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1 Introduction

The problems of best simultaneous approximations to a set of functions has recently been a subject of
intensive study, see for example [1, 2, 3, 4, 5] in the case of finite many of functions and [6, 7, 8, 9] in the case
of infinite, respectively. The case of finitely many is also a special case of the vector-valued approximation
studied by Pinkus [10]. Here we are particularly interested in the kind of the best simultaneous approximation
problems studied in [1, 2, 4, 8, 9]. The general setting of this kind problem is as follows. Let 1 ≤ m ≤ ∞
and let Rm be a Banach space consisting of real m-tuple of vectors in the case when m < ∞ and some real
sequences in the case when m = ∞ with the monotonic norm ‖ · ‖A. Let (λv) be a fixed element of Rm with
each λv > 0. Let (X, ‖ · ‖) be a Banach space over the field F, where F = R, the reals, or F = C, the complex
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2 Simultaneous Approximation to Totally Bounded Sequences

plane. Let G be a fixed subset of X and let x̂ = (xv) be a sequence of X such that (λv‖xv‖) ∈ R∞. Then
the problem concerned here is to finding an element g0 ∈ G such that

‖(λv‖xv − g0‖)‖A ≤ ‖(λv‖xv − g‖)‖A for all g ∈ G. (1.1)

Any element g0 satisfying (1.1) is called a best simultaneous approximation to x̂ from G. The set of all
best simultaneous approximations to x̂ from G is denoted by PG(x̂). In the special case when m = 2, this
problem of approximating simultaneously continuous functions on a finite closed interval was first studied
by Dunham in [1], where results on characterization and uniqueness of the best simultaneous approximation
were obtained, while characterization and uniqueness results for a class of problems involving Lp norms
were given in [4]. A general treatment of a class of problems for the case when m = 2, which includes these
problems in [1, 4] as special cases, was given in [2]. Extensions to the case when m = ∞ have been considered
in [8] for some special infinite sequences in a real Banach space, and in [9] for the general infinite sequences
in a (real or complex) Banach space.

However, the study in [8, 9] for the problem of best simultaneous approximations to infinite sequences is
based on the following key assumption:

lim
v→∞

‖(0, . . . , 0, λv, λv+1, . . .)‖A = 0. (1.2)

Thus one interesting question arises naturally: can the assumption (1.2) be dropped in the study of simulta-
neous approximations to infinite sequences? This problem seems very difficult for the general case. In fact,
in the case when the assumption (1.2) is dropped, the method used in [8, 9] does not work. In the present
paper, we shall always assume that m = ∞ and develop a completely different technique to investigate
the problem of best simultaneous approximations to totally bounded sequences in Banach spaces without
assumption (1.2). Under the assumption that X is uniformly smooth, some characterization results similar
to those in [2] for the best simultaneous approximation from convex sets in Banach space are obtained.

2 Preliminaries

Let (X, ‖·‖) be a Banach space over the field F, where F = R or C, and (R∞, ‖·‖A) a Banach space consisting
of some sequences in R. We use (R∞)∗ and X∗ to denote the duals of R∞ and X, respectively. The inner
product between R∞ and (R∞)∗ is denoted by 〈·, ·〉A while, for each pair (x, f) with x ∈ X and f ∈ X∗,
f(x) stands for the inner product of x and f . The unit balls of (R∞)∗ and X∗ are respectively denoted by
V and W . For a subset A of X, let A stand for the closure of A and extA for the set of all extreme points
of A. Recall that the set of all clusters of A is called the derived set of A, which is denoted by D(A).

Let N be the set of all positive integers. Recall that ‖ · ‖A is monotonic if, for any (av) ∈ R∞ and any
real sequence (bv), the fact that |bv| ≤ |av| for each v ∈ N implies that (bv) ∈ R∞ and ‖(bv)‖A ≤ ‖(av)‖A.
Let λ̂ = (λv) be a fixed element of R∞. Throughout the whole paper, we always assume that the norm
‖ · ‖A is monotonic and that λv > 0 for each v ∈ N. Furthermore, without loss of generality, we assume that
‖λ̂‖A = 1.

Let I be a subset of N. We use eI = (ev) to represent the element of R∞ defined by ev = 1 if v ∈ I

and ev = 0 otherwise. In particular, we write, for each i ∈ N, ei for eI if I = {i}. Thus, for an element
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â = (av) ∈ R∞, âI stands for an element of R∞ defined by âI =
∑

i∈I aiei. Let

F = {x̂ = (xv) : (λv‖xv‖) ∈ R∞}

and let F be endowed with the norm ‖ · ‖F defined by

‖x̂‖F = ‖(λv‖xv‖)‖A, ∀x̂ = (xv) ∈ F .

Then (F , ‖ · ‖F ) is a Banach space. Note that X can be embedded as a subset of F in a natural way that
x̂ = (x) ∈ F for each x ∈ X. An element x̂ = (xv) ∈ F is called a simple element of F if {xv : v ∈ N} is
a finite set. The set of all simple elements of F is denoted by FS . Recall that a finite class {I1, . . . , Im} of
nonempty subsets of N is a partition of N if

m⋃

i=1

Ii = N and Ii

⋂
Ij = ∅, ∀i 6= j.

Then an element x̂ ∈ FS if and only if there exist a finite subset {y1, . . . , ym} of X and a partition {I1, . . . , Im}
of N such that

x̂ =
m∑

i=1

yieIi . (2.1)

Clearly, if x̂ ∈ FS is given by (2.1), then

‖x̂‖F =

∥∥∥∥∥
m∑

i=1

‖yi‖λ̂Ii

∥∥∥∥∥
A

. (2.2)

Let FT denote the set of all elements x̂ = (xv) such that {xv} is totally bounded and let FT endowed with
the norm ‖ · ‖∞ defined by

‖x̂‖∞ = sup
v≥1

‖xv‖, ∀ x̂ = (xv) ∈ FT .

It is clear that

‖x̂‖F ≤ ‖x̂‖∞, ∀ x̂ = (xv) ∈ FT .

Let FT

S denote the closure of FS under the norm ‖ · ‖∞. Then the following relationships are clear.

Proposition 2.1. X ⊆ FS ⊆ FT

S = FT ⊆ F .

Let m ∈ N and let I = {Ii : i = 1, . . . , m} be a partition of N. Set

Fm
I = {x̂ ∈ FS : x̂ =

m∑

i=1

yieIi
, {y1, . . . , ym} ⊆ X}.

Then X ⊆ Fm
I . Let Ωm = V ×Wm and let Ωm be endowed with the product topology, where V and W are

respectively endowed with the weak∗ topology. Then Ωm is a compact Hausdorff space. Let C(Ωm) denote
the Banach space of all real-valued continuous functions with the Chebyshev norm ‖φ‖C defined by

‖φ‖C = max
ω∈Ωm

|φ(ω)|, ∀φ ∈ C(Ωm).
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For x̂ =
∑m

i=1 yieIi
∈ Fm

I , define

φx̂(ω) =
m∑

i=1

〈a∗, λ̂Ii
〉ARehi(yi), ω = (a∗, h1, . . . , hm) ∈ Ωm, (2.3)

where and through the whole paper, Re b is read as b in the case when b is a real number. It is easy to see
that φx̂ ∈ C(Ωm). Define a mapping Φ : Fm

I → C(Ωm) by

Φ(x̂) = φx̂, ∀x̂ ∈ Fm
I .

Then we have the following lemma.

Lemma 2.1. Φ is a linear isometry from Fm
I to Φ(Fm

I ) ⊆ C(Ωm).

Proof. Note that the linearity of Φ is trivial. It suffices to show that the mapping is an isometry. To do
this, let x̂ ∈ Fm

I . Since the norm ‖ · ‖A is monotonic, one has that
∥∥∥∥∥

m∑

i=1

λ̂Ii
‖yi‖

∥∥∥∥∥
A

= max

{∥∥∥∥∥
m∑

i=1

λ̂Ii
Rehi(yi)

∥∥∥∥∥
A

: h1, . . . , hm ∈ W

}
.

Consequently, by (2.2),

‖x̂‖F = max

{∥∥∥∥∥
m∑

i=1

λ̂Ii
Rehi(yi)

∥∥∥∥∥
A

: h1, . . . , hm ∈ W

}

= max

{〈
a∗,

m∑

i=1

λ̂Ii
Rehi(yi)

〉

A

: (a∗, h1, . . . , hm) ∈ Ωm

}

= ‖Φ(x̂)‖C .

Hence Φ is isometric. The proof is complete.

The following proposition, which is clearly a direct consequence of Lemma 2.1, converts equivalently the
problem of the best simultaneous approximation to simple elements of F into that of the best Chebyshev
approximation in C(Ωm).

Proposition 2.2. Let G be a nonempty subset of X. Then, for each x̂ ∈ Fm
I and each g0 ∈ G, g0 is

a best simultaneous approximation to x̂ from G if and only if Φ(g0) is a best Chebyshev approximation to
Φ(x̂) from Φ(G).

3 Characterizations of best simultaneous approximations

We begin with the following notations. Let y ∈ X and x̂ = (xv) ∈ F . Set

W0(y) = {f ∈ W : f(y) = ‖y‖},
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V0(x̂) = {a∗ ∈ V : 〈a∗, (λv‖xv‖)〉A = ‖x̂‖F},

N(x̂) = V0(x̂)×
∞∏

v=1

W0(xv),

N̂(x̂) = ext V0(x̂)×
∞∏

v=1

ext W0(xv).

Let m ∈ N and let I = {Ii : i = 1, . . . , m} be a partition of N. Let x̂ =
∑m

i=1 yieIi
∈ Fm

I . We set

Nm
I (x̂) =

{
(a∗, f̂) ∈ N(x̂) :

f̂ =
∑m

i=1 hieIi
with hi ∈ W0(yi) and

〈a∗, λ̂Ii
〉A ≥ 0 for each i = 1, . . . , m

}
.

The first theorem of this section is concerned with the characterization of Kolmogorov type of the best
simultaneous approximation to a simple element of F from a convex subset of X.

Theorem 3.1. Let G be a convex subset of X. Let x̂ =
∑m

i=1 yieIi
∈ Fm

I and g0 ∈ G. Then the
following statements are equivalent.

(i) g0 ∈ PG(x̂).
(ii) For each g ∈ G,

max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ Nm
I (x̂− g0)} ≥ 0. (3.1)

(iii) For each g ∈ G,

max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ N(x̂− g0)} ≥ 0.

Proof. (i)=⇒(ii). Suppose that g0 ∈ PG(x̂). Then, by Proposition 2.2, Φ(g0) is a best Chebyshev
approximation to Φ(x̂) from Φ(G). Applying the well-known Kolmogorov characterization theorem for best
Chebyshev approximations (cf. [11, Theorem 1]), we conclude that, for each g ∈ G \ {g0}, there exists
ω′ = (a′∗, h′1, . . . , h

′
m) ∈ Ωm such that

φx̂(ω′)− φg0(ω
′) = ‖φx̂ − φg0‖C (3.2)

and
φg0(ω

′)− φg(ω′) ≥ 0. (3.3)

In view of (2.3), it follows from (3.2) and (3.3) that
∑m

i=1〈a′∗, λ̂Ii
〉AReh′i(yi − g0) = ‖φx̂ − φg0‖C and

m∑

i=1

〈a′∗, λ̂Ii
〉AReh′i(g0 − g) ≥ 0. (3.4)

Set si = sign〈a′∗, λ̂Ii〉A for each i = 1, . . . , m. Then

‖φx̂ − φg0‖C =
∑m

i=1〈a′∗, λ̂Ii〉AReh′i(yi − g0)
≤ ∑m

i=1 |〈a′∗, λ̂Ii
〉A| |Reh′i(yi − g0)|

≤ ∑m
i=1 |〈a′∗, λ̂Ii

〉A| ‖yi − g0‖
= 〈a′∗,∑m

i=1 λ̂Ii
si‖yi − g0‖〉A

≤
∥∥∥∑m

i=1 λ̂Ii
si‖yi − g0‖

∥∥∥
A≤ ‖x̂− g0‖F ,

(3.5)
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where the last inequality is because of (2.2) and the monotonicity of the norm ‖ · ‖A. Since ‖φx̂ − φg0‖C =
‖x̂− g0‖F by Lemma 2.1, the inequalities in (3.5) are equalities. Consequently, one has that

m∑

i=1

|〈a′∗, λ̂Ii
〉A| ‖yi − g0‖ = ‖x̂− g0‖F (3.6)

and, for each i = 1, . . . , m with si 6= 0,

siReh′i(yi − g0) ≥ 0, |Reh′i(yi − g0)| = |h′i(yi − g0)| = ‖yi − g0‖. (3.7)

Below we will construct (a∗, f̂) ∈ Nm
I (x̂ − g0) such that 〈a∗, (Reλvfv(g0 − g))〉A ≥ 0. Granting this, (3.1)

follows. To do this, define the linear functional a∗ on R∞ by

〈a∗, b̂〉A = 〈a′∗,
m∑

i=1

sib̂Ii
〉A, ∀ b̂ = (bv) ∈ R∞.

Note that, by the monotonicity of the norm ‖·‖A, |〈a∗, b̂〉A| ≤
∥∥∥∑m

i=1 sib̂Ii

∥∥∥
A
≤ ‖b̂‖A; hence we have a∗ ∈ V .

In addition, we have that

〈a∗, λ̂Ii
〉A = 〈a′∗, λ̂Ii

〉Asi = |〈a′∗, λ̂Ii
〉A| ≥ 0, ∀ i = 1, . . . , m. (3.8)

Let f̂ =
∑m

i=1 hieIi
, where hi ∈ W0(yi − g0) if si = 0 and hi = sih

′
i if si 6= 0. Then (a∗, f̂) is desired. In

fact, since, by (3.6) and (3.8),

〈a∗, (λv‖xv − g0‖)〉A =
m∑

i=1

〈a∗, λ̂Ii〉A‖yi − g0‖ =
m∑

i=1

|〈a′∗, λ̂Ii〉A| ‖yi − g0‖ = ‖x̂− g0‖F ,

one has that a∗ ∈ V0(x̂ − g0). In view of the definition of hi, (3.7) implies that hi ∈ W0(yi − g0) for each
i = 1, . . . , m; hence, (a∗, f̂) ∈ Nm

I (x̂−g0) thanks to (3.8). On the other hand, the definitions of h1, h2, · · · , hm

together with (3.8) imply that

m∑

i=1

〈a∗, λ̂Ii
〉ARehi(g0 − g) =

m∑

i=1

〈a′∗, λ̂Ii
〉AReh′i(g0 − g).

Thus (3.1) holds by (3.4) and (i)=⇒(ii) is proved.
(ii)=⇒(iii). It is trivial.
(iii)=⇒(i). Suppose that (iii) holds and let g ∈ G \ {g0} be arbitrary. Then there is (a∗, f1, f2, . . .) ∈

N(x̂− g0) such that 〈a∗, (Reλvfv(g0 − g))〉A ≥ 0. Hence,

‖x̂− g0‖F = 〈a∗, (Reλvfv(xv − g0))〉A
= 〈a∗, (Reλvfv(xv − g))〉A + 〈a∗, (Reλvfv(g − g0))〉A
≤ ‖x̂− g‖F .

This means that g0 ∈ PG(x̂) and (iii)=⇒(i) is proved. The proof is complete.

For the next theorem of this section, we recall that a Banach space (X, ‖ · ‖) is uniformly smooth if, for
any ε > 0 there exists δ > 0 such that ‖x+ y‖+ ‖x− y‖− 2 < ‖y‖ε holds for any x, y ∈ X with ‖x‖ = 1 and
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0 < ‖y‖ < δ. Note that a Banach space which is uniformly smooth is reflexive. Let σ : X → 2W denote
the supporting mapping defined by σ(x) = {f ∈ W : f(x) = ‖x‖} for each x ∈ X. Then the following
characterization result about the uniform smoothness of a Banach space is known in [12, Theorem 1, P.36].

Proposition 3.1. A Banach space X is uniformly smooth if and only if the supporting mapping σ is
single-valued and norm-norm uniformly continuous on the unit sphere of X.

Let g, ḡ ∈ G and x̂ ∈ F . Set
I(ḡ) = {v ∈ N : xv = ḡ}.

Suppose that X is uniformly smooth and define a mapping Fx̂−ḡ : W 7→ ∏∞
v=1 W by

Fx̂−ḡ(w) = f̂w :=
∑

v∈N\I(ḡ)

σ(xv − ḡ)ev + weI(ḡ) for each w ∈ W. (3.9)

We write for convenience

K(x̂; ḡ, g) =
{

(a∗, f̂) = (a∗, Fx̂−ḡ(w)) : a∗ ∈ V0(x̂− ḡ), w ∈ W0(ḡ − g)
}

,

M(x̂; ḡ) =
{

(a∗, f̂) = (a∗, Fx̂−ḡ(w)) : a∗ ∈ V0(x̂− ḡ), w ∈ W
}

,

K̂(x̂; ḡ, g) =
{

(a∗, f̂) = (a∗, Fx̂−ḡ(w)) : a∗ ∈ extV0(x̂− ḡ), w ∈ ext W0(ḡ − g)
}

and
M̂(x̂; ḡ) =

{
(a∗, f̂) = (a∗, Fx̂−ḡ(w)) : a∗ ∈ extV0(x̂− ḡ), w ∈ ext W

}
.

Then

N(x̂− ḡ) ⊇ M(x̂; ḡ) ⊇ K(x̂; ḡ, g) ⊇ K̂(x̂; ḡ, g) (3.10)

and
N̂(x̂− ḡ) ⊇ M̂(x̂; ḡ) ⊇ K̂(x̂; ḡ, g). (3.11)

Now we are ready to give the main theorem of this section. Recall that D({xv}) denotes the derived set
of {xv} and that [g0, g] the segment with endpoints g0 and g. Consider the following conditions:

〈a∗, (Reλvfv(xv − g0))〉A = ‖x̂− g0‖F (3.12)

and
〈a∗, (Reλvfv(g0 − g))〉A ≥ 0. (3.13)

Theorem 3.2. Let G be a convex subset of X and let x̂ = (xv) ∈ FT be such that PG(x̂)∩D({xv}) = ∅.
Suppose that X is uniformly smooth. Then the following statements are equivalent.

(i) g0 ∈ PG(x̂).
(ii) For each g ∈ G \ {g0}, there exist ḡ ∈ PG(x̂) ∩ [g0, g] and (a∗, f̂) ∈ K̂(x̂; ḡ, g) such that (3.12) and

(3.13) hold.
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(ii*) For each g ∈ G \ {g0}, there exist ḡ ∈ PG(x̂) ∩ [g0, g] and (a∗, f̂) ∈ K(x̂; ḡ, g) such that (3.12) and
(3.13) hold.

(iii) For each g ∈ G \ {g0}, there exist ḡ ∈ PG(x̂) ∩ [g0, g] and (a∗, f̂) ∈ M̂(x̂; ḡ) such that (3.12) and
(3.13) hold.

(iii*) For each g ∈ G \ {g0}, there exist ḡ ∈ PG(x̂) ∩ [g0, g] and (a∗, f̂) ∈ M(x̂; ḡ) such that (3.12) and
(3.13) hold.

(iv) For each g ∈ G \ {g0}, there exist ḡ ∈ PG(x̂) ∩ [g0, g] and (a∗, f̂) ∈ N̂(x̂ − ḡ) such that (3.12) and
(3.13) hold.

(iv*) For each g ∈ G \ {g0}, there exist ḡ ∈ PG(x̂) ∩ [g0, g] and (a∗, f̂) ∈ N(x̂− ḡ) such that (3.12) and
(3.13) hold.

(v) For each g ∈ G \ {g0}, there exists (a∗, f̂) ∈ extV ×∏∞
v=1 extW such that (3.12) and (3.13) hold.

(v*) For each g ∈ G \ {g0}, there exists (a∗, f̂) ∈ V ×∏∞
v=1 W such that (3.12) and (3.13) hold.

Proof. Clearly, the following implications hold by (3.10) and (3.11):

(ii) =⇒ (iii) =⇒ (iv) =⇒ (v)
⇓ ⇓ ⇓ ⇓

(ii∗) =⇒ (iii∗) =⇒ (iv∗) =⇒ (v∗)

Thus, it suffices to verify the implications (i)=⇒(ii*)=⇒(ii) and (v*)=⇒(i).
(i)=⇒(ii*) Suppose that (i) holds and let g ∈ G \ {g0} be arbitrary. We have to verify that there exist

ḡ ∈ PG(x̂) ∩ [g0, g] and (a∗, f̂) ∈ K(x̂; ḡ, g)) such that (3.12) and (3.13) hold. For this purpose, note that,
by Proposition 2.1, for each n, there exists x̂n ∈ FS such that ‖x̂n − x̂‖∞ < 1

n , or equivalently,

‖xn
v − xv‖ <

1
n

, v = 1, 2, . . . . (3.14)

Let gn be a best approximation to x̂n from [g0, g]. Then {gn} is bounded and hence, without loss of generality,
we may assume that {gn} converges to, say, ḡ0. It is easy to see that ḡ0 ∈ PG(x̂) ∩ [g0, g]. Below we divide
the proof into two cases: (a) ḡ0 6= g0 and (b) ḡ0 = g0.

(a) ḡ0 6= g0. Set ḡ = 1
2 (g0 + ḡ0). Take a∗ ∈ V0(x̂− ḡ) and f ∈ W0(ḡ − g). Define

fv =
{

σ(xv − ḡ), v ∈ N \ I(ḡ),
f, v ∈ I(ḡ). (3.15)

Then (a∗, f̂) ∈ K(x̂; ḡ, g). Furthermore,

〈a∗, (Reλvfv(
1
2
((xv − g0) + (xv − ḡ0))))〉A = ‖x̂− ḡ‖F .

This implies that

‖x̂− g0‖F = 〈a∗, (Reλvfv(xv − g0))〉A = 〈a∗, (Reλvfv(xv − ḡ0))〉A = ‖x̂− ḡ0‖F (3.16)

because ‖x̂− ḡ‖F = ‖x̂− g0‖F = ‖x̂− ḡ0‖F . Hence, by (3.16), 〈a∗, (Reλvfv(ḡ0 − g0))〉A = 0, which implies
that 〈a∗, (Reλvfv(g0 − g))〉A = 0. Hence (3.13) holds while (3.12) follows from (3.16).

(b) ḡ0 = g0. Take ḡ = g0. Let n ∈ N and assume that x̂n =
∑kn

i=1 yn
i eIn

i
, where {In

i : i = 1, . . . , kn} is a
partition of N. Recall that I(ḡ) = {v : xv = ḡ}. Furthermore, set

In
i1 = In

i ∩ I(ḡ) and In
i2 = In

i \ I(ḡ), ∀i = 1, 2, . . . , kn.
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Then {In
ik : k = 1, 2; i = 1, . . . , kn} is a partition of N and x̂n can be rewritten as

x̂n =
kn∑

i=1

(
yn

i eIn
i1

+ yn
i eIn

i2

)
.

Let mn = 2kn and In = {In
ik : k = 1, 2; i = 1, . . . , kn}. Then x̂n ∈ Fmn

In
. Noting that gn ∈ P[g0,g](x̂n), we

can apply Theorem 3.1 to get that there exists (a∗n, f̂n) ∈ Nmn

In
(x̂n − gn) such that

〈a∗n, (Reλvfn
v (gn − g))〉A ≥ 0.

Assume that

f̂n =
kn∑

i=1

(
hn

i1eIn
i1

+ hn
i2eIn

i2

)
,

where

(a∗n, (hn
11, h

n
12), . . . , (h

n
kn1, h

n
kn2)) ∈ V0(x̂n − gn)×

kn∏

i=1

(W0(yn
i − gn))2 . (3.17)

Then 〈
a∗n,

kn∑

i=1

λ̂In
i1

Rehn
i1(gn − g)

〉

A

+

〈
a∗n,

kn∑

i=1

λ̂In
i2

Rehn
i2(gn − g)

〉

A

≥ 0 (3.18)

and
〈a∗n, λ̂In

ik
〉A ≥ 0, k = 1, 2, i = 1, . . . , kn. (3.19)

Note that (3.17) implies that
〈a∗n, (λv‖xn

v − gn‖)〉A = ‖x̂n − gn‖F (3.20)

and
hn

ik(yn
i − gn) = ‖yn

i − gn‖, k = 1, 2, i = 1, . . . , kn. (3.21)

Now, take f ∈ W0(ḡ − g) and let f̂ = (fv) where {fv} are defined by (3.15). Let â = (av), b̂ = (bv) and
ĉ = (cv) be defined respectively by av = λv‖xv − ḡ‖ for each v ∈ N,

bv =
{

0, v ∈ N \ I(ḡ),
Reλvfv(g0 − g), v ∈ I(ḡ)

and
cv =

{
Reλvfv(g0 − g), v ∈ N \ I(ḡ),
0, v ∈ I(ḡ).

Noting that {a∗n} ⊂ V , without loss of generality, we may assume that there exists a∗ ∈ V such that

lim
n→∞

〈a∗n, d̂〉A = 〈a∗, d̂〉A, ∀ d̂ ∈ span {â, b̂, ĉ}. (3.22)

By (3.20), one has that

〈a∗, (λv‖xv − ḡ‖)〉A − ‖x̂n − gn‖F = 〈a∗ − a∗n, â〉A + 〈a∗n, (λv(‖xv − ḡ‖ − ‖xn
v − gn‖)〉A.

Note that limn→∞〈a∗n, â〉A → 〈a∗, â〉A by (3.22) and

|〈a∗n, (λv(‖xv − ḡ‖ − ‖xn
v − gn‖))〉A| ≤ 1

n
+ ‖ḡ − gn‖ → 0
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by (3.14). Note also that gn → ḡ0 = ḡ strongly. Then taking limits on both sides of the equality above gives
that 〈a∗, (λv‖xv− ḡ‖)〉A = ‖x̂− ḡ‖F . This implies that a∗ ∈ V0(x̂− ḡ). Hence (a∗, f̂) ∈ K(x̂; ḡ, g) and (3.12)
holds since ḡ = g0. Thus, it remains to show that (3.13) holds. To do this, note that (3.13) is equivalent
that

〈a∗, b̂〉A + 〈a∗, ĉ〉A ≥ 0. (3.23)

By the definition of fv in (3.15), one has that Reλvfv(ḡ − g) = λv‖ḡ − g‖ when v ∈ I(ḡ). This means that

b̂ = ‖ḡ − g‖λ̂I(ḡ) =
kn∑

i=1

λ̂In
i1
‖ḡ − g‖. (3.24)

Set

b̂n =
kn∑

i=1

λ̂In
i1

Rehn
i1(ḡ − g) and ĉn =

kn∑

i=1

λ̂In
i2

Rehn
i2(ḡ − g).

Then (3.18) implies that

lim sup
n→∞

〈a∗n, b̂n〉A + lim sup
n→∞

〈a∗n, ĉn〉A ≥ 0 (3.25)

because gn → ḡ strongly. Since by (3.19) and (3.24)

〈a∗n, b̂n〉A =
kn∑

i=1

〈a∗n, λ̂In
i1
〉ARehn

i1(ḡ − g) ≤
kn∑

i=1

〈a∗n, λ̂In
i1
〉A‖ḡ − g‖ = 〈a∗n, b̂〉A,

it follows that lim supn→∞〈a∗n, b̂n〉A ≤ 〈a∗, b̂〉A. Therefore, by (3.25), to complete the proof of (3.23), it
suffices to verify that

lim
n→∞

〈a∗n, ĉn〉A = 〈a∗, ĉ〉A. (3.26)

To show (3.26), for each n ∈ N, define f̂n = (fn
v ) by

f̂n =
kn∑

i=1

hn
i2eIn

i2
. (3.27)

Then

ĉn = (Reλvfn
v (ḡ − g)).

Let ε > 0 be arbitrary. Since X is uniformly smooth, one has from Proposition 3.1 that the supporting
mapping σ : X → W is norm-norm uniformly continuous on the unit sphere S(X) of X. This implies that
there exists δ > 0 such that

‖σ(x)− σ(y)‖ < ε, ∀ x, y ∈ S(X) with ‖x− y‖ < δ. (3.28)

Note that δ0 := infv∈N\I(ḡ) ‖xv− ḡ‖ > 0 as PG(x̂)∩D({xv}) = ∅ and ḡ ∈ PG(x̂). Note also that ‖gn− ḡ‖ → 0
and supv∈N ‖xn

v −xv‖ ≤ 1
n by (3.14). Without loss of generality, we may assume that xn

v 6= gn for each n ∈ N
and v ∈ N \ I(ḡ)). Let v ∈ N \ I(ḡ)). Consider the sequence {un

v} ⊂ S(X) defined by

un
v =

xn
v − gn

‖xn
v − gn‖ for each n ∈ N.
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Then

fn
v = σ(un

v ), ∀n ∈ N

thanks to (3.21) and (3.27). Write uv = xv−ḡ
‖xv−ḡ‖ . Then, fv = σ(uv) by the definition of f̂ . Let N ∈ N be

such that
1
n

+ ‖gn − ḡ‖ < δ0 and 2
1
n + ‖gn − ḡ‖

δ0 − 1
n − ‖ḡ − gn‖

< δ, ∀ n ≥ N.

Then, estimating the norm of un
v − uv, we have that, for each n ≥ N ,

‖un
v − uv‖ =

∥∥∥∥
xn

v − gn

‖xn
v − gn‖ −

xv − ḡ

‖xv − ḡ‖

∥∥∥∥

=
∥∥∥∥
‖xv − ḡ‖(xn

v − gn − (xv − ḡ))− (‖xn
v − gn‖ − ‖xv − ḡ‖)(xv − ḡ)

‖xn
v − gn‖‖xv − ḡ‖

∥∥∥∥

≤ ‖xn
v − gn − (xv − ḡ)‖+ |‖xn

v − gn‖ − ‖xv − ḡ‖|
‖xv − ḡ + ḡ − gn + xn

v − xv‖
≤ 2

‖xn
v − xv‖+ ‖gn − ḡ‖

‖xv − ḡ‖ − ‖ḡ − gn‖ − ‖xn
v − xv‖

≤ 2
1
n + ‖gn − ḡ‖

δ0 − 1
n − ‖ḡ − gn‖

< δ.

This together with (3.28) implies that ‖fn
v − fv‖ < ε for each n > N and so

‖fn
v − fv‖ < ε for all n > N, v ∈ N \ I(ḡ).

Therefore,

|cn
v − cv| ≤ λv‖ḡ − g‖ε (3.29)

holds for all n > N and v ∈ N \ I(ḡ). Since, for each n ∈ N and v ∈ I(ḡ), cn
v = cv = 0, (3.29) holds for all

n > N and v ∈ N. Consequently, one has that

|〈a∗n, ĉn〉A − 〈a∗, ĉ)〉A| ≤ |〈a∗n − a∗, ĉ〉A|+ ‖ḡ − g‖ε, ∀ n > N.

Because |〈a∗n − a∗, ĉ〉A| → 0 by (3.22) and ε > 0 is arbitrary, (3.26) is seen to hold. Hence the proof of
(i)=⇒(ii*) is complete.

(ii*)=⇒(ii). Suppose that (ii*) holds and g ∈ G \ {g0}. Then there exist ḡ ∈ PG(x̂) ∩ [g0, g] and
(a∗, f̂) ∈ K(x̂; ḡ, g) such that (3.12) and (3.13) hold. According to the definition of K(x̂; ḡ, g), we have that
fv = σ(xv − ḡ) for each v ∈ N \ I(ḡ) and there exists f ∈ W0(ḡ− g) such that fv = f for all v ∈ I(ḡ). Define
d̂ = (dv) by

dv =
{

0, v ∈ I(ḡ),
Reλvfv(g0 − g), v ∈ N \ I(ḡ).

Then

〈a∗, (Reλvfv(g0 − g))〉A = 〈a∗, λ̂I(ḡ)〉ARef(g0 − g) + 〈a∗, d̂〉A,

which together with (3.13) implies that

〈a∗, λ̂I(ḡ)〉ARef(g0 − g) + 〈a∗, d̂〉A ≥ 0.
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Consequently,

α := max{〈a∗, λ̂I(ḡ)〉ARef(g0 − g) + 〈a∗, d̂〉A : (a∗, f) ∈ V0(x̂− ḡ)×W0(ḡ − g)} ≥ 0. (3.30)

Note that

α = max
a∗∈V0(x̂−ḡ)

max
f∈W0(ḡ−g)

[〈a∗, λ̂I(ḡ)〉ARef(g0 − g) + 〈a∗, d̂〉A],

and note also that the function

a∗ 7→ max
f∈W0(ḡ−g)

[〈a∗, λ̂I(ḡ)〉ARef(g0 − g) + 〈a∗, d̂〉A]

is a convex continuous function on the compact convex set V0(x̂− ḡ). The Krein-Milman theorem (cf. [13,
Theorem, P.74]) is applicable to concluding that there exists a∗0 ∈ extV0(x̂− ḡ) such that

α = max
f∈W0(ḡ−g)

[〈a∗0, λ̂I(ḡ)〉ARef(g0 − g) + 〈a∗0, d̂〉A].

Similarly, there is f0 ∈ extW0(ḡ − g) such that

α = 〈a∗0, λ̂I(ḡ)〉ARef0(g0 − g) + 〈a∗0, d̂〉A. (3.31)

Consequently, (a∗0, f̂
0) ∈ K̂(x̂; ḡ, g) and (3.12) and (3.13) hold with (a∗0, f̂

0) in place of (a∗, f̂) thanks to
(3.30) and (3.31), which completes the proof of (ii*)=⇒(ii).

(v*)=⇒(i) Suppose that (v*) holds. Then, for each g ∈ G \ {g0}, there exists (a∗, f̂) ∈ V ×∏∞
v=1 W

such that (3.12) and (3.13) hold. Consequently,

‖x̂− g0‖F = 〈a∗, (Reλvfv(xv − g))〉A + 〈a∗, (Reλvfv(g − g0))〉A
≤ 〈a∗, (Reλvfv(xv − g))〉A
≤ ‖x̂− g‖F .

This means that g0 ∈ PG(x̂) because g ∈ G \ {g0} is arbitrary and hence (v*)=⇒(i) is proved.

Recall that the norm ‖ · ‖A in R∞ is strictly monotonic if, ‖ · ‖A is monotonic and, for any â = (av), b̂ =
(bv) ∈ R∞ with 0 ≤ av ≤ bv for each v ∈ N, the condition ‖â‖A = ‖b̂‖A implies that â = b̂.

Corollary 3.1. Let G be a convex subset of X and let x̂ = (xv) ∈ FT be such that PG(x̂)∩D({xv}) = ∅.
Suppose that X is uniformly smooth and the norm ‖ · ‖A in R∞ is strictly monotonic. Then the following
statements are equivalent.

(i) g0 ∈ PG(x̂).
(ĩi) max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ K̂(x̂; g0, g)} ≥ 0 for each g ∈ G.
(ĩi
∗
) max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ K(x̂; g0, g)} ≥ 0 for each g ∈ G.

(ĩii) max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ M̂(x̂; g0)} ≥ 0 for each g ∈ G.
(ĩii

∗
) max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ M(x̂; g0)} ≥ 0 for each g ∈ G.

(ĩv) max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ N̂(x̂− g0)} ≥ 0 for each g ∈ G.
(ĩv

∗
) max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ N(x̂− g0)} ≥ 0 for each g ∈ G.
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Proof. Clearly, by (3.10) and (3.11),

(ĩi) =⇒ (ĩii) =⇒ (ĩv)
⇓ ⇓ ⇓

(ĩi
∗
) =⇒ (ĩii

∗
) =⇒ (ĩv

∗
)

Clearly (ĩv
∗
) implies (iv∗) of Theorem 3.2. Hence (ĩv

∗
) =⇒ (i) follows from Theorem 3.2. Thus, to complete

the proof, it remains to show that (i) =⇒ (ĩi). To do this, let g0 ∈ PG(x̂) and g ∈ G \ {g0} be arbitrary.
Then, by Theorem 3.2 (ii), there exist ḡ ∈ PG(x̂) ∩ [g0, g] and (a′∗, f̂ ′) ∈ K̂(x̂; ḡ, g) such that (3.12) and
(3.13) hold with (a′∗, f̂ ′) in place of (a∗, f̂). This clearly implies that

max{〈a∗, (Reλvfv(g0 − g))〉A : (a∗, f̂) ∈ K̂(x̂; g0, g)} ≥ 0 (3.32)

in the case when ḡ = g0. Hence, we may assume that ḡ 6= g0. Since ‖ · ‖A is monotonic, one has that

‖(Reλvf ′v(xv − g0))‖A = ‖(|Reλvf ′v(xv − g0)|)‖A ≤ ‖(λv‖xv − g0‖)‖A = ‖x̂− g0‖F . (3.33)

By (3.12), we have that

‖x̂− g0‖F = 〈a′∗, (Reλvf ′v(xv − g0))〉A ≤ ‖(Reλvf ′v(xv − g0))‖A. (3.34)

Combining (3.33) and (3.34) yields that

‖(|Reλvf ′v(xv − g0)|)‖A = ‖(λv‖xv − g0‖)‖A

which together with the strict monotonicity of the norm ‖ · ‖A implies that

|Ref ′v(xv − g0)| = ‖xv − g0‖, ∀ v ∈ N. (3.35)

Recall that I(g0) = {v : xv = g0}. Since ḡ 6= g0, we have that I(ḡ) ∩ I(g0) = ∅. It follows that

f ′v = σ(xv − ḡ) = σ(g0 − ḡ) = σ(g0 − g), ∀v ∈ I(g0) (3.36)

because ḡ ∈ (g0, g]. Define f̂ = (fv) by fv = svf ′v for each v ∈ N, where

sv =
{

1, v ∈ I(g0),
signRef ′v(xv − g0), v ∈ N \ I(g0).

Then, by (3.35) and (3.36),

fv =
{

σ(g0 − g) for each v ∈ I(g0),
σ(xv − g0) for each v ∈ N \ I(g0).

That is, f̂ = Fx̂−g0(σ(g0 − g)). Now define the linear functional a∗ on R∞ by

〈a∗, b̂〉A = 〈a′∗, (svbv)〉A, ∀ b̂ = (bv) ∈ R∞. (3.37)

Then a∗ ∈ ext V . In fact, otherwise, there exist a∗1, a
∗
2 ∈ V such that a∗ = 1

2 (a∗1 + a∗2). Define

〈a′∗i , b̂〉A = 〈a∗i , (svbv)〉A, ∀ b̂ = (bv) ∈ R∞ and i = 1, 2. (3.38)
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Then a′∗1 , a′∗2 ∈ V and a′∗ = 1
2 (a′∗1 + a′∗2 ), which contradicts that a′∗ ∈ ext V . Furthermore, by (3.34), we

have that

〈a∗, (λv‖xv − g0‖)〉A = 〈a′∗, (Reλvf ′v(xv − g0))〉A = ‖x̂− g0‖F . (3.39)

It follows that a∗ ∈ V0(x̂ − g0). Hence (a∗, f̂) ∈ K̂(x̂; g0, g) because f̂ = Fx̂−g0(σ(g0 − g)). On the other
hand, since, by (3.12) and (3.39),

〈a′∗, (Reλvf ′v(g0 − ḡ))〉A = 〈a′∗, (Reλvf ′v(xv − ḡ))〉A − 〈a′∗, (Reλvf ′v(xv − g0))〉A
= ‖x̂− ḡ‖F − ‖x̂− g0‖F = 0,

we get that

〈a∗, (Reλvfv(g0 − ḡ))〉A = 〈a′∗, (Reλvf ′v(g0 − ḡ))〉A = 0.

This means that

〈a∗, (Reλvfv(g0 − g))〉A = 0

because g0 − g = t(g0 − ḡ) for some t ∈ R. Therefore, (3.32) holds in the case when ḡ 6= g0 and the proof of
(i) =⇒ (ĩi) is complete.

Recall that X is said to be strictly convex if ‖(x+y)/2‖ < 1 for any x, y ∈ X with ‖x‖ ≤ 1 and ‖y‖ ≤ 1.
Thus when R∞ is strictly convex, Corollary 3.1 can be improved to the following Corollary 3.2.

Corollary 3.2. Let G be a convex subset of X, g0 ∈ G and let x̂ = (xv) ∈ FT be such that g0 /∈ D({xv}).
Suppose that X is uniformly smooth and R∞ is strictly convex. Then the statements in Corollary 3.1 are
equivalent.

Proof. Note that strict convexity of R∞ implies the strict monotonicity of the norm ‖ · ‖A. In fact,
otherwise, there exist two distinct elements â = (av), b̂ = (bv) ∈ R∞ with 0 ≤ av ≤ bv for each v ∈ N such
that ‖â‖A = ‖b̂‖A. Since

0 ≤ av ≤ 1
2
(av + bv) ≤ bv, ∀ v ∈ N,

it follows from the monotonicity of the norm ‖ · ‖A that

‖â‖A ≤
∥∥∥∥

1
2
(â + b̂)

∥∥∥∥
A

≤ ‖b̂‖A = ‖â‖A,

which contradicts that R∞ is strictly convex. In order to apply Corollary 3.1, we have to verify that
PG(x̂) ∩D({xv}) = ∅. To do this, let ḡ ∈ PG(x̂). Without loss of generality, we may assume that ḡ 6= g0.
Since G is convex, we have that

‖x̂− g0‖F =
∥∥∥∥x̂− g0 + ḡ

2

∥∥∥∥
F

≤
∥∥∥∥

1
2
(λv‖xv − g0‖) +

1
2
(λv‖xv − ḡ‖)

∥∥∥∥
A

≤ 1
2
‖(λv‖xv − g0‖)‖A +

1
2
‖(λv‖xv − ḡ‖)‖A

= ‖x̂− g0‖F .
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It follows from the strict convexity of R∞ that

‖xv − g0‖ = ‖xv − ḡ‖, ∀ v ∈ N.

Therefore, ḡ /∈ D({xv}) thanks to the fact that g0 /∈ D({xv}); hence PG(x̂) ∩ D({xv}) = ∅ is proved.
Consequently, Corollary 3.1 is applicable to concluding that the statements in Corollary 3.1 are equivalent.

4 Concluding remark

We have establish some characterizations for best simultaneous approximation, which are completely in view
of the elements from the unit balls of (R∞)∗ and X∗. There is another approach to studying this problem,
which is considered as a best approximation in the new normed linear space (F , ‖ · ‖F ) defined in Section 2.
In fact, write Ĝ = {(g) : g ∈ G} ⊆ F . g0 ∈ G is a best simultaneous approximation to x̂ = (xv) from G if
and only if it is a best (single) approximation to x̂ for Ĝ in (F , ‖ · ‖F ). Thus applying the characterization
results for the convex best approximation problem in (F , ‖ · ‖F ), one can easily get the following trivial
result:

Theorem 4.1. g0 ∈ G is a best simultaneous approximation to x̂ = (xv) from G if and only if

max{〈f∗, (g0 − g))〉F : f∗ ∈ M(x̂− g0)} ≥ 0, ∀g ∈ G,

where

M(x̂− g0) = {f∗ ∈ extM∗ : 〈f∗, (xv − g0)〉F = ‖x̂− g0‖F}

and M∗ is the unit ball of F∗.

However, since it is impossible in general to express the elements in M(x̂− g0) with the elements from V

and W , one can not deduce, from Theorem 4.1, the characterizations presented in previous section. Clearly,
Theorem 4.1 is less convenient in applications.
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