How to calculate the slopes of D-modules

A. Assi® F. J. Castro-Jiménez' J. M. Granger?

Introduction

The purpose of this paper is to study invariants called the slopes or the critical indices associated
with a module over the ring D of the germs of differential operators at a point = of a complex
analytic manifold X.

The notion of a slope of a coherent D-module M. along a smooth hypersurface Y, was
introduced by Y. Laurent under the name of a critical index in [4]. On the ring £x of mi-
crodifferential operators, he defined two filtrations: The filtration F' by the order of operators
and the filtration V of Malgrange-Kashiwara, along a hypersurface A C 7*X. He then con-
sidered the intermediate filtration L, = pF + ¢V for any rational number r = p/q > 0. The
critical indices are the rationals r for which the characteristic variety of M associated with
L.is not bihomogeneous. Using 2-microdifferential operators, Y. Laurent showed that there
is only a finite number of critical indices . C. Sabbah and F. Castro, in the appendix [13],
gave another proof of this result by using the notion of the local flattener of a deformation. Z.
Mebkhout introduced, in [9], the notion of a transcendental slope of a holonomic D-module,
along a hypersurface as being a jump in the Gevrey filtration of the irregularity sheaf. This
sheaf is the complex of solutions with values in the quotient @ by the holomorphic functions of
the formal completion, along the hypersurface, of the ring of holomorphic functions. Laurent
and Mebkhout proved ([5], see also [10]) a comparison theorem for the slopes of a holonomic
D-module asserting that the transcendental slopes are the same as the algebraic ones. They
also defined loc.cit. the Newton polygon of a holonomic D-module.

Our aim is to study these notions from an effective viewpoint, that is to prove by elementary
methods the finiteness of the number of slopes and then to give an algorithm to compute these
slopes effectively in the algebraic case. We consider an ideal [ of the Weyl algebra A, and
we prove the finiteness of the number of slopes of the quotient A, /I starting from a system
of generators of . We then develop an algorithm for the computation of the slopes. For this
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purpose we use the technique of standard bases adapted to Weyl algebra, and in particular
we give an algorithm for the computation of these standard bases. This algorithm, of Lazard-
Mora type (cf. [6], [11], [?]), is in fact valid for any order on the exponents, and thus can be
adapted to computing multiplicities. Thanks to the theorem of Laurent and Mebkhout [5] the
algoritm for the computation of the slopes provides an effective means to test the regularity of
a holonomic D-module along a hypersurface.

Let us give the details of this paper : In the first part we first recall some general facts
about the filtrations F, V', and L, about privileged exponents and standard bases and we
explain the relationship between standard bases and generator systems of the graded ideal
grlI. We develop then an algorithm for the computation of standard bases for any order
adapted to L and compatible with the product of operators. For this purpose we set in A, [t] by
homogenizing with respect to the total order. We use a well ordering on the exponents in N***1,
which allows us to prove a division lemma and then to obtain standard bases as systems of
generators for which the remainders of some elementary divisions are zero modulo (¢t — 1) A, [t].
The difficulty comes from the fact that A,[t] being non commutative, the remainders of the
homogeneous divisions are not necessarily homogeneous. The actual computation of a standard
basis is however possible through a technical trick (rehomogenization of remainders and iterated
division).

In the second part, we begin by proving the finiteness of the number of slopes by means of
two twin lemmas : In the neighbourhood of a form L, the graded ideals associated with a form
L', are constant on both sides of L and respectively equal to grf (gr(I)) and to gr¥(gr’(I)).
This assertion is also given by Laurent in ([4]). The finitenes of the number of slopes comes
then from a compacity argument. The algorithm for the computation of the slopes, is inspired
by the method used by Assi [1] to compute the critical tropisms of Lejeune-Teissier [7] : We
start from a system of generators F = {P;,..., P.} of [ which induces a standard basis for
gri’'(I) as well as for gr¥(grf'(I)) and we take the first form L for which one of the o*(F;))
is not bihomogeneous. A finite algorithm allows us to decide whether L is actually a slope
and if it is not, to reach a first slope L) (or V) in a finite number of steps. Iterating this
process starting from L") one obtains all the slopes.Remark that, thanks to the first part, all
the algorithms are effective in the case of the Weyl algebra. Using a well known lemma of
algebraicity, the computation of the slopes of A, /[is also valid for D/DI. To conclude, in the
case of a non necessarily algebraic ideal of D, we can generalise all our results, after making
division compatible with the series case, if we admit infinite division processes.

1 Filtrations and construction of standard bases

1.1 Filtrations

We denote D, (C) (or D,,) (resp. A,(C) (or A,)) the ring of differential operators with coeffi-
cients C{z} = C{xy,...,2,} (resp. Clz] = Clay,...,2,]). If P(x,0) € D, (or P(z,0) € A,),



we write,
P(z,0) = Zpaﬁxo‘aﬁ
a7ﬁ
with a, 8 € N* and p, g € C.

We call the set {(a,3) € N** | p, s # 0} the Newton diagram of P (and we denote it by
Given a linear form L(a,b) = pa+ gb (with (p, ) non negative, relatively prime integers) we
define the L-order of P = P(z,0), denoted ordy(P), as being the maximal value of L(|3], 1 —

ay) over elements (a, 3) of the Newton diagram of P.

We denote by Fy, o(D,,) (resp. Fro(Ay)) the filtration induced by the L— order on D,, (resp.
A,) i.e. Fpy is the set of operators P with ord,(P) < k. We denote F by (resp. by V') the
filtration corresponding to the form L(a,b) = a (resp.L(a,b) = b). By extension we also write
F (resp. V) for the corresponding linear forms. If L # F,V then the graded ring associated
with this filtration

gr" (D) = B Fuu(Dn)/ Frr-1(Dy)

kEZ
(resp.
gr'(An) = @ Fri(An)/Fre-1(A,))
keZ
is isomorphic to the commutative graded ring C{za, ..., z,}z1, &1, ..., €] (resp. to Clz, €] =

Clzi,. .. 0, &1,y ..., &]) in which the degree of a monomial z%¢7 is equal to L(|3], 51 — ay).
If L = F), the filtration F, , is the same as the filtration by the order of operators.

If L =V, the graded ring gr¥ (D,,) (vesp. gr¥(A,)) is isomorphic to C{za,. .., z, }[z1,d1,. ..,
0,] (resp. to the Weyl algebra A, = C[z,d]) in which the degree of a monomial 229" is 3, — a;.
Given an ideal I in D, (resp. A,), we denote by gr®(I) the graded ideal associated with

the filtration induced by Fy,, on I. The ideal grX(I) is generated by the family {o*(P)|P € I}
where o2(P) is the principal symbol of P with respect to L. If L #V,

oh(P) = 3 PapzE’

L(|8],61—a1)=ordy (P)
If L is the form V| the symbol of P with respect to V' is the differential operator

E paﬁxaaﬁ

ﬁl—oq:ordv(P)

If L is a form with a non rational slope p/q, one can also define Fy,, and the associated graded
rings and ideals.

We have the following algebraicity result :  Let [ be an ideal in A, and let I’ be the
ideal D - I. Then gr'(I') = gr(D,) - gr’(I). More precisely, if F = {P,,...,P.} is a system
of generators of I such that G = {o(P;)}'_, generates gr’(I), then G generates gr”(I’) over

L
gr" (D).



Remark. We shall see later that such a family F can be computed effectively starting from a
system of generators of the ideal [I.

Proof. In this proof we write o for o and ord for ord;,. We denote by J’ the ideal gr®(D,,) -
grP(I).Only the last part needs to be proved . Such a system F exists because grf(A,) is
noetherian. Let P € [’ and let us write P = Y7, Q; P, + P’ with Q; € D,, P’ € I' and
ord(P'") < ord(P) or P' = 0. We set d = max;,_{ord(Q;P;)}, § = ord(P) and d; = ord(F;).
We can suppose that d is minimal. If § = d then o(P) = Yi_, 0, (Qi)o(P;) € J. 1 § < d
then we have a relation Y./_, o, (Qi)o(P;) = 0. The ring gr”(D,) being flat' over gr(A,),

we can write

Oq_ d ZA F]Z

where (F1,...,F;,) is a relation, in grf(A,), between the o(P;)’s and A; € gr®(D,). We
denote by A; (resp. Fj;) a pre-image in D, (resp. A,) of A; (resp. Fj;). We denote by
G; = Y'_, F;;P; € I. By construction, we have ord(G ) < d—ord(A; ) The family G being
a system of generators of gr’(I), we can write >.\_, F;;P = G; = Y;_, R; P + G, where the
Rjyarein A,, G € I, ord(R;;) < d —d; — ord(A;) and ord(G;) < §—ord(A;). Thus we have
G = Yiei (Fji — Rj) Py and

P =P+ NG+ Qi = Aj(Fji — Ri)) P
7=1 =1 7=1

If we denote Q} = Q; — X7, A;(F;; — R;;) we have obtained a new decomposition for P with
max;=1,. {ord(Q.F;)} strictly smaller than d, which contradicts the choice of d. O

Remark. To make this more precise, considering the flatness of C{x} over C[z]| we can write

m
Oq— d Z ]2

with orde(oq—q4,(Q:)) > orde(A;F;;). This allows us to also consider the case L = V and to
adapt the proof to the case where L is irrational.

1.2 Privileged exponents

Let < be a well ordering, compatible with the sum, in N?* ( i.e. a good order such that
(a+a", 84+ 5") < (¢ +a",3 4 5" if and only if (« ,ﬂ) (o, ).

If L = V see also the remark after this proof




Let L be a linear form with non negative integer coefficients. We define on N*" the total
ordering (denoted <z,) by :

L8|, 01 —a1) < L(|B'], 5] — o))
(@, 8) <r (@, 8) € .\ bien { L(1B], 51— en) = L(|F'], B — o)
et (0, ) < (o', 3)

Remark that for any d € R, the restriction of <y, to the set {(«, #) s.t. L(|8],1—a1) = d}
is a well ordering.

Let L be a linear form with non negative coefficients. We call the element of N** maz ., {N(P)}
(where N(P) is the Newton diagram of P) the privileged L-exponent of P € A,, (and we denote
it by exp; (P)). We write exp(P) when no confusion is possible.

Remark. With the previous definition we cannot consider exp(P) for an operator P € D, \ A,,.

Let P=3",4 Pa,s%0° be an element of A,. We call the monomial p, sz%9° where (a, 8) =
exp(P) the L— initial monomial of P (and we it by denote Iny(P).) The complex number p, s
is called the initial coefficient of P with respect to L and is denoted ci(P). We denote In(P)
and ¢(P) when no confusion is possible.

Let @), P be elements of A,,. Then we have:

L. exp(Q.P) = exp(Q) + exp(P).

2. If exp(Q) # exp(P) then we have exp(P + Q) = maz, {exp(P),exp(Q)}.

3. If(‘eip(QzQ) xp(P) et ¢(P)+¢(Q) # 0 then we have exp(P+Q) = exp(P) and ¢(P+Q) =
4. fexp(Q) = exp(P) and ¢(P) + ¢(Q) = 0 then we have exp(P + Q) <r, exp(P).

1.3 Standard bases

If 7 is an ideal of A, we denote the set {exp;(P)|P € I} by Exp.([) (or simply Exp(l) when
no confusion is possible). After 1.2 Exp, (1) + N** = Exp, ().

Let I be an ideal of A,. A family {P,..., P.} of elements of [ is called a standard basis
(relatively to the order <y, or relatively to L) of I if

r

Exp, (1) = |J(exp,(P) + N*™).

=1
A standard basis of an ideal I of A, is not necessarily a set of generators of . It is enough
to consider the ideal I = A,,. Let L be the linear form L(i,7) = j. Let P =1+ x. Then {P} is

a standard basis of I and P does not generate [.
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Let F = {P,..., P.} be a system of generators of an ideal I of A,. If F is a L-standard
basis of [ then :

1. {e®(P),...,0%(P.)} is a set of generators of grl ().

2. If in, addition, Ey(gri(I)) = U_, (expy (X (P)) + N**) (resp. Ep(gr(I)) = Ur_;(expy(
ol(P;)) + N?")), then the family {o"(c®(P))}_, (resp. {o¥(c%(P;))}:_,) generates
gr”(grt(1)) (resp. grt(gr®(1))).

Proof. 1. Let J be the ideal generated by {ol(P;)}:_,. We set ¢; = ¢(P;).Let 0 # P € I. We
define a family of elements P{®) of I, for all s > 0, such that

o« PO =P

o Pt = pls) _ gp—lx 0% P;,, where (o, 3%) is an element of N?" such that (a®,3°*) +

exp(P,,) = exp(P())
° ordL(P(sH)) < ordL(P(S)) et eXp(P(S‘H)) <y eXp(P(s))

Thus, after the note 1.2, there is an s such that ordy (P®+Y) < ordp(P®)). Let s be the
smallest integer having this property. Then

L C(L(j))ﬂcafaﬁﬂ)all(pi ).

J

2. The proof is the same as in 1. We only have to replace F by {o%(P,),..., 0L (P,)} and I by
L
gr-(I). O

1.4 Homogenization, orders in N?"*!

We set A,ft] = A, ®c C[t]. If P = Zaﬁpaﬁxo‘aﬁ is an element of A, we call the integer
mazx{|a|+|B| | pas # 0} the total order of P (and we denote it by ord’ (P).) As in case of A,,

we can define the notion of Newton diagram of an operator in A,[t].

Let P =37, 3 paﬁxaaﬁ € A,. We call the differential operator

Zp terdt(P)=lal=16l 58 4 [t].

the homogeneization of P.

We denote by 7 : N?**1 — N?" the projection defined by 7 (h, a, 8) = («, 3). We consider
on N?"*1 the total order denoted <NL, thus defined:

kol +18] <K +]o'| + 5]

(k. D) <1 (K, ol ) = { or { E3lal e o=kl 151 e
(0‘76) <L (O‘/MB)/)



This order on N?"*! is a well ordering compatible with the sum.

HH=3 .5 hi o st z®dP is an element of A, [t] we call the greatest element with respect to
the total order <y, of the Newton diagram of H the privileged exponent of H relatively to <,
(and we denote it by exp, (H)). The monomial of H whose exponent is equal to the privileged
exponent is called the initial monomial of H and we denote it by In<, (H). The coefficient of
the initial monomial of H is called the initial coefficient of H and we denote it by ¢4, (H). We
write exp(H), In(H) and ¢(H) when no confusion is possible. It is useful to use the following

notation : H = H — In(H).

If P € A,, we have in general exp;(P) # m(exp,, (P)). The equality happens only if
exp; (aT(P)) = exp, (P), where oT(P) is the symbol of P with respect to the total ordering.

We have the following relations with the H; in A,[t], P and @) in A,, and where exp denotes
the exponent either for <, or for <y, .

1. exp(H1Hy) = exp(Hy) + exp(Hs).
2. If exp(H;) # exp(Hy) then we have exp(H; + Hs) = max <, {exp(Hy),exp(Hz)}.

3. If exp(H;y) = exp(H;) and ¢(Hy) + ¢(Hz) # 0 then we have exp(H; + Hz) = exp(H;) and
C(Hl + HQ) = C(Hl) + C(HQ).

4. If exp(Hy) = exp(Hy) and ¢(Hy) + ¢(H;) = 0 then we have exp(H; + Hz)<pexp(Hy).

5. exp(h(QP)) = exp(A(Q)h(P)).
6. m(exp(h(P)) = exp(P).

1.5 Partition of N?"*!, Division in A4,[t]

Given an element (p!,..., u") of (N?"*1)" a partition {A;,...,A,, A} of N?"*! is associated
with it in the following way:

Ay = pt + N2
A= (@ + N\ (UZ1 Q) if2<i <r
A =N (U2 A))
Let (Py,...,P.) be in A”. We denote {A;,...,A,, A} the partition of N*"*! associated
with (exp(h(Fy)),...,exp(h(F,))). Then, for any H € A,[t] there exists a unique element

(Q1,...,Q,, R) in A,[t]"™" such that

1. H=Qih(P)+...+ Q.h(P)+ R
2. exp(h(P)) + N(Q;) C A; et exp(Q;h(P;))=Zrexp(H) pour 1 <i <.
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3. N(R) C A et exp(R) =, exp(H).

The proof is classical and left to the reader.

Let (o, 3) € N?*. We say that N (H) is dominated by (a, 3) if for any exponent (k',a’, 3')
in N(H) we have (o, 3') <1, (o, 3). If in the claim of the division theorem N(H) is dominated
by (o, 3) the same is true for N'(R) and for N(Q;h(F;)) withri =1,...,r.

1.6 Semisyzygies

Let Gy, G be two non-zero elements in A, [t]. We denote u* = exp, (Gi) and p = ppem(p', p?).
Let us write u = v' + ' = v* 4 u*. We consider the operator S(Gy,Gy) = MGy — MyGy where
M; is the monomial with exponent v and with coefficient 1/c((;). We call it the semisyzygy
relatively to (G, G3). We have a similar definition for the operators in D,, or A,,.

Let F = {Py,..., P.} be a system of generators of the ideal I of A,, such that, for any (7, j),
the remainder of the division of S(h(F;),h(P;)) by (h(FPy1),...,h(P.)) is equal to zero, modulo
(t — 1)A,[t]. Then F is a standard basis of I.

Proof. We denote A = |JI_,(exp(P;) + N?"). It is enough to prove that Exp, (/) C A. Let
P el Wewrite P=3"_, Q;P;. We set,

o d; =deg’ (Q:P), d =maz;= . {d;}, §=deg’(P)<d,

wesy

o (i =exp,, (W(P)), V' = (vj,a',3) = exp_, (R(Qi)h(P)),
o (a,8) = mazi=,. {expr(QiF;)}.

Let {ig,...,i5s} be the set of indices where (a,3) is reached. If s = 0 then exp(P) =
exp(Qi, Pi,) € A. We suppose then s > 1. We write

t"Ch(P) = itd‘dih(Qi)h(Pi) mod. (t — 1)A,[t].

=1
Thus we have

exp, (1" “h(Q:i)h(P)) = (d — |a| = |B],a,8)  pour i =iq,..., i,
eXp<L(td_déh(Qi)h(Pi))_<L(d - |Oé| - |6| ; avﬁ) pour i ¢ {i07 R LS}

Let p = ppem(piy, pi, ). Let us write p = pi + pi, = pi + pi,. Recall that the semisyzygy
S = S(h(P,),h(F;)) can be written

S = My h(P;,) — My, h(P;,) =

= Y, Sih(P) mod. (t — 1)A,[t]

where M;, is a monomial in A,[t] such that



o exp(M;)=pi, k=01
o exp(S(h(Py), h(Py))) <

Let us denote d' = d — |a| — |3]. We have (d',a,3) = exp(t’h(Q; P;,)) for [ = 0,...,s
and thus (d',a,8) = v + p for some v € N?"*!. Let M be the unitary monomial such that
exp(M) = v. Thus we have exp(t*%xh(Q;,)) = exp(MM;,) = v + pi, for k = 0,1. Let us
denote by ¢ the unique scalar such that

Ing, (17" h(Qs,)) = Inz, (M M;,)
for k= 0,1. We have

t4Sh(P) = (coMM;, — coMM,;, + td‘dfoh@o))h(Pio) + Yt ER(QI(P) =
i#ig

= coM (S + M;, h(P,)) + (% h(Qs,) — coMM;,)h(Py) + 3t h(Q:)h(P;) =
i#10

= CoM(i Sih(P:)) + coM My, h(Py,) + (170 h(Qs,) — oMMy )h(Pyy) + 3 =" h(Q:)h(P,)

i=1 i#io

all these equalities being considered modulo (t — 1)A,[t]. Thus we can write
th(P) = 3" Hh(P;) mod. (t — 1)A,[t]
=1

where

— o

o H;, = coMS;, +tidio h(Qi) — coMM,,, H;, = coMS;, + coMM;, + i—diy h(Q:,)
o H;=coMS; +t%h(Q;) pour 1 # ig,1;
with
o exp(Hi,)<pexp(t'™"h(Qi,)), exp(H;)=pexp(t'™*1h(Q:,))
o exp(H) = exp(t-9h(Q1)) pour i # io, s
Thus if we set Q) = H;,_, we get P = Y7, QiFP; with, after 1.5, maz, {exp,(QiF;) | 1 =

L...,r} <g (a,B) et expy (@} Fi,) <z (a,3). This proves the proposition by induction on s
and on (a, 3), since on the other side ord! (Q’P;) remains bounded by d. O



1.7 Construction of a standard basis

Let Py,..., P, be operators in A,. The aim of this section is to build a standard basis for the
ideal I, in D, generated by Pi,..., P.. Given P’ € A,[t] and P' = YI_, Q;h(P;) + R a division

(see 1.5) in A,[t], we have by construction :
N(R U exp(h )+ N2”+1).

If P" = h(P) with P € I we have in addition R;=; € I. But h(R;=1) may have a privileged
exponent different from exp(R) and it is even possible that m(exp(h(Ri=1))) # m(exp(R))
(see 1.4). Thus, in particular, we can have exp(h(Rj=1)) ¢ A. In this situation, a non zero
remainder does not necessarily produce a new privileged exponent in Exp; (7). In view of solving
this difficulty we use the following algorithm : let P € A,[t]. Let R®), p € N, the sequence of
operators in A,[t], defined in the following way :

o RW is the remainder of the division of P by (h(P),...,h(P)).
e For p > 2, R®is the remainder of the division of h(R(p_1)|t:1) by (h(P1),...,h(F.)).

Then there is a unique s such that:
o N(W(E®121)) C A, N(R(RC™Vjm)) ¢ A

Furthermore, for any p we can write
P =Y QUA(P)+ RY + (t — )Wl

i=1
where QEP] and W are elements of A,[t] and for any (K, o/, 3') in

U (U N@QR(P)))
=1
we have
o K+ ||+ |7 < ordT(P)
o (/.3 <i (a, ), if (o, 3) dominates N'(P) (voir 1.5).
Proof. After 1.5 we can write

P =5 QWnP)+ RW.

=1

10



We write also in a unique way, R(") = h(R(1)|t:1) + (t — 1)WM, We write in the same way
h(R(P-1) _ - Oppy 1 g
( i=1) = D Q" h(P;) +
=1

and R®) = h(R(p)|t:1)—|—(t—1)W(p). Let NV, be the Newton diagram of h(R(p)|t:1) et N, = N \A.
For any p such that A, # 0, let (k,,a?,3?) = max<, N, and d, = k, + |a?| + |3?|. Let
(K, o', 3') € N(R®), after 1.5 we have : k' + |o/| + |3'| < d,_; and one of the two following

conditions :
o (W,a,f) € K and ¥ + /| + 5] = dy_y
o (o, 0) <p (a7t B

A point (K", ¢/, 3') in the Newton diagram h(R(p)|t:1), comes necessarily from a point (k', o', 3’)
in the Newton diagram of R(®) and in the first case, the degree condition implies &” < k' hence
(K", o/, 3') € A. From this we deduce : (k,,a?, 7)< (k,_1,aP~t, 3P71). Since <y, is a well
ordering, there is a unique s such that A, ; # () and N, = (. By division (voir 1.5) we get
RG) = h(R(5)|t:1) for any s’ > s. It remains be written

° QEP] — Z?:l QE”) for 1 = 17 R

° W[p] — Zf;i I/VZ(])

K3

O

We call R® the remainder of the iterated division with rehomogenization of the inter-
mediate remainders (or simply the iterated remainder). It is denoted by R'(P;h(P),...,
h(P.)).

Let F = {P,...,P.} C A, be a system of generators of the ideal I de D,, such that for any
(1,7), the iterated remainder of the division of S(h(F;), h(P;)) by (h(F1),...,h(FP,)) is equal to
zero, modulo (¢ — 1)A,[t]. Then F is a standard basis of I.

Proof.  the proof is similar to the proof of 1.6, by using the properties of quotient and remain-
ders in the iterated division. O

1.8 Algorithm

Let P,..., P. be elements of A,,.We show here how to build a standard basis (relative to a form
L) of the ideal I generated by the P;. If for any (7, ), ¢ < j, we have R (S(h(P;), h(P;)); h(P,),

..,h(P.)) = 0 then after 1.7 {P1,..., P} is a standard basis (relative to L) of I. If there
exists (i,7) with i < j such that R*(S(h(P;), h(P;));h(P)),...,h(P.)) # 0 we set PU+) =
RU(S(h(P), h(P):
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h(Py),....,h(F,)), Pry1 = (P(7’+1))|t:1 and we repeat this process with {P,..., P, P.41} as
a system of generators of I. In this way we build a family {P,.... P, Pry1,..., Prys,...} in [
such that, if P.4;4+1 # 0 then

exp(h(Prijr1)) & Ui (exp(h(Py)) + N2"HH).
This process stops because N?"*! is noetherian.
Remark. The algorithm presented above is valid for any ordering N?" compatible with the

sum. It allows us for example to compute the multiplicity at a point of the characteristic
variety.

2 The finiteness of the number of slopes. Computing
the slopes

2.1

The ring gr¥(A,) (and even grl(D,), if L # F,V) has a graduation with respect to F and
another with respect to V. Let [ be an ideal of A,, (or D,) and let L # F,V be a linear form.
We say that L is a slope of A, /I (or of D,/D,I) if gr’(I) is not bihomogeneous with respect
to the filtrations F' and V. Let P be an operator of D,,. We call the convex hull of the set :

U 8], 61 — 1) + (=N)?).

(a,B)EN(P)
where N (P) is the Newton diagram of P (voir 1.1) the Newton polygon of P and we denote it
by P(P), .

Remark. If P is an operator in D, then the slopes of D, /D, P are the slopes of the Newton
polygon of P.

2.2 Two twin lemmas

In this section L, L', L", L), L\?) .. are linear forms with non negative coefficients (non nec-
essarily rationnals). The notation L < L' means slope(L) < slope(L'). Let I be an ideal of A,
and let L # V be a linear form. There exists a linear form L") with L®) > L such that for any
form L' such that L(Y) > L' > L we have

gr’ (1) = gr¥ (gr™(I)).

12



Proof. Let {Py,..., P} be a family of elements of [ such that
Expy(gr*(I)) = Uiy (expy (0" (P;)) + N*")

Let L™ be a form such that L) > L and such that UL(l)(PZ-) =oY(ol(P))fori=1,...,r. In
particular, for any form L’ such that L(Y) > L' > L we also have o™ (P;) = oV (¢"(P;)). Thus,
after lemma 1.3 we have gr¥ (gr’(I)) C grL‘([). Let us consider the opposite inclusion. After
having increased, if necessary, the family {Py,..., P.}, we can suppose that the homogenized
elements built from the operators o”(P;) constitute a standard basis of the homogenized ideal
h(gr®(I)) with respect to the ordering <z,. Let P € I. We have o%(P) = YI_, A\;o%(P;), with
ordr (Niol(P)) < ordp/(ol(P)). We set PY) = P — 50 AP, where A; € A, is the obvious
preimage of ;. We have :

° ordL(P(l)) < ordr(P).

e Since we carried out a division with respect to <y, ordp/(P) > ordp (A F;).

If ordL;(P(l)) < ordp/(P) then

where d = ordp/(P) et d; = ordp(P;). If ordL;(P(l)) = ordy (P) we do the same with P,
Thus we build a sequence P®), s > 1 such that

o PGt = p_ 5" AP
° ordL(P(5+1)) < ordL(P(S))
o ordp/(P) > ordp/ (A P;)

If L is rational, and since the sequence ordy(P®)) strictly decreases, there is an integer s such
that ordL/(P(S‘H)) < ordL/(P(s)) whence
ot (P) = o™ (Ao (P).
i=1

We set (o', 3°) = exp, (P;). If L is rationnal, the only point of P(F;) on the lines L(a,b) =
L(|3Y,Bi—a})and L'(a,b) = L'(|3], B —al) is (]3], Bi —a}). Hence, P(P;), without its vertex,
is included in the sector {L(a,b) < L(|3'|,8: —a})}N{L'(a,b) < L'(|3|, B —a})}. This proves
that we only have to deal with a finite number of points of P(P) to obtain ordp (PGE+Y) <
ordL/(P(S)). a

Let I be an ideal of A, and let L # F be a linear form. Then there is a linear form L(?
with L(®) < L such that for any form L’ with L(® < L' < L we have

/

g (1) = gr* (gr"(1)).

13



Proof. The proof is the same as in 2.2, provided that we write F' instead of V. O

2.3 Finiteness of the number of slopes

Let [ be an ideal of A,. Then the number of slopes of the module A, /I (or of the module
D.,./D,I) is finite.

Proof. This is a corollary of the twin lemmas, because each form L is in an open set where
there is at most one slope, namely the form L itself. We end by a compacity argument. O

2.4 Algorithm

The effective determination of the slopes of A, /I is based on the following result, analogous
to Assi’s in [1], in which he computes the critical tropisms of Lejeune-Teissier [7]. Let L # V
and let {P;,..., P.} be a system of generators of the ideal [ inducing a standard basis of
gr¥(grt(I)). Then, there is a rational linear form L” and a system of generators {P/,..., P'}
such that

e oH(P) = oH(P)
o "> L and for any form L' with L > L' > L, gr’’(I) = gr¥ (gr*(I)).

o If L # V, then one of the o™ (P!) is not in gr" (gr”(I)) hence L" is a slope.

K3

Remark. The proof below shows that the construction of the form L” and of the system
{P],..., P} is algorithmic starting from {Fy,..., P.} and from L. On the other hand, we have
proved the finiteness of the number of slopes (see 2.3), and in addition, according to 1.8, we can
build a family satisfying the hypotheses of the theorem starting from any system of generators
of I. Therefore, this proof is an algorithm to compute all the slopes of A,,/I (or of D/DI.),
starting from F.

Proof. Starting from a system of generators of I let us compute a family {F;,..., P.} in [
such that :

o gri(I) is generated by {o*(P,),...,oc"(P.)}.
o Bapy(gr (1)) = Upmy(expy(e/(P) + N

Let L) be the smallest linear form > L such that there exists 1 < 7 < r such that UL(I)(PZ') is
not bihomogeneous 2. If it does not exist we set L(!) = V and the theorem is proved. We suppose

2this form is rational

14



LM £ V. Hence for any form A, L") > A > L, we have o*(P;) = 0" (o (P;)). After the lemma
2.2 we have gr (1) = gr¥(grt(I)). Let iy be the smallest 1 € {1,...,r} such that UL(l)(PZ- ) is
not bihomogeneous. We suppose ig = 1. We set oLV (P) = oV (oM(P) + 35, M(ay,bi) where
M (ay, by)is a bihomogeneous element such that ordp (M (ax,by) = ai et ordy (M (ag,br) = by.
We set a; > --- > a;. We can write, using a division,

M(ar,bi) =Y 0" (a"(F))) + 7
7=1
where the 7;’s and v are bihomogeneous and expy, (v;0" (o2(P;))<yexpy(M(ay,b;)). We have :

o If v # 0 then M(ay,b1)is not in grL(l)([) hence this ideal is not bihomogeneous. The
theorem is proved in this case.

o If v =0 we write

P =p -3 1,P,
7=1

where I'; is the obvious preimage of v;. Since ordp(M(ai,b;)) < ordp(Py) we have

UL(PI(I)) = o%(P,) and since we performed a bihomogeneous division, we have UA(PI(I)) =

oV (a*(Py)) for any form A such that LV < A < L.

In this last case, if " (Pl(l)) is not bihomogeneous it can be written o’ (Pl(l)) = O'V(O'L(Pl(l)))—l-
Zjlzl M (a}, b)) where M(a’;,b’) is bihomogeneous with ordr(M(d’;, b)) = a}, ordy (M (a’,b})) =
b, and @ < a; for any j. We can then repeat this process with Pl(l) instead of P;. This process
stops since the set {(a,b) € N x Z | a < a; and L") (a,b) = ord;u)(P,)} is finite. Hence we can
replace P; by P/ such that, either JL(l)(Pl’) ¢ gr¥(gr(I)) (in which case grtt (1) is not biho-
mogeneous) or JL(l)(Pl’) is bihomogeneous. In this last case, we repeat with {P/, P2, ..., P.}.
Let us remark that :

o gri(I) is generated by {o*(P}),...,c"(P.)}.

o Bapy(grt(l)) = (expy(c™(P))) + N*") U (Uiy(expy (oX(F;)) + N*"))
This process stops because, for any 1 < i < r, the set {(a,b) € N x Z | LM (a,b) <
ord; ) (P;),b > ordy (ol(P;)) and a < ordp (ol (P;))} is finite. O
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