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Abstract

In this paper, we study the pullback attractor for a general reaction-diffusion system for which the
uniqueness of solutions is not assumed. We first establish some general results for a multi-valued
dynamical system to have a bi-spatial pullback attractor, and then we find that the attractor can
be backwards compact and composed of all the backwards bounded complete trajectories. As an
application, a general reaction-diffusion system is proved to have an invariant (H,V )-pullback attractor
A = {A(τ)}τ∈R. This attractor is composed of all the backwards compact complete trajectories of
the system, pullback attracts bounded subsets of H in the topology of V , and moreover⋃

s6τ

A(s) is precompact in V, ∀τ ∈ R.

A non-autonomous Fitz-Hugh-Nagumo equation is studied as a specific example of the reaction-
diffusion system.
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1. Introduction

A multi-valued non-autonomous dynamical system (m-NDS) is generated by an evolution equation
whose solution is unnecessarily unique. The study on m-NDS has particular significance since m-NDS
are often established under weaker conditions than usual (single-valued) dynamical systems. For an
m-NDS φ on a Banach space X, a pullback attractor A = {A(τ)}τ∈R is defined as a compact and
negatively invariant non-autonomous set which attracts each bounded subset of X (see Definition 2.7).
This can be regarded as a generalization of pullback attractors for single-valued dynamical systems
which have been studied widely, see for instance [3, 4, 5, 11].

In this paper, we study the structure and regularity of the pullback attractor for the m-NDS
generated by the following reaction-diffusion equation defined on a bounded domain O ⊂ RN :

du
dt − a4u+ f(t, u) = g(x, t),

u|∂O = 0,

u|t=τ = u0,

(1.1)

where (t, x) ∈ (τ,∞)×O, u = (u1(t, x), · · · , ud(t, x)) : (τ,∞)×O → Rd, a is a real d× d matrix with

a positive symmetric part a+at

2 > βI for some β > 0, and f(t, u) ∈ C((τ,∞)× Rd;Rd) satisfies some
conditions unable to ensure the uniqueness of solutions (see Section 4). The most direct example of
this system is the classical reaction-diffusion equation (taking d = 1) frequently seen in the litera-
ture. Nevertheless, the system (1.1) covers more models, such as the Fitz-Hugh-Nagumo equations
considered in Section 4.4, and others stated by [16, 15].

We get three aims in this work. The first is the existence of the (H,V )-pullback attractor A =
{A(τ)}τ∈R for (1.1), which is a non-autonomous set pullback attracting bounded sets of H under the
topology of V , where

H := (L2(O))d, V := (H1
0 (O))d.

This is a study of bi-spatial attractors which attracted much attention these years due to their higher
regularity and stronger attracting ability compared with usual attractor, see [7, 13, 12] for single-valued
non-autonomous/random cocycles and [21, 19] for multi-valued semi-groups and random cocycles,
respectively. In this paper, we develop a study for m-NDS which can be regarded as an extension of
the bi-spacial attractor theory on one hand, and is interesting because of the multi-valued feature on
the other hand.

The second aim is to establish the backwards precompactness of A, that is,⋃
s6τ

A(s) is precompact in V, ∀τ ∈ R.

This subject is new since the compactness of a pullback attractor is often considered for each fixed
“section” A(τ) in the literature. To achieve this, we first establish some sufficient conditions to ensure
an attractor to be backwards precompact, and then apply them to the system (1.1) when the external
force g is backwards translation bounded, namely, g ∈ L2

loc(R;H) with

sup
τ<0

∫ τ

τ−1
‖g(s)‖2 ds <∞.

This condition is shown weaker than translation bounded condition considered in [8] and stronger than
tempered conditions seen in recent studies for random dynamical systems, such as [17] and references
therein. Establishing a non-autonomous set {K(τ)}τ∈R which is absorbing and increasing in τ plays
a key role to obtain the backwards compactness of the attractor.

The third main aim is to characterize the pullback attractor A by complete trajectories. For strict
m-NDS we first introduce the concept of an m-NDS generating smooth trajectories, and then prove
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that backwards bounded pullback attractors for such systems are composed of backwards bounded
trajectories, see Theorem 2.24. Note that, the class of dynamical systems who generate smooth
trajectories is rather general. A direct example is the so-called generalized dynamical systems, first
studied by Ball [1] and recently studied by Simsen [14] for generalized semiflows and Kapustyan et al.
[9] for generalized processes, etc. Therefore, Theorem 2.24 is interesting even in single-valued cases as
single-valued systems must be strict.

We carry out this work as follows.
In Section 2, we first make some necessary definitions, and then establish some abstract results on

the existence of a backwards bounded pullback attractor and on the structure of pullback attractors
is also studied in this section.

In Section 3, we first establish a result on the existence of a bi-spatial pullback attractor by making
a direct comparison on bi-spatial and single-spatial attractors, see Theorem 3.9. This result indicates
an interesting fact that the regularity of a pullback attractor, once the attractor exists, is determined by
the dynamical compactness of the system. Then we establish several sufficient conditions to verify the
backwards precompactness of a pullback attractor. These conditions are established by strengthen the
dynamical compactness of the system (see Theorem 3.18), and this coincides with the observation that
the regularity properties of the attractor have a close relationship with the dynamical compactness.

In Section 4, we study the system (1.1) and find that, under certain conditions the system (1.1)
admits an (H,V )-pullback attractor which is invariant and composed of backwards compact complete
trajectories. A Fitz-Hugh-Nagumo equation is studied as a specific example.

2. Backwards bounded pullback attractors for m-NDS

Throughout this paper, let (X, ‖ · ‖X) be a separable Banach space. Denote by C(X) the set
of all nonempty closed subsets of X and B(X) ⊂ C(X) the set of all bounded closed subsets of X.
R+ = [0,∞). The Hausdorff semi-distance between two nonempty subsets A and B of X is defined
by distX(A,B) := supa∈A infb∈B ‖a − b‖X . Denote the open δ-neighborhood of a subset B of X by
Nδ(B). Suppose {θt}t∈R is a group of translation operators acting on R defined by

θsτ = τ + s, ∀s, τ ∈ R.

Definition 2.1. A non-autonomous set D = {D(τ)}τ∈R in X is a mapping: R → C(X), τ 7→ D(τ).
The collection of all the non-autonomous sets in X is denoted by DX .

Definition 2.2. A non-autonomous set D is called compact/bounded (in X) if, for every τ ∈ R, D(τ)
is compact/bounded (in X). D is called backwards precompact/bounded (in X) if⋃

s6τ

D(s) is precompact/bounded (in X) for every τ ∈ R.

Definition 2.3. A multi-valued mapping φ : R+ × R×X → C(X) is called an m-NDS on X if

(1) φ(0, τ, ·) is the identity operator on X, ∀τ ∈ R;

(2) φ(t+ s, τ, ·) ⊂ φ(t, τ + s, φ(s, τ, ·)), ∀t, s ∈ R+, τ ∈ R.

Moreover, if φ(t+ s, τ, ·) = φ(t, θsτ, φ(s, τ, ·)), then the m-NDS φ is called a strict m-NDS.

Definition 2.4. An m-NDS φ is called upper semi-continuous at x0 if for every (t, τ) ∈ R+ × R and
every neighborhood U of the set φ(t, τ, x0) there exists a δ > 0 such that

φ(t, τ, x) ⊂ U for all x ∈ Nδ(x0).

φ is called upper semi-continuous in X if it is upper semi-continuous everywhere in X.
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Remark 2.5. [2] Note that if a mapping φ(t, τ, ·) is upper semi-continuous at x0, then for all ε > 0
there exists δ(ε) > 0 such that

distX(φ(t, τ, y), φ(t, τ, x0)) < ε for any y ∈ Nδ(x0).

The converse is true when each value of φ is compact.

Definition 2.6. (1) We say K ∈ DX is pullback attracting if for every D ∈ B(X) we have

lim
t→∞

distX
(
φ(t, θ−tτ,D),K(τ)

)
= 0, for every τ ∈ R.

(2) A mapping B ∈ DX is called a pullback absorbing set if for every D ∈ B(X) there exists a
T = T (τ,D) > 0 such that

φ(t, θ−tτ,D) ⊂ B(τ), for all t > T.

Definition 2.7. A mapping A ∈ DX is called a pullback attractor in X for the m-NDS φ if

1. A is compact in X;

2. A is pullback attracting;

3. A is negatively invariant, namely, A(θtτ) ⊂ φ(t, τ, A(τ)), ∀t ∈ R+, τ ∈ R.

Remark 2.8. Clearly, backwards bounded pullback attractor must be unique.

Remark 2.9. It is interesting to observe that, most generally, a pullback attractor A is not always
contained in any pullback absorbing set B in the sense that A(τ) ⊂ B(τ), ∀τ ∈ R. But the inclusion
must hold if A is backwards bounded in X. This can be seen from the relation

A(τ) ⊂ φ(t, θ−tτ,A(θ−tτ)) ⊂ φ(t, θ−tτ,Dτ ) ⊂ B(τ), for all t large enough.

2.1. Existence of a backwards bounded pullback attractor

As for single-valued dynamical systems, the main object to study the attractor is the pullback
ω-limit set for the m-NDS φ. For some D ∈ B(X), the ω-limit set of D is a mapping ω(D, ·) : R→ 2X

defined by

ω(D, τ) =
⋂
s>0

⋃
t>s

φ(t, θ−tτ,D)
X

, ∀τ ∈ R,

where the closure is taken under the norm topology of X. Note that y ∈ ω(D, τ) iff there exist tn →∞
and yn ∈ φ(tn, θ−tnτ,D) such that yn

X−→ y. Moreover, we have the following lemma.

Definition 2.10. Let D ∈ B(X). Then the m-NDS φ is called D-pullback asymptotically compact if
for every sequence tn →∞ and τ ∈ R, any sequence {yn} with yn ∈ φ(tn, θ−tnτ,D) is precompact in
X. φ is called pullback asymptotically compact if it is D-asymptotically compact for every D ∈ B(X).

Remark 2.11. Such a dynamical compactness property is also termed as pullback asymptotically upper
semi-compact in the literature, see [21, 18].

Lemma 2.12. Suppose φ is an m-NDS upper semi-continuous in X. Let φ be D-pullback asymptoti-
cally compact for some D ∈ B(X). Then,

(1) for all τ ∈ R, ω(D, τ) is non-empty and compact in X;

(2) ω(D, ·) pullback attracts D, that is,

lim
t→∞

distX
(
φ(t, θ−tτ,D), ω(D, τ)

)
= 0, ∀t ∈ R;
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(3) ω(D, ·) is negatively invariant, i.e. ω(D, θtτ) ⊂ φ(t, τ, ω(D, τ)) for all t > 0.

Proof. First observe that y ∈ ω(D, τ) iff there exist tn → ∞ and yn ∈ φ(tn, θ−tnτ,D) such that

yn
X−→ y.
(1) To see ω(D, τ) is non-empty, we take a sequence yn ∈ φ(tn, θ−tnτ,D) with tn → ∞. By the

D-pullback asymptotic compactness of φ we can find a y ∈ X such that, up to a subsequence, yn
X−→ y.

Therefore, y ∈ ω(B, τ) and ω(B, τ) is non-empty.
We now prove the Y -compactness. Given a sequence {yn} ⊂ ω(D, τ), we can find tn → ∞ and

zn ∈ φ(tn, θ−tnτ,D) such that ‖yn − zn‖X < 1/n. By the D-asymptotic compactness of φ again we

know znk
X−→ z for some z ∈ ω(D, τ). Thus, ynk

X−→ z and then ω(D, τ) is compact in X.
(2) We prove the pullback D-attracting property by contradiction. Suppose it does not hold, then

there exist an ε > 0 and yn ∈ φ(tn, θ−tnτ,D) with tn →∞ such that

distX(yn, ω(D, τ)) > ε, ∀n ∈ N.

But from the D-pullback asymptotic compactness of φ it follows that ynk
X−→ y for some y ∈ ω(B, τ).

Here we arrive at a contradiction.
(3) We now prove the negative invariance. For any y ∈ ω(D, θtτ), there exists a sequence yn ∈

φ(tn, θ−tnθtτ, xn) with xn ∈ D and tn →∞ such that yn
X−→ y. Notice that

φ(tn, θ−tnθtτ, xn) ⊂ φ(t, τ, φ(tn − t, θt−tnτ, xn)), ∀tn > t,

thus yn ∈ φ(t, τ, zn) for some zn ∈ φ(tn − t, θt−tnτ, xn). By the pullback D-asymptotic compactness

again we see that znk
X−→ z ∈ ω(D, τ). Therefore, since x 7→ φ(t, τ, x) is upper semi-continuous in X

with closed values, we have
y ∈ φ(t, τ, z) ⊂ φ(t, τ, ω(D, τ)),

which completes the proof.

Remark 2.13. Slightly modifying the proof one can establish the previous lemma also for m-NDS not
upper semi-continuous but with closed graph, see [6] and also [7].

Theorem 2.14. Let φ be an m-NDS on X. If

(i) φ is asymptotically compact;

(ii) φ has a bounded absorbing set B ∈ DX ;

(iii) φ is upper semi-continuous in X,

then the non-autonomous mapping A = {A(τ)}τ∈R ∈ DX defined by

A(τ) =
⋃

D∈B(X)

ω(D, τ), ∀τ ∈ R, (2.1)

has properties

1. A is nonempty and bounded in X;

2. A is pullback attracting;

3. A is negatively invariant.
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Proof. Properties 2 and 3 and the non-empty property follow from Lemma 2.12. We now prove the
boundedness of A(τ) for τ ∈ R arbitrarily fixed. Since B ∈ DX is a bounded absorbing set, for any
D ∈ B(X) there is a time T > 0 such that⋃

t>T

φ(t, θ−tτ,D) ⊂ B(τ),

from which and the closedness of B(τ) it follows that

ω(D, τ) =
⋂
s>0

⋃
t>s

φ(t, θ−tτ,D) ⊂
⋃
t>T

φ(t, θ−tτ,D) ⊂ B(τ).

Thus A(τ) ⊂ B(τ) is bounded in X.

Note that the non-autonomous set A defined by Theorem 2.14 is not compact in general. To prove
the compactness of A we need to make assumptions on the pullback absorbing set. More precisely,
we have the following result.

Theorem 2.15. Suppose conditions of Theorem 2.14 hold. Moreover, we suppose the absorbing set
B is such that, for every τ ∈ R and D ∈ B(X), B(τ) pullback absorbs D at every s 6 τ , that is,

for every s 6 τ there is a time T = T (D, s) such that
⋃
t>T

φ(t, θ−ts,D) ⊂ B(τ). (2.2)

Then A ∈ DX defined by (2.1) is the pullback attractor for φ. Moreover, A is backwards bounded, and

A(τ) = ω(B(τ), τ), ∀τ ∈ R.

Proof. To prove A is the pullback attractor, by Theorem 2.14 it suffices to show the compactness of
A. For every D ∈ B(X), by (2.2) we have

ω(D, s) ⊂
⋃
t>T

φ(t, θ−ts,D) ⊂ B(τ), ∀s 6 τ, (2.3)

which along with the negative invariance of ω(D, τ) implies that

ω(D, τ) ⊂ φ
(
τ − s, θ−(τ−s)τ, ω(D, s)

)
⊂ φ

(
τ − s, θ−(τ−s)τ,B(τ)

)
for all s 6 τ.

Therefore,

ω(D, τ) ⊂
⋂
s6τ

⋃
t>τ−s

φ(t, θ−tτ,B(τ)) = ω(B(τ), τ), ∀D ∈ B(X),

and thereby
A(τ) ⊂ ω(B(τ), τ)

is precompact in X. On the other hand, since B(τ) ∈ B(X) and ω(B(τ), τ) ⊂ A(τ), thereby

A(τ) = ω(B(τ), τ)

is closed and thereby compact in X. In addition, (2.3) implies⋃
s6τ

A(s) ⊂ B(τ) (2.4)

and thereby the backwards boundedness is also clear.
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On Theorem 2.15 we make following remarks.

Remark 2.16. If the pullback absorbing set B = {B(τ)}τ∈R ∈ DX is increasing in τ , that is,

B(s) ⊆ B(τ) whenever s 6 τ,

then the condition (2.2) is fulfilled. Moreover, it is possible to establish a pullback absorbing set B
satisfying (2.2) with T independent of s and τ in specific applications, and in this case the condition
(2.2) is equivalent to that there is an increasing bounded absorbing set B′ for φ. Indeed, if B is a
bounded absorbing set with (2.2), then the non-autonomous set B′ defined by

B′(τ) =
⋂
s>τ

B(s), ∀τ ∈ R,

is readily checked an increasing bounded absorbing set.

Remark 2.17. It is interesting to notice that if B is moreover compact, then (2.4) implies A is back-
wards precompact. We will discuss the backwards compactness later in Section 3.

2.2. Invariance of pullback attractors for strict m-NDS

In this part and motivated by Wang & Zhou [20] where uniform attractors for m-NDS were studied,
we prove the invariance of a pullback attractor for strict m-NDS.

Theorem 2.18. The backwards bounded pullback attractor A of a strict m-NDS φ must be invariant.

Proof. Clearly, the negative invariance of A holds by definition. Now by two steps we prove the
positive invariance, i.e.,

φ(t− τ, τ, A(τ)) ⊂ A(t), ∀t > τ. (2.5)

Step 1, we prove the non-autonomous set Q = {Q(τ)}τ∈R is invariant, where

Q(τ) =
⋃
s6τ

φ(τ − s, s, A(s)).

Let t > τ . First notice that, by the strictness,

φ(t− τ, τ,Q(τ)) = φ
(
t− τ, τ,

⋃
s6τ

φ
(
τ − s, s, A(s)

))
=
⋃
s6τ

φ
(
t− τ, τ, φ

(
τ − s, s, A(s)

))
=
⋃
s6τ

φ
(
t− s, s, A(s)

)
⊂ Q(t),

and thus the positive invariance of Q is clear. Now we prove the negative invariance. Note that for
every y ∈ Q(t) there exist an s 6 t and x ∈ A(s) such that y ∈ φ(t− s, s, x). Then two cases should
be taken into account.

Case 1, s > τ . Since by the negative invariance of A there is an x′ ∈ A(τ) such that x ∈
φ(s− τ, τ, x′),

y ∈ φ(t− s, s, x) ⊂ φ(t− s, s, φ(s− τ, τ, x′)) = φ(t− τ, τ, x′)
⊂ φ(t− τ, τ, A(τ)) ⊂ φ(t− τ, τ,Q(τ)),

which implies Q(t) ⊂ φ(t− τ, τ,Q(τ)) in this case.
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Case 2, s < τ. Then by the negative invariance of A and for some r < s,

y ∈ φ(t− s, s, A(s)) = φ
(
t− τ, τ, φ(τ − s, s, A(s))

)
⊂ φ

(
t− τ, τ, φ

(
τ − s, s, φ(s− r, r, A(r)

))
= φ

(
t− τ, τ, φ

(
τ − r, r, A(r)

))
,

which implies Q(t) ⊂ φ(t− τ, τ,Q(τ)) and thereby Q is negatively invariant. Step 1 is concluded.
Step 2, let us prove (2.5). Recall that by the backwards boundedness of A, there is a Dτ ∈ B(X)

such that ⋃
s6τ

A(s) ⊂ Dτ .

Then since Q is invariant, for all t > τ > s we have

φ(t− τ, τ, A(τ)) ⊂ Q(t) = φ(t− s, s,Q(s)) =
⋃
γ6s

φ(t− s, s, φ(s− γ, γ,A(γ)))

⊂
⋃
γ6s

φ(t− s, s, φ(s− γ, γ,Dτ )) =
⋃
γ6s

φ(t− γ, γ,Dτ )

=
⋃

t′>t−s

φ(t′, θ−t′t,Dτ ) (let t′ = t− γ),

which implies

φ(t− τ, τ, A(τ)) ⊂
⋂
s6τ

⋃
t′>t−s

φ(t′, θ−t′t,Dτ ) ⊂ ω(Dτ , t) ⊂ A(t), ∀t > τ.

Therefore, (2.5) holds and the proof is complete.

Remark 2.19. This result was also established by Coti Zelati and Kalita [6, Proposition 4.3] under
the assumption that

there exists t? > 0 such that A(t) ⊂ φ(t?, t− t?, A(t− t?)), ∀t ∈ R.

The backwards boundedness of the attractor plays a key role in the proof of the invariance. For
the pullback attractor A = {A(τ)}τ∈R defined by (2.1), we have the following observation when A has
no backwards boundedness. This observation indicates an interesting fact that, though the invariance
of the pullback attractor remains unknown, any trajectories from a “section” A(s) cannot entirely
bypass any section behind.

Proposition 2.20. Suppose A = {A(τ)}τ∈R defined by (2.1) is a pullback attractor, unnecessarily
backwards bounded, of a strict and upper semi-continuous m-NDS φ. Then for any t > s,

φ(t− s, s, x) ∩A(t) 6= ∅, ∀x ∈ A(s).

Proof. We prove by contradiction. Suppose the proposition is not true for some x ∈ A(s) and s < t,
then by the closedness of φ(t− s, s, x) and A(t) we can find a δ > 0 such that

inf
b∈φ(t−s,s,x)

distX(b, A(t)) > δ.

Since, by (2.1), there is a D ∈ B(X) such that

x ∈ ω(D, s),
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there exist sequences tn →∞ and yn ∈ φ(tn, s− tn, D) such that

yn → x.

Thus by the upper semi-continuity of φ we find that

distX(φ(t− s, s, yn), φ(t− s, s, x)) < δ/4 for n large enough,

which implies the existence of a b ∈ φ(t− s, s, x) and a c ∈ φ(t− s, s, yn) such that

‖b− c‖X < δ/2. (2.6)

On the other hand, since A(t) pullback attracts D at time t and by the strictness of φ, we have

distX(c, A(t)) 6 distX(φ(t− s, s, yn), A(t))

6 distX

(
φ
(
t− s, s, φ(tn, s− tn, D)

)
, A(t)

)
= distX

(
φ
(
t− (s− tn), s− tn, D

)
, A(t)

)
< δ/2 (for all large n).

(2.7)

Therefore, from (2.6) and (2.7) it follows

distX(b, A(t)) < δ,

where b ∈ φ(t− s, s, x); a contradiction.

2.3. Structure of pullback attractors for strict m-NDS

In this part, we characterize pullback attractors of strict m-NDS by complete trajectories.

Definition 2.21. A complete trajectory ξ of an m-NDS φ on X is defined as a mapping in C(R;X)
which enjoys the property

ξ(t) ∈ φ(t− s, s, ξ(s)), ∀t > s.

If ξ is moreover backwards bounded, then ξ is called a backwards bounded complete trajectory.

It is straightforward to obtain the following lemma.

Lemma 2.22. If the pullback attractor A exists, then every backwards bounded complete trajectory ξ
must be contained in A, that is,

ξ(τ) ∈ A(τ), ∀τ ∈ R.

Definition 2.23. We say an m-NDS φ generates smooth trajectories, if for each x ∈ X and τ ∈ R
there exists a family

Rτx :=
{
r ∈ C([τ,∞);X) : r(t) ∈ φ(t− s, s, r(s)) and r(τ) = x, ∀t > s > τ

}
(2.8)

such that
φ(t, τ, x) =

⋃
r∈Rτx

r(τ + t), ∀t > 0.

The following result provides a sufficient condition under which the backwards bounded pullback
attractor of a strict m-NDS is composed of backwards bounded complete trajectories.
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Theorem 2.24. Suppose φ is a strict m-NDS on Banach space X with a backwards bounded pullback
attractor A. If φ generates smooth trajectories, then

A(τ) = {ξ(τ) : ξ is a backwards bounded complete trajectory of φ}, ∀τ ∈ R.

Proof. By Lemma 2.22 it suffices to prove the ⊂ relation. Let z ∈ A(τ). Then, since φ generates
smooth trajectories, we can find a continuous function r0 ∈ Rτz such that

r0(τ) = z and r0(t) ∈ φ(t− s, s, r(s)), ∀t > s > τ.

Notice by Theorem 2.18 that A is invariant under φ, therefore

r0(t) ∈ φ(t− τ, τ, z) ⊂ A(t), ∀t > τ.

Also, we have
z ∈ A(τ) ⊂ φ(1, τ − 1, A(τ − 1))

and then there exit a z1 ∈ A(τ − 1) and a family Rτ−1z1 such that

z ∈ φ(1, τ − 1, z1) =
⋃

r1∈Rτ−1
z1

r1(τ).

Therefore, there exists an r1 ∈ Rτ−1z1 such that

r1(τ) = z = r0(τ), r1(τ − 1) = z1 and r1(t) ∈ φ(t− s, s, r1(s)), ∀τ > t > s > τ − 1.

Continue this process and we obtain a sequence {rn}∞n=0 of continuous functions satisfying

rn+1(τ − n) = rn(τ − n) and rn(t) ∈ φ(t− s, s, rn(s)), ∀τ − (n− 1) > t > s > τ − n.

Now let us define ξ : R→ X by

ξ(t) =

{
r0(t), t > τ,

rn(t), t ∈ [τ − n, τ − n+ 1) for n = 1, 2, · · · .
(2.9)

Then by the strictness of φ it is readily verified that the mapping ξ defined by (2.9) is a complete
trajectory with ξ(τ) = z. Besides, since this construction of ξ guarantees ξ ⊂ A, ξ is backwards
bounded. The proof is complete.

Proposition 2.25. Let φ be an m-NDS. Suppose for each x ∈ X and τ ∈ R there exists a family

R̃τx := {r ∈ C([τ,∞);X) : r(τ) = x}

such that

(H1) R̃τx 6= ∅, ∀τ ∈ R, x ∈ X;

(H2) for each r ∈ R̃τx, r̃ := r(t)|t∈[τ+s,∞) belongs to R̃τ+sr(τ+s), ∀s > 0.

If

φ(t, τ, x) =
⋃
r∈R̃τx

r(τ + t), ∀t > 0,
(2.10)

then φ generates smooth trajectories satisfying Definition 2.23.

Proof. It suffices to show the family R̃τx with (H1) and (H2) is a class satisfying (2.8), that is, to
prove r(t) ∈ φ(t − s, s, r(s)) for each t > s > τ and r ∈ R̃τx. By (2.10), we only need to find out a
ξ ∈ R̃sr(s) such that ξ(t) = r(t). Condition (H2) indicates that this ξ can be taken as the interception

of r, that is, take ξ = r(t)|t∈[s,∞). The proof is complete.

Remark 2.26. The structure of attractors in terms of complete trajectories for multi-valued dynamical
systems was also studied by [20, 9] for uniform attractors and [14, 8] for multi-valued semigroups.
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3. Regularity of pullback attractors for m-NDS

3.1. Bi-spatial pullback attractors for strongly dispersive m-NDS

Many m-NDS have a smoothing property that they admit a pullback absorbing set B more regular
than the initial data. In this part we study the so-called bi-spatial pullback attractors for smoothing
m-NDS.

In the following we let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two separable Banach spaces with Y ↪→ X
continuously except otherwise stated. We first make some elementary definitions.

Definition 3.1. Suppose φ is an m-NDS in X, then φ is called Y -dispersive if φ has a pullback
absorbing set B which is a bounded non-autonomous set in Y .

Definition 3.2. We say K ∈ DY is (X,Y )-pullback attracting if for every D ∈ B(X) we have

lim
t→∞

distY
(
φ(t, θ−tτ,D),K(τ)

)
= 0, ∀τ ∈ R.

Definition 3.3. A mapping K ∈ DY is called an (X,Y )-pullback attractor for the m-NDS φ if

1. K(τ) is compact in Y for any τ ∈ R;

2. K is pullback (X,Y )-attracting;

3. K is negatively invariant.

Remark 3.4. Clearly, since DY ⊂ DX , if an m-NDS φ has pullback (X,Y )-attractor K and pullback
(X,X)-attractor A, then K = A.

Definition 3.5. An m-NDS φ in X is called (X,Y )-pullback asymptotically compact if for every
D ∈ B(X), tn →∞ and τ ∈ R, the sequence {yn} with yn ∈ φ(tn, θ−tnτ,D) is precompact in Y .

The following result indicates under what conditions the pullback attractor A for a smoothing
m-NDS φ can be bi-spatial.

Proposition 3.6. Let φ be a Y -dispersive m-NDS in X with a backwards bounded pullback attractor
A in X, then A is the (X,Y )-pullback attractor of φ if φ is (X,Y )-pullback asymptotically compact.

Proof. The (negative) invariance follows since A is a pullback attractor for φ. Now let us first prove the
Y -compactness of A. Suppose {xn}∞n=1 ⊂ A(τ), ∀τ ∈ R, then we should prove {xn} is precompact in
Y . By the negative invariance and backwards bounded of A we find that, for any sequence 0 < tk →∞,

xn ∈
⋂
k∈N

φ(tk, τ − tk, A(τ − tk)) ⊂
⋂
k∈N

φ(tk, τ − tk, D) ∀n ∈ N,

for some D ∈ B(X). Therefore,

xn ∈ φ(tn, τ − tn, D) ∀n ∈ N,

and by the (X,Y )-pullback asymptotic compactness we know{xn} is precompact in Y .
We then prove the (X,Y )-pullback attracting property of A by contradiction. If not, then there

exist a D ∈ B(X) and a δ > 0 such that, for some τ ∈ R and tn →∞,

distY (φ(tn, τ − tn, D), A(τ)) > δ, ∀n ∈ N.

By the pullback attraction in X of A we find that there exist a sequence {xn} with xn ∈ φ(tn, τ−tn, D)
such that

distX(xn, A(τ))→ 0, as n→∞.
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Therefore, by the compactness of A(τ) we can find an a ∈ A(τ) such that, up to a subsequence,

xn
X−→ a,

which along with the (X,Y )-pullback asymptotic compactness of A implies, up to a subsequence,

xn
Y−→ a,

a contradiction. The proof is complete.

Proposition 3.7. Let φ be a Y -dispersive m-NDS in X. Then if φ has an (X,Y )-pullback attractor
A, φ is (X,Y )-pullback asymptotically compact.

Proof. For any D ∈ B(X), tn → ∞ and τ ∈ R, we let {yn} be a sequence with yn ∈ φ(tn, θ−tnτ,D).
By the pullback attraction in Y we have

distY (yn, A(τ)) 6 distY (φ(tn, θ−tnτ,D), A(τ))→ 0 as n→∞.

Then since A(τ) is compact in Y , {yn} is precompact in Y as desired.

Remark 3.8. Proposition 3.7 also implies for single-spatial cases (i.e. when X = Y ) that the pullback
asymptotic compactness is a necessary condition for the existence of a pullback attractor.

Theorem 3.9. Let φ be a Y -dispersive m-NDS in X. Suppose φ has a backwards bounded pull-
back attractor A. Then A is the (X,Y )-pullback attractor for φ if and only if φ is (X,Y )-pullback
asymptotically compact.

Proof. This is a direct corollary of the previous two propositions.

Remark 3.10. This theorem indicates that the strong compactness and attracting ability of the at-
tractor, once the attractor exists, are only determined by the dynamical compactness of the system.

Other dynamical compactness of an m-NDS

In this part we present several equivalent dynamical compactnesses which help understand the
dynamical property of the m-NDS.

Definition 3.11. An m-NDS φ is called pullback ω-limit compact if for every D ∈ B(X) and τ ∈ R,

lim
t→∞

κ

(⋃
s>t

φ(s, τ − s,D)

)
= 0,

where κ denotes the Kuratowski measure of noncompactness of sets defined as

κ(B) = inf
{
δ : B has a finite cover by balls of X of diameter less than δ

}
, ∀B ⊂ X.

Definition 3.12. An m-NDS φ is called pullback flattening if for every D ∈ B(X), ε > 0 and τ ∈ R
there exist T > 0, a finite-dimensional subspace E of X and a mapping PE : X → E such that

PE

( ⋃
t>T

φ(t, τ − t,D)

)
∈ B(X),

and ∥∥∥∥(I − PE)

( ⋃
t>T

φ(t, τ − t,D)

)∥∥∥∥
X

< ε.
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Remark 3.13. The pullback flattening property was first introduced by Zhong et al. [22] under the
terminology of Condition C and developed by Kloeden and Langa [10].

Lemma 3.14. [6] Let X be a Banach space and φ an m-NDS in X. Then φ is pullback flattening ⇒
φ is pullback ω-limit compact ⇔ φ is pullback asymptotically compact. If, moreover, X is uniformly
convex, then φ is pullback flattening ⇔ φ is pullback ω-limit compact.

3.2. Backwards precompactness of pullback attractors for m-NDS

Observe that, given a backwards bounded pullback attractor A ∈ DX for some m-NDS φ on X,
by definition we can find a family of bounded sets B = {B(τ)}τ∈R ∈ B(X) such that⋃

s6τ

A(s) ⊂ B(τ), ∀τ ∈ R. (3.1)

Then if B is moreover compact in X, then the attractor A is backwards precompact, namely,⋃
s6τ

A(s) is precompact in X, ∀τ ∈ R. (3.2)

Establishing a compact B with the property (3.1) should be the most direct way to check the
backwards compactness of A. In many cases especially when Sobolev compactness embeddings hold,
B is expectable to be even an increasing and compact pullback absorbing set. In the following we
develop a study for more general situations.

Definition 3.15. An m-NDS φ is called backwards semi-uniformly pullback asymptotically compact
if for every D ∈ B(X), τ ∈ R and tn → ∞, any sequence yn ∈ ∪s6τφ(tn, s− tn, D) is precompact in
X.

Definition 3.16. An m-NDS φ is called backwards semi-uniformly pullback ω-limit compact if for
every D ∈ B(X) and τ ∈ R,

lim
T→∞

κ

( ⋃
t>T

⋃
s6τ

φ(t, s− t,D)

)
= 0,

where κ denotes the Kuratowski measure of noncompactness of sets.

Definition 3.17. An m-NDS φ is called backwards semi-uniformly pullback flattening if for every
D ∈ B(X), τ ∈ R and ε > 0, there exist T = TD,τ,ε > 0, a finite subspace E of X and a mapping
PE : X → E such that ⋃

t>T

⋃
s6τ

PEφ(t, s− t,D) ∈ B(X),

and
sup
s6τ

∥∥∥(I − PE)
( ⋃
t>T

φ(t, s− t,D)
)∥∥∥

X
< ε.

The following result provides sufficient conditions ensuring a backwards bounded pullback attractor
to be backwards precompact.

Theorem 3.18. Suppose φ is an m-NDS on a Banach space X. Then
(i) φ is backwards semi-uniformly pullback flattening

⇓
(ii) φ is backwards semi-uniforly pullback ω-limit compact

⇓
(iii) φ is backwards semi-uniformly pullback asymptotically compact

⇓
(iv) if φ has a backwards bounded pullback attractor A, then A is backwards precompact.
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Proof. (i)⇒(ii): Let D ∈ B(X) and τ ∈ R. Then for every ε > 0, we can find a T > 0 such that

κ

( ⋃
t>T

⋃
s6τ

φ(t, s− t,D)

)
6 κ

( ⋃
t>T

⋃
s6τ

PEφ(t, s− t,D)

)
+ κ

( ⋃
t>T

⋃
s6τ

(I − PE)φ(t, s− t,D)

)
6 0 + κ(B(0, ε)) 6 ε,

where Pm : X → E with E a finite-dimensional subspace of X. Therefore (i) implies (ii).
(ii)⇒(iii): For every D ∈ B(X), τ ∈ R and tn → ∞, we prove any sequence yn ∈ ∪s6τφ(tn, s −

tn, D) is precompact. By condition, for each ε > 0 there is a T > 0 such that

κ

( ⋃
t>T

⋃
s6τ

φ(t, s− t,D)

)
< ε,

therefore, for N large enough so that tn > T for all n > N ,

κ

( ⋃
n>N

yn

)
6 κ

( ⋃
n>N

⋃
s6τ

φ(tn, s− tn, D)

)
6 κ

( ⋃
t>T

⋃
s6τ

φ(t, s− t,D)

)
< ε.

Thus (ii) implies (iii).
(iii)⇒(iv): We need prove (3.2) for A. Suppose {xn}∞n=1 is arbitrarily a sequence contained in

∪s6τA(s), and we prove it has a Cauchy subsequence. Suppose also B is a bounded non-autonomous
set satisfying (3.1) for A (by the backwards boundedness of A). Let xn ∈ A(sn), sn 6 τ . Then, for
some tn →∞, we have

xn ∈ A(sn) ⊂ φ(tn, sn − tn, A(sn − tn))

⊂ φ(tn, sn − tn, B(τ))

⊂
⋃
s6τ

φ(tn, s− tn, B(τ)).

Therefore xn has a Cauchy subsequence since φ is backwards semi-uniformly pullback asymptotic
compact. The proof is complete.

4. Applications to a reaction-diffusion type system without uniqueness

4.1. Preliminary settings

4.1.1. Notations

Let d be a positive integer and O ⊂ RN with N ∈ N a bounded open domain with smooth
boundary. Suppose it holds in O the Poincare inequality for some λ > 0

‖∇v‖2L2(O) > λ‖v‖2L2(O). (4.1)

We often write as (aj) an element (a1, · · · , ad) of Rd for simplicity. Let (aj), (bj) ∈ Rd be arbitrarily
given. Define

(aj) · (bj) =

d∑
j=1

ajbj , (aj) + (bj) = (aj + bj), (aj)(bj) = (ajbj),

k(aj) = (kaj), (aj) + k = (aj + k), ∀k ∈ R.

Let p = (pj) be arbitrarily a vector in Rd with pj > 2. Denote 1
p = ( 1

pj
), and

|(aj)|p = (|aj |pj ) ∈ Rd. (4.2)
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Then it makes sense to define the space

Lp(O) = Lp1(O)× · · · × Lpd(O),

endowed with the norm

‖u‖pp := ‖u‖pLp(O) =

d∑
j=1

‖uj‖pj
Lpj (O)

.

Particularly, we write H = (L2(O))d and V = (H1
0 (O))d endowed respectively with the norms

‖u‖ := ‖u‖H =

( d∑
j=1

‖uj‖2L2(O)

)1/2

, ‖u‖V =

( d∑
j=1

‖uj‖2H1
0 (O)

)1/2

.

Hereafter throughout this paper, p = (pj) is fixed as the vector introduced by the assumptions (4.4),
(4.5) on f .

4.1.2. Generating an m-NDS

Consider the following vector-valued equations
du
dt − a4u+ f(t, u) = g(x, t),

u|∂O = 0,

u|t=τ = u0,

(4.3)

where (t, x) ∈ (τ,∞)×O, u = (u1(t, x), · · · , ud(t, x)) : (τ,∞)×O → Rd, a is a real d× d matrix with

a positive symmetric part a+at

2 > βI for some β > 0. f = (f1(t, u), · · · , fd(t, u)) ∈ C(R × Rd;Rd)
satisfies

d∑
j=1

|f j(t, u)|
pj
pj−1 6 c1

(
1 +

d∑
j=1

|uj |pj
)
, (4.4)

d∑
j=1

f j(t, u)uj > α1

d∑
j=1

|uj |pj − c2, (4.5)

f(t, 0) = 0, ∀t ∈ R, (4.6)

where pj > 2 and α1, c1, c2 are all positive constants. We also assume that there exists an M > 0
such that f(t, u) is continuously differentiable w.r.t. u for all |u| > M , and

df(t, u)

du
w · w > −c3(t)|w|2, for all |u| > M, w ∈ Rd, (4.7)

where c3(t) ∈ L1
loc(R;R+). For the external force g(x, t) we suppose g ∈ L2

loc(R;H) with a backwards
translation bounded property

sup
τ<0

∫ τ

τ−1
‖g(s)‖2 ds <∞. (4.8)

The following proposition indicates that condition (4.8) is between translation bounded condition
and tempered condition.

Proposition 4.1. Suppose g ∈ L2
loc(R;H). Then condition (4.8) is equivalent to each of the following:
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(G1)

sup
τ<T

∫ τ

τ−1
‖g(s)‖2 ds <∞, ∀T ∈ R;

(G2)

sup
τ<T

∫ τ

−∞
eγ(s−τ)‖g(s)‖2 ds <∞, ∀γ > 0, T ∈ R;

(G3)

lim sup
τ→−∞

∫ τ

−∞
eγ(s−τ)‖g(s)‖2 ds <∞, ∀γ > 0.

Proof. (4.8) ⇒ (G1). It suffices to notice that, since g ∈ L2
loc(R;H), sup0<τ<T

∫ τ
τ−1 ‖g(s)‖2ds < ∞,

and thereby for each T > 0 we have

sup
τ<T

∫ τ

τ−1
‖g(s)‖2 ds 6 sup

τ<0

∫ τ

τ−1
‖g(s)‖2 ds+ sup

0<τ<T

∫ τ

τ−1
‖g(s)‖2 ds <∞.

(G1)⇒ (G2). For any τ < T ,∫ τ

−∞
eγ(s−τ)‖g(s)‖2 ds =

∞∑
n=0

∫ τ−n

τ−n−1
eγ(s−τ)‖g(s)‖2 ds

6
∞∑
n=0

∫ τ−n

τ−n−1
e−γn‖g(s)‖2 ds

6
∞∑
n=0

e−γn
(

sup
t<T

∫ t

t−1
‖g(s)‖2 ds

)
<∞.

(G2) ⇒ (G3) is trivial. Let us prove (G3) ⇒ (4.8). Suppose the supper limitation is c > 0. Then
there is a time T < 0 such that∫ τ

−∞
eγ(s−τ)‖g(s)‖2 ds < c+ 1, ∀τ 6 T.

Therefore, for each τ 6 T we have∫ τ

τ−1
‖g(s)‖2 ds 6 eγ

∫ τ

τ−1
eγ(s−τ)‖g(s)‖2 ds 6 eγ(c+ 1).

Hence

sup
τ<0

∫ τ

τ−1
‖g(s)‖2 ds 6 sup

τ<T

∫ τ

τ−1
‖g(s)‖2 ds+ sup

T<τ60

∫ τ

τ−1
‖g(s)‖2 ds <∞.

The proof is complete.

Definition 4.2. The function u = u(·) is called a weak solution of (4.3) if

u ∈ C([τ, T ];H) ∩ Lp(τ, T ;Lp(O)) ∩ L2(τ, T ;V ),
∂u

∂t
∈ Lq(τ, T ;Lq(O)) + L2(τ, T ;V ′), u(τ) = u0,

and ∫ T

τ

〈
ut, ψ

〉
dt+

∫ T

τ

∫
(a∇u,∇ψ) dxdt+

∫ T

τ

∫
(f(t, u), ψ) dxdt =

∫ T

τ

∫
(g, ψ) dxdt

for all ψ ∈ Lp(τ, T ;Lp(O)) ∩ L2(τ, T ;V ), where
〈
·, ·
〉

denotes pairing in the space V ′ + Lq(O).
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Now let us associate an m-NDS to the equation (4.3) in order to study its long time behavior.
First, it is known [16, 9, 5] that under the assumptions (4.4) and (4.5) the problem (4.3) has at least
one weak solution u for every given u0 ∈ L2(O). Let us define

φ(t, τ, u0) = {u(t+ τ, τ, u0)} ∈ P (H), ∀t ∈ R+, τ ∈ R, u0 ∈ H, (4.9)

where u(t+ τ, τ, u0) is a solution of (4.3) at time τ + t with initial data u0 at time τ .

Proposition 4.3. The set-valued mapping φ defined by (4.9) is a strict m-NDS which generates
smooth trajectories in the sense of Definition 2.23. Moreover, it is upper semi-continuous in H.

Proof. From the Kneser property [16] it follows φ(t, τ, u0) ∈ C(H). The strictness property follows
from [16, Lemma 3] and the upper semi-continuity from Remark 2.5 and [16, Lemma 2]. φ indeed
satisfies Definition 2.23 since for each u0 ∈ H and τ ∈ R we can take Rτu0

= {u(t + τ, τ, u0)|t>0},
which satisfies (H1) and (H2) in Proposition 2.25.

4.2. Backwards precompact attractors in H

In this part, we study the attractor in the phase space H. We begin with uniform estimates which
are elementary to obtain an absorbing set and the attractor. In the sequel we denote by

γ = βλ

the constant determined by the matrix a and the Poincare property (4.1).

4.2.1. Uniform estimates

Proposition 4.4. Let f(t, u) ∈ C((τ,∞) × Rd;Rd) be with the properties (4.6) and (4.7). Then for
every u ∈ H1

0 ∩H2 such that |u| > M it holds the following inequality:∫
f(t, u) · 4u dx 6 c3(t)‖∇u‖2. (4.10)

Proof. Let f(t, u) ∈ C1((τ,∞)×Rd;Rd) admit the properties (4.6) and (4.7). Then, since f(t, u)|∂O =
0, by integration by parts we obtain∫

f(t, u) · 4u dx =

n∑
k=1

d∑
i=1

∫
f i(t, u)

∂2ui

∂x2k
dx

=

n∑
k=1

d∑
i,j=1

∫
−∂f

i(t, u)

∂uj
∂uj

∂xk

∂ui

∂xk
dx

=

n∑
k=1

∫
−∂f(t, u)

∂u

∂u

∂xk
· ∂u
∂xk

dx

6 c3(t)

n∑
k=1

∫ ∣∣∣ ∂u
∂xk

∣∣∣2 dx = c3(t)‖∇u‖2.

(4.11)

Since f(t, u) ∈ C((τ,∞) × Rd;Rd) can be approximated by elements of C1((τ,∞) × Rd;Rd), the
inequality (4.10) is proved by passing to the limit in (4.11).

Lemma 4.5. Suppose (4.4), (4.5) and (4.8) hold. Then the solution u of (4.3) satisfies

‖u(τ, τ − t, u0)‖2 + α1

∫ τ

τ−t
eγ(s−τ)‖u(s)‖pp ds+

β

2

∫ τ

τ−t
eγ(s−τ)‖∇u(s)‖2 ds

6 e−γt‖u0‖2 + c

∫ τ

τ−t
eγ(s−τ)‖g(s, x)‖2 ds+ c, ∀t > 0, τ ∈ R.

17

https://www.researchgate.net/publication/228489159_Attractors_for_Equations_of_Mathematical_Physics?el=1_x_8&enrichId=rgreq-61bac46c32c46cd64eb73c770fe37d59-XXX&enrichSource=Y292ZXJQYWdlOzMwMTI3MzUxMTtBUzozNTExMjI5MTQwNzA1MjhAMTQ2MDcyNTYzNDA2NQ==
https://www.researchgate.net/publication/285855181_Structure_of_Uniform_Global_Attractor_for_General_Non-Autonomous_Reaction-Diffusion_System?el=1_x_8&enrichId=rgreq-61bac46c32c46cd64eb73c770fe37d59-XXX&enrichSource=Y292ZXJQYWdlOzMwMTI3MzUxMTtBUzozNTExMjI5MTQwNzA1MjhAMTQ2MDcyNTYzNDA2NQ==
https://www.researchgate.net/publication/243013726_On_the_connectedness_and_asymptotic_behaviour_of_solutions_of_reaction-diffusion_systems?el=1_x_8&enrichId=rgreq-61bac46c32c46cd64eb73c770fe37d59-XXX&enrichSource=Y292ZXJQYWdlOzMwMTI3MzUxMTtBUzozNTExMjI5MTQwNzA1MjhAMTQ2MDcyNTYzNDA2NQ==
https://www.researchgate.net/publication/243013726_On_the_connectedness_and_asymptotic_behaviour_of_solutions_of_reaction-diffusion_systems?el=1_x_8&enrichId=rgreq-61bac46c32c46cd64eb73c770fe37d59-XXX&enrichSource=Y292ZXJQYWdlOzMwMTI3MzUxMTtBUzozNTExMjI5MTQwNzA1MjhAMTQ2MDcyNTYzNDA2NQ==


Proof. Multiplying (4.3) by u and integrating over O we obtain

1

2

d

dt
‖u‖2 +

∫
−a4u · u dx = −

∫
f(t, u) · u dx+

∫
g(x, t) · u dx.

Since, by (4.5),

−
∫
f(t, u) · u dx 6 −α1‖u‖pp + c2|O|,

by Young’s inequality, we have

d

dt
‖u‖2 + 2β‖∇u‖2 6 −2α1‖u‖pp +

βλ

2
‖u‖2 + c‖g(x, t)‖2 + c.

Therefore, since γ = βλ and by Poincare’s inequality (4.1), we have

d

dt
‖u‖2 + γ‖u‖2 + α1‖u‖pp +

β

2
‖∇u‖2 6 c‖g(x, t)‖2 + c.

By Gronwall’s technique we conclude the lemma.

It will be useful to note that, since eγs > eγ(τ−1) for all s ∈ (τ − 1, τ),

α1e
−γ
∫ τ

τ−1
‖u(s, τ − t, u0)‖pp ds+

β

2
e−γ

∫ τ

τ−1
‖∇u(s, τ − 1, u0)‖2 ds

6 α1

∫ τ

τ−1
eγ(s−τ)‖u(s, τ − t, u0)‖pp ds+

β

2

∫ τ

τ−1
eγ(s−τ)‖∇u(s)‖2 ds

6 e−γt‖u0‖2 + c

∫ τ

τ−t
eγ(s−τ)‖g(s, x)‖2 ds+ c, ∀t > 1.

(4.12)

Lemma 4.6. Suppose (4.4)-(4.8) hold. Then for every τ ∈ R every solution u of (4.3) satisfies

sup
τ−16s6τ

‖∇u(s, τ − t, u0)‖2 6 LCτ3 e
−γt‖u0‖2 + LCτ3

∫ τ

τ−t
eγ(ξ−τ)‖g(x, ξ)‖2 dξ + LCτ3 , ∀t > 2,

where L is a positive constant and

Cτ3 = e
∫ τ
−∞ 2c3(%)d% > 1.

Proof. Multiply (4.3) with −4u and then integrate to obtain

d

dt
‖∇u‖2 + 2β‖4u‖2 6 2

∫
f(t, u) · 4u dx− 2

∫
g(x, t) · 4u dx. (4.13)

Note that the inequality (4.4) implies a positive constant CM such that

|f(t, u)|2 6 CM for all u ∈ Rd with |u| 6M. (4.14)

Therefore, by (4.10) and (4.14) we obtain

2

∫
f(t, u) · 4u dx = 2

∫
{x:|u|>M}

f(t, u) · 4u dx+ 2

∫
{x:|u|6M}

f(t, u) · 4u dx

6 2c3(t)‖∇u‖2 +
β

2
‖4u‖2 +

2CM |O|
β

.

(4.15)
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Thus, since

−2

∫
g(x, t) · 4u dx 6

β

2
‖4u‖2 +

2

β
‖g(x, t)‖2,

it follows from (4.13) and (4.15) that

d

dt
‖∇u‖2 + (γ − 2c3(t))‖∇u‖2 6 c‖g(x, t)‖2 + c. (4.16)

Multiply by e
∫ t
τ
(γ−2c3(%))d% and then integrate w.r.t. t over (s, τ) where s ∈ (τ − 1, τ) to obtain

‖∇u(τ, τ − t, u0)‖2 6 e
∫ s
τ
(γ−2c3(%))d%‖∇u(s, τ − t, u0)‖2

+ c

∫ τ

τ−1
e
∫ ξ
τ
(γ−2c3(%))d%‖g(x, ξ)‖2 dξ + c

∫ τ

τ−1
e
∫ ξ
τ
(γ−2c3(%))d% dξ

6 cCτ3 ‖∇u(s, τ − t, u0)‖2 + cCτ3

∫ τ

τ−1
eγ(ξ−τ)‖g(x, ξ)‖2 dξ + cCτ3 ,

(4.17)

where

Cτ3 := e
∫ τ
−∞ 2c3(%)d% ∈ [1,∞). (4.18)

Integrating (4.17) w.r.t. s over (τ − 1, τ) and by (4.12) we have, for all t > 1,

‖∇u(τ, τ − t, u0)‖2 6 cCτ3 e
−γt‖u0‖2 + cCτ3

∫ τ

τ−t
eγ(ξ−τ)‖g(x, ξ)‖2 dξ + cCτ3 . (4.19)

On the other hand, for any s ∈ [τ − 1, τ ] and by taking the place of τ in (4.19) with s, we have

‖∇u(s, τ − t, u0)‖2 = ‖∇u(s, s− (s− τ + t), u0)‖2

6 cCs3e
−γ(s−τ+t)‖u0‖2 + cCs3

∫ s

τ−t
eγ(ξ−s)‖g(x, ξ)‖2 dξ + cCs3

6 cCτ3 e
−γt‖u0‖2 + cCτ3

∫ τ

τ−t
eγ(ξ−τ)‖g(x, ξ)‖2 dξ + cCτ3

(4.20)

for all s ∈ [τ − 1, τ ] and t > 2. By (4.19) and (4.20) we complete the proof.

Corollary 4.7. Suppose (4.4)-(4.8) hold. Then for each r > 0, there exists a T0 = max{ 2 ln r
γ , 2} (so

that e−γT0r2 6 1) such that every solution u of (4.3) with ‖u0‖ 6 r satisfies

sup
t>T0

‖∇u(τ, τ − t, u0)‖2 6 LCτ3

∫ τ

−∞
eγ(ξ−τ)‖g(x, ξ)‖2 dξ + 2LCτ3

6 LCτ3

(
sup
s<τ

∫ s

−∞
eγ(ξ−s)‖g(x, ξ)‖2 dξ

)
+ 2LCτ3 , ∀τ ∈ R.

4.2.2. Increasing absorbing set and pullback attractor in H

Theorem 4.8. Suppose (4.4)-(4.8) hold. Then the m-NDS φ generated by (4.3) has backwards compact
pullback attractor A in H. Moreover, A is invariant under φ and has the presentation

A(τ) = ω(K(τ), τ), ∀τ ∈ R, (4.21)

=
{
ξ(τ) : ξ is a complete trajectory backwards compact in H

}
, ∀τ ∈ R, (4.22)

where

K(τ) =

{
u ∈ V : ‖∇u‖2 6 LCτ3

(
sup
s<τ

∫ s

−∞
eγ(ξ−s)‖g(x, ξ)‖2 dξ

)
+ 2LCτ3

}
, ∀τ ∈ R. (4.23)
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Proof. Since φ is a strict m-NDS, by Theorem 2.18 it suffices to prove φ has a backwards compact
pullback attractor. Clearly, by Corollary 4.7 and Proposition 4.1 (G2) we know K ∈ DH is an increas-
ing and compact absorbing set of the system in H. By Remark 2.16, the condition (2.2) is satisfied.
Therefore, since the compactness of absorbing sets implies the pullback asymptotic compactness, by
Theorem 2.15 we conclude (4.21). (4.22) follows from Theorem 2.24 and Proposition 4.3. The proof
is complete.

4.3. Compactness in V
In this part, we study the regularity of attractors for the system (4.3). To achieve this, we suppose

the external force g(x, t) is such that

sup
τ<T

∫ τ

τ−1

(
‖g(x, s)‖2p−22p−2 + ‖g(x, s)‖2

)
ds <∞, ∀T ∈ R, (4.24)

and that

the mapping η 7→
∫ η

−∞
‖g(x, s)‖2 ds is uniformly continuous in (−∞, τ), ∀τ ∈ R. (4.25)

Note that condition (4.25) is for the V -backwards compactness of the attractor. We first give a
sufficient condition of (4.25) since it is not common in the literature.

Proposition 4.9. Let g ∈ L2
loc(R;H). If there is a time T ∈ R such that supt6T ‖g(t)‖2 < ∞, then

(4.25) holds.

Proof. We prove by contradiction. If (4.25) does not hold for some τ ∈ R, then there exists a δ > 0
and for each n ∈ N there are ηn1 , η

n
2 ∈ (−∞, τ ] such that

0 < ηn2 − ηn1 < 1/n and

∫ ηn2

ηn1

‖g(s)‖2 ds > δ, ∀n ∈ N. (4.26)

Case 1. If {ηn2 }n∈N is bounded, then there exists an r ∈ (−∞, τ ] such that, up to a subsequence,
ηnj → r, j = 1, 2. Hence,∫ ηn2

ηn1

‖g(s)‖2 ds 6
∫ r

ηn1

‖g(s)‖2 ds+

∫ ηn2

r

‖g(s)‖2 ds→ 0, as n→∞,

which contradicts (4.26).
Case 2. If {ηn2 }n∈N is unbounded, then without loss of generality we have supn∈N η

n
2 6 T . Then∫ ηn2

ηn1

‖g(s)‖2 ds 6 |ηn1 − ηn2 | sup
s6T
‖g(s)‖2 6

sups6T ‖g(s)‖2

n
→ 0, as n→∞,

which contradicts (4.26) as well. Therefore we have the proposition.

For simplicity we further let a be a diagonal matrix with β = min{a11, · · · , add} > 0. We also
assume positive constants α2 and βi such that

d∑
j=1

f j(t, u)uj |uj |pj−2 > α2

d∑
j=1

|uj |2pj−2 − β2, (4.27)

d∑
j=1

|f j(t, u)|2 6 α3

d∑
j=1

|uj |2pj−2 + β3, (4.28)

d∑
j=1

f j(t, u)uj |uj |2pj−4 > −β1. (4.29)
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Remark 4.10. Assumptions (4.27)-(4.29) are implied by conditions (4.4) and (4.5) when d = 1. How-
ever, in vector-valued case when d > 1, they should be listed independently.

4.3.1. Complimentary uniform estimates

Lemma 4.11. Let (4.4), (4.5) and (4.27) hold. Then for every τ ∈ R the solution u of (4.3) satisfies

‖u(τ, τ − t, u0)‖pp +
α2

2

∫ τ

τ−1

∫ τ

s

eγ(ξ−τ)‖u(ξ, τ − t, u0)‖2p−22p−2 dξds

6 ce−γt‖u0‖2 + c

∫ τ

τ−t
eγ(s−τ)‖g(x, s)‖2 ds+ c, ∀t > 1.

(4.30)

Proof. Observe that
∇(|u|p−2u) = (p− 1)∇u|u|p−2.

Then by multiplying (4.3) with |u|p−2u and then integrating we obtain, by (4.27),

d

dt

∫ d∑
j=1

1

pj
|u|pj dx+ β

∫ d∑
j=1

(pj − 1)|uj |pj−2|∇uj |2 dx

6 −
∫
f(t, u) ·

(
|u|p−2u

)
dx+

∫
g(x, t) ·

(
|u|p−2u

)
dx

6 −α2

2
‖u‖2p−22p−2 + β2|O|+

1

α2
‖g(x, t)‖2.

(4.31)

Therefore,
d

dt
‖u‖p̃p̃ +

α2

2
‖u‖2p−22p−2 6 c‖g(x, t)‖2 + c, (4.32)

where ‖u‖p̃p̃ is an equivalent norm to ‖u‖pp defined by

‖u‖p̃p̃ =

∫ d∑
j=1

1

pj
|u|pj dx.

Now multiply (4.32) by eγt and then integrate over (s, τ) with s ∈ (τ − 1, τ) to obtain

‖u(τ, τ − t, u0)‖p̃p̃ +
α2

2

∫ τ

s

eγ(ξ−τ)‖u(ξ, τ − t, u0)‖2p−22p−2 dξ

6 ceγ(s−τ)‖u(s, τ − t, u0)‖pp + c

∫ τ

τ−1
eγ(ξ−τ)‖g(x, ξ)‖2 dξ + c,

and then integrate in s over (τ − 1, τ) to have, by (4.12),

‖u(τ, τ − t, u0)‖p̃p̃ +
α2

2

∫ τ

τ−1

∫ τ

s

eγ(ξ−τ)‖u(ξ, τ − t, u0)‖2p−22p−2 dξds

6 c

∫ τ

τ−1
eγ(s−τ)‖u(s, τ − t, u0)‖pp ds+ c

∫ τ

τ−1
eγ(ξ−τ)‖g(x, ξ)‖2 dξ + c

6 ce−γt‖u0‖2 + c

∫ τ

τ−t
eγ(s−τ)‖g(x, s)‖2 ds+ c, ∀t > 1,

which completes the proof since ‖u(τ, τ − t, u0)‖p̃p̃ is equivalent to ‖u(τ, τ − t, u0)‖pp.
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Lemma 4.12. Let (4.4), (4.5) and (4.24), (4.29) hold. Then for every τ ∈ R the solution u of (4.3)
satisfies

sup
τ− 1

3<s<τ

‖u(s, τ − t, u0)‖2p−22p−2 6 ce−γt‖u0‖2 + c

∫ τ

−∞
eγ(s−τ)

(
‖g(x, s)‖2p−22p−2 + ‖g(x, s)‖2

)
ds+ c.

Proof. Let us define

‖u‖2p̃−22p̃−2 =

d∑
j=1

( 1

2pj − 2

∫
|uj |2pj−2 dx

)
.

Then ‖u‖2p̃−22p̃−2 is an equivalent norm to ‖u‖2p−22p−2.

Multiplying (4.3) by |u|2p−4u and then integrating, by (4.29) and Young’s inequality we have

d

dt
‖u‖2p̃−22p̃−2 + β

∫ d∑
j=1

(2pj − 3)|u|2pj−4|∇uj |2 dx

6 −
∫
f(t, u) ·

(
|u|2p−4u

)
dx+

∫
g(x, t) ·

(
|u|2p−4u

)
dx

6 β1|O|+
(
c‖g(x, t)‖2p−22p−2 + γ‖u‖2p̃−22p̃−2

)
,

from which it follows
d

dt
‖u‖2p̃−22p̃−2 − γ‖u‖

2p̃−2
2p̃−2 6 c‖g(x, t)‖2p−22p−2 + c. (4.33)

Now temporarily we set
τ − 1 < η 6 τ − 2/3 6 ξ 6 τ − 1/3,

and by this we derive an estimate uniformly in s ∈ (τ − 1/3, τ). Multiply (4.33) by e−γt and then
integrate over (ξ, s) to obtain

‖u(s, τ − t, u0)‖2p̃−22p̃−2 6 ceγ(τ−ξ)‖u(ξ, τ − t, u0)‖2p−22p−2

+ c

∫ τ

τ−1
eγ(s−%)‖g(x, t)‖2p−22p−2 d%+ c. (4.34)

Integrating (4.34) in ξ over (η, s) and by eγ(τ−%) 6 e2γeγ(%−τ) for all % ∈ [τ − 1, τ ] we obtain

(s− η)‖u(s, τ − t, u0)‖2p̃−22p̃−2 6 c

∫ τ

η

eγ(τ−ξ)‖u(ξ, τ − t, u0)‖2p−22p−2 dξ

+ c

∫ τ

τ−1
eγ(τ−%)‖g(x, s)‖2p−22p−2 d%+ c

6 c

∫ τ

η

eγ(ξ−τ)‖u(ξ, τ − t, u0)‖2p−22p−2 dξ

+ c

∫ τ

τ−1
eγ(%−τ)‖g(x, s)‖2p−22p−2 d%+ c.

(4.35)

Integrating (4.35) in η over (τ − 1, τ − 2/3) and by (4.30) we have

‖u(s, τ − t, u0)‖2p̃−22p̃−2 6 c

∫ τ

τ−1

∫ τ

η

eγ(ξ−τ)‖u(ξ, τ − t, u0)‖2p−22p−2 dξ

+ c

∫ τ

τ−1
eγ(%−τ)‖g(x, s)‖2p−22p−2 d%+ c

6 ce−γt‖u0‖2 + c

∫ τ

−∞
eγ(s−τ)

(
‖g(x, s)‖2p−22p−2 + ‖g(x, s)‖2

)
ds+ c
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uniformly in s ∈ (τ − 1/3, τ). The proof is complete.

4.3.2. (H,V)-backwards semi-uniformly pullback flattening property

Consider the continuous compact operator −4 in L2(O). It is known by spectral theory that there
exist a sequence {λj}∞j=1 with

0 < λ1 6 λ2 6 · · · → ∞
and a sequence of vectors {ej}∞j=1 ⊂ D(−4) such that

−4ej = λjej , j = 1, 2, · · · . (4.36)

Denote by Vm = (Em)d, ∀m ∈ N, where Em = span{e1, e2, · · · , em} in H1
0 (O), and Pm : V 7→ Vm the

orthogonal projector. Then we have the following lemma.

Lemma 4.13. Let (4.4)-(4.7) and (4.24)-(4.29) hold. Then for every r > 0, ε > 0 and τ ∈ R, there
exist a T0 = max{ 2 ln r

γ , 2} and an M = Mε,τ ∈ N such that for every solution u of (4.3) with ‖u0‖ < r
satisfies

sup
s6τ
‖(I − PM )u(s, s− t, u0)‖2 < ε, ∀t > T0.

Proof. We denote by u⊥m = (I − Pm)u, ∀m ∈ N. Multiply (4.3) by Au⊥m and then integrate to get

1

2

d

dt
‖∇u⊥m‖2 + β‖4u⊥m‖2 6

∫
f(t, u) · 4u⊥m dx−

∫
g(x, t) · 4u⊥m dx

6
β

2
‖4u⊥m‖2 +

2

β
‖f(t, u)‖2 +

2

β
‖g(x, t)‖2,

and thereby,
d

dt
‖∇u⊥m‖2 + γm‖∇u⊥m‖2 6 c‖f(t, u)‖2 + c‖g(x, t)‖2, (4.37)

where we have used the relation ‖4u⊥m‖2 > λm‖∇u⊥m‖2, and

γm := βλm.

Since, by (4.28),
‖f(t, u)‖2 6 α3‖u‖2p−22p−2 + c|O|,

we integrate (4.37) over (s, τ) with s ∈ (τ − 1/3, τ) to obtain

‖∇u⊥m(τ, τ − t, u0)‖2 6 eγm(s−τ)‖∇u⊥m(s, τ − t, u0)‖2 + c

∫ τ

τ−1
eγm(ξ−τ)‖g(x, ξ)‖2 dξ

+ c

∫ τ

τ− 1
3

eγm(ξ−τ)‖u(ξ, τ − t, u0)‖2p−22p−2 dξ +
c

γm
.

Integrating in s over (τ − 1/3, τ) we have

‖∇u⊥m(τ, τ − t, u0)‖2 6 c

∫ τ

τ− 1
3

eγm(s−τ)‖∇u⊥m(s, τ − t, u0)‖2 ds+ c

∫ τ

τ−1
eγm(s−τ)‖g(x, s)‖2 ds

+ c

∫ τ

τ− 1
3

eγm(ξ−τ)‖u(ξ, τ − t, u0)‖2p−22p−2 dξ +
c

γm

6
c

γm

(
sup

τ− 1
3<s<τ

‖∇u⊥m(s, τ − t, u0)‖2 + sup
τ− 1

3<s<τ

‖u(s, τ − t, u0)‖2p−22p−2

)
+ c

∫ τ

τ−1
eγm(s−τ)‖g(x, s)‖2 ds+

c

γm
,
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where we have used the relation∫ τ

τ− 1
3

eγm(s−τ)ds =
1

γm
− 1

eγm/3
6

1

γm
.

Therefore, by Lemma 4.6 and by Lemma 4.12, for all t > T0 we have

‖∇u⊥m(τ, τ − t, u0)‖2 6
cCτ3
γm

∫ τ

−∞
eγ(s−τ)

(
‖g(x, s)‖2p−22p−2 + ‖g(x, s)‖2

)
ds

+
cCτ3
γm

+ c

∫ τ

τ−1
eγm(s−τ)‖g(x, s)‖2 ds,

where Cτ3 introduced by (4.18) is an increasing function in τ taking values in [1,∞). This implies

sup
η6τ
‖∇u⊥m(s, s− t, u0)‖2 6

cCτ3
γm

(
sup
η6τ

∫ η

−∞
eγ(s−η)

(
‖g(x, s)‖2p−22p−2 + ‖g(x, s)‖2

)
ds

)
+
cCτ3
γm

+ c

(
sup
η6τ

∫ η

−∞
eγm(s−η)‖g(x, s)‖2 ds

)
, ∀t > T0.

(4.38)

Recall that
γm = βλm →∞ as m→∞. (4.39)

Hence, by condition (4.24) and Proposition 4.14 below, the right-hand side of (4.38) converges to 0
as m→∞ for each fixed τ ∈ R. Then the lemma is concluded.

Proposition 4.14. Under conditions (4.8), (4.25) and (4.39) it holds

lim
m→∞

(
sup
η6τ

∫ η

−∞
eγm(s−η)‖g(x, s)‖2 ds

)
= 0, ∀τ ∈ R.

Proof. Let τ ∈ R be fixed, and set

F (m) := sup
η6τ

∫ η

−∞
eγm(s−η)‖g(x, s)‖2 ds.

Then By (4.8) and Proposition 4.1 (G2) we know F (m) < ∞. Since F (m) is non-negative and
decreasing, it has a limit l > 0. Suppose l > 0, and we shall establish a contradiction.

Since η →
∫ η
−∞ ‖g(s)‖2ds is uniformly continuous in (−∞, τ) by (4.25), there exists a δ > 0 such

that

sup
η6τ

∫ η

η−δ
‖g(s)‖2 ds < l/4,

and thereby

sup
η6τ

∫ η

η−δ
eγm(s−η)‖g(s)‖2 ds 6 sup

η6τ

∫ η

η−δ
‖g(s)‖2 ds < l/4, ∀m ∈ N.

On the other hand, from Proposition 4.1 (G2) and γm →∞ it follows that

sup
η6τ

∫ η−δ

−∞
eγm(s−η)‖g(s)‖2 ds = e−γmδ sup

η6τ

∫ η−δ

−∞
eγm(s−(η−δ))‖g(s)‖2 ds

= e−γmδ sup
η6τ−δ

∫ η

−∞
eγm(s−η)‖g(s)‖2 ds

6 e−γmδ sup
η6τ−δ

∫ η

−∞
eγ1(s−η)‖g(s)‖2 ds→ 0, as m→∞.
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Therefore,

sup
η6τ

∫ η

−∞
eγm(s−η)‖g(s)‖2 ds 6 sup

η6τ

∫ η

η−δ
eγm(s−η)‖g(s)‖2 ds+ sup

η6τ

∫ η−δ

−∞
eγm(s−η)‖g(s)‖2 ds

6 l/2 for large m.

This contradicts with l being the limit and thereby l = 0.

Lemma 4.15. Let (4.4)-(4.7) and (4.24)-(4.29) hold. Then the m-NDS generated by (4.3) is (H,V )-
backwards semi-uniformly pullback flattening, namely, for any D ∈ B(H), τ ∈ R and ε > 0, there
exist a T = TD,τ,ε > 0, a finite-dimensional subspace E of V and a mapping PE : V 7→ E such that⋃

s6τ

⋃
t>T

PEφ(t, s− t,D) ∈ B(V ), (4.40)

and
sup
s6τ

sup
t>T

∥∥(I − PE)φ(t, s− t,D)
∥∥ < ε. (4.41)

Proof. First recall that by definition,

φ(t, s− t, u0) = u(s, s− t, u0), ∀t > 0, s ∈ R, u0 ∈ H.

Since for any D ∈ B(X) there is an r > 0 such that ‖D‖ < r, by Lemma 4.13, (4.41) is satisfied
by taking T = T0, E = VM and PE = PM . To see (4.40), by Corollary 4.7 we have

sup
s6τ

sup
t>T0

‖∇u(s, s− t, u0)‖2 6 LCτ3

∫ τ

−∞
eγ(ξ−τ)‖g(x, ξ)‖2 dξ + 2LCτ3 , ∀u0 ∈ D.

Hence ∪s6τ ∪t>T φ(t, s− t,D) ∈ B(V ), and then (4.40) follows.

4.3.3. Main result

Theorem 4.16. Under conditions (4.4)-(4.7) and (4.24)-(4.29), the m-NDS φ generated by (4.3) has
a pullback attractor A defined by (4.21) and with the following properties:

1. A is backwards precompact in V , that is,⋃
s6τ

A(s) is precompact in V, ∀τ ∈ R;

2. A attracts every bounded subset of H in the topology of V ;

3. A is invariant under φ;

4. A has the characterization

A(τ) =
{
ξ(τ) : ξ is a complete trajectory backwards compact in H

}
, ∀τ ∈ R.

Proof. By Theorem 4.8, the non-autonomous set A is a pullback attractor for φ in H which is invariant
and backwards bounded in V . Hence the properties 3 and 4 are clear.

Since Lemma 4.15 implies the (H,V )-pullback flattening property of φ, from Proposition 3.6 we
see that A is moreover the (H,V )-pullback attractor of φ. Hence, the property 2 is clear.

To see property 1, we note that since A is the (H,V )-pullback attractor of φ and A is backwards
bounded in V , A is the backwards bounded attractor of φ in V . Then Theorem 3.18 along with the
backwards semi-uniformly pullback flattening property in V presented by Lemma 4.15 implies A is
backwards compact in V . The proof is complete.
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4.4. An example: attractors for non-autonomous Fitz-Hugh-Nagumo equations

Now let us study a specific model as an application of the results Theorem 4.8 and Theorem 4.16.
Consider the real-valued Fitz-Hugh-Nagumo equation

∂u1

∂t − a114u1 + b(t)h(u1) + u2 = g1(x, t),
∂u2

∂t − a224u2 − δ(t)u1 + ξ(t)u2 = g2(x, t),

u|∂O = (u1, u2)|∂O = 0,

(4.42)

where O ⊂ RN is a bounded domain with Poincare inequality (4.1). We let β = min{a11, a22} > 0,
and h(·) : R 7→ R satisfy h(0) = 0 and

|h(s)| 6 c1(1 + |s|r−1), ∀s ∈ R,
h(s)s > −c2 + c3|s|r, ∀s ∈ R,
h′(s) > −c4, ∀|s| > M,

for some r > 2 and ci > 0, M > 0. Let also b, δ, ξ ∈ C(R,R+) all with the property

|b(t)| 6 c4, ∀t > 0,

and b(t) > γ1 > 0, ξ(t) > γ2 > 0. For these constants we further assume

c4 + 1

2
< min{γ1c3, γ2}, when r = 2.

Then it is readily verified that conditions (4.4)-(4.7) and (4.27)-(4.28) are satisfied for all r > 2,
and (4.29) are satisfied for r = 2. Therefore, if we denote by p = (r, 2) and the external force
g(x, t) = (g1, g2) is assumed with (4.24) and (4.25), then Theorem 4.8 and Theorem 4.16 imply that,
the m-NDS generated by the non-autonomous Fitz-Hugh-Nagumo equation (4.42) admits an invariant
and backwards compact pullback attractor A in H for all r > 2, and, moreover, A is an (H,V )-pullback
attractor which is backwards compact in V and composed of backwards bounded complete trajectories
if r = 2.
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