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We study discrete breathers in prototypical nonlinear oscillator networks subjected to nonharmonic zero-mean
periodic excitations. We show how the generation of stationary and moving discrete breathers are optimally
controlled by solely varying the impulse transmitted by the periodic excitations, while keeping constant the
excitation’s amplitude and period. Our theoretical and numerical results show that the enhancer effect of increasing
values of the excitation’s impulse, in the sense of facilitating the generation of stationary and moving breathers,
is due to a correlative increase of the breather’s action and energy.
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I. INTRODUCTION

Discrete breathers are intrinsic localized modes that can
emerge in networks of coupled nonlinear oscillators [1,2].
They have been observed not only in Hamiltonian lattices
but also in driven dissipative systems under certain conditions.
Discrete breathers have been theoretically predicted or experi-
mentally generated in a wide variety of physical systems such
as Josephson junction arrays [3], coupled pendula chains [4],
micro- and macromechanical cantilever arrays [5], granular
crystals [6], nonlinear electrical lattices [7], and double-strand
deoxyribonucleic acid models [8], just to cite a few instances.

Until now, breathers have been mainly studied for the
case of a harmonic external excitation, while various types
of periodic excitations are in principle possible, depending
on the physical context under consideration. Since there are
infinitely many different wave forms, a quite natural question
is to ask how the generation and dynamics of breathers are
affected by the presence of a generic periodic excitation.

In this present work, we show that a relevant quantity prop-
erly characterizing the effectiveness of zero-mean periodic
excitations F(¢) having equidistant zeros at controlling the
generation and dynamics of discrete breathers is the impulse
transmitted by the external excitation over a half-period
(hereafter referred to simply as the excitation’s impulse [9],

I = OT/ ’F (t)dt, T being the period)— a quantity integrating
the conjoint effects of the excitation’s amplitude, period, and

waveform. It is worth mentioning that the relevance of the
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excitation’s impulse has been observed previously in quite
different contexts, such as ratchet transport [ 10], adiabatically
ac-driven periodic (Hamiltonian) systems [11], driven two-
level systems and periodically curved waveguide arrays [12],
chaotic dynamics of a pump-modulation Nd:YVO, laser
[13], topological amplification effects in scale-free networks
of signaling devices [14], and controlling chaos in starlike
networks of dissipative nonlinear oscillators [15].

The rest of this paper is organized as follows. In Sec. II
we introduce the model and further comment on some of its
main features. Section III provides numerical evidence for
the essential role of the excitation’s impulse at generating
breathers and controlling their stability for the prototypical
cases of a hard ¢* potential and a sine-Gordon potential. A
theoretical explanation of the effectiveness of the excitation’s
impulse in terms of energy and action is provided in Sec. IV.
Finally, Sec. V is devoted to a discussion of the major findings
and of some open problems.

II. MODEL SYSTEM

The discrete nonlinear Klein-Gordon equation with linear
coupling, linear damping, and external periodic excitation
is one of the simplest equations where dissipative discrete
breathers may arise:

lin + iy + V'(un) + CQuy — tyy1 — 1) = F(t), (1)

in which V(u,) is an on-site (substrate) potential, « is the
damping constant, C is the coupling constant, while F(t) is a
zero-mean periodic excitation,

F(t) = (=DM fo fia(2), 2)
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FIG. 1. External excitations (3) and (4) vs time over a period
[panels (a) and (b), respectively]. In the former case, dashed (blue),
thin (purple), and thick (golden) lines correspond to m = 0, m =
Mmax = 0.717, and m = 0.99, respectively. In the latter case, the
same lines correspond to m = 0,m =0.99, and m =1 — 10714,
respectively. Notice that, when m — 1, the excitation f, becomes a
square-wave signal while f| vanishes. The insets show the respective
normalized impulses of the excitations vs the shape parameter (see
the text).

in which fj is the driving amplitude, / is a hardness parameter
whose value is 0 (1) when the on-site potential is soft
(hard), while fi(¢), f>(¢) are two different periodic excitations
that we will use as illustrative examples to show that the
impulse is the relevant quantity controlling the effect of the
external excitation on the generation and stability properties
of breathers. These periodic excitations are given by

m}dn[m;m} 3)

L@ = sn[m;m],

fit) = N(m)sn[m;

“4)

where sn(-) = sn(-;m) and dn(-) = dn(-;m) are Jacobian el-
liptic functions of parameter m [K = K(m) is the complete
elliptic integral of the first kind], while N (m) is anormalization
function which is introduced for the elliptic excitation f(t) to
have the same amplitude fy and period T = 27 /w); for any
wave form [i.e., Vm € [0,1)]. Specifically, the normalization
function is given by

-1
n2
N(m) = [n + } NG
" T = expl(m — n3)/n4]
with m = 0.43932, 1, = 0.69796, n3 = 0.37270, n4 =

0.26883. In both excitations f (), when m =0, then
F(@t) = (=1 Jfo sin (wpt); that is, one recovers the standard
case of a harmonic excitation [16], whereas, for the
limiting value m = 1, the excitation f;(¢) vanishes while
the excitation f>(¢) reduces to a square wave. It is worth
noting that the excitations fj,(f) have been chosen
to exhibit the following properties. For the excitation
fi(?), its impulse per unit of amplitude, I;(m)/1;(0) with
Iy(m) =TN(@m)/[2K (m)], presents a single maximum at
m = mmax = 0.717. For the excitation f,(¢), its impulse is
written I,(m) = Tarctanh(y/m)/[2./mK(m)], and hence
its corresponding normalized impulse I(m)/(0) grows
monotonically from 1 to 1.5. Figure 1 shows the time
dependence of both excitations over a period together with
the dependence of their respective normalized impulses on
the shape parameter m.
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The use of Jabobian elliptic functions as periodic excita-
tions is mainly motivated by the fact that, after normalizing
their (natural) arguments to keep the period as a fixed
independent parameter, their waveforms can be changed by
solely varying a single parameter: the elliptic parameter m,
and hence the corresponding impulse will only depend on m
once the amplitude and period are fixed.

The aim of this paper is to study the effectiveness of the
excitation’s impulse at controlling breathers arising in Eq. (1)
by considering two prototypical on-site potentials: First, a hard
¢* potential, which was previously considered in Ref. [16]
for the limiting case of a harmonic excitation (m = 0) and
where it was shown that there exists a threshold value of f
such that breathers do not exist below it. Remarkably, such
a threshold amplitude can be decreased in the presence of
noise through a stochastic resonance mechanism. Second, we
consider a sine-Gordon potential [17], so Eq. (1) becomes the
so-called Frenkel-Kontorova model (see, e.g., Refs. [18,19] for
additional details), in which the emergence of discrete moving
breathers [20] is indicated by the existence of a pitchfork
bifurcation together with the appearance of an intermediate
state.

The existence of discrete breathers is characterized by using
techniques based on the anticontinuous (AC) limit [21]. Thus,
two periodic attractors must be found in such a limit (i.e., for
the corresponding isolated nonlinear oscillator) such that the
attractor with the largest amplitude is assigned to the central
(n = 0) site of the chain, while the other periodic attractor is
assigned to the rest of the coupled oscillators. Such a solution
is then continued from C = 0 to the prescribed value of C.
Since discrete breathers are periodic orbits in phase space,
they can be calculated by means of a shooting method, i.e.,
they can be considered as fixed points of the map:

Hun (00} {etn(0)}] = [{un (T} {ttn(T)}]. (6)

This analysis is accomplished by using a Powell hybrid
algorithm complemented by a fifth- to sixth-order Runge-
Kutta-Verner integrator. To study the stability of discrete
breathers, a small perturbation &, is introduced to a given
uyo solution of Eq. (1) according to u,, = u,o + &,. Thus, one
obtains the equation which is verified (to first order) by &,:

E +aby + V(0 + C2&y — Epi1 — E4m1) = 0. (7)

To determine the orbital stability of periodic orbits, a Floquet
analysis can be performed so the stability properties are
deduced from the spectrum of the Floquet operator (whose
matrix representation is the monodromy M), given by

{E(T)} A€ (0317 = MI{£,(0)}, {E, (0}, ®)

where A = exp(i0) are the Floquet multipliers while the values
of 0 are the Floquet exponents. All eigenvalues must lie inside
the unit circle if the breather is stable.

III. NUMERICAL RESULTS

Our numerical study starts with the case of a hard ¢*
potential, thatis, V (u) = u?/2 + u*/4. Notice that breathers in
such a potential exhibit staggered tails due to its hardness. This
means that the system must be driven following this pattern
by taking 7 = 1 in (2) [see Figs. 2(a) and 2(b)]. It has been
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FIG. 2. Profiles of u,, p, = u, (a) and phase space diagrams (b)
of a breather in a ¢* chain for m = 0.6 and f, = 3. (c) Threshold
amplitude for the existence of breathers vs shape parameter m. Solid
(blue) and dashed (red) lines correspond to excitations (3) and (4),
respectively. Notice that, in the former case, there exists a minimum
atm = m, = 0.664 for fy, = 2.056, whereas, in the latter case, one
sees a monotonously decreasing behavior. (d) External excitation (3)
vs time over a period for two values of the shape parameter: m = m,,
for which fy, is minimum, and m = mpy,, = 0.717, for which the
impulse is maximum. Fixed parameters: « = 0.1,C =1, w, = 5.

shown for m = 0 [16] that breathers exist if fy > fu, i.e.,
the excitation amplitude must surpass a certain threshold. In
general, this threshold is a function of the system parameters.
Here we study the dependence of this threshold on the shape
parameter m, while keeping fixed the remaining parame-
ters. Figure 2(c) shows this dependence for the parameters
xa=01,C=1,w, =5.

For the excitation f1(¢) (3), the existence of a minimum
threshold at a critical value m = m. ~ 0.664 for such set of
parameters should be emphasized; however, if any of such
parameters were varied, m, would remain close to such a
value. Although this critical value does not exactly match
the value m = mpx & 0.717 at which the impulse I,(m)
presents a single maximum, it is very close to the value
m =m; = 0.6416 where the first harmonic of the Fourier
expansion of the external driving presents a single maximum.
Also, the waveforms corresponding to m, and mp,x can be
hardly distinguishable, as shown in Fig. 2(d), which means
that the values of their respective impulses are almost identical
(the relative difference is only ~0.42%). The fact that m,
does not change significantly when w;, and C are varied
implies that this property holds in the AC limit. Indeed, for
the isolated oscillator we found that for the largest-amplitude
attractor there exists a minimum value of its amplitude, f,, at
m = 0.668 ~ m,, while the smallest-amplitude attractor exists
for any value of fy (i.e., fin =0, Vm). Thus, the breather
seems to inherit this key feature (impulse-induced threshold
behavior) of the largest-amplitude attractor of the isolated
oscillator. It is worth mentioning that o must be sufficiently
small in order that two periodic attractors can exist in the AC
limit.
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FIG. 3. Profiles of u,,p, =u, (a) and phase space diagrams
(b) of a breather in a chain with a sine-Gordon potential for the
excitation (3) and C = 0.5. (¢c) Modulus of the Floquet multiplier A
vs coupling C. The dashed vertical line indicates de location of C;.
(d) Spatiotemporal pattern of the energy density of a moving breather
emerging from the unstable solution for C = 0.52. Fixed parameters:
a= fo=0.02,m =0.66, v, = 0.27.

For the excitation f>(¢) (4), we found that the threshold
amplitude f;, exhibits a monotonously decreasing behavior as
a function of the shape parameter [see Fig. 2(c)], as expected
from the monotonously increasing behavior of its impulse
I,(m). Thus, the analysis of both periodic excitations fi »(¢)
confirmed the same effect of the excitation’s impulse on the
amplitude threshold for the existence of breathers.

Next, we consider the Frenkel-Kontorova model, i.e.,
the case of a sine-Gordon potential: V'(u) = sin(2rwu)/(27).
This case, which was previously analyzed in detail for the
limiting case of a harmonic excitation (m = 0) in Ref. [17],
is much richer than the previous one due to the existence
of exchange of stability bifurcations, Hopf-Neimark-Sacker
bifurcations, chaos, moving breathers [22], and rotobreathers
[23]. Figure 3 shows the position, velocity, and phase-space
diagram of a typical breather. Since the sine-Gordon potential
is soft, tails are unstaggered and hence one takes h =0
in (2) in order that the periodic excitation fit this pattern.
According to Ref. [17], for « =0.02 and fy 2 0.05 the
largest-amplitude attractor in the AC limit corresponds to
a rotation, and hence it cannot be used for the analysis of
breathers (the analysis of rotobreathers is beyond the scope
of the present work). Thus, we are fixing o = fp = 0.02 in
our numerical simulations. Similarly to the case of a hard ¢*
potential, we found a threshold for the existence of breathers
inheriting the features of the largest-amplitude attractor of the
AC limit [24]. Additionally, we found an interesting behavior
arising from stability exchange bifurcations that leads to the
onset of moving breathers [20]. In this kind of bifurcations,
a site-centered breather (i.e., a breather with a single site
excited at the AC limit) undergoes a supercritical pitchfork
bifurcation becoming unstable past a critical value of the
coupling, C = Cy, while a new kind of breather appears—the
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FIG. 4. (a) Modulus of the Floquet multiplier A vs coupling C for
the excitation (3). The dashed vertical line indicates de location of
C,. (b) Spatiotemporal pattern of the energy density of an unstable
breather for C = 0.1. This instability finally leads to the destruction of
the breather. Fixed parameters: m = 0.66, « = f; = 0.02, w, = 0.8.

so-called intermediate breather—where two adjacent sites are
excited with different amplitudes. This intermediate breather
disappears after undergoing a subcritical pitchfork bifurcation
at C = Cj. At this coupling value, a site-centered breather
(i.e., a breather with two adjacent sites excited with the same
amplitude), which is unstable for C < C}, changes its stability
(see Fig. 22 in Ref. [2], and Figs. 5 and 8 in Ref. [17]).
Figures 3(c) and 3(d) show the onset of this instability and the
dynamics of a moving breather, respectively, for the excitation
f1(t). The spatiotemporal patterns of moving breathers is
illustrated by plotting their energy density:

%)

E, = ”7 + V(un) + %[(un — tp1)? + Wy = up-1)’]. 9)
We found these results for frequencies over the range 1/2 <
wy, < 2/3. Note, however, that over the range 2/3 < w, < 1
the discussed phenomenology can change due to the properties
of Floquet exponents [26]. Indeed, for frequencies over the
range 2/3 < wyp < 1, the breather undergoes a Neimark-
Sacker bifurcation as the coupling is increased, making it
unstable past a critical coupling value C = Cj. This instability
is characterized by the eventual destruction of the breather
(i.e., the localization is lost and only a linear mode remains;
see Fig. 4). The critical value C; is much smaller than C; (in
fact, C; is close to 0, i.e., to the AC limit). Therefore, it has no
sense to study the emergence of moving breathers by stability
exchange bifurcations. Note that this does not mean that
moving breathers cannot exist for w, > 2/3. The mechanism
for the emergence of breathers when w;, > 2/3 simply differs:
It is no more than the spontaneous motion described in Refs.
[17,22]. Notice that, in Hamiltonian systems, moving breathers
exist over this range of frequencies (cf. Ref. [18]).

Next, Fig. 5 shows the dependence of the critical values
C1, C, as functions of the shape parameter m. For the
excitation fi(f), one sees that C; presents a minimum at
m ~ 0.64 when w;, = 0.2, while C; presents a minimum at
m ~ 0.67 when w;, = 0.8. Notice that these values of the shape
parameter are significantly close to 0.717 & miy,y, indicating
once more again the effect of the excitation’s impulse. The
stability range increases as m is increased from these values
(see Fig. 5). However, one expects that the pitchfork and
Neimark-Sacker bifurcations disappear as m — 1 since in
such a limit the excitation and the localization vanish. For the
excitation f,(t), one sees that C;,C, present a monotonously
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FIG. 5. (a) Loci C; (see the text) of the exchange of stability
bifurcation (i.e., onset of moving breathers) as a function of the shape
parameter m fora = fy = 0.02, w, = 0.27. (b) Loci C; (see the text)
of Neimark-Sacker bifurcation as a function of the shape parameter
m for o = fy = 0.02, w, = 0.8. Solid (blue) and dashed (red) lines
correspond to excitations (3) and (4), respectively.

decreasing behavior, as expected from the monotonously
increasing behavior of the impulse I,(m). Thus, the analysis
of both periodic excitations f; »(¢) confirmed the same effect
of the excitation’s impulse on the critical coupling values C; .

IV. DISCUSSION

The numerical results discussed in Sec. III may be un-
derstood by considering the excitation’s impulse through an
energy-based analysis, including the properties of the action,
of isolated oscillators. For the sake of clarity, we will consider,
for example, the excitation f(¢) (3) in the subsequent analysis.
Indeed, every breather possesses a tail due to its localized
character while the oscillators forming this tail effectively
behave as linear oscillators presenting a small-amplitude
attractor. Consequently, a breather can inherit some properties
associated with the effective linear character of the oscillators
forming its tail. We found indeed that breathers inherit the
dependence on the shape parameter according to the impulse
principle. Thus, we analyze the response of a linear (harmonic)
oscillator subjected to a periodic time-antisymmetric driving:

o0
ii + ot + ogu = fo ) Goxyr sin[(2k + Dayt],  (10)
k=0

where G4 are the Fourier coefficients of the nonharmonic
excitation (3):

TN (m)k [an(l - m):|- an

Gk =5 Tk M T 2K )

After some straightforward algebra, one obtains the solution

u(t)=) [ Azn €05 ((2k + D)+ Bar sin (2k+Deopi)],

k=0
(12)
where
Wt — kK w?
Ar = fo : : 2 Gr.
Ko?a? + (w(z) — kzwi)
—ka);,a
By = fy Gy. (13)

Koa? + (0} — ko)’
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The action J = 5= § iidu can be recast into the form

1 (12 2 o 2042 2
k=0

with T = 27 /w;, being the oscillator’s period. Thus, the action
of the linear oscillator can be finally expressed as

wp fi ad
_ ®»Jo 2
J = > kzo M2ar1Gop s

, (02 = Kod)’ + Rola?
e =k 55+ (15)
[FPepe? + (0f — Bwp)]
Notice that u; does not depend on the particular waveform of
the external periodic excitation F(¢) but depends on wy, and «.
Then the dependence of the action on the shape parameter
m appears only in the G,% terms. Now, after taking into
account the fast decay of the Fourier coefficients with k, one
numerically finds that the action presents a single maximum
at m = m, which is very close to m |, where m, is the shape
parameter value at which G presents a single maximum (recall
from Sec. III that m; = 0.6416). Notice that m, depends on
wi and, consequently, on w, and «. For instance, for the
parameters sets taken in Figs. 2 and 4, i.e., (@ = 0.1, wp, = 5)
and (o = 0.02, wp, = 0.8), the value of m, is 0.646 and 0.644,
respectively.
Remarkably, the above-mentioned properties also hold for
the corresponding average energies (E), which for the linear
oscillator read:

_ ’ 1., w(z) 2
(E) _/0 [Eu )+ 7u (t):|. (16)

For the excitation (3), it can be recast into the simple form

T f 0 = ’ 2
(E) = > ZﬂzkHszH»
k=0
,_ (Pof + ) [(0F — K0})’ +K0je’]
Wy = 55 . 17
ool + (of — )]

Figure 6 shows the dependence of the action and average
energy of solutions of the linear oscillator [Eq. (10)] on the
shape parameter for the complete Fourier series and the main
harmonic approximation (G4 = 0, Yk > 1) and two sets of
the remaining parameters.

As already anticipated in Sec. I, threshold phenomena
associated with breathers’ emergence and stability exhibit a
high sensitivity to the excitation’s impulse. To show this,
we start with a general argument showing the relationship
between energy changes and the quantities action and impulse
for periodic solutions of isolated (nonlinear) oscillators. After
integrating the corresponding energy equation over half a
period (see, e.g., Refs. [14,15]), one obtains

T/2 T/2
AE=E(T/2)—E(0)=—u / @2 ())dt + / u(t)F(t)dr.
0 0

(18)

Now, after applying the first mean value theorem for integrals
[27] to the last integral on the right-hand side of Eq. (17) and
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FIG. 6. Action J [Eq. (15)] (top panels) and average energy
(E) [Eq. (17)] (bottom panels) of solutions of the linear oscillator
[Eq. (10)] vs shape parameter m for the complete Fourier series
(solid lines) of excitation (3) and the main harmonic approximation
(Ga+1 = 0 Vk > 1; dashed lines) and two sets of parameters: (left
panels) w, = 0.8, fo = 0.02, o = 0.02; (right panels) w, =5, fo =
3, =0.1.

recalling the definitions of action and impulse, one obtains
AE = —anJ + Tu(t")1, (19)

where t* € [0,7/2] while J and [ are the action and the
impulse, respectively. Note that #* becomes independent of the
excitation’s waveform as 7 — 0 [14,15]. It should be stressed
that this limiting regime is unreachable for the present case
of discrete breathers in nonlinear chains, especially in the soft
potential case, due to the fact that breather frequencies are
always below a maximum, and hence they cannot be increased
arbitrarily. Therefore, we see that the dependence of AE on
m for any (linear or nonlinear) isolated oscillator relies on the
dependence on m of J and u(t*)I. For the case of a linear
oscillator and the excitation fi(¢) (3), one readily obtains
that #(¢*)I can be expressed as ), M;L)+1G%k+l’ where ui”
is independent on m, and hence the energy will present a
maximum at m = mj, ~ m,. We find that the dependence of
the action on the shape parameter for nonlinear oscillators is
quite similar to that of the discussed linear case.

To connect this analysis of isolated oscillators with discrete
breathers of nonlinear chains (1), one has to calculate the
action of a breather, J = Zn f i, du,, on the one hand, and to
distinguish between the periodic attractors with large and the
small amplitudes, on the other hand, since the orbits associated
with the latter can substantially differ from those of a strictly
linear oscillator despite of its relatively small oscillation
amplitude. In any case, numerical simulations confirmed that
the value m = mp,x & 0.717 at which the impulse function
I(m) presents a single maximum is very close to m, in
the sense that the waveforms corresponding to mp,, and m,
(and m;) can be hardly distinguishable. Figure 7 shows an
illustrative example for the cases of a hard ¢* potential and
a sine-Gordon potential, while Fig. 8 shows, for the case

062206-5



J. CUEVAS-MARAVER, R. CHACON, AND E. PALMERO

x107

11 19.8
@ i (®) i
, 19.7 ,
I I
I I
- : - 19.6 :
10 I |
| 19.5 |
I I
I I
I 19.4 I
0 02 04 06 08 1 0 02 04 06 08 1
m m
—4
5x10
I
4 1
I
I
3 |
- I
2 |
:
1 |
I
0 ' 0
0 02 04 06 08 1 0 02 04 06 08 1

m m

FIG. 7. Action J of (top panels) large-amplitude attractors and
(bottom panels) small-amplitude attractors corresponding to an
isolated nonlinear oscillator with (left panels) a sine-Gordon potential
for the excitation (3), w, = 0.8, fo =0.02,« =0.02 and (right
panels) a o* potential for w, =5, fo =3, =0.1. The vertical
dashed lines indicate the m value where the action of the linear
oscillator is maximum, i.e., m = m, (cf. Fig. 6).

of a hard ¢* potential, that the breather action presents a
single maximum at m = myp_max Which is also very close to
my ~ 0.646.

V. CONCLUSIONS

We have shown through the example of a discrete nonlinear
Klein-Gordon equation that varying the impulse transmitted by
periodic external excitations is a universal procedure to reliably
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FIG. 8. (a) Action J of a breather emerging in a ¢* chain vs
fo and m in the range fy € (2.06,3) for the excitation (3). (b)
Shape parameter value at which the action is maximum 71, max VS
amplitude fy; horizontal line corresponds to m = m, = 0.646. Fixed
parameters: w, =5, =0.1,C = 1.

control the generation of stationary and moving discrete
breathers in driven dissipative chains capable of presenting
these intrinsic localized modes. We have analytically demon-
strated that the enhancer effect of the excitation’s impulse,
in the sense of facilitating the generation of stationary and
moving breathers, is due to a correlative increase of the
breather’s action, while numerical experiments corresponding
to the cases of a hard ¢* potential and a sine-Gordon potential
confirmed the effectiveness of the impulse as the relevant
quantity controlling the effect of the external excitation.
The consideration of this relevant quantity opens up new
avenues for studying external-excitation-induced phenomena
involving intrinsic localized modes in discrete nonlinear
systems, including, for instance, breather-to-soliton transitions
and emergence of chaotic breathers. Our present work is aimed
to explore these and related problems.
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