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1 Introduction

The problems of best simultaneous approximations to a set of functions has recently been a subject of
intensive study, see for example [1, 2, 3, 4, 5] in the case of finite many of functions and [6, 7, 8, 9] in the case
of infinite, respectively. The case of finitely many is also a special case of the vector-valued approximation
studied by Pinkus [10]. Here we are particularly interested in the kind of the best simultaneous approximation
problems studied in [1, 2, 4, 8, 9]. The general setting of this kind problem is as follows. Let 1 < m < co
and let R™ be a Banach space consisting of real m-tuple of vectors in the case when m < co and some real
sequences in the case when m = oo with the monotonic norm || - || 4. Let (A,) be a fixed element of R™ with
each A\, > 0. Let (X, ||-||) be a Banach space over the field IF, where F = R, the reals, or F = C, the complex
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plane. Let G be a fixed subset of X and let & = (x,) be a sequence of X such that (A,||z,||) € R*®. Then

the problem concerned here is to finding an element gy € G such that

[Awllze = golDlla < [(Avllzw = glD)l[a for all g € G. (1.1)

Any element go satisfying (1.1) is called a best simultaneous approximation to & from G. The set of all
best simultaneous approximations to Z from G is denoted by Pg(#). In the special case when m = 2, this
problem of approximating simultaneously continuous functions on a finite closed interval was first studied
by Dunham in [1], where results on characterization and uniqueness of the best simultaneous approximation
were obtained, while characterization and uniqueness results for a class of problems involving L, norms
were given in [4]. A general treatment of a class of problems for the case when m = 2, which includes these
problems in [1, 4] as special cases, was given in [2]. Extensions to the case when m = oo have been considered
in [8] for some special infinite sequences in a real Banach space, and in [9] for the general infinite sequences
in a (real or complex) Banach space.

However, the study in [8, 9] for the problem of best simultaneous approximations to infinite sequences is

based on the following key assumption:
lim ||(0,...,0, Ay, Apt1,---)]la =0. (1.2)

Thus one interesting question arises naturally: can the assumption (1.2) be dropped in the study of simulta-
neous approximations to infinite sequences? This problem seems very difficult for the general case. In fact,
in the case when the assumption (1.2) is dropped, the method used in [8, 9] does not work. In the present
paper, we shall always assume that m = oo and develop a completely different technique to investigate
the problem of best simultaneous approximations to totally bounded sequences in Banach spaces without
assumption (1.2). Under the assumption that X is uniformly smooth, some characterization results similar

to those in [2] for the best simultaneous approximation from convex sets in Banach space are obtained.

2 Preliminaries

Let (X, ||-]]) be a Banach space over the field F, where F = R or C, and (R*, ||-||4) a Banach space consisting
of some sequences in R. We use (R*)* and X* to denote the duals of R* and X, respectively. The inner
product between R*> and (R*°)* is denoted by (-, )4 while, for each pair (z, f) with x € X and f € X*,
f(z) stands for the inner product of x and f. The unit balls of (R°°)* and X* are respectively denoted by
V and W. For a subset A of X, let A stand for the closure of A and extA for the set of all extreme points
of A. Recall that the set of all clusters of A is called the derived set of A, which is denoted by D(A).

Let N be the set of all positive integers. Recall that || - ||4 is monotonic if, for any (a,) € R* and any
real sequence (b, ), the fact that |b,| < |a,| for each v € N implies that (b,) € R* and [|(by)||a < ||(av)] -
Let A = (\y) be a fixed element of R*. Throughout the whole paper, we always assume that the norm
I 1.4 is monotonic and that A, > 0 for each v € N. Furthermore, without loss of generality, we assume that
[Alla = 1.

Let I be a subset of N. We use e; = (e,) to represent the element of R> defined by e, = 1if v € T

and e, = 0 otherwise. In particular, we write, for each ¢« € N, e; for e; if I = {i}. Thus, for an element
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a = (a,) € R*®, ar stands for an element of R*™ defined by ay = >, _; a;e;. Let

iel
F=A{e=(z0) : Mollzo])) € R®}

and let F be endowed with the norm || - || # defined by
1217 = [QollzuDlla,  VE = (2.) € F.

Then (F,| - ||#) is a Banach space. Note that X can be embedded as a subset of F in a natural way that
& = (x) € F for each x € X. An element & = (z,) € F is called a simple element of F if {z, : v € N} is
a finite set. The set of all simple elements of F is denoted by Fg. Recall that a finite class {Iy,..., I} of

nonempty subsets of N is a partition of N if
m
ULi=N and L()L=0, Vi#j.
i=1

Then an element & € Fg if and only if there exist a finite subset {y1, ..., ym} of X and a partition {I3,...,I,,}
of N such that

i‘: Zyieji. (21)

=1

Clearly, if & € Fg is given by (2.1), then

2] 7 = (2.2)

m
S liliAs,
=1

Let Fr denote the set of all elements & = (z,) such that {z,} is totally bounded and let Fr endowed with
the norm || - ||oo defined by

A

[#llco = sup [lzoll, V&= (zy) € Fr.
v>1

It is clear that
[2l7 < 2lloos V&= (z,) € Fr.

Let .Tg denote the closure of Fg under the norm || - ||o. Then the following relationships are clear.
Proposition 2.1. X C Fs C Fu = Fp C F.

Let me Nand let Z={I;: i=1,...,m} be a partition of N. Set
P ={teFs: &= wier, {y1,--.,ym} C X}.
i=1

Then X C F7*. Let Q,,, =V x W™ and let €2,,, be endowed with the product topology, where V and W are
respectively endowed with the weak* topology. Then €, is a compact Hausdorff space. Let C(£,,) denote

the Banach space of all real-valued continuous functions with the Chebyshev norm ||¢||c defined by

Igllc = max [(w)], V¢ € C(m).
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For # = Y1, y;er, € F7, define

m

¢a(w) =Y (a*, Ar)aRehi(y;), w=(a",h1,. ., hm) € O, (2.3)

i=1

where and through the whole paper, Reb is read as b in the case when b is a real number. It is easy to see
that ¢z € C(Qy,). Define a mapping @ : F7* — C(Q,,) by

O(2) = ¢z, VI e FL
Then we have the following lemma.
Lemma 2.1. ® is a linear isometry from F7* to ®(F7") C C(Qy,).

Proof. Note that the linearity of ® is trivial. It suffices to show that the mapping is an isometry. To do

this, let & € F'. Since the norm || - || 4 is monotonic, one has that

m
E AL = max
i=1 A

max {

max{<a*,ZS\IiRehi(yi)> c(a* hyy.oo hy) € Qm}
A

= Je@le.

yill

Z 5\[1 Rehl (yz)
i=1

:hl,...,hmeW}.
A

Consequently, by (2.2),

12117

Z Az, Reh; (y;)
i=1

Zhl,...,hmGW}
A

Hence @ is isometric. The proof is complete. B

The following proposition, which is clearly a direct consequence of Lemma 2.1, converts equivalently the
problem of the best simultaneous approximation to simple elements of F into that of the best Chebyshev

approximation in C'(£,,).

Proposition 2.2. Let G' be a nonempty subset of X. Then, for each £ € F7* and each gy € G, go is
a best simultaneous approximation to & from G if and only if ®(gg) is a best Chebyshev approximation to
®(z) from ®(G).

3 Characterizations of best simultaneous approximations

We begin with the following notations. Let y € X and & = (x,) € F. Set

Woly) ={feW: fly)=Ilvl},
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Vo(2) = {a” e V2 {a*, (Nollzol))) a = [12] 7},

N(&) = Vo(@) x [] Wo(z),

N(2) = ext Vo(#) x Hext Wo(zy).

v=1

Let m € Nand let Z = {I; : i =1,...,m} be a partition of N. Let # = Y."", y;e;, € F7*. We set

f: 221 h;er, with h; € Wy(y;) and
(a*;Ar)a > 0foreachi=1,...,m :

NP (&) = {<a*,f> e N(3) -

The first theorem of this section is concerned with the characterization of Kolmogorov type of the best

simultaneous approximation to a simple element of F from a convex subset of X.

Theorem 3.1. Let G be a convex subset of X. Let & = Y.I"  y;es, € Ff* and g9 € G. Then the
following statements are equivalent.

(i) go € Pa(%).

(ii) For each g € G,

max{(a*, (ReX, fo(90 — 9)))a : (a*,f) € N (& —go)} > 0. (3.1)
(iii) For each g € G,
max{(a*, (ReX, fu(go — 9)))a : (a”, f) € N(Z—go)} >0.

Proof. (i)=-(ii). Suppose that go € Pg(&). Then, by Proposition 2.2, ®(go) is a best Chebyshev
approximation to ®(Z) from ®(G). Applying the well-known Kolmogorov characterization theorem for best
Chebyshev approximations (¢f. [11, Theorem 1]), we conclude that, for each g € G \ {go}, there exists
w'=(a*,hy,...,hl,) € Qp such that

$3 (W) = gy (W) = ll$z — dg, llc (3.2)
and
gy (') = dg(w') 2 0. (3.3)
In view of (2.3), it follows from (3.2) and (3.3) that 37", (a’*, Ar,) aReh!(yi — go) = |62 — ¢go || and
m ~
Z(a'*, An)aRehi(go — g) > 0. (3.4)
i=1
Set s; = sign(a’*,jqim for each ¢ = 1,...,m. Then
162 = dgollc = Si%i(a™, Ar) aRehi(y; — go)
< Yimi e An)al [Rehi(yi — go)l
< i la™ An)al llyi — goll (3.5)
* m .
= (@305 Ansillyi — goll) a
< | Ansily -l
< 12— goll#
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where the last inequality is because of (2.2) and the monotonicity of the norm || - || 4. Since ||¢pz — ¢g,llc =

|Z — goll# by Lemma 2.1, the inequalities in (3.5) are equalities. Consequently, one has that

m

> la™ An)al llvi — goll = 112 = goll» (3.6)

=1

and, for each ¢ = 1,...,m with s; # 0,

siRehf(y; — go) > 0, |Rehf(yi — g0)| = |hi(yi — 90)| = llvi — goll- (3.7)

Below we will construct (a*, f) € NJ*(& — go) such that (a*, (ReA,fu(g0 — g)))a > 0. Granting this, (3.1)

follows. To do this, define the linear functional a* on R* by

m

(a*,b)s = (a’*7Zsi13[i>A, Vb= (b,) € R™®.
i=1
Note that, by the monotonicity of the norm || - ||.a, [(a*,b) 4| < szl s:by,

In addition, we have that

B < ||5|\A; hence we have a* € V.

(a* ApVa = (a" Ap)asi = [(@* A;)al >0, Vi=1,...,m. (3.8)

Let f = 221 hier,, where h; € Wy(y; — go) if s; = 0 and h; = s;h} if s; # 0. Then (a*,f) is desired. In
fact, since, by (3.6) and (3.8),

m m

(@, Nollze = gol)a =D (@, M) allyi = goll = D @™, Ar)al llys = goll = 12 = goll 7,

i=1 i=1

one has that a* € V(& — go). In view of the definition of h;, (3.7) implies that h; € Wy(y; — go) for each
i=1,...,m; hence, (a*, f) € N7*(i—go) thanks to (3.8). On the other hand, the definitions of hy, g, - - -, hum
together with (3.8) imply that

> {a*, Ar)aRehi(go — g) = Y (a’, Ar,) aRehi(go — 9)-
i=1 i=1
Thus (3.1) holds by (3.4) and (i)=-(ii) is proved.
(ii)=(iii). It is trivial.
(iii)==(i). Suppose that (iii) holds and let g € G \ {go} be arbitrary. Then there is (a*, f1, f2,...) €
N(& — go) such that (a*, (ReA, fu(go — g)))a > 0. Hence,

”jj_gOH}— = <a*7(Re/\va(xv _90))>A
= (a*, (ReAyfu(wy — 9)))a + (a”, (ReAy fu(9 — g0))) 4
< 2—-gl#

This means that gy € Pg(2) and (iii)==(i) is proved. The proof is complete. H

For the next theorem of this section, we recall that a Banach space (X, || - ||) is uniformly smooth if, for
any € > 0 there exists 6 > 0 such that |z +y|| + ||z — y|| — 2 < ||y||€ holds for any x, y € X with ||z|| = 1 and
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0 < |ly|| < &. Note that a Banach space which is uniformly smooth is reflexive. Let o : X — 2" denote
the supporting mapping defined by o(z) = {f € W : f(z) = ||z||} for each z € X. Then the following

characterization result about the uniform smoothness of a Banach space is known in [12, Theorem 1, P.36].

Proposition 3.1. A Banach space X is uniformly smooth if and only if the supporting mapping o is

single-valued and norm-norm uniformly continuous on the unit sphere of X.

Let g, g€ G and ¢ € F. Set
I(g) ={veN:x, =g}

Suppose that X is uniformly smooth and define a mapping Fy_g : W — [[,—, W by

Fy_g(w) = f*:= Z o(r, — g)e, +weyg for each w € W. (3.9)
veN\I(g)

K(@9,9) = {(@". ) = (@, Fog(w)) : a” € Vol& —9), we Wo(g— )},

M(@:9) = {(a", f) = (", Fag(w)) : a" € Vol — ), we W},

R(@:5.9) = {(@".f) = (@ Fo—g(w)) : @" € extVp(i — ), w € ext Wo( — g) }
and
M(3:;9) = {(a*,f) = (0", Fs_g(w)) : a* € extVp(d —g), w € extW} .
Then
N(&—g) 2 M(#9) 2 K(#9,9) 2 K(i:9,9) (3.10)
and
N(&—g) 2 M(#;9) 2 K(#:3.9)- (3.11)

Now we are ready to give the main theorem of this section. Recall that D({z,}) denotes the derived set

of {z,} and that [go, g] the segment with endpoints gy and g. Consider the following conditions:

(a*, (ReAv fo(zo — g0)))a = |12 — goll 7 (3.12)

and
<a’*7 (Re)‘va(gO - g)))A > 0. (313)

Theorem 3.2. Let G be a convex subset of X and let & = (z,) € Fr be such that Pg(2) N D({z,}) = 0.
Suppose that X is uniformly smooth. Then the following statements are equivalent.

(i) go € Pa(#). -

(ii) For each g € G\ {go}, there exist § € Pa(Z) N [go,g] and (a*, f) € K(&;7, g) such that (3.12) and
(3.13) hold.
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(ii*) For each g € G\ {go}, there exist g € Pa(&) N [go, 9] and (a*, f) € K(i;§,g) such that (3.12) and
(3.13) hold.

(iii) For each g € G\ {go}, there exist § € Pu(z) N [go,g] and (a*, f) € ]\//.7(:%;9) such that (3.12) and
(3.13) hold.

(iii*) For each g € G\ {go}, there exist § € Pa() N [go, 9] and (a*, f) € M(&#;g) such that (3.12) and
(3.13) hold.

(iv) For each g € G \ {go}, there exist § € Pg(2) N [go, 9] and (a*, f) € ]/\7(@ — g) such that (3.12) and
(3.13) hold.

(iv*) For each g € G\ {go}, there exist g € Pg(i) N [go,g] and (a*, f) € N(& — g) such that (3.12) and
(3.13) hold.

(v) For each g € G\ {go}, there exists (a*, f) € extV x [T, extW such that (3.12) and (3.13) hold.

(v*) For each g € G\ {go}, there exists (a*, f) € V x [T,=; W such that (3.12) and (3.13) hold.

Proof. Clearly, the following implications hold by (3.10) and (3.11):

(i) = (i) = (iv) = (v)
4 I 4 4
(i) = (") = (@ivY) = (v*)
Thus, it suffices to verify the implications (i)=(ii*)==-(ii) and (v*)=(i).
(i)=(ii*) Suppose that (i) holds and let g € G \ {go} be arbitrary. We have to verify that there exist

g € Pa(%) N [go, 9] and (a*, f) € K(&;§,g)) such that (3.12) and (3.13) hold. For this purpose, note that,

by Proposition 2.1, for each n, there exists & € Fg such that [|#" — #[« < +, or equivalently,
1
125 = zoll <~ v=1,2,.... (3.14)

Let g, be a best approximation to £™ from [gg, g]. Then {g, } is bounded and hence, without loss of generality,
we may assume that {g,} converges to, say, go. It is easy to see that go € P (Z) N [go, g]. Below we divide
the proof into two cases: (a) go # go and (b) o = go-

(a) Jo # go. Set g = 3(go + go). Take a* € V(2 — g) and f € Wy(g — g). Define

_ [ olev—3), veN\I(g),
Jo= { f. v e I(3). (3.15)

Then (a*, f) € K(&;7,g). Furthermore,

(a”, (Re/\va(%((xv —90) + (zo — 50)))))a = [1Z — gll=.
This implies that
12 = goll7 = (a”, (ReAw fu (20 — g0)))a = (@, (ReAv fu (20 — o)) a4 = |2 — Goll# (3.16)

because ||& — g|l= = ||Z — gollx = ||& — gol|#. Hence, by (3.16), (a*, (ReXy fo(Jo — g0)))a = 0, which implies
that (a*, (ReAy fo(90 — 9)))a = 0. Hence (3.13) holds while (3.12) follows from (3.16).

(b) Go = go. Take g = go. Let n € N and assume that 2" = 21‘21 yiern, where {I]': i=1,... k,} is a
partition of N. Recall that I(g) = {v : z, = g}. Furthermore, set

IT=I"NI(g) and I} =I"\I(g3), Vi=12,... k.
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Then {I}}: k=1,2;i=1,...,k,} is a partition of N and &" can be rewritten as

An n n
T = (vi ern +Y; elig) .
i=1

Let m,, = 2k, and Z,, = {Ij}, : k=1,2; i =1,...,k,}. Then 2" € F7'". Noting that g, € Py, ("), we
can apply Theorem 3.1 to get that there exists (af, f") € N7'" (2" — gn) such that

<a:w (Re)‘vfz?(gn - g))>A > 0.

Assume that

k"l
fr=2" (hirery + hiery),
i=1
where
kn
* n n n n N n 2
(am( 11 12)7' .. >( knls kn2)) € Vo(x _gn) X H(W()(yz _gn)) . (3‘17)
i=1
Then
kn kn
<ai‘u > A RehZ (gn — g)> + <a2, > A Rehib(gn — g)> >0 (3.18)
i=1 A i=1 A
and
(@p Arm)a>0, k=12 i=1,... k. (3.19)
Note that (3.17) implies that
(an, Aollzy = gnll))a = 12" — gnllF (3.20)
and

Now, take f € Wy (g — g) and let f = (f,) where {f,} are defined by (3.15). Let & = (a,), b = (b,) and
¢ = (c¢y) be defined respectively by a, = Ay||z, — g|| for each v € N,

) _{0, ve N\ I(g),
"7l Redofulgo—9),  veIg)
and

. :{ Redofulgo —9), v €N\I(g),
A ) v e I(g).

Noting that {a’} C V, without loss of generality, we may assume that there exists a* € V such that
lim (a;i,cf),q = (a”, J)A, V d € span {a, A,é}. (3.22)

By (3.20), one has that
(@, Aollew =gl a = 12" = gullr = (" — az, @) 4 + {ag, Mo (llzo — gl = [[27 = gnll))a-

Note that lim,,_ oo (a),a)a — (a*,a)4 by (3.22) and

* - n 1 —
{an: Aolllze = gl = llzg = gnl))al < — + 117 = gull = 0
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by (3.14). Note also that g, — go = g strongly. Then taking limits on both sides of the equality above gives
that (a*, (Ay|lzo —g|))a = ||& — g||#. This implies that a* € Vy(z — g). Hence (a*, f) € K(i;§,g) and (3.12)
holds since g = go. Thus, it remains to show that (3.13) holds. To do this, note that (3.13) is equivalent
that

(a*,b)a + (a",&)a > 0. (3.23)

By the definition of f, in (3.15), one has that ReA, f,(§ — ¢) = Ay||g — ¢g|| when v € I(g). This means that

kn
b= g —gllrig) = Z Arz g — gll- (3.24)
i=1
Set
kn
ZAF Rehl}(7—g) and &" =Y AmRehh(7—g).
i=1
Then (3.18) implies that
limsup(a’, ™) 4 + limsup(a’, &) 4 > 0 (3.25)
because g, — g strongly. Since by (3.19) and (3.24)
~ kn kn ~
(a4 = ot Ars)aRehTy (G — ) < S an A ) allg — gll = (a5 B)ar
i=1 i=1

it follows that limsup,, . (a5,b")4 < (a*,b)4. Therefore, by (3.25), to complete the proof of (3.23), it
suffices to verify that

lim {a%, ") 4 = (a*, &) 4. (3.26)

n—oo

To show (3.26), for each n € N, define f* = (f7) by

kn
=> hihern. (3.27)
i=1

Then
= (ReAvf:(g - g))

Let € > 0 be arbitrary. Since X is uniformly smooth, one has from Proposition 3.1 that the supporting
mapping ¢ : X — W is norm-norm uniformly continuous on the unit sphere S(X) of X. This implies that
there exists § > 0 such that

lo(x) —oW)| <e, Vaz,yeS(X)with [z —y| <. (3.28)

Note that dg := inf, e 1(5) |20 — gl > 0 as Pg(2)ND({z,}) = 0 and g € Pg(Z). Note also that ||g, —g|| — 0
and sup, ey ||z — z, || < 2 by (3.14). Without loss of generality, we may assume that 7 # g,, for each n € N
and v € N\ I(g)). Let v € N\ I(g)). Consider the sequence {ul'} C S(X) defined by

n o __
Z:% for each n € N.
[ = gnll
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Then
[y =o0(uy), VneN

v v

thanks to (3.21) and (3.27). Write u, = Hiz:gl\‘ Then, f, = o(u,) by the definition of f. Let N € N be
such that

w + llgn — 4l
So =5 = 19— gul

1
—+1lgn —gll <do and 2 <8, ¥Yn>N.
n

Then, estimating the norm of ]! — u,, we have that, for each n > N,

et — | = \

-Tqr;b_gn _ Ty — G H
[z = gull o — gl
70 = gll(#} = gn = (20 — 7)) = (|27 — gnll = [|[zo — gl (z0 — g) H
23 — gnllllz, — gl
2y = gn — (@0 = DI + |[l25 — gnll = [z — gl
|20 =G+ G — gn + 27 — 2|
2y — 2ol + llgn — 4l
2o =Gl = 1§ — gull — 25 — ||
++ llgn — gl
o = =117 — gnll

IN

< 4.

This together with (3.28) implies that || f — f,|| < & for each n > N and so
lfr— full <e forallm >N, veN\Ig).

Therefore,
lcy — el < Aol — glle (3.29)

holds for all n > N and v € N\ I(g). Since, for each n € N and v € I(g), ¢ = ¢, = 0, (3.29) holds for all

v

n > N and v € N. Consequently, one has that
[(an, ") a = (a", &) al < [(ay, —a”,&)al + g —glle, Vn>N.

Because [(af — a*,é)a] — 0 by (3.22) and € > 0 is arbitrary, (3.26) is seen to hold. Hence the proof of
(i)=(ii*) is complete.

(ii*)==(ii). Suppose that (ii*) holds and g € G \ {go}. Then there exist § € Pz(Z) N [go, 9] and
(a*, f) € K(&;g,g) such that (3.12) and (3.13) hold. According to the definition of K (#;g, g), we have that
fo=0(z, —g) for each v € N\ I(g) and there exists f € Wy(g — g) such that f, = f for all v € I(g). Define
d = (d,) by

d:{O, ve[(g),_
! ReAofu(go —9),  veN\I(9).

Then

(", (ReAufulgo = 9)))a = (", Ar(z)) aRef (g0 — g) + (a*,d) a,
which together with (3.13) implies that

(a*, A1(g))aRef (g0 — g) + (a*,d)4 > 0.
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Consequently,

a:=max{(a*, Aj5))aRef(go — 9) + (a*,d)a : (a*, f) € Vo(& — g) x Wo(3 — 9)} = 0. (3.30)

Note that

a= max max a*,j\ 3, ARe —g)+ a*,ci ,
a*€Vo(2—9) feWo(éaq)[< 1)) aRef (g0 — g) + )Al
and note also that the function

* )\ R - *7d
a® — fe‘fvr})%(_g)[@ 1(3))ARef(go — g) + (a*, d) 4]

is a convex continuous function on the compact convex set Vy(Z — g). The Krein-Milman theorem (cf. [13

Theorem, P.74]) is applicable to concluding that there exists af € extVy(& — g) such that

= a, *75\ G Re - + *,CZ .
“ feVIi%(g(fg)K% 1(g))aRef(go — g) + (ag, d) ]

Similarly, there is fO € extWy(g — g) such that
a = (ag, M) aRef (g0 — g) + {ap, d)a. (3.31)

Consequently, (af, f°) € I?(ﬁc;gg) and (3.12) and (3.13) hold with (a, f°) in place of (a*, f) thanks to
(3.30) and (3.31), which completes the proof of (ii*)==-(ii).

(v¥)=(i) Suppose that (v*) holds. Then, for each g € G\ {go}, there exists (a*, f) € V x e, w
such that (3.12) and (3.13) hold. Consequently,

12 —goll7 = (a" (ReXpfu(zy —g)))a + (a*, (ReAy fu(g — g0)))a
< <a*v (ReAva(vTv - g))>A
< @ —gl#

This means that go € Pg (%) because g € G\ {go} is arbitrary and hence (v*¥)=-(i) is proved. W

Recall that the norm || - || 4 in R* is strictly monotonic if, || - || 4 is monotonic and, for any a = (a,), b =
(b,) € R*® with 0 < a, < b, for each v € N, the condition [|a|| 4 = ||b||4 implies that & = b.

Corollary 3.1. Let G be a convex subset of X and let & = (z,,) € Fr be such that Pg(Z)ND({x,}) = 0.
Suppose that X is uniformly smooth and the norm || - |4 in R* is strictly monotonic. Then the following
statements are equivalent.

(i) go € Po(2).

(if) max{(a, (ReXu fu(g0 = 9)
(i) max{(a*, (ReA, fulgo — g
(iii) max{(a*, (ReAufo(90 — 9)))a : (a*, f) € (ﬂc'go)} > 0 for each g € G.
(ifi") max{(a”, (ReAvfu(g0 = 9)))a : (a”, f) € M(@390)} = 0 for cach g € G.
(

@

A (a*, f) € K(2;go,9)} > 0 for each g € G.

)
N)a:(a*, f) € K(#;90,9)} = 0 for each g € G.

11
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)
iv) max{(a*, (ReXy fu(go — 9)))a : (a*, f) € N(& — go)} > 0 for each g € G.
: O)a:(a*, f) € N@E@—go)} >0 for each g € G.

iv ) max{(a*, (Re), f,(g0 —
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Proof. Clearly, by (3.10) and (3.11),

(i) = (i) = (iv)
hd b kg
(ii) = (i) = (@{iv)
Clearly (iv') implies (iv") of Theorem 3.2. Hence (121*) = (i) follows from Theorem 3.2. Thus, to complete
the proof, it remains to show that (i) = (ii). To do this, let go € Pg(2) and g € G\ {go} be arbitrary.
Then, by Theorem 3.2 (ii), there exist § € Pa(2) N [go, g] and (o', f') € K(2;3, g) such that (3.12) and
(3.13) hold with (a’*, f’) in place of (a*, f). This clearly implies that

max{(a”, (ReXofo(90 —9)))a : (0", f) € K(i190.9)} 2 0 (3.32)
in the case when g = go. Hence, we may assume that § # go. Since || - || 4 is monotonic, one has that
[(ReAo fo (2o — g0))la = [[(IReXu fo (20 = go)Dlla < [[(Nullzw = gol)lla = 112 — gol| - (3.33)
By (3.12), we have that
2 = goll7 = (a™, (ReAy f}(zv — g0)))a < [[(ReAy fi(zv — o))l (3.34)

Combining (3.33) and (3.34) yields that
I(IReAv fi(zo = g0))l[a = [ (Aullze — goll) ]l 4
which together with the strict monotonicity of the norm || - || 4 implies that
[Refy(zv = g0)| = Iz — goll, Vv eEN. (3.35)
Recall that I(go) = {v: zy, = go}. Since g # go, we have that I(g) N I(go) = 0. It follows that
fo=0(z—g)=0(go—g) =0l(go—9), Y€ I(g) (3.36)
because § € (go,g]. Define f = (f,) by fo = s f/, for each v € N, where

S :{ 1’ UEI(go)a
Y signRef,, (2, — go), ve N\ I(go)-

Then, by (3.35) and (3.36),

£, = a(go — 9) for each v € I(go),
"7 | o(zy —go) foreach v e N\ I(gp).

That is, f = Fi_go(0(g90 — ¢)). Now define the linear functional a* on R* by
(@*,b)a = (a”, (suby))a, Vb= (b,)€R™. (3.37)
Then a* € ext V. In fact, otherwise, there exist aj, a5 € V such that a* = %(a{ + a3). Define

(al*,b)a = (a}, (5uby))a, Vb= (b,) €eR® andi=1,2. (3.38)

13
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Then af*,a5 € V and o’* = J(af + a%’), which contradicts that a’* € extV. Furthermore, by (3.34), we
have that

(@, (Aollzo — goll))a = (™, (ReAu fi (20 — g0)))a = [IZ — goll 7. (3.39)
It follows that a* € Vy(& — go). Hence (a*, f) € K(&;go,9) because f = Fi_go,(0(go — g)). On the other
hand, since, by (3.12) and (3.39),

(@™, (ReAfr(go —9))a = (a, (ReXyfi(zy — g)))a — (a", (ReAy f (20 — g0))) A
12 —gllz = I# — goll z =0,

we get that
(a”, (ReAy fu(go — 9)))a = (™, (ReXo f (90 — 9))) 4 = 0.

This means that
(a*, (ReAy fu(go — 9)))a =0

because go — g = t(go — g) for some ¢t € R. Therefore, (3.32) holds in the case when g # go and the proof of
(i) = (ii) is complete. W

Recall that X is said to be strictly convex if ||(z +y)/2|| < 1 for any x, y € X with ||z|| <1 and |ly|| < 1.

Thus when R is strictly convex, Corollary 3.1 can be improved to the following Corollary 3.2.

Corollary 3.2. Let G be a convex subset of X, go € G and let & = (x,) € Fr be such that go ¢ D({x,}).
Suppose that X is uniformly smooth and R*® is strictly convex. Then the statements in Corollary 3.1 are

equivalent.

Proof. Note that strict convexity of R* implies the strict monotonicity of the norm || - ||4. In fact,
otherwise, there exist two distinct elements a = (a,), b= (by) € R* with 0 < a, < b, for each v € N such

that ||a]|a = ||b]|4. Since

1
Oﬁavﬁi(aﬁbv)gbv, Vo eN,

it follows from the monotonicity of the norm || - || 4 that
. 1. 5 .
lafla < |[5@+0))| < [lblla = llalla,
A

which contradicts that R* is strictly convex. In order to apply Corollary 3.1, we have to verify that
Pg(2) N D({z,}) = 0. To do this, let § € Pg(#). Without loss of generality, we may assume that § # go.

Since G is convex, we have that

. s Gotg
o —gollr = |&- 237
F
1 1 _
< sAollze = goll) + 5 (Ao llze — glI)
2 2 A
1 1 )
< SlGllzs = golDla + 511w 2w — glhlla

= Hfj - 90||f-
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It follows from the strict convexity of R that
zo = goll = [lzv — g, VveN.

Therefore, g ¢ D({z,}) thanks to the fact that go ¢ D({z,}); hence Pg(&) N D({z,}) = 0 is proved.
Consequently, Corollary 3.1 is applicable to concluding that the statements in Corollary 3.1 are equivalent.

4 Concluding remark

We have establish some characterizations for best simultaneous approximation, which are completely in view
of the elements from the unit balls of (R*°)* and X*. There is another approach to studying this problem,
which is considered as a best approximation in the new normed linear space (F,| - ||#) defined in Section 2.
In fact, write G = {(g): g € G} C F. go € G is a best simultaneous approximation to # = (z,) from G if
and only if it is a best (single) approximation to & for G in (F, |l - ll#). Thus applying the characterization
results for the convex best approximation problem in (F, | - ||#), one can easily get the following trivial

result:

Theorem 4.1. go € G is a best simultaneous approximation to & = (z,) from G if and only if

max{(f*, (g0 —9)))F: f* € M(Z—g0)} >0, VYgeGa,

where
M(3 —go) = {f" € ext M" : (f*,(z0 — 90)) 7 = |Z — goll }

and M* is the unit ball of F*.

However, since it is impossible in general to express the elements in M (& — go) with the elements from V
and W, one can not deduce, from Theorem 4.1, the characterizations presented in previous section. Clearly,

Theorem 4.1 is less convenient in applications.
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