in the presence of fn. After this, εtn dissolves because of tn.

– Now lets assume that ∃x1 . . . ∃xn−3∀xn−2∃xn−1∀xnφ(x1, . . . , xn) is true.
This means, that ∃x1 . . . ∃xn−1∀xnφ(x1, . . . , xn) is true with tn−2 and some
xn−1, and it is also true with fn−2 and some (probably different) xn−1.
Because of the structure of the quantifier tree, this means that there exists
a membrane pair with εfn−2 and εtn−2 labels in the tree which dissolves.

– Lets assume that ∃x1 . . . ∃xi−1∀xi . . . ∃xn−1∀xnφ(x1, . . . , xn) is true. This
means that ∃x1 . . . ∃xi+1∀xi+2 . . . ∃xn−1∀xnφ(x1, . . . , xn) is true with ti and
some xi+1 and it is true with fi and some (probably different) xi+1. Because
of this, plus the induction and the structure of the quantifier tree, we get
that there exists a membrane pair with εfi and εti labels in the tree which
dissolves.

ut
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Lemma 7. The ∃x1∀x2 . . . ∃xn−1∀xnφ(x1, . . . , xn) formula (where n is even) is
true (resp. false) if and only if at least one d object (resp. no object) arrives to the
skin membrane from the quantifier tree part of the membrane structure.

Proof. We are going to use the results of lemma 6.

⇒ If the formula is true, then a membrane pair with εf2 and εt2 labels dissolves,
so d objects get into the skin membrane. If the formula is false, then no objects
get into the skin membrane, because no membrane pair with εf2 and εt2 labels
dissolve.

⇐ If d objects get into the skin membrane, then at least one membrane pair
with εf2 and εt2 labels dissolved, which means that the formula is true. If no
objects enter the skin membrane, then no membrane pair with εf2 and εt2
labels dissolved, so the formula is false.
ut

If the d objects of at least one interpretation get to the skin membrane, then
the formula is satisfiable and we stop. Otherwise, all of the interpretations halt
somewhere and the n object gets into the skin using the

[n]0c → n (29)

rule. We chose the length of the chain formed by the c membranes to be polynomial
and to be longer than n+2. This way, if the formula is satisfiable, then the n object
would get into the skin later than any other d object. Otherwise, it indicates the
unsatisfiability.

Examining the given rules in this section, one can see that the number of
objects and the number of rules in the system is polynomially bounded. Together
with the polynomial bound on the size of the initial membrane structure, we get
that the given solution is polynomially uniform.

5 Conclusions

We have shown that recognizer P systems with active membranes and no input
membrane, having three polarizations using only dissolution and division rules
are able to solve the Q3SAT decision problem in the restricted case when the
quantifiers alternate, which problem - even with the restriction - is PSPACE-
complete. The presented solution is polynomially uniform.
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Summary. P systems with active membranes is a well developed framework in the field
of Membrane Computing. Using evolution, communication, dissolution and division rules,
we know that some kinds of problems can be solved by those systems, but taking into
account which ingredients are used. All these rules are inspired by the behavior of living
cells, who “compute” with their proteins in order to obtain energy, create components,
send information to other cells, kill themselves (in a process called apoptosis), and so on.

But there are other behaviors not captured in this framework. As mitosis is simu-
lated by division rules (for elementary and non-elementary membranes), meiosis, that is,
membrane fission inspiration is captured in separation rules. It differs from the first in the
sense of duplication of the objects (that is, in division rules, we duplicate the objects not
involved in the rule, meanwhile in separation rules we divide the content of the original
membrane into the new membranes created).

Evolution rules simulate the transformation of components in membranes, but it is
well known that elements interact with another ones in order to obtain new components.
Cooperation in evolution rules is considered. More specifically, minimal cooperation (in
the sense that only two objects can interact in order to create one or two objects).

Key words: Membrane Computing, Active membranes, Minimal cooperation,
Mitosis, Computational Complexity, The P versus NP problem.

1 Introduction

Membrane Computing is a distributed parallel computing paradigm inspired by the
way the living cells process chemical substances, energy and information. The pro-
cessor units in the basic model are abstractions of biological membranes, selectively
permeable barriers which give cells their outer boundaries (plasma membranes)
and their inner compartments (organelles). They control the flow of information
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between cells and the movement of substances into and out of cells, and they
are also involved in the capture and release of energy. Biological membranes play
an active part in the life of the cell. In fact, the passing of a chemical substance
through a biological membrane is often implemented by an interaction between the
membrane itself and the protein channels present in it. During this interaction,
both the chemical substance and the membrane can be modified, at least locally.

Mitosis is a process by which two or more cells are produced/generated from
one cell that could be considered as the “mother”. Several cell division inspired
mechanisms were introduced in Membrane Computing. Specifically, P systems with
active membranes [9] incorporates the mitosis based mechanisms by means of
membrane division rules. By applying this kind of rules, under the influence of the
object triggering it, the membrane is divided into two membranes and that object is
replaced in the two new ones by possibly new objects, while the remaining objects
are duplicated in both newly created membranes. These models are universal (they
are equivalent in power to deterministic Turing machines) and they have the ability
to provide efficient solutions to computationally hard problems, by making use of
an exponential workspace created in a polynomial time (often, in linear time).
Moreover, PSPACE-complete problems can be efficiently solved by families of
P systems with active membranes which use division for elementary and non-
elementary membranes. This paper deals with P systems with active membranes
where electrical charges are removed.

The paper is organized as follows. Next section briefly describes some prelimi-
naries in order to make the work self-contained. In Section 3, syntax and semantics
of polarizationless P systems with active membranes by using membrane division
rules or membrane separation rules are introduced, and minimal cooperation in
object evolution rules is considered. Definition of Recognizer membrane systems
is recalled in Section 4, as a framework to provide efficient solutions to decision
problems. The computational efficiency of polarizationless P systems with active
membranes, division rules, minimal cooperation and without dissolution rules is
established in Section 5 by providing a uniform polynomial-time solution to SAT

problem. A formal verification of this result is presented in Section 6. Next section
is dedicated to show the limits of the computational efficiency of the polarization-
less P systems with active membranes, separation rules and minimal cooperation
in object evolution rules. The paper ends with some open problems and concluding
remarks.

2 Preliminaries

An alphabet Γ is a non-empty set and their elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto Γ . The number n is called the length of the string u and it
is denoted by |u|, that is, the length of a string is the number of occurrences of
symbols that it contains. The empty string (with length 0) is denoted by λ. The
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set of all strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a
subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f)
is defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively,
empty) if its support is a finite (respectively, empty) set. We denote by ∅ the
empty multiset and we denote by Mf (Γ ) the set of all finite multisets over Γ .

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x) for
each x ∈ Γ . We say that m1 is contained in m2 and we denote it by m1 ⊆ m2, if
f1(x) ≤ f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted by
m1 \m2, is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and
g(x) = 0 otherwise.

Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected
graph. A rooted tree is a tree in which one of the vertices (called the root of the
tree) is distinguished from the others. In a rooted tree the concepts of ascendants
and descendants are defined in a usual way. Given a node x (different from the
root), if the last edge on the (unique) path from the root of the tree to the node
x is {x, y} (in this case, x 6= y), then y is the parent of node x and x is a child
of node y. The root is the only node in the tree with no parent. A node with no
children is called a leaf (see [3] for details).

3 Polarizationless P Systems with Active Membranes

Let us briefly recall some definitions of P systems models that will be used in the
paper (see [12] for details).

A basic transition P system is a membrane system whose rules are of the follow-
ing forms: evolution, communication, and dissolution. In these systems the size of
the membrane structure does not increase, but an exponential workspace (in terms
of number of objects) can be constructed in linear time, e.g. via evolution rules of
the type [ a→ a2 ]h. Nevertheless, such capability is not enough to efficiently solve
NP–complete problems, unless P = NP (see [6] for details).

Replication is one of the most important functions of a cell and, in ideal cir-
cumstances, a cell produces two identical copies by division. Bearing in mind
that the reactions which take place in a cell are related to membranes, divi-
sion rules for elementary and non-elementary membranes are considered in the
so-called P systems with active membranes. Such variant was first introduced by
Gh. Păun [10] and it has associated electrical charges with membranes but the
rules are non-cooperative and there are not priorities. Nevertheless, the class of
all problems solvable in polynomial time and in a uniform way by means of fam-
ilies of P systems with active membranes which use division for elementary and
non-elementary membranes contains class PSPACE and it is contained in class
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EXP [16]. Thus, in order to provide efficient solutions to computationally hard
problems, this framework seems to be too powerful from the computational com-
plexity point of view.

In this paper, electrical charges are removed from P systems with active mem-
branes. Two different ways of producing an exponential number of membranes
in linear time will be considered: division and separation rules (abstractions of
mitosis and membrane fission processes, respectively).

3.1 Polarizationless P system with active membranes: Syntax

Definition 1. A polarizationless P system with active membranes and membrane
division of degree q ≥ 2 is a tuple Π = (Γ,H, µ,M1, . . . ,Mq,R, iout), where

• Γ is a finite alphabet whose elements are called objects;
• H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels;
• µ is a labelled rooted tree (called membrane structure) consisting of q nodes

injectively labeled by elements of H;
• M1, . . . ,Mq are finite multisets over Γ ;
• R is a finite set of rules, of the following forms:

(a0) [ a→ u ]h for h ∈ H, a ∈ Γ , u ∈Mf (Γ ) (object evolution rules).

(b0) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ and h is not the label of the root of µ
(send–in communication rules).

(c0) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ (send–out communication rules).

(d0) [ a ]h → b for h ∈ H \ {iout}, a, b ∈ Γ and h is not the label of the root of µ
(dissolution rules).

(e0) [ a ]h → [ b ]h [ c ]h for h ∈ H \ {iout}, a, b, c ∈ Γ and h is not the label of the
root of µ (division rules for elementary membranes).

(f0) [ [ ]h0
[ ]h1

]h → [ [ ]h0
]h [ [ ]h1

]h, where h ∈ H \ {iout} is not the label of the
root of µ and h0, h1 ∈ H (division rules for non–elementary membranes).

• iout ∈ H ∪ {env}, where env /∈ H and in the case iout ∈ H, iout is the label of
a leaf of µ.

Definition 2. A polarizationless P system with active membranes and membrane
separation of degree q ≥ 2 is a tuple Π = (Γ, Γ0, Γ1, H,H0, H1, µ,M1, . . . ,Mq,R, iout),
where

• Γ is a finite alphabet whose elements are called objects;
• H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels;
• {Γ0, Γ1} is a partition of Γ and {H0, H1} is a partition of H;
• µ is a labelled rooted tree (called membrane structure) consisting of q nodes

injectively labeled by elements of H;
• M1, . . . ,Mq are finite multisets over Γ ;
• R is a finite set of rules, of the following forms:

(a0) [ a→ u ]h for h ∈ H, a ∈ Γ , u ∈Mf (Γ ) (object evolution rules).
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(b0) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ and h is not the label of the root of µ
(send–in communication rules).

(c0) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ (send–out communication rules).

(d0) [ a ]h → b for h ∈ H \ {iout}, a, b ∈ Γ and h is not the label of the root of µ
(dissolution rules).

(e0) [ a ]h → [Γ0 ]h [Γ1 ]h for h ∈ H \ {iout}, a ∈ Γ and h is not the label of the
root of µ (separation rules for elementary membranes).

(f0) [ [ ]h0 [ ]h1 ]h → [Γ0 [ ]h0 ]h [Γ1 [ ]h1 ]h, where h ∈ H \ {iout} is not the label
of the root of µ, h0 ∈ H0 and h1 ∈ H1 (separation rules for non–elementary
membranes).

• iout ∈ H ∪ {env}, where env /∈ H and in the case iout ∈ H, iout is the label of
a leaf of µ.

A polarizationless P system with active membranes of degree q ≥ 2, can be
viewed as a set of q membranes, labelled by elements of H, arranged in a hierar-
chical structure µ given by a rooted tree whose root is called the skin membrane,
such that: (a)M1, . . . ,Mq represent the finite multisets of objects initially placed
in the q membranes of the system; (b) R is a finite set of rules over Γ associated
with the labels; and (c) iout ∈ H ∪ {env} indicates the output region. We use the
term region i to refer to membrane i in the case i ∈ H and to refer to the “envi-
ronment” of the system in the case i = env. The leaves of µ are called elementary
membranes, otherwise, the membrane is said to be non-elementary.

3.2 Polarizationless P system with active membranes: Semantics

An instantaneous description or a configuration Ct at an instant t of a polariza-
tionless P system with active membranes is described by the following elements:
(a) the membrane structure at instant t, and (b) all multisets of objects over Γ
associated with all the membranes present in the system at that moment.

An object evolution rule [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ Mf (Γ ) is applicable
to a configuration Ct at an instant t, if there exists a membrane labelled by h in
Ct which contains object a. When applying such a rule, object a is consumed and
objects from multiset u are produced in that membrane.

A send-in communication rule a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ is applicable to
a configuration Ct at an instant t, if there exists a membrane labelled by h in Ct such
that h is not the label of the root of µ and its parent membrane contains object a.
When applying such a rule, object a is consumed from the parent membrane and
object b is produced in the corresponding membrane h.

A send-out communication rule [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ is applicable
to a configuration Ct at an instant t, if there exists a membrane labelled by h in Ct
such that it contains object a. When applying such a rule, object a is consumed
from such membrane h and object b is produced in the parent of such membrane.

A dissolution rule [ a ]h → b for h ∈ H \ {iout}, a, b ∈ Γ is applicable to
a configuration Ct at an instant t, if there exists a membrane labelled by h in
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Ct, different from the skin membrane and the output region, such that it contains
object a. When applying such a rule, object a is consumed, membrane h is dissolved
and its objects are sent to the parent (or the first ancestor that has not been
dissolved).

A division rule [ a ]h → [ b ]h[ c ]h for h ∈ H \ {iout}, a, b, c ∈ Γ , is applicable to
a configuration Ct at an instant t, if there exists an elementary membrane labelled
by h in Ct, different from the skin membrane and the output region, such that it
contains object a. When applying a division rule [a]h → [ b ]h [ c ]h to a membrane
labelled by h in a configuration Ct, under the influence of object a, the membrane
with label h is divided into two membranes with the same label; in the first copy,
object a is replaced by object b, in the second one, object a is replaced by object
c; all the other objects are replicated and copies of them are placed in the two new
membranes.

A division rule [ [ ]h0
[ ]h1

]h → [ [ ]h0
]h [ [ ]h1

]h is applicable to a configuration
Ct at an instant t, if there exists a membrane labelled by h in Ct, different from
the skin membrane and the output region, which contains a membrane labelled
by h0 and another membrane labelled by h1. When applying such a division rule
to a membrane labelled by h in a configuration Ct, the membrane with label h is
divided into two membranes with the same label; the first copy inherits membrane
h0 with its contents, and the second copy inherits membrane h1 with its contents.
Besides, if the membrane labelled by h contains more membranes other than those
with the labels h0, h1, then such membranes are duplicated so that they become
part of the contents of both new copies of the membrane h.

A separation rule [ a ]h → [ Γ0 ]h [ Γ1 ]h for h ∈ H, a ∈ Γ , is applicable to a
configuration Ct at an instant t, if there exists a membrane labelled by h in Ct,
different from the skin membrane and the output region, such that it contains ob-
ject a. When applying such a rule, the membrane is separated into two membranes
with the same label; at the same time, object a is consumed and the multiset of
objects contained in membrane h gets distributed: the objects from Γ0 are placed
in the first membrane, those from Γ1 are placed in the second membrane.

A separation rule [ [ ]h0
[ ]h1

]h → [ Γ0 [ ]h0
]h [ Γ1 [ ]h1

]h, where h, h0, h1 are
labels such that h0 ∈ H0 and h1 ∈ H1, is applicable to a configuration Ct at an
instant t, if there exists a membrane labelled by h in Ct, different from the skin
membrane and the output region, such that it contains a membrane labelled by
h0 and another membrane labelled by h1. When applying such a separation rule
to a membrane labelled by h in a configuration Ct, that membrane is separated
into two membranes with the same label, in such a way that the contents (multiset
of objects and inner membranes) are distributed as follows: The first membrane
receives the multiset of objects from Γ0, and all inner membranes whose label
belongs to H0; and the second membrane receives the multiset of objects from Γ1,
and all inner membranes whose label belongs to H1.

In polarizationless P systems with active membranes, the rules are applied
according to the following principles:
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• The rules associated with membranes labelled with h are used for all copies of
this membrane.

• At one transition step, one object can be used by only one rule (chosen in a
non–deterministic way).

• At one transition step, a membrane can be the subject of only one rule of types
(b0)–(f0), and then it is applied at most once.

• Object evolution rules can be simultaneously applied to a membrane with one
rule of types (b0)–(f0). Object evolution rules are applied in a maximally par-
allel manner.

• If at the same time a membrane labelled with h is divided by a rule of type
(e0) or (f0) and there are objects in this membrane which evolve by means of
rules of type (a0), then we suppose that first the evolution rules of type (a0)
are used, changing the objects, and then the division (or the separation) is
produced. Of course, this process takes only one transition step.

• The skin membrane and the output membrane can never get divided, separated,
nor dissolved.

3.3 Polarizationless P systems with active membranes and minimal
cooperation in object evolution rules

Next, we incorporate cooperation in object evolution rules of polarizationless P sys-
tems with active membranes. In this paper, we use minimal cooperation in the
following sense: the left-hand side of each object evolution rules has at most two
objects, and the length of the right-hand side cannot be greater than the length
of the left-hand side. Consequently, in contrast with the usual object evolution
rules in P systems with active membranes, by applying these rules with minimal
cooperation the number of objects of the system does not increase.

Definition 3. A polarizationless P system with active membranes, division or
separation rules and minimal cooperation in object evolution rules is a polariza-
tionless P system with active membranes and division or separation rules such that
the object evolution rules are of the following form:

[ a→ c ]h, [ a b→ c ]h, [ a b→ c d ]h

for h ∈ H and a, b, c, d ∈ Γ .

The semantics of these variants are analogous to the semantics of polarization-
less P systems with active membranes.

4 Recognizer membrane systems

In what follows, a membrane system denotes a P system of any of the different
variants considered in the previous section.
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Definition 4. We say that a membrane system Π is a recognizer membrane sys-
tem if the following holds:

1. The working alphabet Γ of Π has two distinguished objects yes and no.
2. Σ is an (input) alphabet strictly contained in Γ .
3. The initial multisets M1, . . . ,Mq of Π are finite multisets over Γ \Σ.
4. There exists a distinguished membrane labelled by iin called the input mem-

brane.
5. The output region iout is the environment.
6. All computations halt.
7. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

For each finite multiset m over the input alphabet Σ, the computation of the
system Π with input m starts from the configuration obtained by adding the input
multiset m to the contents of the input membrane, in the initial configuration of
Π. We denote it by Π +m. Therefore, we have an initial configuration associated
with each input multiset m (over the input alphabet Σ) in this kind of systems.

We use the following notations:

• DAM0(γ, δ) where γ ∈ {−d,+d} and δ ∈ {−n,+n}, is the class of all recog-
nizer polarizationless P systems with active membranes and division rules.

• DAM0
mc(γ, δ) where γ ∈ {−d,+d} and δ ∈ {−n,+n}, is the class of all recog-

nizer polarizationless P systems with active membranes, minimal cooperation
in object evolution rules and division rules.

• SAM0(γ, δ) where γ ∈ {−d,+d} and δ ∈ {−n,+n}, is the class of all recog-
nizer polarizationless P systems with active membranes and separation rules.

• SAM0
mc(γ, δ) where γ ∈ {−d,+d} and δ ∈ {−n,+n}, is the class of all recog-

nizer polarizationless P systems with active membranes, minimal cooperation
in object evolution rules and separation rules.

The meaning of parameters γ and δ is the following:

• if γ = +d then dissolution rules are permitted.
• if γ = −d then dissolution rules are forbidden.
• if δ = +n then division rules for elementary and non–elementary membranes

are permitted.
• if δ = −n then division rules only for elementary membranes are permitted.

Let us notice that standard notation in the literature referring to polarization-
less P systems with active membranes (AM0(γ, δ)) corresponds, within this new
notation, to the class DAM0(γ, δ).
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4.1 Polynomial complexity classes of recognizer membrane systems

Next, let us recall the concept of efficient solvability by means of a family of
recognizer membrane systems (see [13] for more details).

Definition 5. Let R be a class of recognizer membrane systems. We say that a
decision problem X is solvable in polynomial time by a family Π = {Π(n) | n ∈ N}
of systems from R, in a uniform way, denoted by X ∈ PMCR, if the following
hold:

• the family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N;

• there exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s), that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps;

– the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) + cod(u), then θX(u) = 1;

– the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

The polynomial complexity class PMCR is closed under polynomial-time reduc-
tion and under complement [14].

4.2 Known results on polarizationless P systems with active
membranes

In previous works, membrane systems have been studied in terms of their compu-
tational efficiency and different borderlines between efficiency and non-efficiency
have been obtained. Each of them provides attractive characterizations of the
P 6= NP conjecture.

In [5], by using the dependency graph technique and the tractability of the
reachability problem, the following result has been proved.

Theorem 1. P = PMCDAM0(−d,+n)

Thus, only problems in class P can be solved in polynomial time and in a
uniform way by means of families of polarizationless P systems with active mem-
branes making use of division rules for elementary and non-elementary membranes
and not using dissolution rules.
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In [2], a family of polarizationless P systems that make use of dissolution and
division rules for elementary and non-elementary membranes solving the QSAT

(quantified satisfiability) problem in polynomial time and in a uniform way was
proposed.

Theorem 2. QSAT ∈ PMCDAM0(+d,+n)

Therefore, the following holds.

Corollary 1. PSPACE ⊆ PMCDAM0(+d,+n)

In [1], a family Π of P systems from DAM0(+d,+n) solving SAT problem in poly-
nomial time and in a semi-uniform way (each P system of the family is associated
with only one instance of the problem) was proposed. Recall that SAT is one of the
most well known NP-complete problems [4]. Next, based on the solution of QSAT
problem provided in [2], a family of P systems from DAM0(+d,+n) solving SAT

problem in polynomial time and in a uniform way is presented.

Theorem 3. SAT ∈ PMCDAM0(+d,+n)

Proof. Let ϕ be a propositional formula in conjunctive normal form such that:

• ϕ = C1 ∧ . . . ∧ Cp

• Ci = y1 ∨ . . . ∨ yli , for 1 ≤ i ≤ p, yj ∈ {xk, xk | 1 ≤ k ≤ n} being n the number
of variables occurring in the formula.

We construct Π = (Γ,Σ,H, µ,M0,M1, . . . ,M2n+p+3,R, iin, iout) that will solve
all instances of formulas with n variables and p clauses, provided that the appro-
priate input multiset cod(ϕ) = {vi,j |xi ∈ Cj} ∪ {v′i,j |¬xi ∈ Cj} is supplied to the
system (through the corresponding input membrane):

• Γ = Σ ∪ {di|1 ≤ i ≤ 7n + 2p + 2} ∪ {fi, ti, ai|1 ≤ i ≤ n} ∪ {ci|1 ≤ i ≤
p} ∪ {ui,j , u′i,j |1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪ {t′, f ′, z, z′, T, F, yes, no}

• Σ = {vi,j , v′i,j |1 ≤ i ≤ n, 1 ≤ j ≤ p}
• H = {0, 1, . . . , 2n+ p+ 3}
• [ [ [ . . . [ [ ]0 ]1 . . . ]2n+p+1]2n+p+2]2n+p+3

• M0 =M2n+p+2 = d0,Mi = ∅, i /∈ {0, 2n+ p+ 2}
• iin = 0, iout = env

Rules are distributed as follow:

• Generation Stage

[d2i → ai+1 d2i+1]0
[d2i+1 → d2i+2]0

}
1 ≤ i < n

[ai]0 → [ti]0[fi]0, 1 ≤ i ≤ n
[[ ]i[ ]i]i+1 → [[ ]i]i+1[[ ]i]i+1, 0 ≤ i < 2n+ p
[d2n+i → d2n+i+1]0, 0 ≤ i ≤ 2n+ p
[d4n+p+1]0 → T
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[di → di+1]2n+p+2, 0 ≤ i ≤ 7n+ 2p+ 1

In 4n+ p+ 1 steps, we expand the membrane structure in a tree-like fashion,
preparing for the checking stage. First, we use 2n steps to generate 2n copies
of membrane 0, each one of them encoding a different truth assignment. Then,
some more non-elementary divisions take place in the following 2n+p+1 steps,
in such a way that we get 2n copies of a linear nested structure composed by
membranes j, for 0 ≤ j ≤ 2n+ p+ 1.
After 4n+p+ 1 steps, all the contents of membranes labelled by 0 are released
into their corresponding parent membranes (labelled by 1).

• Assignments Stage

[ti → t′]2i−1
[t′]2i−1 → z
[fi]2i−1 → f ′

[f ′ → z]2i
[z]2i → z′

 1 ≤ i ≤ n

[vi,j → ui,j ]2i−1
[v′i,j → u′i,j ]2i−1

}
1 ≤ i ≤ n, 1 ≤ j ≤ p

[u′i,j → λ]2i−1
[ui,j → cj ]2i−1
[ui,j → λ]2i
[u′i,j → cj ]2i

 1 ≤ i ≤ n, 1 ≤ j ≤ p

We have to see whether each truth assignment makes true ϕ or not. The formula
ϕ has been satisfied if and only if objects ci, with all i ∈ {1, . . . , n} have been
created. After 3n steps, all membranes labelled by j with 0 ≤ j ≤ 2n have been
dissolved, and their contents are gathered into membranes labelled by 2n+ 1.

• Checking Stage

[ci]2n+i → z′, 1 ≤ i ≤ p
[T ]2n+p+1 → T

That means, if the truth assignment satisfies all clauses of the formula ϕ, then
we have that ϕ is satisfied, so we can proceed to the output stage.

• Output Stage

[d7n+2p+2]2n+p+2 → F
[T ]2n+p+2 → T
[T → T ′]2n+p+3

[T ′]2n+p+3 → yes[ ]2n+p+3

[F ]2n+p+3 → no[ ]2n+p+3
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After 7n+ 2p+ 4 steps, we obtain an object yes or an object no, but not both,
in the environment, and that is the solution for the SAT instance that is being
analyzed.

�

Let us notice that from Theorem 1 and Corollary 1 we have:

• P = PMCDAM0(−d,+n).

• PSPACE ⊆ PMCDAM0(+d,+n).

Therefore, in the framework of polarizationless P systems with active membranes
making use of division rules for elementary and non-elementary membranes, disso-
lution rules provide a frontier of the efficiency, that is, in that framework passing
from forbidden to allowed dissolution rules amounts to passing from non–efficiency
to efficiency, assuming that P 6= PSPACE.

At the beginning of 2005, Gh. Păun proposed a problem (problem F from [11])
which can be formally formulated as follows:

“Is the complexity class PMCDAM0(+d,−n) equal to P?”

The so-called Păun conjecture is PMCDAM0(+d,−n) = P, and until now it has
not been proved. Nevertheless, in [5] a partial affirmative answer was given when
such membrane systems make no use of dissolution rules (PMCDAM0(−d,+n) =
P), and assuming that P 6= NP, a partial negative answer was given when division
rules both for elementary and non-elementary membranes are permitted in such
membrane systems (NP ∪ co−NP ⊆ PMCDAM0(+d,+n)).

5 On efficiency of membrane systems from DAM0
mc(−d,−n)

Dissolution rules play a relevant role in the efficiency of polarizationless P sys-
tems which make use of division rules both for elementary and non-elementary
membranes. In this section, we show that the syntactical ingredient of minimal
cooperation in polarizationless P systems with active membranes (without disso-
lution and allowing only division for elementary membranes) is enough to solve
computationally hard problems in an efficient way. That is, in the previous frame-
work efficiency is reached by trading minimal cooperation for dissolution.

Next, a polynomial time solution to SAT problem, by a family Π = {Π(t) | t ∈
N} of recognizer P systems from DAM0

mc(−d,−n) is provided. Each system Π(t)
will process all Boolean formulas ϕ in conjunctive normal form with n variables and
p clauses, where t = 〈n, p〉, provided that the appropriate input multiset cod(ϕ) is
supplied to the system (through the corresponding input membrane).

Let us recall that the polynomial–time computable function (the pair function)
〈n, p〉 = ((n + p)(n + p + 1)/2) + n is a primitive recursive and bijective function
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from N×N to N. Then, for each n, p ∈ N, we consider the recognizer P system of
degree 2 from DAM0

mc(−d,−n)

Π(〈n, p〉) = (Γ,Σ,H, µ,M1,M2,R, iin, iout)

defined as follows:

(1) Working alphabet:
Γ = Σ ∪ {yes , no , α , β′ , β′′ , γ , γ′ , γ′′ , #} ∪ {ai,k | 1 ≤ i ≤ n, 1 ≤ k ≤ i}∪

{βk | 0 ≤ k ≤ n+ 2p} ∪ {ti,k, fi,k | 1 ≤ i ≤ n− 1, i ≤ k ≤ n− 1}∪
{Ti,j , Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪ {cj,k | 1 ≤ j ≤ p− 1, j ≤ k ≤ p− 1}∪
{cj | 1 ≤ j ≤ p} ∪ {dj | 2 ≤ j ≤ p}

where the input alphabet is Σ = {xi,j , xi,j , x∗i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.
(2) H = {1, 2}.
(3) Membrane structure: µ = [ [ ]2]1, that is, µ = (V,E) where V = {1, 2} and

E = {{1, 2}}.
(4) Initial multisets: M1 = {α, β0} and M2 = {a1,1, · · · , an,1}.
(5)The set R of rules consists of the following rules:

1.1 Rules to produce an affirmative answer.

[ α γ −→ γ′ ]1

[ γ′ −→ γ′′ ]1

[ γ′′ ]1 −→ yes [ ]1
1.2 Rules to produce a negative answer.

[ βk −→ βk+1 ]1 , for 0 ≤ k ≤ n+ 2p− 1

[ βn+2p −→ β′ ]1

[ α β′ −→ β′′ ]1

[ β′′ ]1 −→ no [ ]1

2.1 Rules to generate truth assignments.

[ ai,i ]2 −→ [ ti,i ]2 [ fi,i ]2 , for 1 ≤ i ≤ n− 1

[ak,i −→ ak,i+1 ]2 , for 2 ≤ k ≤ n, 1 ≤ i ≤ k − 1

[ an,n ]2 −→ [ Tn,1 ]2 [ Fn,1 ]2

2.2 Rules of synchronization.

[ti,k −→ ti,k+1 ]2
[fi,k −→ fi,k+1 ]2

}
1 ≤ i ≤ n− 2, i ≤ k ≤ n− 2

[ti,n−1 −→ Ti,1 ]2
[fi,n−1 −→ Fi,1 ]2

}
1 ≤ i ≤ n− 1
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2.3 Rules to check clauses.

[Ti,j xi,j −→ Ti,j+1 cj,j ]2
[Ti,j xi,j −→ Ti,j+1 ]2
[Ti,j x

∗
i,j −→ Ti,j+1 ]2

[Fi,j xi,j −→ Fi,j+1 ]2
[Fi,j xi,j −→ Fi,j+1 cj,j ]2
[Fi,j x

∗
i,j −→ Fi,j+1 ]2


1 ≤ i ≤ n, 1 ≤ j ≤ p− 1

[Ti,p xi,p −→ cp ]2
[Ti,p xi,p −→ # ]2
[Ti,p x

∗
i,p −→ # ]2

[Fi,p xi,p −→ # ]2
[Fi,p xi,p −→ cp ]2
[Fi,p x

∗
i,p −→ # ]2


1 ≤ i ≤ n

[ci,j −→ ci,j+1 ]2 1 ≤ i ≤ j ≤ p− 2

[ci,p−1 −→ ci ]2 1 ≤ i ≤ p− 1

2.4 Rules to detect if a truth assignment makes true the input formula.

[c1 c2 −→ d2 ]2

[dj cj+1 −→ dj+1 ]2 , for 1 ≤ j ≤ p− 1

[ dp ]2 −→ γ [ ]2

(6)The input membrane is membrane labelled by 2 (iin = 2) and the output region
is the environment (iout = env).

Let us notice that for each t ∈ N, the system Π(t) is deterministic.

6 A formal verification

Let ϕ = C1 ∧ · · · ∧ Cp an instance of the SAT problem consisting of p clauses
Cj = lj,1 ∨ · · · ∨ lj,rj , 1 ≤ j ≤ p, where V ar(ϕ) = {x1, · · · , xn}, and lj,k ∈
{xi,¬xi | 1 ≤ i ≤ n}, 1 ≤ j ≤ p, 1 ≤ k ≤ rj . Let us assume that the number of
variables, n, and the number of clauses, p, of ϕ, are greater or equal to 2.

We consider the polynomial encoding (cod, s) from SAT in Π defined as follows:
for each ϕ ∈ ISAT with n variables and p clauses, s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j | xi ∈ Cj} ∪ {xi,j | ¬xi ∈ Cj} ∪ {x∗i,j | xi /∈ Cj ,¬xi /∈ Cj}

For instance, the formula ϕ = (x1 + x2 + x3)(x2 + x4)(x2 + x3 + x4) is encoded as
follows:

cod(ϕ) =

x1,1 x2,1 x3,1 x
∗
4,1

x∗1,2 x2,2 x
∗
3,2 x4,2

x∗1,3 x2,3 x3,3 x4,3
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That is, j-th row (1 ≤ j ≤ p) represents the j-th clause Cj of ϕ. We denote
(cod(ϕ))pj the code of the clauses Cj , . . . , Cp, that is, the expression containing
from j-th row to p-th row. For instance,

cod(ϕ)p2 =

(
x∗1,2 x2,2 x

∗
3,2 x4,2

x∗1,3 x2,3 x3,3 x4,3

)
The Boolean formula ϕ will be processed by the system Π(s(ϕ)) + cod(ϕ).

Next, we informally describe how that system works.
The solution proposed follows a brute force algorithm in the framework of

recognizer P systems with active membranes, minimal cooperation in object evo-
lution rules and division rules only for elementary membranes, and it consists of
the following stages:

• Generation stage: using division rules, all truth assignments for the variables
{x1, . . . , xn} associated with ϕ are produced. Specifically, 2n membranes la-
belled by 2 are generated, each of them encoding a truth assignment. This
stage spends n computation steps exactly, being n the number of variables of
ϕ.

• First Checking stage: checking whether or not each clause of the input formula
ϕ is satisfied by the truth assignments generated in the previous stage, encoded
by each membrane labelled by 2. This stage takes exactly p steps, being p the
number of clauses of ϕ.

• Second Checking stage: checking whether or not all clauses of the input formula
ϕ are satisfied by some truth assignment encoded by a membrane labelled by
2. This stage takes exactly p− 1 steps, being p the number of clauses of ϕ.

• Output stage: the system sends to the environment the right answer according
to the results of the previous stage. This stage takes exactly 4 steps.

6.1 Generation stage

At this stage, all truth assignments for the variables associated with the Boolean
formula ϕ(x1, . . . , xn) are going to be generated, by applying division rules from
2.1 in membranes labelled by 2. In such manner that in the i–th step (1 ≤ i ≤ n−1)
of this stage, division rule associated with object ai,i is triggered, producing objects
ti,1, fi,1 in the new created membranes labelled by 2. In the last step of this stage
the objects produced are Tn,1 and Fn,1, respectively.

Proposition 1. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each i (1 ≤ i ≤ n− 1) at configuration Ci we have the following:

– Ci(1) = {α , βi}.
– There are 2i membranes labelled by 2 such that each of them contains

? the input multiset cod(ϕ);
? objects ai+1,i+1, . . . , an,i+1; and
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? a different subset {r1,i, . . . , ri,i}, being r ∈ {t , f}.
(b) Cn(1) = {α , βn}, and in Cn(2) there are 2n membranes labelled by 2 such that

each of them contains the input multiset cod(ϕ), as well as a different subset
{R1,1, . . . , Rn,1}, being R ∈ {T, F}.

Proof. (a) is going to be demonstrated by induction on i.

– The base case i = 1 is trivial because at the initial configuration C0 we have:
C0(1) = {α , β0} and there exists a single membrane labelled by 2 containing
cod(ϕ) and the set {a1,1, . . . , an,1}. Then, configuration C0 yields configuration
C1 by applying the rules:

[ a1,1 ]2 → [ t1,1 ]2 [ f1,1 ]2
[ ai,1 → ai,2 ]2, for 2 ≤ i ≤ n
[ β0 → β1 ]1

Thus, C1(1) = {α , β1} and in C1 there exist two membranes labelled by 2
such that their contents is cod(ϕ) and the set {a2,2, . . . , an,2}. Also, one of
those membranes contains object t1,1 and the other one object f1,1. Hence, the
result holds for i = 1.

– Supposing that, by induction, result is true for i (1 ≤ i < n− 1); that is,
– Ci(1) = {α , βi}.

– There are 2i membranes labelled by 2 such that each of them contains
? the input multiset cod(ϕ);
? objects ai+1,i+1, . . . , an,i+1; and
? a different subset {r1,i, . . . , ri,i}, being r ∈ {t , f}.

Then, configuration Ci yields configuration Ci+1 by applying the rules:
[ tk,i → tk,i+1 ]2 , for 1 ≤ k ≤ i
[ ai+1,i+1 ]2 → [ ti+1,i+1 ]2 [ fi+1,i+1 ]2
[ ak,i+1 → ak,i+2 ]2 , for i+ 2 ≤ k ≤ n
[ βi → βi+1 ]1

Therefore, the following holds:
– Ci+1(1) = {α , βi+1}.
– There are 2i+1 membranes labelled by 2 such that each of them contains

? the input multiset cod(ϕ);
? objects ai+2,i+2, . . . , an,i+2; and
? a different subset {r1,i+1, . . . , ri+1,i+1}, being r ∈ {t , f}.

Hence, the result holds for i+ 1.

In order to prove (b) it is enough to notice that, on the one hand, from (a) con-
figuration Cn−1 holds:

– Cn−1(1) = {α , βn−1}.
– There are 2n−1 membranes labelled by 2 such that each of them contains

? the input multiset cod(ϕ);
? object an,n; and
? a different subset {r1,n−1, . . . , rn−1,n−1}, being r ∈ {t , f}.
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On the other hand, configuration Cn−1 yields configuration Cn by applying the
rules:

[ tk,n−1 → Tk,1 ]2 , for 1 ≤ k ≤ n− 1
[ an,n ]2 → [ Tn,1 ]2 [ Fn,1 ]2
[ βn−1 → βn ]1

Then, we have Cn(1) = {α , βn}, and in Cn(2) there are 2n membranes labelled
by 2 such that each of them contains the input multiset cod(ϕ), as well as a different
subset {R1,1, . . . , Rn,1}, being R ∈ {T, F}.

�

6.2 First Checking stage

At this stage, we try to determine the clauses satisfied for the truth assignment
encoded by each membrane labelled by 2. For that, rules from 2.3 will be applied
in such manner that in the j-th step (1 ≤ j ≤ p) of this stage, clause j is checked
and an object cj is produced in the case that clause is satisfied.

Proposition 2. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each i (1 ≤ i ≤ p− 1) at configuration Cn+i we have the following:

– Cn+i(1) = {α , βn+i}.
– There are 2n membranes labelled by 2 such that each of them contains

? the input multiset cod(ϕ)pi+1 corresponding to the clauses ci+1, . . . , cp;
? a different subset {R1,i+1, . . . , Rn,i+1}, being R ∈ {T , F} encoding a

truth assignment for the variables {x1, . . . , xn}; and
? objects cj,i (1 ≤ j ≤ i) such that clause Cj is satisfied by the truth

assignment encoded by such a membrane.

(b) Cn+p(1) = {α , βn+p}, and in Cn+p(2) there are 2n membranes labelled by 2
such that each of them contains objects cj such that clause Cj is satisfied by
the truth assignment encoded by such a membrane. Besides, the multiplicity of
object cj represents the number of values of the truth assignment making true
Cj.

Proof. (a) is going to be demonstrated by induction on i.

– In order to prove the base case i = 1 let us notice that from the previous
proposition we deduce that configuration Cn verifies: Cn(1) = {α , βn} and in
Cn(2) there are 2n membranes labelled by 2 such that each of them contains
the input multiset cod(ϕ), as well as a different subset {R1,1, . . . , Rn,1}, being
R ∈ {T, F}. Besides, configuration Cn yields configuration Cn+1 by applying
rule [ βn → βn+1 ]1 and rules:



344 L. Valencia, D. Orellana, A. Riscos, M.J. Pérez

[Ti,1 xi,1 → Ti,2 c1,1 ]2
[Ti,1 xi,1 → Ti,2 ]2
[Ti,1 x

∗
i,1 → Ti,2 ]2

[Fi,1 xi,1 → Fi,2 ]2
[Fi,1 xi,1 → Fi,2 c1,1 ]2
[Fi,1 x

∗
i,1 → Fi,2 ]2


1 ≤ i ≤ n, 1 ≤ j ≤ p− 1

Thus, the following holds for configuration Cn+1:

– Cn+1(1) = {α , βn+1}.
– There are 2n membranes labelled by 2 such that each of them contains

? the input multiset cod(ϕ)p2 corresponding to the clauses c2, . . . , cp;
? a different subset {R1,2, . . . , Rn,2}, being R ∈ {T , F} encoding a truth

assignment for the variables {x1, . . . , xn}; and
? objects c1,1 such that clause C1 is satisfied by the truth assignment

encoded by such a membrane.

Hence, the result holds for i = 1.
– Let us assume that by induction hypothesis, the result holds for i (1 ≤ i <

p− 1); that is,
– Cn+i(1) = {α , βn+i}.
– There are 2n membranes labelled by 2 such that each of them contains

? the input multiset cod(ϕ)pi+1 corresponding to the clauses ci+1, . . . , cp;
? a different subset {R1,i+1, . . . , Rn,i+1}, being R ∈ {T , F} encoding a

truth assignment for the variables {x1, . . . , xn}; and
? objects cj,i (1 ≤ j ≤ i) such that clause Cj is satisfied by the truth

assignment encoded by such a membrane.
Besides, configuration Cn+i yields configuration Cn+(i+1) by applying rule
[ βn+i → βn+(i+1) ]1 and rules:

[Ti,i+1 xi,i+1 → Ti,i+2 ci+1,i+1 ]2
[Ti,i+1 xi,i+1 → Ti,i+2 ]2
[Ti,i+1 x

∗
i,i+1 → Ti,i+2 ]2

[Fi,i+1 xi,i+1 → Fi,2 ]2
[Fi,i+1 xi,i+1 → Fi,i+2 ci+1,i+1 ]2
[Fi,i+1 x

∗
i,i+1 → Fi,i+2 ]2

[cj,i −→ cj,i+1 ]2 : 1 ≤ j ≤ i

Thus, the following holds for configuration Cn+(i+1):

– Cn+(i+1)(1) = {α , βn+(i+1)}.
– There are 2n membranes labelled by 2 such that each of them contains

? the input multiset cod(ϕ)pi+2 corresponding to the clauses ci+2, . . . , cp;
? a different subset {R1,i+2, . . . , Rn,i+2}, being R ∈ {T , F} encoding a

truth assignment for the variables {x1, . . . , xn}; and
? objects cj,i+1 (1 ≤ j ≤ i+1) such that clause Cj is satisfied by the truth

assignment encoded by such a membrane.

Hence, the result holds for i+ 1.
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In order to prove (b) it is enough to notice that, on the one hand, from (a) con-
figuration Cn+p−1 verifies the following:

– Cn+p−1(1) = {α , βn+p−1}.
– There are 2n membranes labelled by 2 such that each of them contains

? the input multiset cod(ϕ)pp corresponding to the clause cp;
? a different subset {R1,p, . . . , Rn,p}, being R ∈ {T , F} encoding a truth

assignment for the variables {x1, . . . , xn}; and
? objects cj,p−1 (1 ≤ j ≤ p− 1) such that clause Cj is satisfied by the truth

assignment encoded by such a membrane.

On the other hand, configuration Cn+p−1 yields configuration Cn+p by applying
rule [ βn → βn+1 ]1 and rules:

[Ti,p xi,p → cp ]2
[Ti,p xi,p → # ]2
[Ti,p x

∗
i,p → # ]2

[Fi,p xi,p → # ]2
[Fi,p xi,p → cp ]2
[Fi,p x

∗
i,p → # ]2


1 ≤ i ≤ n

[cj,p−1 −→ cj ]2 : 1 ≤ j ≤ p− 1

Thus, configuration Cn+p holds: Cn+p(1) = {α , βn+p} and in Cn+p(2) there are 2n

membranes labelled by 2 such that each of them contains objects cj such that clause
Cj is satisfied by the truth assignment encoded by such a membrane. Besides, the
multiplicity of object cj represents the number of values of the truth assignment
making true Cj .

�

6.3 Second Checking stage

At this stage, we try to determine if some truth assignment encoded by a membrane
labelled by 2 satisfied all clauses of the input formula. For that, rules from 2.4
will be applied in such manner that object dj (2 ≤ j ≤ p) is produced in the case
clauses c1, . . . , cj all satisfied. Then, the input formula is satisfied by the truth
assignment encoded by a membrane labelled by 2 if and only if object dp appears
in that membrane. This stage spends p− 1 computation steps.

Proposition 3. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each i (1 ≤ i ≤ p− 1) at configuration Cn+p+i we have the following:

– Cn+p+i(1) = {α , βn+p+i}.
– There are 2n membranes labelled by 2 such that each of them contains

objects di+1 if and only if the truth assignment encoded in that membrane,
makes true clauses C1, . . . , Ci+1.
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(b) ϕ is satisfiable if and only if at configuration Cn+2p−1 there exists some mem-
brane labelled by 2 which contains some object dp.

Proof. (a) is going to be demonstrated by induction on i.

– In order to prove the base case i = 1, let us notice that from the previous
proposition we deduce that configuration Cn+p verifies: Cn+p(1) = {α , βn+p}
and in Cn+p(2) there are 2n membranes labelled by 2 such that each of them
contains objects cj such that clause Cj is satisfied by the truth assignment
encoded by such a membrane. Besides, the multiplicity of object cj represents
the number of values of the truth assignment making true Cj .
Configuration Cn+p yields configuration Cn+p+1 by applying the rules:

[ c1 c2 → d2 ]2
[ βn+p → βn+p+1 ]1

Thus, in configuration Cn+p+1 the following holds:
– Cn+p+1(1) = {α , βn+p+1}.
– There are 2n membranes labelled by 2 such that each of them contains

objects d2 if and only if the truth assignment encoded in that membrane,
makes true clauses C1 and C2.

Hence, the result holds for i = 1.
– Supposing that, by induction, result is true for i (1 ≤ i < n− 1); that is,

– Cn+p+i(1) = {α , βn+p+i}.
– There are 2n membranes labelled by 2 such that each of them contains

objects di+1 if and only if the truth assignment encoded in that membrane,
makes true clauses C1, . . . , Ci+1.

Then, configuration Cn+p+i yields configuration Cn+p+(i+1) by applying the
rules:

[ ci+1 ci+2 → d2 ]2
[ βn+p+i → βn+p+(i+1) ]1

Thus, in configuration Cn+p+(i+1) the following holds:
– Cn+p+(i+1)(1) = {α , βn+p+(i+1)}.
– There are 2n membranes labelled by 2 such that each of them contains

objects di+2 if and only if the truth assignment encoded in that membrane,
makes true clauses C1, . . . , Ci+2.

Hence, the result holds for i+ 1.

In order to proof (b), let us note that formula ϕ is satisfiable if and only if there
exists a truth assignment σ making true ϕ, that is, making true clauses C1, . . . , Cp.
From (a) we deduce that ϕ is satisfiable if and only at configuration Cn+2p−1 there
exists some membrane labelled by 2 which contains some object dp.

�

6.4 Output stage

The output phase starts at the (n+ 2p)-th step, and takes exactly four steps.
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– Affirmative answer : if the input formula ϕ of SAT problem is satisfiable then at
least one of the truth assignments from a membrane with label 2 has satisfied all
clauses. Thus, a copy of object dp will appear in that membrane at configuration
Cn+2p−1. Then, by applying the last rule from 2.4 and rule [βn+2p−1 −→
βn+2p ]1, objects γ and βn+2p are produced in the skin membrane. At the next
step, by applying rules [αγ −→ γ′ ]1 and [βn+2p −→ β′ ]1, objects γ′ and
β′ are produced in the skin membrane. At the next step, by applying rule
[ γ′ −→ γ′′ ]1, object γ′′ is produced in the skin membrane (let us notice that
object β′ cannot interact with α). Finally, at the step n + 2p + 3 by applying
rule [ γ′′ ]1 −→ yes [ ]1, object yes is sent out to the environment and the
computation halts.

– Negative answer : if the input formula ϕ of SAT problem is not satisfiable then
none of the truth assignments encoded by a membrane with label 2 makes
the formula ϕ true. Thus, object dp does not appear in any membrane with
label 2. Thus, at step n + 2p, only rule [βn+2p−1 −→ βn+2p ]1 is applicable
to Cn+2p−1. Then, Cn+2p(1) = {α , βn+2p}. At the next step, by applying rule
[βn+2p −→ β′ ]1 we have Cn+2p+1(1) = {α , β′}. Then rule [αβ′ −→ β′′ ]1
produces an object β′′ in the skin membrane. Finally, at step n + 2p + 3 by
applying rule [β′′ ]1 −→ no [ ]1 releases an object no at the environment. Then,
the computation halts and the answer of the computation is no.

6.5 Result

Theorem 4. SAT ∈ PMCDAM0
mc(−d,−n).

Proof: The family of P systems previously constructed verifies the following:

(a) Every system of the family Π is a recognizer P system from DAM0
mc(−d,−n).

(b) The family Π is polynomially uniform by Turing machines because for each
n, p ∈ N, the rules of Π(〈n, p〉) of the family are recursively defined from
n, p ∈ N, and the amount of resources needed to build an element of the family
is of a polynomial order in n and p, as shown below:

– Size of the alphabet: 5np+ 3n2−5n+p2−3p+6
2 +n+4p+9 ∈ Θ((max{n, p})2).

– Initial number of cells: 2 ∈ Θ(1).
– Initial number of objects in cells: n+ 2 ∈ Θ(n).

– Number of rules: 6np+ 3n2+p2+3n+5p
2 + 6 ∈ Θ((max{n, p})2).

– Maximal number of objects involved in any rule: 4 ∈ Θ(1).
(c) The pair (cod, s) of polynomial–time computable functions defined fulfill the

following: for each input formula ϕ of SAT problem, s(ϕ) is a natural number,
cod(ϕ) is an input multiset of the system Π(s(ϕ)), and for each n ∈ N, s−1(n)
is a finite set.

(d) The family Π is polynomially bounded: indeed for each input formula ϕ of
SAT problem, the deterministic P system Π(s(ϕ)) + cod(ϕ) takes exactly, in
n + 2p + 3 steps, being n the number of variables of ϕ and p the number of
clauses.
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(e) The family Π is sound with regard to (X, cod, s): indeed for each input formula
ϕ, if the computation of Π(s(ϕ)) + cod(ϕ) is an accepting computation, then
ϕ is satisfiable (see Section 6).

(f) The family Π is complete with regard to (X, cod, s): indeed, for each input
formula ϕ such that it is satisfiable, the accepting computation of Π(s(ϕ)) +
cod(ϕ) is an accepting computation (see Section 6).

Therefore, the family Π of P systems previously constructed solves SAT problem
in polynomial time and in a uniform way, according to Definition 5.

�

Corollary 2. NP ∪ co−NP ⊆ PMCDAM0
mc(−d,−n)

Proof: It suffices to notice that SAT problem is a NP-complete problem,
SAT∈ PMCDAM0

mc(−d,−n), and the complexity class PMCDAM0
mc(−d,−n) is closed

under polynomial-time reduction and under complement.
�

7 Limits on efficient computations in SAM0
mc(+d,+n)

In this section we study the computational efficiency of polarizationless P systems
with active membranes, dissolution rules and minimal cooperation when separa-
tion rules (for elementary and non-elementary membranes) are considered as a
mechanism to generate an exponential workspace in linear time. Specifically, we
will show that these kind of P systems can only solve problems in class P in an
efficient way. The proof is inspired on a similar result, obtained in the framework
of cell-like P systems with symport/antiport rules and cell separation [7].

Let Π = (Γ, Γ0, Γ1, Σ,H,H0, H1, µ,M1, . . . ,Mq,R, iin, iout) be a recognizer P
system from SAM0

mc(+d,+n). In what follows we use the concepts of notation
from [15].

• We denote by p(i) (resp., ch(i)) the label of the parent (resp., a child) of the
membrane labelled by i, the parent of the skin membrane is the environment
(we write p(1) = 0). We denote by RE (resp., RC , RD and RS) the set of
evolution rules (resp., communication, dissolution and separation rules) of Π.
We will fix total orders in RE , RC , RD and RS .

• Let C be a computation of Π, and Ct an arbitrary configuration of C. With
respect to the number of objects of the system, let us notice that by applying
a single rule, this number remains unchanged or decreases by one. Thus, the
total number of objects in Ct is, at most, M , being M = |M0 + ...+Mq|.
With respect to the number of membranes of the system, by applying a sepa-
ration rule for elementary membranes, an object is removed from the system,
no new objects are produced and a new membrane is created. Thus, at most
M membranes can be produced by means of this process. Also, by applying a
separation rule for non-elementary membranes, the number of objects remains
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unchanged but a new membrane is created (when such a rule is applied to a
non-elementary membrane, it cannot be applied to that membrane anymore).
In this way, no more than q − 2 new membranes can be generated. Conse-
quently, q +M + (q − 2) = M + 2q − 2 is an upper bound of the total number
of membranes at Ct.

• In order to identify the membranes created by the application of a separation
rule, we modify the labels of the new membranes in the following recursive
manner:
– The label of a membrane will be a pair (i, σ) where 0 ≤ i ≤ q and

σ ∈ {0, 1}∗. At the initial configuration, the labels of the membranes are
(1, λ), . . . , (q, λ). The label of the environment is denoted by (0, λ).

– If a separation rule is applied to a membrane labelled by (i, σ), then the
new created membranes will be labelled by (i, σ0) and (i, σ1), respectively.
Membrane (i, σ0) will only contain the objects of membrane (i, σ) which be-
long to Γ0, and membrane (i, σ1) will only contain the objects of membrane
(i, σ) which belong to Γ1. Only elementary membranes can be separated,
so if a membrane i is non-elementary then we denote it by the label (i, λ).

– If an object evolution rule or a communication rule is applied to a membrane
labelled by (i, σ), then after the application of the rule, the membrane keeps
its label.

• Let us notice that the number of labels we need to identify all membranes
appearing along any computation of a P system from SAM0

mc(+d,+n) is of
the order O(M + q).

• A configuration Ct of a P system from SAM0
mc(+d,+n) is described by the

current membrane structure and the multisets of labelled objects of the type

{(a, i, σ) : a ∈ Γ, 0 ≤ i ≤ q, σ ∈ {0, 1}∗}

The expression (a, i, σ) ∈ Ct means that object a belongs to membrane labelled
by (i, σ).

• Let r = [ab → c]h ∈ R be an object evolution rule of Π. We denote by
n ·LHS(r, (i, σ)), n ∈ N, the multiset of labelled objects (a, i, σ)n(b, i, σ)n We
denote by n ·RHS(r, (i, σ)) the multiset of labelled objects (c, i, σ)n produced
by applying n times rule r over membrane (i, σ). Similarly these concepts are
defined for object evolution rules of the forms [ ab→ cd ]h and [ a→ c ]h.

• Let r = [a]h → b[ ]h ∈ R be a send-out communication rule of Π. We denote
by LHS(r, (i, σ)) the labelled object (a, i, σ). We denote by RHS(r, (i, σ)) the
labelled object (b, p(i), τ) produced by applying rule r over membrane (i, σ),
where (p(i), τ) is the parent of membrane (i, σ).

• Let r = a[ ]h → [b]h ∈ R be a send-in communication rule of Π. We denote
by LHS(r, (i, σ)) the labelled object (a, p(i), τ), where (p(i), τ) is the parent
of membrane (i, σ). We denote by RHS(r, (i, σ)) the labelled object (b, i, σ)
produced by applying rule r over membrane (i, σ).

• Let Ct is a configuration of Π, we denote by Ct + {(x, i, σ)/σ′} the multiset
obtained by replacing in Ct every occurrence of (x, i, σ) by (x, i, σ′). Besides,
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Ct +m (resp., Ct \m) is used to denote that a multiset m of labelled objects is
added (resp., removed) to the configuration.

Next, we provide a deterministic algorithm A working in polynomial time that
receives as input a recognizer P system Π from SAM0

mc(+d,+n) together with
an input multiset m of Π. Then algorithm A reproduces the behaviour of a single
computation of such system.

The pseudocode of the algorithm A is described as follows:

Input: A P system Π from SAM0
mc(+d,+n) and an input multiset m of Π

Initialization stage : the initial configuration C0 of Π +m
t← 0
while Ct is a non-halting configuration do

Selection stage : Input Ct, Output (C′t, A)
Execution stage : Input (C′t, A), Output Ct+1

t← t+ 1
end while

Output: Yes if Ct is an accepting configuration, No otherwise

The selection stage and the execution stage implement a transition step of a
recognizer P system Π. Specifically, the selection stage receives as input a config-
uration Ct of Π at an instant t. The output of this stage is a pair (C′t, A), where
A encodes a multiset of rules selected to be applied to Ct, and C′t is the configura-
tion obtained from Ct once the labelled objects corresponding to the application of
rules from A have been consumed. The execution stage receives as input the out-
put (C′t, A) of the selection stage, and the output is the next configuration Ct+1 of
Ct. Specifically, at this stage, configuration C′t yields configuration Ct+1 by adding
the labelled objects produced by the application of rules from A.

Next, selection stage and execution stage are described in detail.

Selection stage.

Input: A configuration Ct of Π at instant t
C′t ← Ct; A← ∅; B ← ∅
for each membrane (i, σ) of C′t according to the lexicographical order do

for each r ∈ RE according to the order chosen do
nr ← maximum number of times that r is applicable to (i, σ)
if nr > 0 then
C′t ← C′t \ nr · LHS(r, (i, σ))
A← A ∪ {(r, nr, (i, σ))}

end if
end for
for each r ∈ RC according to the order chosen do

if (i, σ) /∈ B and r is applicable to (i, σ) in C′t then
C′t ← C′t \ LHS(r, (i, σ))
A← A ∪ {(r, 1, (i, σ))}
B ← B ∪ {(i, σ)}

end if
end for
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for each r ≡ [ a ]i → b ∈ RD according to the order chosen do
if (i, σ) /∈ B and r is applicable to (i, σ) in C′t then
C′t ← C′t \ {(a, (i, σ))}
A← A ∪ {(r, 1, (i, σ))}
B ← B ∪ {(i, σ)}

end if
end for
for r ∈ RS according to the order chosen do

if (i, σ) /∈ B and r is applicable to (i, σ) in C′t then
C′t ← C′t \ LHS(r, (i, σ))
A← A ∪ {(r, 1, (i, σ))}
B ← B ∪ {(i, σ)}

end if
end for

end for

This algorithm is deterministic and works in polynomial time. Indeed, the cost
in time is polynomial in the size of Π because the number of cycles of the external
main for loop is of order O(M + q), and the number of cycles of the three internal
main for loops are of order O(|R|). Besides, the cost of each internal loops is of
the order O(M + q).

Let us notice that the number of tuples in set A is of the order O(M) because
each object in the system can be involved in, at most, one rule and at any con-
figuration Ct the total number of objects is upper bounded by M . In set A an
order is considered in a natural way (a product order concerning the rules, natural
numbers and labels).

In order to complete the simulation of a computation step of the system Π,
the execution stage takes care of the effects of applying the rules selected in the
previous stage: updating the objects according to the RHS of the rules.

Execution stage.

Input: The output C′t and A of the selection stage

for each (r, nr, (i, σ)) ∈ A according to the order chosen do
if r ∈ RE then
C′t ← C′t + nr ·RHS(r, (i, σ))

if r ∈ RC then
C′t ← C′t +RHS(r, (i, σ))

if r ∈ RD then
C′t ← C′t +RHS(r, (p(i), σ))
C′t ← C′t + {(x, (p(i), σ)) |x is in membrane (i, σ) in C′t}
Update the parent function by removing the membrane (i, σ)

else if r ∈ RS then
C′t ← C′t + {(λ, i, σ)/σ0}
C′t ← C′t + {(λ, i, σ1)}
for each (x, i, σ) ∈ C′t according to the lexicographical order do

if x ∈ Γ0 then
C′t ← C′t + {(x, i, σ)/σ0}
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else
C′t ← C′t + {(x, i, σ)/σ1}

end if
end for
for each (j, τ) ∈ C′t do

if p(j, τ) = (i, σ) and j ∈ H0 then p(j, τ) = p(i, σ0)
else if p(j, τ) = (i, σ) and j ∈ H1 then p(j, τ) = p(i, σ1)
end if

end for
end if

end for
Ct+1 ← C′t

This algorithm is deterministic and works in polynomial time. Indeed, on the
one hand, the number of cycles of the main for loop is of order O(M). On the
other hand, each cycle of the main for loop takes O(|R|) steps plus the number
of steps spend by the two secondary for loops: the first takes O(M(M + q)) steps
and the second takes O(M + q) steps.

Theorem 5. P = PMCSAM0
mc(+d,+n).

Proof: It suffices to prove that PMCSAM0
mc(+d,+n) ⊆ P. For that, let X =

(IX , θX) be a decision problem in PMCSAM0
mc(+d,+n). Let {Π(n) | n ∈ N} be a

family of P systems from SAM0
mc(+d,+n) solving X, according to Definition 5.

Let (cod, s) be a polynomial encoding associated with that solution. Let us recall
that instance u ∈ IX of the problem X is processed by the system Π(s(u))+cod(u).

Let us consider the following deterministic algorithm A′:
Input: an instance u of the decision problem X

Construct the system Π(s(u)) + cod(u)
Run algorithm A with input the system Π(s(u)) + cod(u)

Output: Yes if Π(s(u))+cod(u) has an accepting computation, No otherwise

Given an instance u of the decision problem X = (IX , θX), the following as-
sertions are equivalent:

1. θX(u) = 1, that is, the answer of problem X to instance u is affirmative.
2. Every computation of Π(s(u)) + cod(u) is an accepting computation.
3. The output of the algorithm with input u is Yes.

Therefore, algorithm A′ provides a solution of the decision problem X. Bearing in
mind that A′ works in polynomial time, we finally deduce that X ∈ P.

�
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8 Conclusions

The classical definition of polarizationless P systems with active membranes makes
use of non-cooperative rules and their object evolution rules are of the form [ a →
u ]h, where a is an object and u is a finite multiset of objects. In that context,
the capability of these membrane systems to create an exponential workspace in
linear time is implemented by means of division rules (for both elementary and
non-elementary membranes). It is well known [5] that only tractable problems can
be solved in an efficient way by families of such kind of P systems which do not
make use of dissolution rules, that is, P = PMCDAM0(−d,+n) (in the notation
from [5], P = PMCAM0(−d,+n)).

In this paper, two new variants are considered. First, by using separation rules
inspired on the membrane fission mechanism, instead of division rules in order
to create an exponential workspace in linear time. Second, minimal cooperation
in object evolution rules is incorporated in polarizationless P systems with active
membranes making use of division or separation rules. Object evolution rules with
minimal cooperation are of the forms [a→ c]h, [ab→ c]h or [ab→ cd]h.

The computational efficiency of these models is studied and two main results
have been obtained. On the one hand, a polynomial-time and uniform solution
to SAT problem by a family of polarizationless P systems with active membranes,
minimal cooperation in object evolution rules, without dissolution rules and us-
ing only division for elementary membranes, is provided. On the other hand, the
limits on efficient computations of polarizationless P systems with active mem-
branes, minimal cooperation in object evolution rules, and using separation rules
for elementary membranes and non-elementary membranes, has been established,
in the sense that only problems in class P can be solved by families of such kind
of membrane systems in an efficient way.

Consequently, in the framework of polarizationless P systems with active mem-
branes and without dissolution rules, two frontiers of the efficiency have been pre-
sented.

• If these membrane systems make use of division rules then passing from non-
cooperation to minimal cooperation in object evolution rules amounts passing
from non-efficiency to efficiency, that is, P = PMCDAM0(−d,+n) and SAT ∈
PMCDAM0

mc(−d,−n)
• If these membrane systems make use of minimal cooperation in object evolu-

tion rules then passing from separation rules to division rules amounts passing
from non-efficiency to efficiency, that is, that is, P = PMCSAM0

mc(+d,+n) and
SAT ∈ PMCDAM0

mc(−d,−n).

It is worth pointing out some remarks regarding to the Păun’s conjecture,
P = PMCDAM0(+d,−n). In [5] a key role of the –apparently “innocent”– oper-
ation of dissolution rules has been highlighted in the context of computational
efficiency of polarizationless P systems with active membranes, assuming that
P 6= NP. Therefore, bearing in mind that SAT ∈ PMCDAM0

mc(−d,−n), the role
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of dissolution rules is now not relevant because in the sense that computationally
hard problems can be solved in an efficient way without using these kind of rules.
On the other hand, assuming that P 6= NP, a new partial negative answer to the
Păun’s conjecture has been obtained

As future work, we propose several research lines related to the computational
efficiency of new variants of polarizationless P systems with active membranes.

(a) Membrane systems with membrane separation which make use of classical ob-
ject evolution rules.

(b) Membrane systems that incorporate minimal cooperation in object evolution
rules, removing the restriction about the length of the right-hand side of the
rules.

(c) Membrane systems that incorporate an environment with an active role in po-
larizationless P systems with active membranes through a distinguished alpha-
bet E similarly to the considered in cell-like P systems with symport/antiport
rules (see [7, 8] for details). Then two kind of semantics can be considered:
the classical semantics of active membranes or a semantics based on maximal
parallelism of the rules except for division or separation rules. Is relevant the
role of the environment from a computational complexity point of view?
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Membrane fission: A computational complexity perspective. Complexity, online ver-
sion 2015 (doi: 10.1002/cplx.21691).
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Individual memory about the 14th Brainstorming
Week on Membrane Computing

Ana Ventura

Universitat de Barcelona
Email: a.venturabarroso@gmail.com

Two weeks ago I didn’t even know the existence about this branch of computing,
right now I can ay a little bit more but I still know nothing. I think membrane
computing is a science which is inspired in the cell (objects that pass trough the
membranes). The most important and useful characteristic (especially in physics)
is its maxim parallelism, it reduces the computation time because can operate lots
of rules at the same time.

If we drew a comparison with quantum, we can identify the objects with the
particles, and use the membranes as we want (e.g. as a device) with the appropriate
rules. So we can solve a problem with N particles (N tends to infinite) more quickly
than with conventional computing.

I have discovered an exciting world. I mean, when I decided to study physics was
because of the particles. After learning computational physics I realized that I
really like computing, but after this week in Sevilla I open my mind and I think
that the possibilities of model with computers are unlimited, and I really want to
learn more about it. And I want to link it with particles and quantum world.

I can sincerely say that this week has been one of the most important and amazing
weeks in my life, not only for the knowledge, because I have realized what I really
want to do in my life. I love learning and improve myself every day, and I can only
reach this by working as a researcher. Also, the experience has been enriching for
me. I met the most important researchers in this field, I could speak with them
and asked questions, I also joked with some of them and I have learned a lot of
important skills (especially work as a team, with people that I have never seen
before).

In the morning sessions we had provocative presentations, where the researchers
presents their projects and its difficulties to go on with it, all the assistants tried
to help and to solve this problems. Some of this talks were interesting for me but
other didn’t because I couldn’t understand anything.
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One of the topics that I found really interesting is P-Systems with a quantum
like-behaviour. How I found this? This began with our project (apply P-Systems
to physics), it consists in simulate the Urainum 238 decay experiment. We use the
simplest model, membranes (as a Stern-Gerlach device), objects (as a particles)
and rules (as probabilities of being up or down). But, I was thinking that with
this model the interactions are not considered, so I wanted to know if exists a
model for it. By chance, we found a paper named P Systems with a Quantum-
Like Behaviour: Background, Definition, and computational Power, before reading
it I realized that the author is Alberto Leporati, one of the assistants to the
brainstorming, so I asked him about this. This happened the last day so I had not
got time to assimilate it and ask questions so now I am reading the paper and
trying to understand it, I haven’t finished it yet.

What I can understand for the moment is that, this systems is based on the ex-
change of a quantum of energy among two quantum systems, using the operator
creation and annihilation. Each object have associated an amount of energy that
can be use to transform objects using rules, which are realized trough linear oper-
ators. Its difficulty is avoiding undesired exchanges of energy among the objects,
that yield the system to unintended states. I don’t know how is visually this model
and how it works but I find it useful in the way to model particles and their in-
teractions.

I have been thinking about what P-systems can do in physics and I have some
ideas, but I don’t know if they are possible.

• Related with quantum behavior, I would like to develop a simulator of particles
collision (simulate what occurs in the particles accelerators).

• Another idea that we develop in Sevilla is to use membrane computing for solv-
ing continuous problems. By constructing a net it’s possible to approximate this
problems to a discrete problems, so it’s possible to solve with differential equa-
tions, for example standing distribution of temperatures (Poisson’s equation).
Because of membrane computing’s maxim parallelism (lots of operations at the
same time) it’s possible to reduce the computing time. The problem is that in
this model is not implemented the relative position (which is fundamental in
physics). But I asked Sergiu Ivanov (one of the assistants) and he said that
he is developing another model of P system, Automata P-System that may
could be useful to solve this kinds of problems. If it’s possible to implement the
position, membrane computing can be very useful to simulate meteorological
models.

• Another idea is related with quantum computer and cryptography. I don’t know
too much about quantum computer. I have read that the elementary units that
compose these parts are two-level quantum system called qubits. The mathe-
matical description of a single qubit is based on the two-dimensional complex
Hilbert space C2. Qubits are thus the quantum extension of the classical no-
tion of bit, but whereas bits can only take two different values 0,1, qubits are
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not confined to their two basis (pure) states, |0〉 and |1〉, but can also exist
in states which are coherent superpositions. Performing a measurement of the
state alters it. Indeed, performing a measurement on a qubit in the above su-
perposition will return 0 or 1 with different probabilities. In cryptography it’s
necessary to do a lots of combinations to find the correct result. With the
computation used until now it lasts a lot. But with membrane computing and
its max parallelism it could be used as a quantum computer and reduce time
of computing. I don’t know how to do it yet, but with time and information
maybe it’s possible.
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Román, Gábor, 309
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