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Abstract. We introduce cooperative TU-games on concept lattices, where a concept is a pair
(S, S′) with S being a subset of players or objects, and S′ a subset of attributes. Any such game
induces a game on the set of players/objects, which appears to be a TU-game whose collection
of feasible coalitions is a lattice closed under intersection, and a game on the set of attributes.
We propose a Shapley value for each type of game, axiomatize it, and investigate the geometrical
properties of the core (nonemptiness, boundedness, pointedness, extremal rays).
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1 Introduction

Cooperative games with transferable utility (TU-games) have been widely studied and
used in many domains of applications. N being a set of players, or more generally, a set
of abstract objects, a TU-game v : 2N → ∅ assigns to every coalition or group S ⊆ N a
number representing its “worth” (monetary value: benefit created by the cooperation of
the members of S, or cost saved by the common usage of a service by the members of S,
power, importance, etc.).

Once the function v is determined, the main concern of cooperative game theory is to
provide a rational scheme for distributing the total worth v(N) of the cooperation among
the members of N (or determining individual power/importance degrees, if v(N) is not
interpreted as a monetary value). The until now most popular methods to achieve this
are the Shapley value [19] and the core [14]. The Shapley value yields a single distribution
vector, satisfying a set of four natural axioms (Pareto optimality, symmetry, linearity, null
player property), while the core is a set of distribution vectors that are Pareto optimal
and satisfy coalitional rationality (i.e., a coalition receives at least equal its own worth).
While the Shapley value always exists for any game, the core is a convex polyhedron, but
may be empty.

In many situations, however, not all subsets of N can be realized as coalitions or are
feasible, which means that the mapping v is defined on a subcollection F of 2N only.

⋆ Corresponding author. Tel (33) 14407-8285, Fax (33) 14407-8301. The corresponding author thanks the Agence
Nationale de la Recherche for financial support under contract ANR-13-BSHS1-0010.
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Such games are said to have restricted cooperation [9]. F has been studied under many
structural assumptions, such as distributive lattices (closed under union and intersection)
[12], convex geometries [3, 4], antimatroids [2], union-stable systems [1] (a.k.a. weakly
union-closed systems [11, 10]), etc. In this case, the study of the geometric properties of
the core is challenging since the core may become unbounded or have no vertices (see a
survey in [15]). Also the Shapley value has to be redefined, and its axiomatization may
become difficult.

In most of the cases, the structural assumptions on F are not clearly motivated or
are too restrictive. The aim of this paper is to study a structure for F which is both very
general (a lattice of sets closed under intersection), and produced in a natural way, through
a set of attributes possessed by the players or objects in N . In short, our framework is
based on concept lattices [5, 6, 16], a notion which has lead to the now quite active field
of formal concept analysis [13]. M being a set of attributes, a concept is a pair (S, S ′)
with S ⊆ N and S ′ ⊆ M such that S ′ is the set of those attributes that are satisfied
by all members of S. A remarkable result is that any (finite) lattice is isomorphic to a
concept lattice, and that the lattice of extents (i.e., the lattice of concepts (S, S ′) limited
to the first arguments S) is a set lattice closed under intersection, and moreover any
such lattice arises that way. We define a game v on the lattice of concepts, dividing it
into a game vN on the lattice of extents (which corresponds to a game with restricted
cooperation (v,F) where F is a lattice closed under intersection), and a game vM on the
lattice of intents (which corresponds to a game on the set of attributes). For both types
of games, we propose a Shapley value with its axiomatization. Moreover, we investigate
in details the properties of the core. Our results can be seen to generalize many results
of the literature on games with restricted cooperation.

The paper is organized as follows. Section 2 introduces the main notions needed in
the paper: cooperative games, concept lattices and games on concept lattices. Section 3
proposes a definition for the Shapley value, which is a natural generalization of those
values presented by Faigle and Kern [12], and Bilbao and Edelman [4], together with its
axiomatization. Section 4 studies the properties of the core: nonemptiness, boundedness,
pointedness, and extremal rays. Some interesting properties of balanced collections are
also presented.

2 Framework

2.1 Cooperative games

Let N = {1, . . . , n} be a finite set of players. A cooperative (TU) game (or game for
short) on N is a mapping v : 2N → R such that v(∅) = 0. Any subset S ⊆ N is called
a coalition. The quantity v(S) represents the “worth” of the coalition, that is, depending
on the application context, the benefit realized (or cost saved, etc.) by cooperation of the
members of S.

We consider the general case where the cooperation is restricted, i.e., where the set
F of all feasible coalitions might be a proper subset of 2N . We denote the corresponding
game with restricted cooperation as a pair (F , v), or simply v if there is no ambiguity.

Let us consider a cooperative game (F , v) with N ∈ F . A payoff vector is a vector
x ∈ Rn. For any S ⊆ N , we denote by x(S) =

∑

i∈S xi the total payoff given by x to
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the coalition S. The payoff x is efficient if x(N) = v(N). The core of a cooperative game
is the set of efficient payoff vectors such that no coalition can achieve a better payoff by
itself:

core(F , v) = {x ∈ Rn | x(S) ≥ v(S) ∀S ∈ F , and x(N) = v(N)}.

Note that core(F , v) is a convex closed bounded polyhedron when F = 2N . In other cases,
the core may be unbounded or non pointed, and its study becomes difficult (see [9] and
a survey in [15]). We recall from the theory of polyhedra that a polyhedron defined by a
set of inequalities Ax ≥ b is the Minkowski sum of its convex part and its conic part (the
so-called recession cone), the latter being determined by the inequalities Ax ≥ 0, and
being therefore independent of the righthand side b. So the recession cone of core(F , v)
is the polyhedron core(F , 0), which does not depend on v.

A collection B ⊆ F of nonempty sets is said to be balanced if there exist positive
weights λS, S ∈ B such that

∑

S∈B,S∋i

λS = 1 ∀i ∈ N.

A game (F , v) is said to be balanced if v(N) ≥
∑

S∈B λSv(S) holds for every balanced
collection B with weight system (λS)S∈B. It is well-known that the core of v is nonempty
if and only if v is balanced [9].

2.2 Concept lattices

We begin by recalling that a lattice is a partially ordered set (poset) (L,�) such that for
any two elements x, y ∈ L, a supremum x∨y and an infimum x∧y exists. If no ambiguity
occurs, the lattice is simply denoted by L. The dual partial order �∂ is defined by x �∂ y

if and only if y � x. The dual of the lattice (L,�) is the poset (L,�∂), denoted by L∂ if
no ambiguity occurs.

A context (see, e.g., [5, 6, 13, 16]) is a triple C = (N,M, I), whereN is a finite nonempty
set of objects, M is a finite set of attributes, and I : N ×M → {0, 1} is a binary relation
defined by I(i, a) = 1 if object i ∈ N satisfies attribute a ∈ M , and 0 otherwise. The
binary relation can be represented as a matrix or table called the incidence matrix (table).

Let C = (N,M, I) be a context. The intent of a subset of objects S ⊆ N is defined as
the set of attributes satisfied by all objects in S:

S ′
C = {a ∈ M | I(i, a) = 1, ∀i ∈ S}.

Dually, the extent of any set of attributes A ⊆ M is defined as the set of objects satisfying
all attributes in A:

A′
C = {i ∈ N | I(i, a) = 1, ∀a ∈ A}.

To avoid a heavy notation, we write simply S ′, A′ for the intent of S and the extent of
A, when the meaning is clear. A basic property of the extents and intents is the relation

(S ′)′ ⊇ S, (A′)′ ⊇ A ∀S ⊆ N,A ⊆ M. (1)

A concept in C is a pair (S,A) with S ⊆ N and A ⊆ M such that S = A′ and A = S ′.
Equivalently, a concept is a maximal rectangle of “1” in the incidence matrix, or it is
(N, ∅) if N ′ = ∅, or (∅,M) if M ′ = ∅.
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We denote by LC the set of all concepts in C, and endow it with a partial order ≤
defined by

(S,A) ≤ (T,B) if S ⊆ T

(equivalently, if B ⊇ A). Then (LC,≤) is a lattice, called the concept lattice, with supre-
mum and infimum given by

(S,A) ∧ (T,B) = ((S ∩ T ), (S ∩ T )′)

(S,A) ∨ (T,B) = ((A ∩ B)′, (A ∩ B)).

The top and bottom elements of this lattice are (N,N ′) and (M ′,M) respectively. It is
important to note that any finite lattice is isomorphic to a concept lattice.

Given a context C and its concept lattice LC, the lattice of extents (LN
C ,⊆) is defined

by the set
LN
C = {S ⊆ N | (S, S ′) ∈ LC}.

Similarly, we define the lattice of intents (LM
C ,⊆) as the set

LM
C = {A ⊆ M | (A′, A) ∈ LC}.

Clearly, the lattices LC , L
N
C , (L

M
C )∂ are isomorphic.

Example 1. Consider N = {1, 2, 3, 4}, M = {a, b, c}, and the incidence table given in
Figure 1. The lattices LC , L

N
C and LM

C are shown on the right of the table. For ease of
notation, sets like {2, 4} and {b, c} are denoted by 24 and bc.

a b c

1 ××
2 × ×
3 ×
4 × (∅, abc)

(13, a) (24, c)
(12, b)

(1, ab) (2, bc)

(1234, ∅)

∅

13 24
12

1 2

1234 abc

a c
b

ab bc

∅

Fig. 1. From left to right: The incidence table of a context, its concept lattice, the lattices of extents, and the
lattice of intents

2.3 Games on concept lattices

We consider a context C = (N,M, I), the lattice of concepts LC, the lattice of extents
LN
C and the lattice of intents LM

C . We assume that no attribute is superfluous, i.e., the
top element of LC is (N, ∅) (no attribute is satisfied by all objects), however, the bottom
element (M ′,M) may be with M ′ 6= ∅ (there are objects satisfying all attributes).

To each concept (A,A′) ∈ LC, we assign a number v(A,A′) ∈ R (its meaning could
be benefit, cost, evaluation, certainty degree of occurrence, etc.). We call the pair (C, v)
a cooperative game on concepts or concept game for short, and impose the restriction
v(∅,M) = 0 whenever (∅,M) ∈ LC . We denote by CCG the set of all concept games.
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We derive from v two mappings vN : LN
C → R and vM : LM

C → R defined by

vN(S) = v(S, S ′)− v(M ′,M) (S ∈ LN
C )

vM(A) = v(N, ∅)− v(A′, A) (A ∈ LM
C ).

Note that vN(M
′) = 0 and vM(∅) = 0 holds, i.e., these set functions vanish at the bottom

of their respective lattices, and could thus be considered as cooperative games. Also, if
v is monotone nondecreasing, then so are vN and vM (because A ⊆ B implies A′ ⊇ B′)
(and similarly for monotone nonincreasing). We call vN and vM the game on extents and
the game on intents, respectively.

Example 2. An immediate application of the above framework in cooperative game theory
is: N is the set of players, and M is the set of attributes of players. Attributes can be
thought of as any kind of property, or simply, as membership cards of any association,
club, party, etc., that the players may possess. Now a coalition is feasible iff it corresponds
to the extent of a concept. Indeed, if S ⊆ N is not an extent in LN

C , then it is not stable in
the sense that the players of S have common attributes S ′, but other players also satisfy
these attributes in S ′, so they have an incentive to join S.

Example 3. Games on concepts can model the interplay between sellers and markets.
Consider N = {1, 2, 3, 4, 5, 6} where agent 1 has the patent of a product in a market, and
the remaining agents are sellers who want to sell the product in this market. The market
is divided into three submarkets M = {α, β, γ}, but there are restrictions on which agent
can sell in which market: only sellers 4, 5, 6 can sell in market α, only 2, 4, 6 can sell in
β, and only 3 and 5 can sell in γ. In addition, we suppose that agent 1 is not a seller. We
define a context C = (N,M, I) to represent this situation with the relation I defined by
I(i, a) = 1 if i cannot sell in submarket a. Figure 2 gives the incidence table and concept
lattice1 of C. Let us define a concept game as follows. We make the assumption that

α β γ

1 ×× ×
2 × ×
3 ××
4 ×
5 ×
6 × (1, αβγ)

(1246, γ) (135, β)(123, α)

(12, αγ) (13, αβ)

(123456, ∅)

Fig. 2. The incidence table of C (left) and its concept lattice (right)

1) Profits obtained by a coalition of sellers depend on the submarkets where they can
develop their activity, but 2) Sellers cannot ban others from these submarkets if they are
the relation I makes them eligible. By a pair (S,A) ∈ N ×M , we represent a situation
where S is a set of agents and A is a set of submarkets where they cannot sell. However,

1 Note that this lattice is isomorphic to the one of Example 1, although the incidence tables are completely
different.
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not every pair (S,A) is admissible. Indeed, the agents in S cannot sell in the submarkets
of S ′, thus A ⊇ S ′. Moreover, a seller has no interest to be in a situation which reduces
his sale domain, thus A ⊆ S ′, and therefore A = S ′. By (1), this yields A′ = (S ′)′ ⊇ S.
Now, 2) implies that A′ = S, so finally (S,A) must be a context. We may take for v the
following values (omitting braces and commas):

v(1,M) = 6, v(13, αβ) = 16. v(12, αγ) = 20

v(123, α) = 32, v(135, β) = 28, v(1246, γ) = 30, v(N, ∅) = 60.

The value v(1,M) represents the fixed payoff obtained by the patent owner if the product
is sold.

2.4 Set lattices and concept lattices

We investigate in this section the relation between concept lattices and set lattices on
N , i.e., sublattices of (2N ,⊆) (see, e.g., [16]). We begin by recalling some useful notions
about finite lattices and posets. For x, y in a poset (P,�), we say that x is covered by y, or
y covers x, denoted by x ≺· y, if x � y, and x � z � y implies x = z or z = y. For x � y

in (P,�), a maximal chain from x to y is a sequence of elements x = x0, x1, . . . , xp = y

such that x0 ≺· x1 ≺· · · · ≺· xp. Its length is p. The height of a lattice is the length of a
longest maximal chain.

Given a poset (P,�), x ∈ P is a join-irreducible element if it covers exactly one
element. Dually, x is a meet-irreducible element if it is covered by exactly one element.
We denote respectively by J (P,�) and M(P,�) the sets of join-irreducible and meet-
irreducible elements. A subset Q ⊆ P of a poset is a downset if x ∈ Q and y ∈ P such
that y � x imply y ∈ Q. The set of all downsets of (P,�) is denoted by O(P,�).

A lattice is distributive if ∨,∧ obey the algebraic distributivity law. A fundamental
result due to Birkhoff says that a finite lattice (L,�) is isomorphic to (O(J (L),�),⊆)
if and only if the lattice is distributive. This means that a distributive lattice can be re-
constructed from its join-irreducible elements. The same statement with meet-irreducible
elements holds as well, because L is distributive if and only if (J (L),�) is isomorphic to
(M(L),�).

An application in game theory of the result of Birkhoff is the following: consider a set
N of players endowed with a partial order �. Then the set of downsets O(N,�) forms a
collection F ⊆ 2N containing N and ∅, which is a distributive (set) lattice when ordered
by inclusion, with supremum and infimum being union and intersection. Conversely, any
collection F ⊆ 2N of height n containing N, ∅ and closed under union and intersection
arises that way (see Faigle and Kern [12]).

A closure system on N is a collection F of subsets of N which is closed under inter-
section and contains N , while a dual closure system is a collection closed under union
and containing the empty set. Endowing a closure system (or a dual closure system) with
inclusion order ⊆, we obtain a poset with remarkable properties:

(i) Any lattice is isomorphic to a closure system, and to a dual closure system;
(ii) The lattice of extents of a context is a closure system, while the collection of comple-

ment sets of the lattice of intents, i.e., {A ∈ 2M | Ac ∈ LM
C }, is a dual closure system.

As a consequence, the lattices of extents and of intents are closed under intersection;
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(iii) Conversely, any closure system F on N is the lattice of extents of some context.
Specifically, the simplest context is C = (N,M, I), with M the set of meet-irreducible
elements of F , and I(i, j) = 1 iff i ∈ j, with i ∈ N and j ∈ M .

Example 4. Take N = {1, 2, 3, 4, 5, 6, 7} and the closure system represented on Figure 3
(left). Its meet-irreducible elements are (in red): 12357, 1237, 2467, 17, which we denote
a, b, c, d, respectively. The corresponding table is given in the middle, and the context
lattice on the right of the figure.

7

17 (d) 27

1237 (b) 2467 (c)

12357 (a)

1234567

a b c d

1 × × ×
2 × × ×
3 × ×
4 ×
5 ×
6 ×
7 × × × ×

(7, abcd)

(17, abd) (27, abc)

(1237, ab) (2467, c)

(12357, a)

(1234567, ∅)

Fig. 3. From left to right: a closure system (meet-irreducible elements in red), the corresponding table and context
lattice

We observe on the example that lines 4 and 6 are duplicate, line 7 is full, and line 3
is the intersection of lines 1 and 2. On the closure system, this corresponds respectively
to the fact that 4 and 6 are always together in a concept, 7 is always present, and 3 is
present whenever 1 and 2 are present. These situations are captured under the notion of
macro-player and companion player (assuming N is the set of players).

Definition 1. Let F be a closure system on N . A subset K ⊆ N , |K| > 1, is a macro-
player in F if either K ⊆ S or K ∩ S = ∅ for every nonempty S ∈ F (equivalently, no
S ∈ F “separates” K, i.e., S ∩K 6= ∅ and K \ S 6= ∅).

Definition 2. Let F be a closure system on N . A player i ∈ N is a companion player
of S, S ⊆ N \ i, if S ∪ i ∈ F , and for all T ∈ F ,

T ∋ i if and only if S ⊆ T.

It is clear from the definition that macro-players arise as identical lines in the table,
while a companion i of S corresponds to the situation where line i is the intersection of
the lines in S. The following properties are noteworthy:

(i) If K,K ′ are maximal (w.r.t. inclusion) macro-players, then K ∩K ′ = ∅.
(ii) If M ′ (bottom of F) is nonempty, then M ′ is a macro-player when |M ′| > 1, and a

companion player when |M ′| = 1 (companion of ∅).
(iii) When M ′ = ∅, atoms which are not singletons are macro-players, but the converse is

false. More precisely, a macro-player K is an atom if and only if K ∈ F .
(iv) If i is a companion of {j}, then {i, j} is a macro-player.
(v) If i and j are companion of the same S, then {i, j} is a macro-player.

7
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Consider a closure system F on N with |N | = n, and consider J (F) the set of its
join-irreducible elements. The following is important to note.

(i) Suppose |J (F)| < n. Then there exist either companion players or macro-players.
Indeed, each join-irreducible element corresponds to a line in the incidence table, and
each additional line must not create a new maximal rectangle with new attributes.
We have

n = |J (L)|+

p
∑

i=1

|Ki| − p+ c

where K1, . . . , Kp are the maximal macro-players and c is the number of companion
players which do not belong to some macro-player (see Ex. 4).

(ii) Suppose |J (F)| = n. In this case, F is an irreducible closure system since there is
no redundant line in the incidence table. Moreover, F ⊆ O(J (F)) where “missing”
sets (i.e., those not in O(J (F))) are necessarily unions of sets in F , since taking the
closure under union of F would give O(J (F)).

Example 5 (Example 4 continued). Let us make the closure system of Example 4 irredun-
dant by suppressing the superfluous elements 3, 6 and 7, so as to have n = |J (F)| = 4.
This gives the closure system represented on Figure 4 (solid lines), to which we give a
slightly different shape, in order to make it apparent as a sublattice of O(J (F)) (addi-
tional links in red dotted lines). The two missing sets are 15 and 124 (in red).

∅

1 2

12 24

125

1245

15

124

a b c d

1 × × ×
2 × × ×
4 ×
5 ×

Fig. 4. Irredundant version of Figure 3

Let L be any lattice, with N = {1, 2, . . .} the set of its join-irreducible elements, and
M = {a, b, c, . . .} the set of its meet-irreducible elements. The irreducible closure system
associated to L is the set lattice C(L) on N defined by

C(L) = {J(x) | x ∈ L},with J(x) = {i ∈ N | i ≤ x}.

Its bottom element is ∅. The irreducible dual closure system associated to L is the set
lattice O(L) on M defined by

O(L) = {M(x) | x ∈ L},with M(x) = {j ∈ M | j 6≥ x}.

Its top element is M . The irreducible concept lattice associated to L is given by the
context C = (N,M, I) with I(i, j) = 1 iff i ≤ j. Then

LN
C = C(L) and LM

C = {A ⊆ M | Ac ∈ O(L)}.

8
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Example 6. Take the lattice on Figure 5 (left), its join-irreducible elements are in red, the
meet-irreducible elements are in blue. The irreducible closure and dual closure systems
(ordered by ⊆) are depicted in the middle and on the right of the figure. By comparing
with Example 1, one can see the above identity.

3 a 4cb

1 2

∅

13 2412

1 2

1234

∅

bc abac

c a

abc

Fig. 5. From left to right: a lattice (in red: join-irreducible elements, in blue: meet-irreducible elements), and the
corresponding irreducible closure and dual closure systems

3 The Shapley value

Given a game (C, v) on a context, we define the extent Shapley value and the intent
Shapley value as the Shapley value for the games on extents and on intents respectively.
We begin with the extent Shapley value.

3.1 The extent Shapley value

We consider the lattice of extents LN
C of a context C and the game vN defined on it.

Consider the set CH(C) of all maximal chains from the bottom M ′ to the top N in
LN
C (equivalently, in LC), and denote its cardinality by ch(C). Consider a given maximal

chain C ∈ CH(C), letting C = M ′ = S0 ⊂ S1 · · · ⊂ Sk = N , and a player i. Denote by
T i
C and Si

C respectively, the last set in the sequence which does not contain i, and the
first set containing i.

The extent Shapley value of (C, v), denoted by Φex(C, v), is defined to be the Shapley
value Φ(vN) of the game on extents, given by

Φex(C, v) = Φi(vN) =















1

ch(C)

∑

C∈CH(C)

1

|Si
C \ T i

C |

(

vN(S
i
C)− vN(T

i
C)
)

, if i 6∈ M ′

vN(M
′)

|M ′|
, otherwise.

(2)

This definition is a natural generalization of the values introduced by Faigle and Kern
[12], and Bilbao and Edelman [4].

We formulate properties to axiomatize the extent Shapley value. Let F be any value
over the set of concept games.

9
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Taking into account that we consider v(M ′,M) as a separable payoff to players in M ′,
we propose:

Separable payoff axiom (SP): If (C, v) ∈ CCG and C = (N,M, I) then one has

∑

i∈M ′

Fi(C, v) = v(M ′,M).

As for the classical Shapley value, we look for efficient payoff vectors.

Efficiency axiom (E): For all (C, v) ∈ CCG, one has

∑

i∈N

Fi(C, v) = v(N, ∅).

All the agents in a macro-player are equivalent for the concept lattice, thus their
worths should be the same.

Macro-player axiom (MP): If (C, v) ∈ CCG with C = (N,M, I) and K is a
macro-player in LN

C , then

Fi(C, v) = Fj(C, v) ∀i, j ∈ K.

A context C2 = (N2,M2, I2) is concatenable to a context C1 = (N1,M1, I1) if N1 =
(M2)

′
C2

andM1∩M2 = ∅. The result of the concatenation of the two concatenable contexts
is a new context C2 ∗ C1 = (N,M, I), where N = N2, M = M1 ∪M2 and

I(i, a) =



















I1(i, a), if i ∈ N1, a ∈ M1

I2(i, a), if i ∈ N2 \N1, a ∈ M2

1, if i ∈ N1, a ∈ M2

0, if i ∈ N2 \N1, a ∈ M1.

As is easy to see, concatenation amounts to the concatenation of the two incidence tables
and hence to the concatenation of the two concept lattices {(S,A ∪M2) | (S,A) ∈ LC1}
and LC2 .

Example 7. Consider N1 = {1, 2}, N2 = {1, 2, 3, 4, 5}, M1 = {α, β} and M2 = {a, b, c}.
The two incidence tables and the concept lattices LC1 , LC2 are given on Figure 6. The

α β

1 ×
2 × (∅, αβ)

(1, α) (2, β)

(12, ∅)

a b c

1 × × ×
2 × × ×
3 ×
4 ×
5 × (12, abc)

(123, a) (124, b) (125, c)

(12345, ∅)

Fig. 6. Two contexts C1, C2 represented by their table and concept lattice

result of the concatenation C2 ∗ C1 is shown on Figure 7.

10
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a b c α β

1 × × × ×
2 × × × ×
3 ×
4 ×
5 ×

(12, abc)

(123, a) (124, b) (125, c)

(12345, ∅)

(∅, abcαβ)

(1, abcα) (2, abcβ)

Fig. 7. The concatenation C2 ∗ C1 of the two contexts of Figure 6

The concatenation of contexts should not change the payoffs of the players.

Concatenation axiom (C): For all (C1, v1), (C2, v2) ∈ CCG such that C2 is con-
catenable to C1, and v1(N1, ∅) = v2((M2)

′
C2
,M2), one has

Fi(C2 ∗ C1, v2 ∗ v1) =

{

Fi(C2, v2), if i ∈ N2 \N1

Fi(C1, v1), if i ∈ N1,

where v2 ∗ v1 is a concept game on C = C2 ∗ C1, defined by

(v2 ∗ v1)(S,A) =

{

v1(S,A \M2), if (A \M2)
′
C ⊆ N1

v2(S,A), if N1 ⊆ S.

Let C = (N,M, I) be a concept, and consider the maximal chains C1, . . . , Cq of its
extent lattice LN

C . The decomposition into maximal chains of C is a collection of contexts
C1, . . . , Cq with set of objects N such that their extent lattices LN

C1
, . . . , LN

Cq are precisely
the maximal chains C1, . . . , Cq. Note that the set of attributes for C1, . . . , Cq may differ
from M , as illustrated by the next example.

Example 8 (Example 4 continued). We decompose the context C into its three maximal
chains as follows:

(7, abcd)

(17, abd)

(1237, ab)

(12357, a)

(1234567, ∅)

(7, abcd)

(27, abc)

(1237, ab)

(12357, a)

(1234567, ∅)

(7, abc)

(27, ab)

(2467, a)

(1234567, ∅)

Decomposition axiom (D): If C1, . . . , Cq is the decomposition of a context C in
maximal chains, then

F (C, v) =
1

ch(C)

q
∑

p=1

F (Cp, vp),

with vp(S,A) = vN (S) for all (S,A) ∈ LCp and p = 1, . . . , q.
We show now that the extent Shapley value satisfies all these axioms.

11
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Theorem 1. The extent Shapley value satisfies (SP), (E), (MP), (C) and (D).

Proof. – Separable payoff: it is obviously satisfied.

– Efficiency: Let (C, v) ∈ CCG with C = (N,M, I). We have, using (2),

∑

i∈N

Φex
i (C, v) =

∑

i∈M ′

Φex
i (C, v) +

∑

i∈N\M ′

Φex
i (C, v)

= v (M ′,M) +
1

ch (C)

∑

C∈CH(C)

(v (N, ∅)− v (M ′,M)) = v (N, ∅) .

– Macro-players: Let (C, v) ∈ CCG and K be a macro-player in LN
C . If K = M ′, by

definition, every two players inK receive the same payoff with Φex. Suppose nowK 6= M ′,
i.e., K ⊆ N \M ′. In that case, for any i, j ∈ K and for any C ∈ CH(C), Si

C = S
j
C and

T i
C = T

j
C . Thus Φ

ex
i (C, v) = Φex

j (C, v) for every i, j ∈ K.

– Concatenation: We consider two concatenable contexts C1 = (N1,M1, I1), C2 =
(N2,M2, I2) with N1 = (M2)

′
C2
. Observe that ch (C2 ∗ C1) = ch (C2) ch (C1). If i ∈ (M1)

′
C1

then

Φex
i (C2 ∗ C1, v2 ∗ v1) =

(v2 ∗ v1)
(

(M1)
′
C1
,M1 ∪M2

)

|(M1)
′
C1
|

= Φex
i (C1, v1) .

If i ∈ N1 \ (M1)
′
C1
, then for any maximal chain C in C2 ∗C1 the transition T i

C to Si
C occurs

ch (C2) times as the same transition in C restricted to C1. Hence, we have

Φex
i (C2 ∗ C1, v2 ∗ v1) =

=
1

ch (C2 ∗ C1)

∑

C∈CH(C2∗C1)

1

|Si
C \ T i

C |

[

(v1 ∗ v2)
(

Si
C , (S

i
C)

′
C2∗C1

)

− (v1 ∗ v2)
(

T i
C , (T

i
C)

′
C2∗C1

)]

=
1

ch (C1)

∑

C∈CH(C1)

1

|Si
C \ T i

C |

[

v1
(

Si
C , (S

i
C)

′
C1

)

− v1
(

T i
C , (T

i
C)

′
C1

)]

= Φex
i (C1, v1) .

If i ∈ N2 \N1, then for each maximal chain C in C2 ∗C1 the transition T i
C to Si

C occurs
ch (C1) times as the same transition in C restricted to C2. Hence

Φex
i (C2 ∗ C1, v2 ∗ v1) =

=
1

ch (C2 ∗ C1)

∑

C∈CH(C2∗C1)

1

|Si
C \ T i

C |

[

(v1 ∗ v2)
(

Si
C , (S

i
C)

′
C2∗C1

)

− (v1 ∗ v2)
(

T i
C , (T

i
C)

′
C2∗C1

)]

=
1

ch (C2)

∑

C∈CH(C2)

1

|Si
C \ T i

C |

[

v2
(

Si
C , (S

i
C)

′
C2

)

− v2
(

T i
C , (T

i
C)

′
C2

)]

= Φex
i (C2, v2) .

– Decomposition: consider the decomposition (C1, . . . , Cq) in maximal chains of the
context C, for the concept game (C, v). By the definition of vp, p = 1, . . . , q, we have for
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every player i

Φex
i (C, v) =

1

ch (C)

∑

C∈CH(C)

1

|Si
C \ T i

C |

[

vN
(

Si
C

)

− vN
(

T i
C

)]

=
1

ch (C)

q
∑

p=1

1

|Si
C \ T i

C |

[

vp

(

Si
C , (S

i
C)

′
Cp

)

− vp

(

T i
C , (T

i
C)

′
Cp

)]

=
1

ch (C)

q
∑

p=1

Φex
i (Cp, vp) .

⊓⊔

Finally, we prove that the extent Shapley value is the only value for concept games
that satisfies the above axioms.

Theorem 2. The extent Shapley value is the only value over concept games satisfying
(SP), (E), (MP), (C) and (D).

Proof. We have already proved in Theorem 1 that the extent Shapley value satisfies all
these axioms. It remains to show that they uniquely determine the value.

Let (C, v) ∈ CCG be a concept game with C = (N,M, I) with M = {a} (simple
context). We have in that case M ′ = {i ∈ N | I(i, a) = 1}, so that the concept lattice is
reduced to {(M ′, {a}), (N, ∅)}. Observe that whenever |M ′| > 1, M ′ is a macro-player,
and similarly N \M ′ is a macro-player as well if |N \M ′| > 1. Suppose first that M ′ = ∅.
The macro-player axiom imposes that Fi(C, v) = Fj(C, v) for all i, j ∈ N , hence by the
efficiency axiom, it follows that

Fi(C, v) =
1

|N |
v(N, ∅), ∀i ∈ N,

so that F is uniquely determined for that type of game. Suppose now that M ′ is reduced
to a singleton, say {i}. The separable payoff axiom imposes that Fi(C, v) = v(M ′,M). If
|M ′| > 1, M ′ is a macro-player, and by the macro-player axiom, it follows that for every
i, j ∈ M ′, Fi(C, v) = Fj(C, v). Now, the separable payoff axiom implies

∑

j∈M ′

Fj(C, v) = v(M ′,M),

so that finally Fi(C, v) =
v(M ′,M)

|M ′|
, for all i ∈ M ′. We can proceed similarly with the

remaining players in N \M ′: applying (MP) and (E) finally yields

Fi(C, v) =
1

|N \M ′|

(

v(N, ∅)− v(M ′,M)
)

, ∀i ∈ N \M ′.

As a conclusion, F is uniquely determined for any game (C, v) with C = (N, {a}, I).
Consider now any concept game (C, v) and the decomposition C1, . . . , Cq of C. The

decomposition axiom implies that if F is uniquely determined on each C1, . . . , Cq, then
F is uniquely determined on C. Hence we consider now C = (N,M, I) such that LN

C =

13
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{S1, . . . , Sm} with S1 = M ′
C, Sm = N and Sp−1 ⊂ Sp. For each p = 2, . . . , m we define

an attribute ap, the context Cp = (Sp, {ap} , Ip) where Ip (i, ap) = 0 if i ∈ Sp−1 and
Ip (i, ap) = 1 otherwise, and the function

vp (Sp, ∅) = vN (Sp) , vp (Sp−1, {ap}) = vN (Sp−1) .

As Cp is a simple context, F is uniquely determined. It is easy to see that

C = Cm ∗ (Cm−1 ∗ (· · · ∗ (C2 ∗ C1)))

and
v = vm ∗ (vm−1 ∗ (· · · ∗ (v2 ∗ v1))) .

The concatenation axiom implies that F is uniquely determined. ⊓⊔

3.2 The intent Shapley value

We proceed in a similar way as for the extent value. We consider the lattice of intents
LM
C of a context C and the game vM defined on it. We note that the set of maximal

chains CH(C) is isomorphic to the set of chains in LM
C . For a given maximal chain

C = ∅ ⊂ S1 ⊂ · · · ⊂ Sk = M in LM
C and an attribute a ∈ M , let Ba

C and Aa
C be

respectively the last set in the sequence which does not contain a, and the first set
containing a.

The intent Shapley value of (C, v), denoted by Φin(C, v), is defined to be the Shapley
value Φ(vM) of the game of intents, given by

Φin
a (C, v) = Φa(vM) =

1

ch(C)

∑

C∈CH(C)

1

|Aa
C \Ba

C |
(vM(Aa

C)− vM(Ba
C)).

We formulate several properties. Let Ψ be any value over the set of concept games.

Efficiency axiom (E):
∑

a∈M Ψa(C, v) = vM(M) = v(N, ∅) − v(M ′,M), for all
(C, v) ∈ CCG.

Let K ⊆ M , |K| > 1. We say that the set K is a macro-attribute if for any S ′ ∈ LM
C ,

S ′ 6= ∅, we have K ⊆ S ′ or K ∩ S ′ = ∅.

Macro-attribute axiom (MA): If (C, v) ∈ CCG and K is a macro-attribute in
LM
C , then

Ψa(C, v) = Ψb(C, v) ∀a, b ∈ K.

Using the definition of the concatenation of contexts as given for the case of extent
games, we introduce the following axiom.

Concatenation axiom (C): For all (C1, v1), (C2, v2) ∈ CCG such that C2 is con-
catenable to C1, and v1(N1, ∅) = v2((M2)

′
C2
,M2), it holds

Ψa(C2 ∗ C1, v2 ∗ v1) =

{

Ψa(C2, v2), if a ∈ M2

Ψa(C1, v1), if a ∈ M1 \M2

where v2 ∗ v1 is defined as for the extent value.

14
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We consider a concept C = (N,M, I) and the maximal chains C1, . . . , Cq of its intent
lattice LM

C . The decomposition into maximal chains of C w.r.t. the intent lattice is a
collection of contexts C1, . . . , Cq with set of attributes M , such that their intent lattices
LM
C1
, . . . , LM

Cq are precisely the maximal chains C1, . . . , Cq.

Decomposition axiom (D): If C1, . . . , Cq is the decomposition of a context C in
maximal chains w.r.t. the intent lattice, then

Ψ (C, v) =
1

ch(C)

q
∑

p=1

Ψ (Cp, vp),

where vp(S,A) = v(S,A) for all (S,A) ∈ LCp , and p = 1, . . . , q.

Theorem 3. The intent Shapley value is the unique value over the set of concept games
which satisfy (E), (MA), (C) and (D).

Proof is similar to the case of the extent Shapley value and is therefore omitted.

4 The core

Given a game (C, v) on a context, we consider the cores of the games on extents and
intents:

core(vN) = {x ∈ RN | x(S) ≥ vN(S), S ∈ LN
C and x(N) = vN(N)}

core∗(vM) = {y ∈ RM | y(A) ≤ vM(A), A ∈ LM
C and y(M) = vM(M)}.

(Note: core∗(vM) is the anti-core, i.e., the set of vectors y such that −y is in the core of
−vM ). Let us call them for convenience the extent core and the intent core respectively.

We can write the intent core in a more convenient way. For any vector y ∈ core∗(vM),
we have

y(A) ≤ vM (A) = v(N, ∅)− v(A′, A), ∀A ∈ LM
C , and y(M) = vM(M) = v(N, ∅)

⇔ y(M)− y(M \ A) ≤ v(N, ∅)− v(A′, A), ∀A ∈ LM
C , and y(M) = v(N, ∅)

⇔ y(M \ A) ≥ v(A′, A), ∀A ∈ LM
C , and y(M) = vM(M) = v(N, ∅)

i.e., y ∈ core(vM), with vM(A) = v((M \ A)′,M \ A), for all A ∈ LM
C , where LM

C =
{A ⊆ M | M \ A ∈ LM

C } is the dual closure system associated to LM
C . This prove

core∗(vM) = core(vM). Note that if M ′ = ∅, v coincide with the conjugate of vM , that is,
vM(A) = vM(M)− vM(Ac).

Example 9 (Example 1 continued). Let us define the following game on the concept lattice
of Figure 1:

(S, S ′) (1, ab) (2, bc) (13, a) (12, b) (24, c) (1234, ∅)
v(S, S ′) 10 20 50 40 40 100
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We obtain

core(vN ) =































x1 ≥ 10
x2 ≥ 20
x1 + x2 ≥ 40
x1 + x3 ≥ 50
x2 + x4 ≥ 40
x1 + x2 + x3 + x4 = 100

, core∗(vM) =































yc ≥ 10
ya ≥ 20
yb + yc ≥ 50
ya + yc ≥ 40
ya + yb ≥ 40
ya + yb + yc = 100

which are not empty since x = (20, 20, 30, 30) ∈ core(vN ) and y = (30, 30, 40) ∈
core∗(vM).

An important consequence of the above facts, we find that the study of the extent
and intent cores amounts to the study of the core of games on closure systems (closed
under intersection) and on dual closure systems (closed under union). In what follows we
study in depth the structure of the extent core, especially its conic part. Results on the
intent core will be obtained by duality. In the whole section, F denotes any collection of
sets.

4.1 Nonemptiness

We ask when the cores are nonempty. As said in Section 2.1, the core of a game on a
subcollection F of 2N is nonempty if and only if the game is balanced in the usual sense.
Hence, core(vN ) is nonempty if and only if vN is balanced, and core∗(vM) is nonempty if
and only if vM is balanced.

The case M ′ 6= ∅ deserves some attention, because then core(vN ) is never empty.
Indeed, it is not difficult to see that the only balanced collection in LN

C is {N}, whence
any game on the lattice of extents is balanced. There is no such conclusion for core∗(vM)
because N ′ = ∅.

There seems to be no clear relation between the nonemptiness of the extent and intent
cores. One could be empty while the other is not, or both could be empty or nonempty.
The following example illustrates this.

Example 10 (Example 9 continued). Let us take the concept lattice of Examples 9 and
1, but without specific values for v. The minimal balanced collections for LN

C are {1234}
and {13, 24}, while those for LM

C are {abc}, {bc, ac, ab}, {c, ab} and {bc, a}. Hence, by
Bondareva-Shapley theorem, the extent core is nonempty if and only

v(13) + v(24) ≤ v(1234)

while the intent core is nonempty if and only if

1

2
v(13) +

1

2
v(12) +

1

2
v(24) ≤ v(1234)

v(1) + v(24) ≤ v(1234)

v(2) + v(13) ≤ v(1234).

The nonemptiness of one the core does not imply the nonemptiness of the other one,
unless some conditions on v are satisfied. For example, the nonemptiness of the intent core
implies the nonemptiness of the extent core if v(12) ≤ v(1234), or if v(1)+v(2) ≤ v(1234).
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4.2 Pointedness and boundedness of the extent core

We assume that core(vN) is nonempty. The aim of this section is to study the question
whether the core is unbounded and whether it contains a line, in which case it is not
pointed (i.e., it has no vertices). The general condition to be pointed is that the system
of linear equations

x(S) = 0, ∀S ∈ F

has 0 as its unique solution (in which case we say that, following Derks and Reijnierse [8],
F is nondegenerate). It is easy to see that F is degenerate if there exists a macro-player
K in F , because F contains the hyperplane x(K) = 0. A remarkable result with closure
systems is that the converse is also true.

Theorem 4. A closure system is nondegenerate if and only if it contains no macro-
player.

Proof. The “only if” part is obvious since the presence of a macro-player implies degen-
eracy.

Suppose that F is a closure system on N with bottom element M ′, which has no
macro-player. We prove by induction on n = |N | that it is nondegenerate. The assertion
is easily checked for n = 1, with the two possible closure systems {∅, {1}} and {{1}}.
Suppose the assertion holds till some value n− 1 and let us prove it for n.

Claim: there exists i ∈ N such that {i} ∈ F .

Proof of the claim: Since F has no macro-player, we know that its bottom M ′

is either ∅ or some singleton. In the latter case, the claim is proved. Suppose then that
M ′ = ∅. Then necessarily, every atom is a singleton. Indeed, suppose per contra that S
is an atom, with |S| > 1. Since S is not a macro-player, there exists T ∈ F separating
S, i.e., j ∈ T 6∋ k for some j, k ∈ S. Since F is closed under intersection, it follows that
S ∩ T ∈ F and ∅ 6= S ∩ T ( S, a contradiction with the fact that S is an atom. �

Consider then F−i = {S ⊆ N \ i | S or S ∪ i ∈ F} on N \ i, the collection of sets
obtained from F by removing i in every set. Note that ∅ ∈ F−i. We prove that F−i is a
closure system without macro-players.

- F−i ∋ N \ i: clear since N ∈ F .
- F−i is closed under intersection: take S, S ′ ∈ F−i. Then three cases arise. If S, S ′ ∈ F ,
then S ∩ S ′ ∈ F and i 6∈ S ∩ S ′, hence S ∩ S ′ ∈ F−i. If S ∈ F and S ′ ∪ i ∈ F , then
i 6∈ S∩(S ′∪i) ∈ F , and therefore S∩(S ′∪i) = S∩S ′ ∈ F−i. Lastly, if S∪i, S ′∪i ∈ F ,
then i ∈ (S ∪ i) ∩ (S ′ ∪ i) ∈ F , therefore ((S ∪ i) ∩ (S ′ ∪ i)) \ i = S ∩ S ′ ∈ F−i.

- F−i has no macro-player: suppose K ⊆ N \ i is a macro-player in F−i. Take S ∈ F−i.
Then either S ∩K = ∅ or S ⊇ K. If S ∈ F , then S ∩K = ∅ or S ⊇ K remains true.
If S ∪ i ∈ F , then (S ∪ i) ∩K = ∅ or S ∪ i ⊇ K is true because K 6∋ i. Hence K is a
macro-player in F , a contradiction.

Then F−i is a closure system without macro-player on N \ i, and by the induction
hypothesis, F−i is nondegenerate, i.e., the system of equations x(S) = 0, S ∈ F−i has a
unique solution x = 0. Finally, observe that the system x(S) = 0, S ∈ F differs from the
previous one only by the adjunction of xi in some lines. Since {i} ∈ F , the line xi = 0
makes the two systems equivalent. Therefore, F is nondegenerate. ⊓⊔
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The next example shows that this result does not extend to arbitrary collections of
sets.

Example 11. Take n = 5 and the collection F shown below.

∅

12

123

12345

24

F is not closed under intersection but has no macro-player. However it is degenerate
(rank is 4 and (1,−1, 0, 1,−1) is a vector of the null space).

This being established, we turn to the question whether the core is unbounded or not.
The following result is useful [8].

Theorem 5. The recession cone of a game on a collection of sets F is a linear subspace
if and only if F \ {∅, N} is a balanced collection.

Corollary 1. The core is bounded (equiv., the recession cone reduces to {0}) if and only
if F is nondegenerate and F \ {∅, N} is balanced.

The situation is summarized by the following table.

M ′ = ∅ |M ′| = 1 |M ′| > 1

pointed if F has no macro-player if F has no macro-player no

bounded if F balanced and no macro-player no no

Table 1. Boundedness and pointedness of the extent core

4.3 Some results on balanced collections

For any collection B ⊆ 2N \ {∅}, its closure by intersection denoted by B is formed by
all sets of B, plus the intersection of any family of sets of B, provided the intersection

is nonempty2. Note that (·) is a closure operator, in the sense that B = B, B ⊆ B, and
B ⊆ B′ implies B ⊆ B′.

Theorem 6. Suppose B is a balanced collection on N . Then B, its closure by intersection,
is balanced.

2 Be careful that this does not mean that B is closed under intersection, since B does not contain the empty set,
despite that it may contain disjoint sets.
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Proof. We prove the result by induction on |N |. The result is trivially true when |N | = 1.
Suppose that the property holds for all Nof size at most n, and let us prove it for
|N | = n+ 1.

Suppose that there exists a macro-player K, and let [k] be a (new) player replacing
K. Then by considering N ′ = (N \K) ∪ {[k]}, we can define a balanced collection from
B on N ′, and since |N ′| < n, the result is proved by the induction hypothesis. We can
therefore consider in the rest of the proof that no macro-player exists. This implies in
particular that |B| > 1 and that there is no set S ∈ B, |S| > 1 which is disjoint from
every other set.

Suppose first that B ∋ S such that S ∩ T = ∅ for all T ∈ B, T 6= S, with |S| = 1.
Then observe that B \ {S} is a balanced collection over N \ S. By induction hypothesis,
B \ {S} is balanced, and since B = B \ {S} ∪ {S}, the result is proved in this case.

Suppose on the contrary that for every S ∈ B, S intersects some T ∈ B. We claim
that the collection B∩ = {S ∩ T | S, T ∈ B, S 6= T} is balanced. Since the union of
balanced collections is balanced (see, e.g., Owen [17]), it follows that B ∪ B∩ is balanced
over N . Applying the same procedure over B∪B∩ yields another balanced collection, and
continuing like this eventually leads to B, proving that it is balanced.

Proof of the claim: Take (λS)S∈B any system of balancing weights for B. For each
i ∈ N , consider the subcollection Bi = {S1, . . . Sk} of B of sets containing i. Observe that
Bi 6= ∅ since B is balanced, and k > 1. Indeed, k = 1 yields λS1

= 1. By assumption, there
exists T ∈ B intersecting S1, therefore there exists j 6= i, j ∈ T ∩ S1, and

∑

T ′∋j λT ′ = 1
forces λT = 0, which is impossible.

For each Bi we construct the collection of pairwise intersections Bi
∩ = {Sj ∩ Sℓ |

Sj , Sℓ ∈ Bi, Sj 6= Sℓ}, with the following weights:

λi
S =

∑

Sj ,Sℓ∈B
i

Sj 6=Sℓ

Sj∩Sℓ=S

λSj
+ λSℓ

k − 1
, for every S ∈ Bi

∩.

By construction, each λi
S is positive, and we have

∑

S∈Bi
∩

λi
S =

1

k − 1

k
∑

j=1

k
∑

ℓ=j+1

(λSj
+ λSℓ

) =
k

∑

j=1

λSj
= 1.

Clearly, B∩ =
⋃

i∈N Bi
∩, however some sets may be present in two different Bi

∩, possibly
with different weights. The last step consists in defining a unique weight for each S ∈ B∩,
while keeping the normalization condition. Observe that if S appears in, say, Bi

∩ and Bj
∩,

then S ⊇ {i, j}. Since there is no macro-player, {i} ∈ Bi
∩, and {j} ∈ Bj

∩. Define

λ′
S = min(λi

S, λ
j
S),

and assuming that λi
S < λ

j
S, define

λ′
{j} = λ

j

{j} + (λj
S − λi

S).

Observe that λ′
S > 0, λ′

{j} > 0. Putting for the other sets λ′
T = λi

T for some i, the system

of weights (λ′
S)S∈B∩

satisfies
∑

T∋i λ
′
T = 1 for all i ∈ N . ⊓⊔
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Lemma 1. Suppose B is a balanced collection on N . Then B contains all singletons in
N if and only if B has no macro-player3.

Proof. ⇒) Clear.
⇐) Suppose B has no macro-player and for some i ∈ N , {i} 6∈ B. Then

⋂

B∈B,B∋i B =
S ∋ i, with |S| > 1. Since S is not a macro-player, there must exist T ∈ B such that
T 6∋ i and T ∩ S 6= ∅. Take j ∈ T ∩ S, and consider a balancing system (λB)B∈B for B.
Then

1 =
∑

B∈B,B∋i

λB <
∑

B∈B,B∋i

λB + λT ≤
∑

B∈B,B∋j

λB = 1,

a contradiction. ⊓⊔

Note that ⇒) holds also if B is not balanced. An immediate consequence is:

Corollary 2. If B is a balanced collection on N , then B contains all macro-players in B
and all singletons in N not contained in macro-players.

Proof. If there is no macro-player, just apply Lemma 1. Otherwise, replace each macro-
player by a single player and apply Lemma 1. ⊓⊔

Remark 1. (i) If B is minimal balanced and contains no macro-player, then B 6= B. This
is clear from Lemma 1 and from the fact that a minimal balanced collection has at
most n sets.

(ii) One may wonder if a dual version of Theorem 6 exists, i.e.: if B is balanced and B = B,
then its opening B◦ (i.e., removing all sets being intersection of others) is balanced.
This is not true as shown by the following example: take N = {1, 2, 3, 4} and the
balanced collection B = {12, 23, 2, 134, 14, 34} (λS = 1

3
can be taken for any S ∈ B).

Its closure is
B = {12, 23, 2, 134, 14, 34, 1, 3, 14, 4}

and is balanced by Theorem 6. Now its opening is (B)◦ = {12, 23, 134, 14, 34}, but
this is not a balanced collection, as it can be checked.

(iii) Observe that in general B1 ∪ B2 ⊆ B1 ∪ B2 with possibly strict inclusion (e.g., take
B1 = {1, 23} and B2 = {12, 3}). It is not sure whether one can obtain any closed
balanced collection as a union of the closure of minimal balanced collections.

We come to our final result.

Theorem 7. Assume M ′ = ∅. Then the core of any balanced game is bounded if and
only if F has no macro-player and F \ {∅, N} arises as the closure under intersection of
the union of some minimal balanced collections on N , i.e., F \ {∅, N} =

⋃

Bi.

Proof. ⇐) Since the union of balanced collections is balanced, by Theorem 6, F \ {∅, N}
is balanced. Since no macro-player exists, by Lemma 1, F contains all singletons, and is
therefore nondegenerate. Hence core(0) = {0} by Corollary 1.

⇒) core(0) = {0} iff F is non-degenerate and F \{∅, N} is balanced. Since F is closed
under intersection, it follows that F \ {∅, N} is the closure of some balanced collection
B, with F \ {∅, N} ⊇ B ⊇ (F \ {∅, N})◦. Since B is the union of some minimal balanced
collections, F \{∅, N} has the required form. Finally, nondegeneracy implies that F does
not contain any macro-player.

3 We mean: there is no macro-player in B. Note that K could be a macro-player in B but not in F .
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The theorem as well as Remark 1 (iii) gives us a means to derive any set system
F closed under intersection such that F \ {∅, N} is balanced. It suffices to generate
all minimal balanced collections, except {N} (see Peleg [18] for the description of an
algorithm doing this), and build all possible unions of them, then take their closure
under intersection. This gives F \ {∅, N}.

4.4 Extremal rays of the extent core

We recall the classical result which holds for the case F = O(N,�) (distributive lattice),
where O(·) indicates the set of downsets of some poset.

Lemma 2. ([7, 20]) If F = O(N,�), the extremal rays of core(0) are 1i − 1j, for i ≺· j
in (N,�).

Let F = LN
C be a closure system onN , with bottom element M ′. We deal for simplicity

with the case where there is no macro-player nor companion player in F (irreducible
closure system). In this case M ′ = ∅ and |J (F)| = n, therefore J (F) can be assimilated
to N . We write (N,�) for the poset on N isomorphic to (J (F),⊆).

Theorem 8. Suppose that F is an irreducible closure system. Then 1i − 1j is a ray
of core(F , 0) for every i ≺· j in the poset (N,�), not necessarily extremal. Moreover,
core(F , 0) = core(O(N,�), 0) if and only if any S ∈ O(N,�) \ F can be written as a
union of disjoint sets in F .

Proof. 1. Let (N,�) be the poset of join-irreducible elements of F . Then O(N,�) is a
distributive lattice and by Lemma 2, core(O(N,�), 0) is generated by the rays 1i−1j , for
i ≺· j in the poset (N,�). Observe that F is obtained from O(N,�) by removing some
subsets, therefore core(F , 0) ⊇ core(O(N,�), 0). Hence any extremal ray of the latter
remains a ray in the former, although not necessarily extremal.

2. To prove the second assertion, equality of the recession cones amounts to show that
the “missing” inequalities in core(F , 0) are implied by the present ones.

2.1. If S ∈ O(N) \ F can be written as a disjoint union of sets in F , say S1, . . . , Sk,
then clearly x(S) ≥ 0 is implied by x(S1) ≥ 0, . . . , x(Sk) ≥ 0.

2.2. Conversely, suppose that x(T ) ≥ v(T ) with T ∈ O(N)\F is implied by the other
inequalities. It means that there exist λS ≥ 0, S ∈ F \ {N}, and λN ∈ R such that

∑

S∈F ,S 6=N,T

λS1
S + λN1

N = 1T . (3)

2.2.1. Suppose first that for all λS > 0, we have S ⊆ T , and λN = 0. Then we have
found a subcollection B = {S ∈ F : λS > 0} in {S ∈ F : S ⊆ T} =: F(T ) which is
a balanced collection over T . Since F is closed under intersection, F(T ) contains B. By
Lemma 1 and Corollary 2, it follows that B (and hence F) contains all macro-players of
B and all singletons in T . Therefore, we have found a decomposition of T into disjoint
sets of F .

2.2.2. Suppose on the contrary that no set of coefficients λS, S ∈ F satisfy (3) with
the condition given in 2.2.1. (i.e., no balanced collection over T exists in F), but (3)
can be satisfied provided λS > 0 for some S 6⊂ T . Then there exist j 6∈ T induced by
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the combination, i.e.,
∑

S∈F ,S 6=N λS1
S has a positive component for j. It follows that

necessarily λN < 0, and we may put w.l.o.g. λN = −1. In order to have (3) satisfied, we
must have

∑

S∈F ,S 6=N

λS1
S = 1N\T + 2 · 1T .

This means that we must find a collection B in F such that {S \T : S ∈ B} is a balanced
collection over N \ T , and {S ∩ T : S ∈ B} is a balanced collection over T with the same
coefficients, and we must find also a balanced collection B′ ⊆ F(T ) over T . But the latter
does not exist by assumption. ⊓⊔

The above condition is easily violated as shown in the next example.

Example 12. Consider n = 5 and F ⊂ O(N,�) depicted on Figure 8 together with (N,�)
(join-irreducible sets in red). Observe that F \O(N) = {1234}, and that it is not possible

1

2

3

4

5

∅

1 3

13 34

123 134

1235

12345

Fig. 8. A lattice (right) with the poset of its join-irreducible elements (left)

to write 1234 as a union of the two atoms 1 and 3. Hence core(F , 0) 6= core(O(N), 0).
This can be verified as r = (0, 0, 1,−1, 0), which is extremal in core(O(N), 0), is no more
an extremal ray of core(F , 0). We can see this in two ways. First, the set of equalities
satisfied by r is

x1 = 0

x3 + x4 = 0

x1 + x3 + x4 = 0

x1 + x2 + x3 + x4 + x5 = 0

Observe that the 3d equality is implied by the two first, hence the system determines a
2-dim space, not a ray. Also, it can be checked in the same way that r1 = (0,−1, 1,−1, 1)
and r2 = (0, 1, 0, 0,−1) are extremal rays, and that r = r1 + r2.

4.5 Properties of the intent core

Similar results for the intent core can be obtained easily from the previous results by
duality.
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Pointedness and boundedness As explained above, and since core∗(vM) = core(vM),
all reduces to the study of the system of linear equations

y(S) = 0, ∀S ∈ LM
C .

Since y(S) + y(M \ S) = y(M) = 0 for any S ∈ LM
C , the above system is equivalent to

y(S) = 0, ∀S ∈ LM
C .

Since LM
C is closed under intersection, all previous results apply directly. Since N ′ = ∅,

the situation is simpler than with the extent core, and we find:

(i) The intent core is pointed if and only if LM
C has no macro-attribute (defined similarly

as a macro-player);
(ii) The intent core is bounded if LM

C is balanced and has no macro-attribute.

Extremal rays We can proceed similarly. The recession cone of the intent core is given
by the system

y(S) ≥ 0, ∀S ∈ LM
C (4)

y(M) = 0.

Since y(M) = 0, proceeding as above, the system is equivalent to

y(S) ≤ 0, ∀S ∈ LM
C (5)

y(M) = 0.

Again, since LM
C is a closure system, we can benefit from previous results. First, we have

the following lemma, similar to Lemma 2.

Lemma 3. Suppose that (LM
C ,⊆) is a distributive lattice, and denote by (M,�) the poset

of its join-irreducible elements. Then the extremal rays of core∗(vM) are 1b − 1a, for any
a ≺· b in (M,�).

Proof. Recall that the intent core is equal to core(LM
C , vM), hence the recession cone of

the intent core is simply core(LM
C , 0), given by (4). It is equivalent to the system (5),

hence core(LM
C , 0) = −core(LM

C , 0). Since LM
C is a distributive lattice, it is generated by

(M,�). It follows from Lemma 2 that extremal rays of core(LM
C , 0) are of the form 1a−1b,

with a ≺· b. Since core(LM
C , 0) = −core(LM

C , 0), the result follows.

As a consequence, and since LM
C is a closure system, we obtain by application of Theorem 8

the main result of this section:

Theorem 9. Suppose that LM
C is irreducible. Then 1b−1a is a ray of core∗(0) (recession

cone of the intent core) for every a ≺· b in the poset (M,�), not necessarily extremal.

Moreover, core∗(0) = core(O(M,�∂), 0) if and only if any S ∈ O(M,�∂) \ LM
C can be

written as the intersection of sets in LM
C whose union covers M .

Note that the poset (M,�∂) is isomorphic to the poset of meet-irreducible elements of
the concept lattice LC. We formulate the same result in terms of the core of games on
dual closure systems.
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Corollary 3. Let F be a dual closure system on M , and (M,�) the poset of its join-
irreducible elements. Then 1a − 1b is a ray of core(F , 0) for every a ≺· b in (M,�),
not necessarily extremal. Moreover, core(F , 0) = core(O(M,�), 0) if and only if any
S ∈ O(M,�) \ F can be written as the intersection of sets in F whose union covers M .
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