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Q—CLASSICAL ORTHOGONAL POLYNOMIALS:
A VERY CLASSICAL APPROACH *

F. MARCELLAN T AND J.C. MEDEM ¥

Abstract. The g—classical orthogonal polynomials defined by Hahn satisfy a Sturm-Liouville type equation
in geometric differences. Working with this, we classify theclassical polynomials in twelve families according
to the zeros of the polynomial coefficients of the equation and the behavior concerning' to We determine
a g—analogue of the weight function for the twelve families, and we give a representation of its orthogonality
relation and itsg—integral. We describe this representation in some normal and special cases (indeterminate moment
problem and finite orthogonal sequences). Finally, the Sturm-Liouville type equation allows us to establish the
correspondence between this classification and the Askey Scheme.

Key words. orthogonalg—polynomials, classical polynomials.

AMS subject classifications.33D25.

1. Hahn's generalization of the classical orthogonal polynomialsThe ¢— classical
orthogonal polynomials were introduced by Wolfgang Hahn in connection witly thaeri-
vative [7]:

a) They are orthogonal in widespread sense, that is, in the three-term recurrence relation
(TTRR) for the monic polynomials

(1.1) 2Py = Poy1 4+ 0nPy+BpPy1,n>0 , P,=0,P =1,

it is required that3,, # 0, n > 1 or, equivalently, in terms of the corresponding functional,
it must be regular, that is, the principal submatrices of the Hankel matrix for the moment
sequence are nonsingular.

b) Since the classical polynomials are characterized as the only ones whose sequence of
derivatives is also orthogonal, Hahn considers thederivative and studies the orthogonal
polynomials (OPS) whose sequencelof derivatives is also orthogonal.

The L—derivative with parameterg and w includes as particular cases the difference
operator with stepv and theg—derivative (¢ in the work by Hahn):

L(wa(m) = f(((zgj(f))qp;{fm) ) Ll,w =A,,
(1.2)

Loo =0, |ql #£1, Of(r) = Lol
We get the normal derivative wheq — 1, w — 0. In this way, Hahn considers the
L—classical polynomials as a generalization of the classical polynonialslassical poly-
nomials) and discrete classical polynomiafs (—classical polynomials).

Traditionally two OPS are considered equal whenever we can pass from one to another

by means of an affine transformation of the variable. The affine transformation of the variable,

Ay f(z) = f(az + b), modifies the parameters of tHe-derivative. Taking into account
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the effect of the dilationH, f(z) = f(ax), and the translationT, f(z) = f(x + b), we
get:

-

(1.3) lal #1 © ToLgw =Lowig-1pTe =" TL=0Ts,

a=w

1
lgf=1: HyLgw= a_lL(“flea = H,L=a"'AH,.

In another way thd.—classical polynomials with respect o, , , |¢| # 1 could be trans-
formed by means of an appropriate translation in @heclassical polynomialsd—classical
polynomials). If |¢| = 1 a dilation could transform them into th& —classical polynomials
(discrete classical polynomials); see [5], [11], [12] and references contained therein. The
study of the classical and classical discrete polynomials was very complete, so actually it is
only necessary to study the-classical polynomials.

Starting from the Sturm-Liouville type equation in geometric differences with polyno-
mial coefficientsy and ), deg ¢ < 2 anddegt = 1, from now on denoted—9., Hahn
obtained the first results for the solutions @shypergeometric series. Unfortunately, there
was no later publication, where the details were all filled in, according to Tom Koornwinder.
Thirty six years later, G. Andrews and R. Askey [1] continued Hahn'’s work. Since then, a
large literature on classical polynomials from thhe hypergeometric point of view has been
generated. So, the—classical polynomials are presented as a cascade lofpergeometric
functions. Starting from two polynomialgps , that are not classical in the sense proposed by
Hahn, the rest are obtained by means of special choices and changes of parameters for vari-
ables, confluent limits, etc. [9, part 4]. A consequence of this procedure is that there does not
exist a general theory for this scheme but a lot of particular cases. Moreover, in this hyperge-
ometric approach is not evident how the manipulations have an influence on the characteristic
elements of each family. A. Nikiforov and V. Uvarov represented another standpoint in the
hypergeometric approach [11], [12]. They developed a theory based @n-t8e equation,
but the Nikiforov-Uvarov approach leads in the end to the hypergeometric representation of
the OPS. In [2], the authors try to unify both, the Askey’s scheme and Nikiforov et al.
one. In fact they give a more general framework forghéAskey’s scheme based o a 9.
equation.

Our approach and classification leads frgmand v to the ¢g—weight functions and to
the possible intervals of integration so as to represent the orthogonality relation. The zeros
of ¢ and ¢* [¢*(x) = ¢ to(x) + (¢! — 1)z¢p(x)] give the main information about the
orthogonality. Our classification is designed to illustrate how alterations afhd ) (or
¢ and ¢*) have an effect on the orthogonality relation. The class of polynomials defined
by Hahn are very varied but not a labyrinth. Our approach follows the standard analytic
procedure in theD—classical case. Starting from the Sturm-Liouville equatiob?P,, +
YDP, = A\, P,, we write it in the self-adjoint formD(¢pwDP,,) = A\,wP, . This self-
adjoint form, together with the integration by parts and the determination of two different
points of the completed real line,b € R such that(¢w)(a) = 0 = (¢w)(b) make it easy
to get the integral representation of the orthogonality

(1.4) (Ao —An) [ PuPyw = ['D(¢wDP,) - Py — [ D(¢uwDPy,) - P, =

= ¢wDP, - P|% — 7 $wDP,DP,, — pwDP,, - Pl + [ wDP,DP,, =0,

nEm = MFIn = [ PPaw=0.
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Finally, to proveff P2w #0, n >0, we only have to check that is continuous ina, b]

and nonzero in(a, b) . Thus we have to determine the weight functien characterized as

a solution of the Pearson equatid¢w) = Yw [« B2 — £=22]_ Itis evident that

the degree ofyp and the fact that it has a double zero or simple zeros when the degree is
two determines the solutions. In conclusion, the classification ofthelassical orthogonal

polynomials is based on these aspects of the polynowmial

The development of a—analogue of this procedure, whege-hypergeometric func-
tions are not needed, was started with the contribution by M. Frank [4]. Lateadker [6],
applied it to the littleg—Jacobi case, and in [10] all the casesfior. ¢ < 1 were considered.
Our classical approach to the-classical polynomials is presented as follows. In Section 2, a
classification of the;—classical polynomialsin 12 families with respect to theanalogue of
the weight function is developed. In Section 3, the determination of th@eight functions
by means of ay—analogue of the Pearson equation is given. In Section 4, the foundations of
the orthogonality relationship represented withintegrals andg—weights and an overview
of the determination of the positive definite cases are considered. In Section 5, some cases
which yield indeterminate moment problems and finite OPS are analyzed. In Section 6, the
equivalences with the Askey Scheme are presented.

2. g—classical polynomials: classification.The ¢—classical polynomials are orthog-
onal with respect to linear functionals which satisfy;adifference equation of first order
with polynomial coefficients [10]

(2.1) Ogu) = pu , degp <2, degh=1.

The operations and action of the operators in the dual space of the polynomials is defined
by transposition, except the derivative where there is also a change of sigf@wes™) =
—(u,©z™) . Thus, (2.1), is equivalent to [10]

(2.2) $EO* P, + YO* Py = APy, n>1,

where ©* is the ¢~ ! —derivative operator, (1.2)9* f(x) = W . Another formu-
lation equivalentto (2.2) is

(23)  ¢"OOP, +¢YOP, = X;P, , ¢"(x) =q 'o(x) + (7" - Day(x),
This is a well-known fact that has a special significance for us since
(2.4) O(du) = Yu <= (2.2) <= (2.3) <= O*(¢*u) = Yu,

that is, everyg—classical functional/OPS is alsp ! —classical and vice versa.

Maybe this fact has gone unnoticed because when working in an analytical Way if
q < 1 we have convergence in many expressions whereasgwiti> 1 we have divergence.
To see what comes next it is very important to keep (2.4) in mind. In fact we will see the
g—_classical OPS with atereoscopiwision asq, ¢~ ! —classical. We will refer to everything
concerning the inverse basis as symmetric and we will mark it wjtfor example:y* = v .

Let’s recall the Hahn’s scheme (1.3)
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L—classical polynomials L := L,

A —classical polynomials O—classical polynomials
(discrete classical polynomials) (g—classical polynomials)

When |g| # 1, in order to normalizep, we only need a dilation and the nonzero constant.
The dilation H,, acting on the distributional equation of the functiona) ©(¢u) = ¥u,
with the corresponding MOPS P,,) , leads us to the normalized equation

(2.5) O(¢u) =¢u , ¢=Hu¢, ¥ =aH, W =H,/u,

and the MOPS corresponding o, (?n), become@n = a "H,P, . The factorc allows
us to take¢ monic. A straightforward consequence is that if the origin is a zer@ of
¢(0) = 0, the origin will continue to be a zero in the normalized polynomial and thoge) ,
¢(c) # 0, will continue also to be a zero distinct of the origin after the dilation. Therefore,
in the group of Laguerre and Jacobi polynomials, we will now distinguish among those that
have a zero at the origin0(-zero) and those that do not vanish at the origha-gero). In
general we will distinguish between:

()—zero families: g—Hermite, )—Laguerre,p)—Jacobi,

and 0—zero families: 0—Laguerre,0—Jacobi,q—Bessel.

This is the vision fromq. What happens foy = ? If ¢(z) = a2* + ax + a and

W(z) =bx + b, from (2.3), we get

¢*(x) = q @)+ (¢! = Dav(z) =

(2.6) = (¢ 'a+ (@ =)+ (¢ la+ (¢ = Db)z+q ta .
—~—
a* a* a*

The immediate consequence is that evertl—zero family is aq—!—@—zero family and
vice versa. The same is true for the-zero families.

Notice that, from (2.6), if
(2.7) @ =0 <= b={% (mainsingularity ,
the )—families are the;—! —Laguerre ones, providing thaeg ¢* = 1, otherwise, ifdeg ¢* =
0, thatis,

(2.8) a*=0 <= b= %q (secondary singularily,

then they become in a~'Hermite family.

In the 0—families, the framework is different. First, the two singularities cannot appear
simultaneously. In factg* = 0 = a* implies ¢* = 0, and sou is not regular. On the other
hand, first, theD—Laguerre cannot have a main singularity, (2.7), since then

K

@ =q¢ ' 0+(qg'—1)b=0 = b=0 = dege) <1 => uis notregular,
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and, second, the—Bessel cannot have a secondary singularity (2.8)

=%

a*=q - 0+(g'-1)b=0 = b=0 = ¢ dividesp = uis not regular

The following chart shows the situation (double arrewno singularity,m := main
singularity, s := secondary singularity)

(@ —families 0—families
B *B
P —— *P
P *P
L "L
L L
q—Vview g1 —view q—Vview g~ t—view

Looking at theq—classical polynomials frong and ¢—! we have12 different families

()—Jacobj*Jacobi q—Bessel*Jacobi

" /*Laguerre "/*Laguerre

” /*Hermite 0—Jacobj*Jacobi
(—Laguerrg*Jacobi " /*Laguerre
g—Hermite/*Jacobi " /*Bessel
0—Laguerrg*Jacobi

/*Bessel

3. g—classical polynomials: g—weight functions. In this part, it will be justified that
the zeros ofp and ¢* determine the poles and zeros of thieweight function. The weight
function in theD—cases satisfies the equatibfi¢w) = vw . For our g—polynomials there
is a g—analogue of the Pearson equation

0% (¢w) = gYw ,
which leads to the;—Sturm-Liouville equation in a self-adjoint form
$EO* P, + hO* P, = \ P, = @(H_l(qbw)@*Pn) = AwP, .

We call w a g—weight function, and we get it as the solution of the Pearson equation.
The equations iy and ¢~* derivatives are reduced to an equatioryiulilations H := H,,

[Hf(z) = f(gz)]
0% (¢w) = qYw <= ¢w = qH¢"Hw <= ¢(x)w(x) = ¢*(qr)w(qz) .

We solve these equations by a recurrent procedure
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ow = qgHp*Hw w= _quf*
H \
He¢Hw = H( qu* w = 2o Hqu*
H
H2¢H2w = H2(gH¢*)H
w=H"w- qHo" HqH¢* Ce H7”_1—qH¢*
¢ ¢ ¢
(n) ge* (_ pqn—1 Qd>*(q"“ﬂc))
H™ES (— k=0 = 4(qFz)

Let us see what happens whentends to infinity. Ifw is continuous a0,

lim H"w = lim w(q"z) = w(0) .
n—oo n—oo
In order to deducdim,,_, HW% we need to consider infinite product$u; ¢)ee =
Hzozo(]- - aqn) and (aa b; Q)oo = (a; Q)oo(b; Q)oo
i) @—cases Since the numerator polynomial and the denominator polynomial have the
same nonzero independent term (see e.g. (2.6)), then the infinite product converges to

*

w(z) = w(0) 18 Doe (03073 0)oc
(a1 25 9)oo (a3 ' 73 0) o0

wherea} andaj are the zeros ob* andaq, a2 those of¢. For any zero, for example, ,
it can be interpreted that

degp<2 = a1 =00 = a;' =0 = (a]'0;Q)uc = 1.
The g—weights for the)—families are given in table 3.

These functions were already known by Hahn ([7], page 30), although he obtained them
by another procedure. They are meromorphic functions in the complex plane with zeros in
afqg™™, n>1 andpolesina;g~", n>0.

i) 0—caseslf the independent term is zero, several situations appeatr.

a) No ¢*!—Bessel This is the simplest case also mentioned by Hahn. If both polynomials
have nonzeraz—term (0—Jacobj*Jacobi,0—Jacobj*Laguerre,0—Laguerre¢*Jacobi) we
eliminate a factorr of the numerator with another of the denominator, and we get a ratio of
two polynomials with nonzero independent terms which do not coincide in general. To be
able to introduce a factor that corrects this we assume the funatigmresents a zero or a
pole in the origin introducing the factdr|* . Then, theg—weights are

e (a1 'z @)

w(z) @
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TABLE 3.1
The g—weights for thef)—families

(—families zeros of ¢ zeros of p* g—weight function

*—1 *—1 .
(—Jacobj* Jacobi 0 oo fas | w) =Y 4,05 473 q) o
(a7 @, a5 7;q)o0

(a1 'qw; @)oo

/*Laguerre| a; # oo # a2 | aj # oo = as w(r) = —g——F—"
(a7 a5 T5q)

. 1
/*Hermite al = oo = a} w(r) = —5——
(a1 2,05 75q)

(a7 'qz, a3 'qz;q)
(a1 '@;q)oo

(—Laguerre a1 # 0o = as w(z) =

ai # 0o # a3

g—Hermite a1 =00 = az w(z) = (a¥ gz, a3 q2; ¢) o

where once agaideg ¢ < 2 implies a; = 0.
B) ¢T'—Bessel The («)—procedure can not be applied to the Bessel and; ! —Bessel:

(61) When the degree is differeny{Bessel*Laguerre and)—Laguerrg*Bessel) we can
use the functiorh: h(z) = Vz!'°8« =1, This function satisfies

In fact Hacker [6] uses it to solve the—Bessef*Laguerre case.
The following generalization of., »(%) (we have not found any references to it in the liter-
ature) satisfies

HAO) (z) = 2Ph(z) , AP = /zlo8e" =8

and we have used(— 1) to solve the0—Laguerrg*Bessel case. In general the functibror

its generalization can be used when the degrees of the polynomials are different. Hahn uses
h in the 0—Jacobj*Laguerre case to prove that it corresponds to an indeterminate moment
problem (generalizing the Stieltjes-Wigert polynomials). Notice that it was the only result
developed with some detail in [7], but a mistake appears. It was corrected in a later article

[8].

(62) Finally, for the case when both polynomials have the same degreBéssel*Jacobi
and 0—Jacobj*Bessel), the iterative solution usifg leads to divergent expressions. So,
we try to solve them usingd—! . Thus we get

1

w(z) = |x|a7(a{/m;q)oc

or w(x) = |z|*(a1q/7;q)oo -
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TABLE 3.2
The g—weights for thed—families

0—families zeros of ¢ zeros of ¢* g—weight function
i 1
g—Bessel*Jacobi at #{% a5=0| w(z)=|z|*——- (b
' A @ = e @
a1 =0,a2=0
/*l_aguel’re a,‘f =00, a§ =0 UJ(Z’) — ‘3:'& xl()gq rz—1 (C)
*—1 .
0—Jacobj* Jacobi ot £{%, a5 =0 | w(z)=|z|® (%71(19&’7(1)00 (@)
(al x;Q)oo

/*Laguerre | a1 #{% ,a2=0| a}=00,a3=0 | w(z)=|z|*

(a7 '23)oe
/"Bessel ai =0, a5 = w(z) = [z]*(a19/7;q) oo (b)
0—Laguerrg* Jacobi ai #0,a5 =0 w(z) = |z|*(a} 1 qz; @)oo (a)
ar =00, a2 =0
/*Bessel af=0,a5=0 w(z) = |z|* Va2l s 1 (d)

We have not found any reference concerning these functions in the literature. In the first case,
fixing @ = 1 applying the standard normalization (non zero factor and dilation) over the

distributional equation, the only free parametebis Choosing it so thab = 2¢%>~* then
[10]

w(@) = ol ks = loleq (4) = lole,[—(1 — q)2/a] |

andlim,_,,- w(z) = |z|* exp(—2/x) is the Bessel weight function.
The g—weight functions for thed—families are shown in table 3

%

a a a a
(a) cwz:72+L0gqa—*7 (b)a:73+L0gqa—*, (c)a:72+Logqa—* , (d)a:3+L0gq€

p=az’+ax+a , Y=br+b a*=q'a

4. g—integral representation of the positive definite casesThe g—integral is a Rie-
mann sum on an infinite partitioflag™, n > 0},

[520 fdy =320 flag™)(ag™ — ag™) = (1 — @)a Y02, flag™)g™

Sy fdg =30 flag™)(ag™ —ag™) = —(1 — q)a S0, flag™)g™
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defined in such a way that we can apply theanalogue of the Barrow rule,
[POFd, = F(b) - F(a) .

This allows us to get the following integration by parts rules

@4.1) [* fOgdy =H1f gl —q [ g0 fd, , [°fOgd,=fglt— [’ HgOFfd, .

On the other hand it can be generalized to unbounded intervals and to unbounded functions.
The Riemann-Stieltjes discrete integrals related with¢helassical polynomials can be
represented ag—integrals. For example, for the—Jacobi case (little;—Jacobi) we have

oo Dk 1 o T;9) oo o
S0 o PELE (ag) ppn (05 )pn(q") = K [y o L= —p,, (2)pu (@) dyz , a =g, b=q" ,

w(x) = ma%(z x%[1 — qz|s , in the Hahn notation.
Notice that the previous polynomials correspond to a positive definite caselfer «. For
—1 < a < 0 the g—integral converges.

The positive definite cases are deduced from the TTRR, (1.1), wwhen 0, n > 1. If
é(x) =ar? +ax +a, Y(z) = bxr +b,and H"¢(z) = ¢(¢"x) then

q"[n+1] ([nq]a@)

4.2 Pror == ([2n—1]&+€) ([2n+1]&+§) e (_ [[27;3]2153) nz0.

This representation of,, in terms of the coefficients ap and ) was obtained by N. Smaili
[13] and S. Hicker [6] using different techniques. The determination of the positive definite
cases has been done case by case for any real valge off # 1, by Hacker. A more
global vision of the used procedures and, mainly, the positive definite cases which have not
been considered byatker can be found in [10]. In all positive definite cases it is possible to
represent the orthogonality relation using theintegral and the;—weight function.

Thus, we have a self-adjoint form of thg-Sturm-Liouville equation,g—integration
by parts. We only need two poinis b € R , a # b, zeros of certain functions, so that

[? PuPruwdy =0, n#m,see (L.4). Ifn # m, then A, # A, and

b b b
O = Amn) / WPy Py dy = / (WA Po) Py dy — / (WA P Py dy =

:/b@(H_l(qu)@*Pn)&dq—/b@(H_l(qﬁw)@*Pn)&dq _
¢ g1 f1 ¢ g2 fa

= H ! (¢pw)O* P, - Ppy|’ — /b H(H‘l(qﬁw)@*Pn)@Pm d, —

b
~H Y(¢w)O*P,, - P," +/ H(H_l(qbw)(a*Pm)@Pn dg=0.

(H—l(d)w)) (a)=0= (H—l(d)w)) () PO FmSFn
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So a and b must canceH ! (pw) {: dlg z)w(g )| :

(How) (@) = 0= (H'(¢w)) (1) = d(ag " ywlag™) = 0= 6(bg~ w(bg ™).

For instance, ifa; and ay are zeros ofp we could takea;q and azq, a;,a; € R . There
is a more interesting alternative, as we will see. Using¢h@earson equation, we have

ow = qH(¢pw) <= H '(¢w)=q '¢*w,

and so the zeros ob*, a, a5 € R , constitute another choice. Also we can combine both
possibilities, for examplea; ¢ and a3 .

We will make some comments about the determination of the positive definite cases in
order to facilitate the comprehension of what follows. First of all, we normalize the polyno-
mial ¢ with @ = 1 which does not alter either the functional or the orthogonal polynomial
sequence. The study of the positive definite cases reduces to the study of the sign of the two
factors of 6,11, (4.2). The first factor is negative if the leading coefficientjofis positive,

b > 0, and negative ifs < T [[n] = el < 1} . Notice thath = - represents

the main singularity, (2.7). The other casqs_,iq <b < 0, have changes of sign and do

not lead to positive definite cases. The second factor of (4.2) has more difficulties in the case
deggp = 2. If b > 0, then this second factor must be negative 3 71% must remain

n

in the interval between the zeros 8¢ (H"¢ with positive leading coefficienty = 1).
Equivalently, in this caseh > 0, the sequencée,, ), >¢ .

(4.3) €n = — -q", n>0,

must remain between the zeros®f a; anda, . Otherwise, ifb < 1%1(1 thene, ¢ [a1,as],
n > 0. Inthe casedeggp = 1,i.e.,a = 0, for example,p with positive leading coefficient,
a > 0, and a zero atip , we have positive definite cases #f < ay, n > 0, and so on.

The choice of the interval of integration is made to guarantee ﬁj’a‘f’ﬁwdq # 0,
n > 0, for which, it is enough thatv be continuous and does not vanish inside the inter-
val of integration. This has a difficulty since we have seen that even in the simplest cases,
()—families, are infinite number of zerog*¢q~™, n > 1, and infinite number of poles,
a;q~™, n > 0. In the positive definite cases there is a situation that makes the problem
simpler: a7 and a3 are real and

(4.4) ay <0< aj,

or in the 0—families, a} = 0 < a3, or, a} < 0 = a3 . So in all cases we have the zeros out
of (aj,a3). Foraj < 0 < a} we have

1

L<alg"< ... <ajg i <al<0<abl<algi<...<ayg"<....

[Notice that, (2.6),a = a*q anda = ajaz, a* = @*alas, with, (2.6),a* = ¢ ta+ (¢~ —
1)b, @ =1 yields (4.4) witha # 0 ]

Now we come to the poles. The better case occurs wherand a, are out of the
interval [a7, a}] but this does not usually happens. So we have the previous problem. We
know the relative situation of the zeros ¢f and ¢ in the positive definite cases (we have
the explicit expressiorns,, in terms of the coefficients o and ). The main question is to
know the relative position of the zeros af and ¢* in these cases.
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5. An example: the ) and 0—Jacobi cases.The ()—Jacobj*Jacobi, have three basic
forms in order to be positive definite. With monic, ¢(z) = (x — a1)(z — a2) and ¢ (z) =
b(x — by), they are positive definite if

a b>0 , a1 <0<as , a; <by<as
~ -1 O<a1<a2 N b0<a1
b)b<1—q{a1<a2<0 R as < by
~ —1 O<a1<a2 N a2<b0
C)b<1—q{a1<a2<0 , bop<ay

In the (a)-cases, the sequengg),>o with @ =1, (4.3), ¢p = by, Which converges td) ,
belongs to the intervala,, as), and this is guaranteed if; < 0 < as, anda; < by < as.

In the (b)-cases(e,,) must be outofia,, az] and soa; anda, are both positive or negative,
and it is sufficient thathy is out of [a1, as] to yield this. In the (c)-cases, the condition is
not sufficient. Another necessary condition is thatand a; were close enough so that the
sequencee,, ) , which converges to zero, jumps over the interjeal, as] . If €,, € (a1,a2)
then we haves,, < 0 [€e,, = a1 Of ¢,, = a2 Yyields 8,, = 0.] If a; = a2, a discrete
number of values ob, do not lead to positive definite cases, whilg,a; € C\ R leads
always to positive definite cases for all valueshpf (3 < 1%19) .

We point out that a normalization procedure with a dilation applied to the corresponding
OPS, (2.5), can put it into a quasidefinite class, that is, the normalized representant of the
class could not be positive definite. This is the case of the Bidgacobi polynomials that
represents the class with

o(x) = ag(z — 1)(bx + ¢) = abg(x — 1)(x + ¢/b).

The dilation that allows us to send a zero@®fto 1, a1 = 1,is Hy, :

(5.1) ¢(z) = (x — a1)(z — az) Moy, (ar1z —ay)(arz —az) = a2 (z — 1)(z — ag/ay) .

If (P,) satisfies a TTRR, (1.1), witly,, € R , n > 0,and 3, > 0, n > 1, a positive

definite MOPS before the dilation, thetP, ) , after the dilation (2.5), satisfies a TTRR with

an =a; oy, B =a;2B,. If a; € C\R thend, and g, are also complexvalued.
The relative position for the zeros @f and ¢* is different in each case:

(a) <= a1, a2] D [af,a3],
(b) — [a17a2] N [ai(aag] = @ ’
(c) <= la1,a2] C [af, a3] .

(5.2)

We can consider three different subtypes of positive defifiitdacobj*Jacobi. In Figure

(5) and Figure (5) the intervals of integration for @l-Jacobj*Jacobi cases are represented.

In the above discussed case, and a; are complex-valued, a meaningful normalization
procedure is to send} to —1 or a3 to 1 with a dilation of ratio—a} or a3, (4.4), acting

on ©*(¢*u) = ¢*u, (5.1). Further, OPS which are initially positive definitg, > 0,

n < ng, but 8,, < 0 can appear in the (c)-cases. Then we have the so called finite OPS. In
this case)—Jacobj*Jacobi, are theg—Hahn polynomials.

Notice that two possible intervals of integration appear in the (c)-cases:(as ). For
a positive definite caseg; and a» must be close enough < a; < as < aiqg~! or
asq”' < a1 < ag < 0 so that the poles are out of the interval of integration. So, we arrive
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FIG. 5.1.Intervals of integration for theg—weight function corresponding to tHé—Jacobj/* Jacobi OPS

* *
ay as
' : Ta : :
ai a2
*]
(b) <= [a1,a2]N[a},a3] =0 (€) <= la1,a2] C [a],a3]
aj as aj aiqazq al
1 Fan) 1 1 1 1 Fan 1 1 1 1 1
NP t o—+ }
ai a2 - a a2
a # az
ay a3 aj aigazq  a}
Il D Il yanN
. — a . — D .
a1 ag ai a2
ajy as aj aiq as
Il D Il D Il
. s . . . H— . .
a1 = az a1 = az
a1 = az
* *
) as ajy aiq as
Fan Il Il Fany
. . D . . . —D .
a; = az a; = az
*
) az
C\R : < !
ai,az € C\

to the same conclusioru; and a; must be close enough. On the other hand, two different
finite intervals do not lead necessarily to different orthogonality representations. The behavior
of the 0—Jacobj*Jacobi casega} = 0 < a3 or af < 0 = a}) is the same in the (a) and
(b)-cases. Notice that it is not possible that they were positive definite in the (¢)-cases because
(€n) — 0.

We now determine that the intervals of integration for the sing@itadacobi ()—Jacobi
/*Laguerre, (2.7), and)—Jacobj*Hermite, (2.7) and (2.8)). Here, the discussion of the
positive definite cases is differente,,) must be also out ofay,as) but now (e,,) diverges
to +oo if by > a1 +as, 0rto —oo if by < ay + ao, oris constant ifby = a1 + as, the
case of a secondary singularity, (2.8). They are positive definite if

ai1<aitaz<az

bo < aiq — (fn) \—oc

a1 <aitaz<az

aa; <0< a

as < by = (€n) /=
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b) O<ar<as , bp<a = (En) N — o0
ax <a1 <0 , a1 <by = (€n) /=
Cl) O<ar <as , az< bp < a1+ ay = (En) \woo
ap<axs <0 , ar+ax<by<a = (en)/oo
) O<ar<az , aj+ay<by = (en) /°° or constant
ag<az<0 , b<a+a = (én) \u—co OF CONstant

In the (a), (b), and (c2)-cases the condition is also sufficient. In the (cl1)-cagsgsmust

also jump over the intervdl, as] . Finally, we have the same cases (4.2), with or a3

equal tooo . Now, when two intervals of integration appear in the (c)-cases, one is finite and
the other is infinite. The finite OPS are also (c)-cases: the quagtulrawtchouk in the
Askey’s Scheme.

Fic. 5.2. Intervals of integration in the (c)-cases for the—weight function corresponding to the
(¢—Jacobi/Laguerre an@—Jacoby/* Hermite (a}] — —oo anda} — oo) OPS.

al#ag a; = as Or al,GQEC\]R
* ai1q a; — oo
. &+
aq arq a2 — 0 ar = as
] Fany | | |
U1 T T * @ — oo
ai az s 2
D
—00 «— aj aiq CL§
D f f f
—oo0 +ay @14 a2q ~— a1 = as
Fany| - |
o L T *
_-— al a2 — 00 — (1/,%\ a/lz
D }
airq al — oo
* f f D
aj ai1q a2q ay — o0 aL=ay ————
f f f | * o — oo
@2
*
—00 — aj aiq a5
. a f f H—
—00 «— aj | | ? ap = ag
T T T *
a1 as —00 —aj N a|2
o—

Now, the following question arises: What is the relationship with an indeterminate moment
problem? In the case of thg—! —Hermite ()—Jacobi/* Hermite), T. Chihara, [3, pp.197,
198], refers to the existence of one indeterminated moment problem. The indetermination of
the moment problem is not only due to the unbounded integration interval, as Hahn pointed
out. In this case the indetermination of the moment problem appears only when the two zeros
of ¢, a1 =1, as = a, satisfies

1

l<a<q " e g<ag<l1

that allows us to consider two different intervals of integration: boundgdig] and un-
bounded,(—, q] .
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The 0—Jacobf*Laguerre follows the same scheme. They can be positive definite in the
(c2) form, and we find the corresponding finite family: the Krawtchouk OPS.

In [10] different intervals of integration are described in all the cases. Even more, the
integral-valued representation af—Bessel*Jacobi are obtained in an unusual caseis
complex valued for the positive definite cases and in any possible integration interval there
are infinite poles ofv .

6. Our classification and the Askey SchemeTo conclude this work we point out the
comparison of our classification scheme with the Askey’s one just as R. Koekoek and R.
Swarttouw present it. We emphasize the fact that a work with the hypergeometric feeling
shows in a systematic way the- 3. equation. We have established the equivalences through
it. By the way ourg—Bessel*Jacobi are alternative—Charlier. There are very few refer-
ences about them in the literature.
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SCHEME
OF
BASIC HYPERGEOMETRIC
ORTHOGONAL POLYNOMIALS

4) Askey-Wilson
|_ ___________
|
) Continuous Continuous | Big
dual g—Hahn g—Hahn | g—Jacobi
|
______ | ol 94— Jacobi
| q~ ' Jacobi
|
2 Al-Salam q—Meixner Continuous | Big Little
@ Chihara Pollaczek q—Jacobi | q—Laguerre g—Jacobi
|
] V){ q — Laguerre { q — Jacobi

 — g~ 'Jacobi q~ *Jacobi

@ Continuous Continuous Little _Laguerre

big ¢g—Hermite gq—Laguerre | gq—Laguerre q 9

|
| ol a— Laguerre 0 q — Jacobi
| q~'Jacobi i g~ ‘Laguerre
|

©) Continuous | Stieltjes

g—Hermite | Wigert
| 0 q — Bessel
Notations i g~ ‘Laguerre
() = non-zero family L

0 = zero family

f = finitely positive definiteness

i = indeterminate moment problem

— — — = g—classical OPS0 < ¢ <1
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SCHEME
OF
BASIC HYPERGEOMETRIC
ORTHOGONAL POLYNOMIALS
g—Racah 4)
|
|
qft?ligcobi g—Hahn | Dual g—Hahn 3)
|
0 q — Jacobi 0 q — Jacobi |
{ g~ Jacobi f { ¢~ Jacobi |
L - __ _
Quant Affi | Dual
) uantum ine ua
q—Meixner q—Krawtchouk q—Krawtchouk q—Krawtchouk | q—Krawtchouk @
|
0 q — Jacobi 0 q —Jacobi 0 q — Jacobi 0 q — Laguerre |
{ g 'Laguerre  f { g~ 'Laguerre f { q 'Laguerre f { g dacobi T T T T 7]
|
Alt ti Al-Sal Al-Sal |
ernative . -Salam -Salam
q—Charlier q—Charlier Carlitz | Carlitz Il | @
|
0 q — Bessel 0 q — Jacobi 0 q — Hermite o q — Jacobi |
{ q~ ‘Laguerre { g~ ‘Laguerre { q~ 'Jacobi { q~ 'Hermite |
|
Discrete Discrete | ©)
g—Hermite | g—Hermite Il |
|
|

!

particular case
ASCI

particular case
ASC I

!



