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Abstract — These notes are devoted to the Local Duality Theorem for Z-modules,
which asserts that the topological Grothendieck-Verdier duality exchanges the de
Rham complex and the solution complex of holonomic modules over a complex
analytic manifold. We give Mebkhout’s original proof and the relationship with
Kashiwara-Kawai’s proof. In that way we are able to precise the commutativity of
some diagrams appearing in the last one.

RésuméLe théoréme de dualité locale dans la théorie deg-modules). — Ce cours est
consacré au théoreme de du alité locale pour les Z-modules, qui affirme que la dualité
topologique de Grothendieck-Verdier échange le complexe de de Rham et le complexe
des solutions des modules holonomes sur une variété analytique complexe. On donne
la preuve originale de Mebkhout en faisant le rapport avec la preuve de Kashiwara-
Kawai. Ceci nous permet de préciser la commutativité de certains diagrammes dans
cette derniere.
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60 L. NARVAEZ MACARRO

Introduction

These notes are issued from a course taught in the C.I.M.P.A. School on Differential
Systems, held at Seville (Spain) from September 2 through September 13, 1996. They
are an improved version of the handwritten notes distributed during the School.

The aim of these notes is to introduce the reader to the Local Duality Theorem in
D-module Theory —LDT for short— and to explain in a detailed way the proofs of
it in [Me3], [K-K]. This theorem asserts that the Verdier duality for analytic cons-
tructible complexes interchanges the “De Rham” and the “Solutions” of every bounded
holonomic complex of D-modules on a complex manifold. Besides the importance and
the beauty of such a result, it is a good representative of the relationship between
discrete and continuous coefficients, an important idea in contemporary Algebraic
Geometry.

The first published duality type result is a punctual one due to Kashiwara [Kal],
§5. The LDT in the way we currently use was first stated by Mebkhout in [Mel],
4.1, [Me2], 5.2, but its proof depended on a still conjectural theory of Topological
Homological Algebra. A complete proof was given in [Me3], ITI.1.1 (see also [Me4],
1.1, [Me5], ch. I, 4.3). Kashiwara and Kawai proposed another proof in [K-K], 1.4.6
based on the punctual result above.

The proof of the punctual result of Kashiwara uses the Local Duality in Analytic
Geometry (residues). Mebkhout’s proof of the LDT uses Serre and Poincaré-Verdier
dualities to construct the duality morphism and to prove it is an isomorphism. Kashi-
wara and Kawai define the duality morphism as the formal one and reduce the proof
of the LDT to the former result of Kashiwara by means of the Biduality Theorem for
analytic constructible complexes. However, this reduction demands the commutati-
vity of some diagram involving the global formal duality morphism and the punctual
one, which is not obvious. Both proofs are evidently based on the Kashiwara’s Con-
structibility Theorem.

In these notes we prove that the duality morphism defined by Mebkhout coincides
with the formal one and, as a consequence, that the diagram needed in Kashiwara-
Kawai’s proof is commutative. This fact is explained by the relationship between the
Global Serre Duality and the Local Duality in Analytic Geometry (cf. [Li]).

As we could expect, to do the task we need to be especially attentive to the de-
finition and the properties of the different formal objects involved. In particular, we
have to manage some signs. A complete reference for these questions is [De2], 1.1.
For the sake of completeness and for the ease of the reader, we have collected (a big
portion of) them in the Appendix.

Other somewhat different proofs of the LDT are available in [Bo2], §19, [Sal,
2.7, [Bj], II1, 3.3.10. We have chosen to present the first proof of the LDT, due to
Mebkhout, and the proof of Kashiwara-Kawai because they are conceptually simple
and they fit in this collective work as a continuation of [M-S1, M-S2].
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THE LOCAL DUALITY THEOREM IN 2-MODULE THEORY 61

This work has been done during a sabbatical year at the Institute for Advanced
Study, Princeton. I would like to thank this institution for its hospitality. Discussions
with Pierre Deligne have been of great value to me. I am grateful to him. I am also
grateful to Leo Alonso and Ana Jeremias for good suggestions.

Notation

Given a sheaf of rings Ry on a topological space X, we shall denote by
C*(Rx), K*(Rx) and D*(Rx) the category of complexes, the homotopy category
of complexes and the derived category of the abelian category of left Rx-modules
respectively. We shall use Ry for referying to the category of right Rx-modules.

The symbols A*, B, C*, etc. will be used for complexes of sheaves on a topological
space: the objects of A® are the A™ and the differentials are d7 : A" — A"™!, for
every n € Z.

Given a complex A* and an integer d, we shall denote by h?(A*) its dth cohomology
object.

Given a complex A* (of objects in some additive category), the complex A°*[1] is
defined by A'[l}n = An+1, dA'[ll = —dy.

The total derived functors of Hom% (—,—), Hom% (—,—) and — égqx — will

be denoted by R Hom%  (—,—),R Hom% (—,—) and of — ég{x — respectively, and
Bty (—,—) = h*R Hom% (-, ).

If R is the constant sheaf associated to a fixed ring K and no confusion is possible,
we shall abreviate Homy (—, =), Homy (-, —), R Hom¥ (—,—) and Extf(x (—,—)
by Hom% (—, —), Hom%(—, —), R Hom% (—, —) and Ezt% (—, —) respectively.

1. Duality for Analytic Constructible Sheaves

Throughout this section X denotes a connected complex analytic manifold count-
able at infinity of dimension d, and D%(Cx) the derived category of bounded com-
plexes of sheaves of C-vector spaces with analytic constructible cohomology (cf. [Ve],
[Ka], [M-N3]). We denote Tx = Cx|[2d].

1.1. The Topological Biduality Morphism. — The abelian category of sheaves
of complex vector spaces over X has finite injective dimension (cf. [DP], exp. 2, 4.3).
The functor R Hom% (—, —) induces a functor

R Hom% (—,—) : D’(Cx) x D*(Cx) — D*(Cx)

which can be computed by taking injective resolutions of the second argument, or
locally free resolutions of the first argument if they exist.
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62 L. NARVAEZ MACARRO

1.1.1. Proposition — If F3,F3 are two complexes in D2(Cx), then R Hom% (F3,T3)
is also in D%(Cx). Furthermore, if the F; are constructible with respect to a Whitney

stratification ¥ of X, then R Hom% (F%,F3) is also constructible with respect to 2.

Proof). — We can suppose that the J? are single constructible sheaves J;
(cf. [M-N3], 11.5). The question being local (cf. loc. cit., 1.4.21) we can sup-
pose that ¥, = oL, for ¢ : S — X the inclusion of a stratum of ¥ and L
a local system (of finite rank) on S (cf. loc. cit., 1.4.14). In this case we have
R Hom% (1L, %F3) ~ Ro. R Hom%(L,0'F;), and we can conclude by induction on
the dimension of X and Thom-Whitney’s isotopy theorem (cf. loc. cit., 1.4.15). O

1.1.2. Definition — For every bounded complex F* in D%(Cx) we define its dual by
F*V := R Hom%(F*,Cx)
and the topological biduality morphism Bge : F* — (ff’v)v as in A.2.

1.1.3. Proposition — If F* is a bounded constructible complex on X, then for each
point © € X and for every small ball B centered in x with respect to some local
coordinates, the complex RT.(B,F*) has finite dimensional cohomology.

Proof. — According to proposition 1.1.1, the complex F*V is bounded and cons-
tructible. Then, for every small ball B centered in x, the canonical morphism
RT(B,7*Y) — (F*Y), is an isomorphism (cf. [M-N3], 1.4.16) and we conclude by
the Poincaré-Verdier duality

RI(B,5*") = RHom}(F*|p,Cp) — R Hom&(RT (B, F*),C)[~2d]
(¢f. [DP], exp. 5). O

1.2. The Biduality Theorem. — The Biduality Theorem for analytic con-
structible sheaves has been first stated and proved by Verdier in [Ve], 6.2 using
Resolution of Singularities. Other proofs in the setting of cohomologically con-
structible sheaves are available in [DP], exp. 10, §2, [Bol], V, 8.10, [K-S], 3.4. We
sketch here a proof following the lines in [SGA 41], Th. finitude, 4.3 and [M-N3],
I11.2.1,I11.2.6 and based on the Poincaré-Verdier duality cf. [DP], exp. 4,5, [Bol],
V, 7.17, [Iv], VIL5.2, [K-S], 3.1.10.

1.2.1. Theorem— For each bounded constructible complex F* on X, the biduality
morphism Bge : F* — (F*¥) is an isomorphism.

Proof. — We can suppose that F* is a single constructible sheaf F (cf. [M-N3], I1.5).
The result is clear if F is a local system (of finite rank).

(DThis proof is also valid in the case of an arbitrary complex analytic space.
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THE LOCAL DUALITY THEOREM IN 2-MODULE THEORY 63

As the question is local, we can also suppose that X = Dil*l X Do, where the D;
are open disks in C, F is a local system on the complement of an hypersurface Z C X
and the first projection p: X — D¢~ is finite over Z (cf. loc. cit., 1.4.20).

We can extend our data, first to a constructible sheaf F on X Dd 1'% C and
second to F = 0yF, where 0 : X «— X = D371 5 P, is the (open) inclusion. Call
p:X—-Y= Df ! the first projection, which is proper.

Let us consider the triangle
(1) 7 P, FHY — 9o — T[]
where the support of the (bounded) complex Q¢ is contained in Z U (Y x {oco}) and
then it is finite over Y.

By taking direct images by p we obtain a new triangle in D%(Cy)

Rp.J M R5,(T )Y — Rp,Q° — Rp,TF(1]
(¢f. [M-N3J, 1.4.23).

In order to prove that B is an isomorphism we need to prove that 9* = 0, but
that is equivalent to Rp,Q° = 0 because p is finite over the support of Q°.

Let Try,y : Rp,Txx — Ty be the topological trace morphism for the proper map
P. According to the local form of the Poincaré-Verdier duality (cf. [Iv], VIL5, [K-S],
3.1.10) the morphism pg. composition of

Rp. R Hom%(X*, T f)&RHomy(Rp*iK Rp,T%)

Tr %
(T g Hom3 (Rp, X", Ty)
is an isomorphism for every bounded complex of sheaves of C-vector spaces K*.
Call p% := R Homs, (pz, Ty) the isomorphism induced by pz. According to A.5,
we can “redefine”
V

7)) = R Hom*-(R Hom*(T, Tx), Tx)

and using A.2 and lemma A.15 we deduce the relation

(pR Hom’y(§7jr?)> o Rp*ﬂ§ = p*?OﬁRﬁ*§'
By induction hypothesis, the morphism ,BRﬁ 7 is an isomorphism, then Rp,0%
too and we obtain the desired Rp,9* = 0. -

1.2.2. As X is a connected oriented manifold of (topological) dimension 2d, the
topological trace morphism trx : Hid(X7 Cx) — C given by integration of top C'*°-
forms with compact support is an isomorphism. Then, for each point = € X, denoting
by i : {x} < X the inclusion, the canonical morphism i'Cx — RT.(X,Cy) gives
rise to a punctual topological trace isomorphism

H2(X, Cy) X C.

. H2(Cy) DA,
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64 L. NARVAEZ MACARRO

1.2.3. Proposition — Let F* be a complex in DY(Cx) and x € X. Denotei : {x} — X
the (closed) inclusion. Then, the natural morphism

n: (F°)) =i 'R Hom%(F*,Cx) — RHom(i'F*,i'Cx)
is an isomorphism. In particular, using 1.2.2, we obtain an isomorphism

(*)Y). ~ RHomg (i'F*, C)[—2d).

Proof. — As (3°)Y is a bounded complex of C-vector spaces with finite dimensional

cohomology and i'Cx ~ C[—2d], the natural morphism A.2
Bo : (3°); — RHomg(RHomz((3*);/,i'Cx),i'Cx)
is an isomorphism. We also have a canonical isomorphism (cf. A.11)
g: (Y)Y =i' R Hom ((*)",Cx) — RHom?((F*)Y,i'Cx).

Call g* := RHom{(RHom(g,i'Cx),i'Cx) the isomorphism induced by g, and
(i'Bge)* := RHom{.(i' By, Cx) the morphism induced by i' B4, which is an isomor-
phism according to theorem 1.2.1. To conclude, we observe that n = (i'B4.)* 0 g* o B,
according to A.12. O

2. The Local Duality Morphism in D-module Theory

Throughout this section X denotes a complex analytic manifold countable at in-
finity of dimension d, Dx the sheaf of linear differential operators with coefficients
in Ox (c¢f. [G-M], I) and D%(Dx) the derived category of bounded complexes of left
D x-modules with coherent cohomology.

2.1. The Solution and the De Rham Functors. — Here, our basic functor is
R Hom},  (—, —) which can be computed by taking injective resolutions of the second
argument, or locally free resolutions of the first argument if they exist.

Since Dx is a coherent sheaf of rings and every single D x-module admits locally
a finite free resolution (c¢f. [Me5], ch. I, 2.1.16), we have an induced functor

R Hom%  (—,—) : DY(Dx) x D’(Dx) — D"(Cx).
The De Rham functor is
DR = R Hom3, (Ox,—) : D’(Dx) — D"(Cx)
and the Solutions functors are
S = Hom% (—,0x): K’(Dx) — K"(Cx),
S =R Hom}, (—,0x): D%(Dx) — D’(Cx).
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THE LOCAL DUALITY THEOREM IN 2-MODULE THEORY 65

We will also consider the “external” duality functors

D = Hom%  (—, Dx) : K!(Dx) — K!(.Dx),
D =R Hom%, (—,Dx): D}(Dx) — D:(,Dx).
We have S('Dx) = S(Dx) = OX.
The De Rham functor can be computed by means of the Spencer resolution

Sp% (cf. [Me5], ch. I, 2.1.17), whose objects are defined by Sp* = Dx®e, A
Derc(Ox),p=0,...,d and the differential ¢7? : Sp* — Sp;((pfl) is given by:

Y THPE) @ By A NG A+ ABy)

M'@

7p(P®(51/\'
1

+ > (1Z+JP®([5“5]A(slA---A&A---MjA---Aap)

1<i<j<p

forp=2,...,dand e (P ®J) = P§ for p=1.

There is an obvious augmentation ¢* : Sp% = Dy — Ox, €*(P) = P(1), that makes
Sp% into a (canonical) locally free resolution of O x as left D x-module. We will always
consider this augmentation to identify the functors DR(—) = Hom%,  (Sp%, —).

Every left Dy-module € carries an integrable connection V : & — QL ®o, €
and we can then consider its classical De Rham complex Q5% (€) (cf. [Del], 1.2). It is
defined by Q% (&) = Q% ®o, € for p =0,...,d, and the differential V? : QX (&) —
Q%1 (€) is given by VP(w @ e) = (dw) @ e + (—1)Pw A V(e).

2.1.1. Lemma — For each left Dx-module &, the morphisms
af Q% ®oy € — Homly, (Spk, &) = Homp, (Spy",€), p=0,...,d

defined by o® (0@ e)(P®6) = (—1)PPTV/2P . (5,0) - e, commute with the differentials
and gives rise to a natural isomorphism of complexes

ag : Q% (€) — Homi  (Spk, €).

The proof of the lemma is straightforward. It should be noticed that the sign
(—1)PP+1/2 is imposed by the definition of the functor Hom$, (—,—) (cf. A.1).
We will denote

ay = ap, Q% (Dx) — Homajx (Sp%, Dx) = D(Spk) = D(Ox),
aj = aox Q% = Q% (0x) — HOm'DX(SPX,OX) = S(Sp%) = S(0x).

Obviously a§ is right D x-linear.
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66 L. NARVAEZ MACARRO

2.1.2. Denote by wx the sheaf of top differential forms Q% on X. It carries a
canonical right Dx-module structure (c¢f. [G-M], prop. 15, [M-N2], 1.1.5). Call
o : Q% (Dx) — wx|[—d] the right D x-linear morphism given by 0¢(d ® P) = 6 - P.
It is a quasi-isomorphism (cf. [Me5], ch. I, 2.6.6) admitting a Cx-linear section 7°
given by 7¢(8) = 0 ® 1. Let us consider the following morphisms:

a®:=afot* : wx|[—d] — Homi,  (Sp%,Dx) = D(Sp%),

ago(o®)™! . ) con

a: wx[—d] ————— Hom, (Sp%,Dx) = D(Spx D(Sp%) = D(0x).

~

The first one is a Cx-linear quasi-isomorphism, and the second one is an isomorphism
in the derived category of right D x-modules. Both morphisms coincide in D®(Cx).

In particular, the cohomology of the complex DR/(D x ) vanishes in degree different
from d and then DR(Dx) = Ext§, (Ox,Dx)[—d].

According to the Poincaré lemma, the inclusion Cx C QS gives rise to a quasi-
isomorphism k§ : Cx — Q% = Q% (0x). Using the isomorphism of complexes a} we
obtain an isomorphism in the derived category

(2) K : Cx — Hom _(Spk, Ox) = S(Ox) = DR(Ox).

2.2. The Duality Morphism

2.2.1. Definition — For every bounded complex of left D x-modules M* with coherent
cohomology we define the duality morphism

Exe : DR(M®) — S(M*)" = R Hom._ (S(M*),Cx)
by composing the natural morphism (cf. A.2)

¢ : R Hom}  (Ox, M*) — R Hom. _ (S(M*),S(0x))
with the isomorphism induced by & (2).
2.2.2. Proposition — For M* € D%(Dx) there exist (local) natural isomorphisms

Ay : DR(Dx) ®p, M* — DR(M*),
frge - S(Dx)Y @1, M* — S(M*)Y

such that the following diagram commutes

. €n, ® Idye .
DR(Dy) G, M~ §(D )" G, M

);;VQJ;- ) Ee S(:%‘)‘i“
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THE LOCAL DUALITY THEOREM IN 2-MODULE THEORY 67

Proof. — Take a flat resolution P* — M* and an injective Godement resolution
Ox —J°. We have

DR(Dx) ®p, M* = Hom3, _(Sp%, Dx) ®ny P,
DR(M*) = Hom%,  (Sp%,M*) = Hom3,  (Sp,P*),

S(Dx)" ®py M* = 0% ®p, M* = Home, (3", Hom  (Sp,3°)) & P*,
S(M*)¥ =--- = Hom¢ _(Hom, (P*,3°), Hom%,  (Sp%,d%))
and we are reduced to lemma A.10.
The fact that Ane and pye are isomorphisms is a local question. So, we can

suppose that M* has a finite free resolution and we are reduced to the obvious fact
that Ap, and pg . are isomorphisms. O

2.2.3. Corollary — For every bounded complex of left Dx-modules M* with coherent
cohomology, the duality morphism &y is an isomorphism if and only if €5, ® Idye
is an isomorphism.

3. Proof of the Local Duality Theorem

Throughout this section X denotes a complex analytic manifold countable at in-
finity of dimension d.

3.1. Statement of the Local Duality Theorem

3.1.1. Theorem — For every bounded complex of left D x -modules M*® with holonomic
cohomology, the duality morphism

Enee : DR(OVM®) — S(OM*)V

is an isomorphism (in the derived category).

3.2. The Basic Commutative Diagram

3.2.1. Propositior([Me3], [Me4], [Me5]). — The complex S(Dx)¥ = O% is concen-
trated in degree d = dim X .

Proof. — For every integer i > 0, the sheaf Extéx (Ox,Cx) is the sheaf associated to
the presheaf U +— Exté:U (Oy,Cyp). It is enough to prove that Extéu (Oy,Cy) =0 for
all i # d and for every Stein open set U C X.

Now, by the Poincaré-Verdier duality (c¢f. [DP], exp. 5, [Iv], VI) the space
ExthU (Oy, Cy) is isomorphic to the algebraic dual of H*~*(U, Or), and by the Serre
duality [Se], if U is Stein, the space H2~¢(U, Oy/) is isomorphic to the topological dual
of H™4(U, wy), but for such open sets H~ (U, wy;) = 0 and then Exté;U (Oy,Cy) =0,
for all i # d. O
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68 L. NARVAEZ MACARRO

3.2.2. Call

¢:=h%¢p ) Ext], (Ox,Dx) — Extl (Ox,Cx),

o :=h%a):wx — EiEthX(Ox,Dx)

where « is the isomorphism in 2.1.2. Both morphisms are right D x-linear.
As OY is concentrated in degree d, for every open set U C X we have

I(U, Extl  (Ox,Cx)) = R'T(U, Extd _(0x,Cx)[—d))
=RT(U,R Hom¢. _(0x,Cx)) = h" RHom¢  (Oy, Cy),

and using the natural isomorphism v (cf. A.5) we obtain an isomorphism
ev : (U, Extl_(0x,Cx)) — Hompc,) (O, Cyld).

The ey commute with restrictions and each ey is right Dx (U)-linear, where the
right Dy (U)-module structure on Homp ¢, )(Oy, Cy|d]) comes from the left action
of Dx(U) on Op.

The Poincaré quasi-isomorphism k8 : Cx — 2% and the inclusion map «3 :
wx[—d] — Q% gives rise to a Poincaré-De Rham morphism in the derived category

k' = (k§[d])) " tori[d] : wx — Cx]d].

We will denote by By : I'(U,wx) — Hompc,)(Ov,Cy[d]) the composition of (k')
with the map

forget
F(U, wX) = HomoU(OU,wU) —g> HOHI(CU(OU,UJU) = HomD(CU)(OU,WU)-

In corollary 3.2.5 we will see that Gy is right Dx (U)-linear.
Recall that (cf. 2.1.2)

a* = afor* : wyx|—d| — Hom% (Spk,Dx) = D(Spk),
and denote

B* = (K})« o (forget) : wx[—d] — Homg¢  (Ox,Q%),
where “(forget)” is the morphism

forget
e

wx[—d] = Homy , (Ox,wx[—d]) Homg  (Ox,wx[—d]),

and

7t = (ai). : Home, (Ox, Q%) — Home, (Ox,S(Sp%)).
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THE LOCAL DUALITY THEOREM IN 2-MODULE THEORY 69

3.2.3. Proposition — The following diagram of complezxes of sheaves of vector spaces

D(SpY) —s Home., (0x,5(Sp%)
(3) a'] NTV.
wx [—d] L Homg  (Ox, Q%)

18 commutative.
Proof — As o' = 8 = 0 for all i # d, we need only to prove that £%oad = %039,
but S(Dx) = Ox is a complex vanishing in degrees different from 0 and then there is

no signs in the expression for £ (cf. A.2). We deduce that the degree d part of the
diagram (3) can be identified with the diagramm

_ t. _
Homop (Sde, Dx) RN Homc, (Ox, Hom@X(Sde, 0x))

@ | ~Jof).
forget T

wx HomCX(OX7wX).

For a top differential form € on an open set U C X, the section
o = a%() € T(U, Homop, (Sp;(d, Dx)) = HomDU(Sp[}d, Dy)

is given by
P(P®6) =ad(@21)(P®d) = (-1)4TD/2p . (5 0).

Call ¢ € (U, Home, (Ox, Homn (Spx%, Ox))) = Home,, (Oy, Homs,, (Spy?, Ov))
the morphism determined by ¢. For each local section f of Oy we have

V()P @8) =p(P3)(f) = (=) V2P (5,0))(f) = (~1)"TV2P((5,0) f).
On the other hand, the section
¢ = forget(0) € I'(U, Homc (Ox,wx)) = Home,, (Ov, wr)
is given by ¢/(f) = f6. Call

Y = (o). (¢) = afoy’ € Home, (O, Homo,, (Spy?, Ov)).

We have
V()P ©8) = af(¢'()))(P©8) = af(f0)(P ®8) = (~1)" D2 P((s, f6))
and we conclude that the diagram (4) is commutative, and then (3) too. O
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70 L. NARVAEZ MACARRO

3.2.4. Proposition — For every open set U C X, the following diagram of vector
spaces

I(U, Extd (Ox,Dx)) Gy I(U, Bxtd (0x,Cx))
', a)T: NJEU
(U, wx) bu Homp c,,) (v, Culd])

1s commutative.

Proof. — Let us call
e ay : W (U,wx [—d]) — T(U,wx) the identity map,
« by = the composition of

can
—_—

hT (U, D(Sp%)) RT(U,D(SpY))

L) RIT(U,D(Sp) = RUT(U,D(Ox)

=RII(U, Ext$, (Ox,Dx)[—d]) = [(U, Extd (Ox,Dx)),

« cy = the composition of

hiT(U, Homg. (0x,5(Sp%))) —s RAT(U, Home.  (Ox,S(Sp%)))

(can) RIT(U, R Hom., (Ox,S(Spk))) = RIT(U, R Hom., (Ox,S(0x)))
@ RII(U,0%) = RT(U, Extl  (Ox,Cx)[~d]) = [(U, Extd (0x,Cx)),

. and dy = the composition of

can

RIT (U, Hom¢.  (Ox, Q%))

(can)

RT(U, Hom¢.  (Ox, Q%))

RT(U, R Homg (0x,Q%)) = h* RHom¢,, (Op, Q)

v iy B0
— Homp ¢y (O, Qp[d]) —Z— Homp ¢, (Ov, Culd]).

We are going to prove that the following relations:
L(U,a)oay = by ohiT'(U,a*), T(U,&)oby = cyohiT(U, &),
epocyohil(U,(v*)) =dy, PBuoay = dyohT'(U,3*)
hold, and then we can conclude by using proposition 3.2.3.

The first relation I'(U, &) oay = by o hT (U, a*) is an straightforward consequence
of the facts that «* and « induce the same isomorphism in D°(Cx) (cf. 2.1.2),
and that the isomorphisms a and a[—d] coincide after the canonical identification
D(Ox) = Ext}, (0x,Dx)[—d.
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The second relation T'\(U, £) o by = cy o hT'(U, £°) comes from the standard proper-
ties of the total derived (bi)functors R Hom*(—, —) and of the natural morphism
€: R Homy, (~,7) — R Homs, (S(?),8(~))
(cf. A4), and from the fact that the morphisms &4, and £[—d] coincide after the
canonical identifications D(Ox) = Ext, (0Ox,Dx)[—d], 0% = Ext¢ (0x,Cx)[—d].
The third relation ey ocyr o h4T(U, (7*)) = dy follows from the commutativity of

the following diagram

K )«
RT(U,R Hom¢ (Ox,Cx) L RT(U, R Hom¢ (0x, Q%))

N,

h* RHom¢, (Oy,Cy) h* RHom¢, (Ov, Q)

| (s3] J»

Homp (c,)(Ov, Cy|d]) ——————— Hompc,,)(Ov, Qg [d])

and from standard naturality properties.

The last relation By oay = dy o hT'(U, 3*) is a consequence of the commutativity
of the following diagramms (see A.7)

h*Homg., (O, Q) —2 he R Hom.,, (Orr, Q)

| -

Homp (¢, (O, Qg [d]) 2% Homp ¢,y (Ov, Q4 [d])

and
d .
RAT(U, wx [—d]) MG A) hIT(U, Homg. (Ox, Q%))
y ,
(U,wx) h®Homg, (O, ;)

forgﬂ (1) J

HomK(Cu)(anwU) B — HomK(cU)(Owa[d])

where 3'(6) is the cohomology class of I'(U, 3%)(6) for every top differential form 6
on U. O

3.2.5. Corollary — For every open set U C X, the morphism
Bu : I'(U,wx) — Homp c,)(Ov, Cyld])
is right Dx (U)-linear.
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3.3. Compatibility of the Duality Morphism with the Serre and the
Poincaré-Verdier Dualities: Mebkhout’s Proof

8.8.1. For each open set U C X we consider the analytic trace morphism Try :
H(Ci(U7 wy) — C and the topological trace morphism try : Hg‘d(U7 Cy) — C given by
integration of top differential forms (of type (d,d)) with compact support:

The smooth De Rham complex

OHCXHE())(—»'--HEggHO
gives rise to a morphism in the derived category 67 : €3¢[—2d] — Cx which induces

another one

R T.(U,6,)

0y :T.(U, 3% = R¥™ T (U, £¥[-2d)) H2Y(U,Cy).

The topological trace morphism is defined by the relation: try of; = fU.
In a similar way, the Dolbeault resolution

O—>wX—>€§<’Oi>---i>€géd:€§(d—>0

gives rise to a morphism in the derived category 6 : Egg[—d] — wx inducing another
one

_ RIT.(U,6
0, : To(U, £24) = ROT (U, £24[d]) RTe(U,02) | HY(U, wy ).

The analytic trace morphism is defined by the relation: Tryr o6 = fU.
The Poincaré-De Rham morphism &' : wx — Cx/[d] induces a map

By + (U, wy) — HE(U, Cy[d]) = HZ(U, Cu).
A straightforward computation shows that &’ o6y = (—1)%0;[d], and then we obtain
(5) try o By = (—1)%Try.
The analytic Serre pairing [Se]
(= —)s : T(Uwx) x H(U,0y) — C
is given by the composition of the analytic trace morphism Try with the Yoneda
pairing

forget x Id
—_—

I(U,wx) x HY(U, 0y) Homc,, (Oy,wy) x HY(U, Oy)

Yoneda H?(U, o).

The vector space I'(U,wx) has a natural Fréchet-Schwartz structure and, if U is
Stein, the pairing (—, —)g identifies HY(U, Oy) with the topological dual T'(U,wx)'.
Then, HY(U, Oy ) carries a natural DFS structure and T'(U, wx ) ~ HY(U, Op)’ (cf. [Se],
[B-S], ch. 1, §1 (¢), 2.1).

The Poincaré-Verdier pairing (cf. [DP], exp. 5)

(—,=)pv : Hompc,)(Ou,Cyld]) x HL(U,0y) — C
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is given by the composition of the topological trace morphism try with the Yoneda
map

Homp ¢, (O, Culd]) x HA(U, 0) —28eda, g2a(17 ¢y,
According to the Poincaré-Verdier duality, the pairing (—,—)py indentifies
Homp c,)(Ov, Cyld]) with the algebraic dual HY(U, 0p)* (cf. loc. cit.).
3.3.2. Lemma— The Serre pairing is Dx (U)-balanced.

Proof. — Let ¢ be a class in HY(U,0p), 6 € T(U,wx) and P € Dx(U). For each
i,j = 0,...,d let & be the sheaf of smooth differential forms of type (¢,5). The
Dolbeault resolution

OHOUHS?]’OiH-iE%d—»O

(resp. 0 — wy —>8?j0 9, .. ié’?]’dHO)
is a complex of left (resp. right) Dy-modules, and the morphism
0,e d,e
ON:EG° — &
is a lifting of 0 : Oy — wy. Let a € T(U, E?jd) a section representing the class c. We
have

<97Pc>5:-~-:/U6‘/\(Pa), <9P,c>5:~--:/U(9P)/\a.

Both integrals coincide when P is a holomorphic function. For the general case we
can work in local coordinates z = (z1,...,24),Z = (Z1,...,24), and it is enough
to consider P = 0,,. Let a = fdz, 6 = gdz be the local expressions. We have
Pa = f,.dz,0P = P'(g)dz = —g,,dz, where P! is the transposed operator. The
difference (Pc,0)s — (¢, 0P)g is the integral of the closed form (fg).,dzdz, and then
it vanishes. O

3.3.3. Lemma — The Poincaré-Verdier pairing is Dx (U)-balanced.

Proof. — This is a consequence of the easy fact that the Yoneda map

Homp (¢, (O, Cyld]) x HY(U, Op) =0, H2Y(U,Cy)

is Dx (U)-balanced. To see that, take ¢ € HY(U, Oy), ¢ € Homp ¢,y (Ov, Cyld]) and
P e Dx(U) C Homg, (Oy, Op). Then we have

(0, Pc) = (@, Pu(c)) = 0 (Pu(c)) = (¢P)«(c) = (¢P; ). O
3.3.4. Proposition — The following relation
(= =)pve(Bu x 1d) = (~1)N (=, —)s
holds.
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Proof. — According to the definition of Gy, the following diagram

T(U,wx) x HY(U, 0y) Yoneda HY(U, wyy)

Bu x Idl Jﬂb

Homp ¢, (O, Cyld)) x HA(U, 0y) —Y0Rda_, proa iy o,y

is commutative. The propostion then follows from (5). O

3.3.5. Proposition — For each Stein open set U C X, there exist natural right D x (U)-
linear isomorphisms

HY(U,0p)" — T'(U, Ext},, (Ox, Dx))
HY(U, Oy)* — I'(U, Ext¢ (0x,Cx))

such that the following diagram

I'(U, Ext}, (Ox,Dx)) AL

|

HE(U, Op )’

(U, Ext¢, (0x,Cx))

]:

Hg(U7 OU)*

nclusion

commutes.

Proof. — Tt is a consequence of propositions 3.2.4, 3.3.4, of lemmas 3.3.2, 3.3.3 and
of Serre and Poincaré-Verdier dualities. O

3.8.6. According to 2.1.2, corollary 2.2.3 and proposition 3.2.1, the question in the
theorem 3.1.1 is equivalent to prove that

€@ Tdye : Both (0x,Dx) ®py M* — Extd (0x,Cx) ®n, M°

is an isomorphism.
We can suppose (cf. [M-N3], IL.5) that M* is a single holonomic module M. The
problem being local, we can also suppose that there exists a finite free resolution P*

()—)'DTX"L —>—>CDTXO — M — 0.
We have to prove that
€@ Idgs : Bath (Ox,Dx) @y P* — Eutd (0x,Cx) @, P*

is a quasi-isomorphism.
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According to proposition 3.3.5, for each Stein open set U C X the morphism
(U, & ® Idps ) can be identified with

! I
[HA(U, 0p)™] — - — [HI(U,00)"]
inc. inc.
[HYU, 0p)]" — - — [HYU,0p)™]".
But the complex
HE(U,0p)"™ «— -+« HZ(U,0p)"
is quasi-isomorphic to RT:(U,S(M)) (up to some shift), and so, by Kashiwara’s
constructibility theorem [Ka] (see also [M-N3]) and by proposition 1.1.3, it has finite
dimensional cohomology for all small balls U with respect to some local coordinates.
According to Serre’s lemma for DF'S spaces [Se], 10.1, [B-S], ch. 1, § 1 (¢), we deduce
that T'(U, £ ® Idps) is a quasi-isomorphism for many open sets U, and then £ ® Idpe
is a quasi-isomorphism too.

3.3.7.Remark — The duality morphism DR(M®) — S(M*)Y considered by
Mebkhout in [Me3], III.1.1 comes from the isomorphisms Ay and pye of proposi-
tion 2.2.2 and from the morphism E:ct%x (Ox,Dx) ~wx — E:ctféx (Ox,Cx) induced
by Serre and Poincaré-Verdier dualities. According to proposition 3.3.5, Mebkhout’s
duality morphism coincides with the formal one.

3.4. Compatibility of the Duality Morphism with the Local Analytic Du-
ality: Kashiwara-Kawai’s proof. — Let M* be a bounded complex of left D x-
modules with holonomic cohomology. In order to proof the Local Duality Theorem
3.1.1 it is enough to proof that the stalk

(§xe)o : DR(M®)z — S(M*);]

is an isomorphism for every point = € X.
Let i : {z} — X be the inclusion. Denote

Si(M*) := RHomj,, (M3,i'Ox), DR.(M*):=RHom}  (Ox.,M;).

We have a natural isomorphism (c¢f. A.11)

(6) i'e S = S,

which induces, joint with (2), another one

(7) S1.(0x) ~i'Cx.
Call

€xe () : DR, (M*) — RHom(S,(M*),'Cx)
the natural morphism defined as in definition 2.2.1, now using (7) instead of (2).
Call
¢ : S(M*)Y — RHom{(Si,(M*),i'Cx)

x
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the composition of the natural morphism (cf. A.11)
R Hom{. _(S(M*),Cx), — RHom(i' S(M*),i'Cx))
with the isomorphism induced by (6).

3.4.1. Lemma— Let M* be a bounded complex of left Dx-modules. The following
diagram

DROC), — ) ey

nat.| . ¢

DR, (M*) ————— RHom (S, (M*),i'Cx)

18 commutative.
Proof. — It is a consequence of lemma A.12. O

3.4.2. Corollary — Let M* be a bounded complex of left D x-modules with holonomic
cohomology. Then, (Ente)s is an isomorphism if and only if (€,74)(x) 4s an isomor-
phism.

Proof. — As M* has coherent cohomology, the natural morphism
DR(M*), — DR, (M"*)

is an isomorphism. Also, as M* has holonomic cohomology, by the constructibility
theorem of Kashiwara [Ka] (see also [M-N3]) and by proposition 1.2.3, the morphism
¢ is an isomorphism. We conclude by applying the preceeding lemma. O

We can repeat the arguments in proposition 2.2.2 and corollary 2.2.3 to obtain the
following.

3.4.3. Proposition — For every bounded complex of left D x -modules M* with coherent
cohomology objects, the duality morphism €ye(x) is an isomorphism if and only if
€p, (x) ® Idye is an isomorphism.

Now, we are going to give the punctual analogous of results in section 3.2.
First, the complexes DR, (Dx) and i'Ox are concentrated in degree d and we have
an isomorphism of right D x ;-modules

a(z) = hd(nat.) o0y WX x =, hdRHomme (Ox2,Dxq) = Ext%x‘m((‘)x’x, Dx.q)-

The complex i'Cx is concentrated in degree 2d (cf. 1.2.2). We then obtain that
the complex R Hom{(Si,(Dyx),i'Cx) = RHomf(i'Ox,i'Cx) is also concentrated in
degree d, and we have a canonical identification

Homp () (i'Ox,i'Cx|[d]) = Home (HI (0 x), H24(Cx)).
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Call
(z) = h'(€p () : Exth, (Oxa Dx.a) — Exté(i'0x,i'Cx),

which is right D x ,-linear.
As in 3.2, we find an isomorphism
e(z) : Extd(i'Ox,i'Cx) —— Homp (e (i'Ox, ' Cx[d]) = Homc(HL(Ox), H2(Cx))
and a map
B(z) : wx,, — Homp ) (i'0x,i'Cx[d]) = Home(HI(0x), H24(Cx)),

which are compatibles in the obvious way with the ey and the Gy defined in 3.2.2,
forz e U.
The following proposition is then a direct consequence of proposition 3.2.4.

3.4.4. Proposition — For every point x € X, the following diagramm

§(x)

Exth  (0x.0, Dx,o) —— Extf(i'0x,i'Cx)

a(z)wz S ’:jg(m)

WX —————— Home (HY (0 x ), H24(Cx))

1s commutative.

As in 3.3.1, call

a) Try : Hg (wx) — C the local analytic trace morphism, which is induced by the
global analytic trace morphism Trx,

b) #(z) : H(wx) — H24(Cx) the morphism induced by the Poincaré-De Rham
morphism wy — Cx|[d],

¢) (=, =) :wx.. x HY(Ox) — C the local duality pairing obtained by composing
the local analytic trace morphism Tr, with the Yoneda pairing,

d) (—,=)r : Home(HY(0x), H2(Cx)) x HY(Ox) — C the composition of the
punctual topological trace tr, (see 1.2.2) with the evaluation map.

As in 3.3.1, we have the following assertions:

(1) The pairings (—, —)2" and (—, —)P are Dx ,-balanced.

(2) (= =)Po(Blz) x Id) = (1), —)5".
Using the Local Analytic Duality Theorem we obtain the following.

3.4.5. Proposition — There exist natural right D x ,-linear isomorphisms
Hi(OX)/ — EXtd‘DX,T, (OX,17 DX,I)

HE(0x)* — Extl(i'0x,i'Cx)
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such that the following diagram
§(x)

Exth . . (Ox0 Dx.a) ——— Bxtl(i'Ox, i'Cx)

4 T:

HY(Ox ) inclusion HY (0 )*

commutes.

The following punctual duality of Kashiwara [Ka), § 5 can be deduced from propo-
sitions 3.4.3 and 3.4.5 in a similar way we did in 3.3.6.

3.4.6. Proposition — Let M* be a bounded complex of left D x -modules with holonomic
cohomology. Then, the punctual duality morphism
€xe () : DR,(M*) — RHom(S,(M*),'Cx)

is an isomorphism for each point x € X.

3.4.7. Corollary — Let M* be a bounded complex of D x-modules with holonomic co-
homology. Then

Ext,  (OxqM3) ~ Extf ! (M, HE(0x))"
for each i € Z and for each x € X.

Finally, according to corollary 3.4.2, we deduce that the morphism
(€ee)o : DR(M®)z — S(M*);]
is an isomorphism for each x € X, and the proof of theorem 3.1.1 is finished.
3.4.8. Remark — Actually, proposition 3.4.6 and corollary 3.4.7 do not match exactly
the statement in [Ka], § 5. The relation between both results becomes clear by con-
sidering the dual complex (M*)* (¢f. 3.5.3). Anyway, the point is to prove that the

punctual duality morphism &y () induced by the (formal) duality morphism &
coincides with the isomorphism in loc. cit.

3.5. Some Complements

8.5.1. In a similar way we defined the duality morphism in 2.2.1, we find for eve-
ry bounded complex of left Dx-modules M* with coherent cohomology a natural
morphism
Mo : S(M*) — DR(M*)Y
by composing the natural morphism (cf. A.2)
n: R Hom%  (M®,0x) — R Homg  (DR(M*), DR(0x))

with the isomorphism induced by & (2).
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Call n5e := R Hom (., Cx) and Bor(ne) the biduality morphism correspond-
ing to DR(M*) (¢f. 1.1.2). According to A.3 we have Epg ey = M3e © BpR(M0), a0d
we obtain the following corollary of the LDT.

3.5.2. Corollary — For every bounded complex of left D x -modules M*® with holonomic
cohomology, the natural morphism

Mee : S(M*) — DR(M*)Y
is an isomorphism (in the derived category).

3.5.8. For every complex of left Dx-modules M*, its (internal) dual is defined by
(M*)* := Homep, (wx,D(M*))[d], which is again a complex of left Dx-modules
(¢f. [Ca], 1.1). The internal duality induces a self-(anti)equivalence of the derived
category D2(Dx).

The isomorphism « of 2.1.2 induces natural isomorphisms 0% ~ Ox and

S((M*)") —— DR(M")
for every bounded complex of left D x-modules M* with coherent cohomology.

3.5.4. Corollary — For every bounded complex of left D x -modules M* with holonomic
cohomology, there exist natural isomorphisms

S((M*)*) === S(M*)Y, DR((M*)*) —— DR(M"*)".

3.5.5. Definition — A bounded constructible complex X* € D%(Cy) satisfies the sup-
port conditions if it is concentrated in degrees [0,d] and if dimsupp h'K* < d — i for
each i =0,...,d. If both X* and its dual (X*)V satisfy the support conditions we say
that X* is a perverse sheaf.

The full subcategory of D%(Cx) whose objects are the perverse sheaves is known
to be abelian (cf. [B-B-D]).

If M is a holonomic D x-module, according to [Ka] we know that S(M) and DR(M)
satisfy the support conditions (¢f. also [M-N1], prop. 3). The LDT gives us the
following result.

3.5.6. Proposition — If M is a holonomic Dx-module, the complexes S(M) and
DR(M) are perverse sheaves.

Appendix

In this Appendix we have collected some results on the extension of some func-
tors, natural transformations and commutative diagrams to the category of com-
plexes. A complete reference for these constructions is [De2], 1.1 (see also Erratum
in [SGA 41], p. 312). We have extracted from there (some of) the results we need
and, for the ease of the reader, we have stated them in a very concrete way.
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A.1. Let Rx be a sheaf of rings on a topological space X, let RS be a sheaf of rings
contained in its center and let R® the global sections of R%. The functors

Homazx(_a _) : C(:RX) X O(RX) B C(RO)7
Homg  (—,—) : C(Rx) x C(Rx) — C(R%)
— @y = O(Rx) x O(Rx) — C(R%)
are defined with the usual conventions.

Given two complexes of left Rx-modules F*,J*, the complex A* = Hom% (J*,7°)
is defined by A" = qup:n Homg, (FP,97) and the differential dgq(h) = dyjoh —
(—1)%¢2h o dy. The complex Hom%  (F*,J*) is defined in a similar way.

Given a complex of right (resp. left) R x-modules N* (resp. M*), the complex B* =
N* Gz, M* is defined by B" = @, _,, W @z M* and the differential ds (y ® x) =
(dny) @z +(—1)%8Yy® (daer). The action of these functors on morphisms are defined
in the direct way (no signs are involved).

The complex G* = F*[1] is defined by §" = F"*! and dge = —dg-e.

We have derived functors

RHom} (—,—): D*(Rx) x DT (Ry) — D*(R")
R Hom% (—,—): D*(Rx) x DY (Rx) — D*(R%)

for *x =% =@ or x = —, % = +, and

— @z, —: D™ (,Ry) x D~(Rx) — D~ (R%)

(c¢f. [Hal, II, § 3, § 4; see also [Sp] in order to avoid boundedness conditions on com-
plexes).

A.2. Given three complexes F*,7J*, J* of left Rx-modules, we define a natural mor-
phism in C(R%)

£ Homy  (3°,7°) — Homq (Hom%  (3°,3%), Hom%  (3°,3%))
in the following way
£ (h)(a) = (—1)deeb)dega) g o py.
In a similar way we define a natural morphism
n®: Homy (3°,7°) — HomZo (Hom%  (3°,3°), Hom% (3°,7%))
by putting n*(k)(b) = hob.
If ¥ = Rx, we have an obvious identification (no signs are involved) between

the identity functor of C(Rx) and Hom%, (Rx,—), and then we obtain a natural
“biduality morphism”

B* 9 — Homiyg (Homs, (9°,3%),3°)
given by §*(h)(a) = (—1)tIesM(dee)q(p).
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Given three complexes F*,J°,J* of left Rx-modules, call X* = Hom%, (F*,F°),
L* = Hom%  (3°,7°), M* = Hom%  (J°,5°), §* = Homaz%(ﬁ',x') and n* : M* —
g, (77.)* = Homi.RUX (77.’5{.)7

B* 1 L* — Homkqg (Hom%  (£°,K°),K*) = Hom,. (G, %)
the natural morphisms defined above.

A.3. Lemma — With the above notations, the equation (n®)*o3* = &* holds.

A.4. Assume that RS is the constant sheaf associated with a field K. Then, the
natural morphism £°* induces another one

&:RHomy, (9°,5°) — R Homo (R Hom%, (G, 3*), R Hom% (F°,5H*))

for F* € D~ (Rx) and G*, H* € D*(Rx). For that(®), take a bounded below injective
resolution §* — J* and a bounded below injective Godement resolution H* — J°,
i.e. J¥ = A, J5 where A is the identity map from the space X, endowed with the
discrete topology, to X, and the g} are injective sheaves of A7'Rx-modules. We
then have R Hom% (F*,5°) = Hom% (F°,7°), R Hom% (S°,H*) = Hom%  (5*,3°)
and R Homy (F*,3*) = Hom% (3F*,3°). The last complex is a complex of injective
sheaves of K-vector spaces because

Homgy  (F°,3°) = H Homg . (F7,3P7™)

PEZL
= [[ Homaz, (37, A.85%") = A, ( 11 HomAfngX(A_lpr,38+n))7
PEZ PEL

and so
R Hom (R Hom%  (G*,3(*), R Hom% (F°,5(*))
= Hom;,{g{(Homazx (G°,3°), Hom% . (3°,3°))
= Hom (Homy  (J°,3°%), Hom%  (3°,3°)).
The morphism £ then comes from the natural morphism
£ Homy  (3°,7°) — Homq (Homy . (J°,3%), Hom%  (3°,3°)).

In a similar way the natural morphisms 3* and n* induce other ones

B:5 — RHomazg( (R Hom%x, (G, 3*),3H*)
for G*,H* € DT (Rx) and

n: R Hom% (3°,G°) — R Homfg (R Homy  (H*,3*), R Hom% (H*,5G*))
for F*,G* € DT (Rx) and H* € D~ (Rx).

(A1 owe this argument to Z. Mebkhout.
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The natural morphisms £°, 5°,1°,&,3,n are “cocontractions” in the (co)sense of
[De2], 1.1.9.

A.5. For each m € Z, we have natural isomorphisms

Homsy, (9°[~m],8%) " Homsy, (3°,8°)(m] <2 Homy,, (3*,3°[m))

given by i ., (a) = (=1)" %%, 13 ,,(b) =b.

Let F°,J°,J° be three complexes of left Rx-modules and let m be an integer.
Call A* = Hom%x, (J°,3°),B* = Hom% (3°,3°),A;, = Hom% (J°,d°[m]),B;, =
Hom%  (F°,3°[m]) and

A, - Homy (A5, Br,) = Homi (A*, B*)

the isomorphism obtained by composing

Homi (42,,82) 2 Homs (4°[m), 35,
(nim)* ’r]{,—m
—_— —_—

Homiyg (A*[m], B*[m]) Homiyg (A*,B*[m])[~m]

Mm Homiy (A*,B*)[m][—m] = Homs, (A*,B").

Call
£ Homy (9°,7°) — Homgzg((Homazx (3°,3°), Homy . (3*,3%))
'&" . Hom%  (F°,7°) — Homgzg((Homagx (3°,3°[m]), Hom% . (F*,3°[m]))
the natural morphisms.

n

A.6.Lemma — With the above notations, the equality A7, o '¢" = (=1)™"E™ holds for
every n € Z.

A.7. For each d € Z, we have obvious natural isomorphisms (there is no signs in-
volved)

Vd d

HomK(in)(j.[_d}vH.) <T1 hd Homazx (j',g') VTQ) HomK(RX)(j.,g.[d]).

Call v¢: h® RHom%  (7*,3°) — Homp x)(J°,d°[d]) the induced “derived” isomor-
phism.
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A.8. Lemma — Given three complezes F*,3°,7° of left Rx-modules and an integer
d € Z, the following diagrams are commutative:

hd .
hHom% (F°*,7%) —€> h Homf, (Homy, (3*,3*), Hom% . (3*,3°))
v (=143 _g)*orf

Hom,  (—.3%)

Hompg (x)(F°,9°[d]) ——— HomK(Rg()(HomazX (3°[d],3*), Hom% . (F*,3°)),

hd .
hHom%  (F°*,7%) —£> hd Homgg (Hom (3¢, d°), Hom% (3°,3°))
Z (3 )~ oy

Homs, (=)

Homp () (F*[—d],I*) ———— Homp (xg ) (Homk, (3°,3°), Homy, (F*[—d}, 3*))

A.9. Given four complexes P*,M*,J*, D* of left Rx-modules, a complex F* of R~
modules and a complex Q* of (Rx,Rx)-bimodules, we define natural morphisms

A} - Homy, (P*, Q%) @ry M* — Hom% (P*, Q" ©x, M)

A3 Hom%  (Q° (E.QgRX M*,3%) — Hom%, (M*, Homgy (2°%,3°))

g« Homg (D*, %) @ny M* — Homsy (Homg, (M*, D*),5*)

N(h®2)(z) = (~1) 45T h(z) o
) — (_1>(degv)(degu)g(u ® ’U)
0@ w)(0) = (~1) E D@L p(e(w))

>~
—~ Ne
—
S
~
—~
<
=
—~
<

A.10. Lemma — Given three complexes P, M*,J° of left Rx-modules and a complex
Q* of (Rx,Rx)-bimodules, the following diagram

Hom%  (P*,Q° Q.%QX M*) *>£ Homo (Hom , (Q* é)ggx Me,3°), Hom%x  (P*,3%))

Aﬁ [09)rens

. £ ®ld .
Hom@  (P*,Q%) @z M* — Homi, (Homy, (2*,3°%), Homzy  (P*,3*)) @xc M®
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is commutative. In particular, if Q° = Ry, then we obtain a natural commutative
diagram

£

Hom% (P*,M*) ———— Homazg((Homazx (M*,3°), Hom%  (P*,3°))

V] I

. é-. ®Id .
Hom% , (P*,Rx) @z M* —— Homaeg( (3, Hom%  (P*,3°)) @z M".

A.11. Leti: F — X be a closed immersion and denote Rp = i 1Ry, R% =i~ 1RY.
Given left Rx-modules J,J, there are well known canonical natural morphisms
f:it Homg, (3,d) — Homx,. (i~ '3,i713)
n it Homg (3,d) — Homx, (i'D,i'd)
g i Homs, (3,9) =, Homg . (i713,i'9).

They induce natural morphisms f*,n*, g* at the level of complexes in the obvious way
(no signs are involved).

Given two complexes J*, J* of left R%-modules, consider the following natural mor-
phisms

n® it Homq (7°,9°) — Homo (i'9°,4'3°),
B° i~ Homyg (3°,3%) — Hombo (Homgg (i~' Homq (3°,3°),i'3"),i'3°),
(%) : Hom&o (i* Hom&g (Hom, (3°,8%),8%),i'8") — Hombo (i'9°,i'3")

the morphism induced by i'3* : i'J* — ' Hom3,. (Hom_?Rg( (J%,3°),d°) and
(9%)* : Homy (Homy (i~' Hom%, (3°,3°),i'°%),i'3")
=, Homiy (i' Homo (Hom (3°,3%),3°),i'3")
the isomorphism induced by
g* i Hom& (Homsy (9°,3°),8%) —— Homsy (i~" Homsy (7°,3°),i'").
A.12. Lemma — With the above notations, the equality n® = (i'3*)* o (g*)* o 3* holds.

Given three complexes F*,J*, J* of left R x-modules, consider the following natural
morphisms
i 1i! Homy  (9°,9%) — i~ Homg (Hom, (3°,3%), Hom%, (5°,3%))
et Homy (F°,7°) — HomaaF(i_lgj',i_lj')
¢ Hom, (i1 F*,i'9%) — Homﬁz%(Homﬁzp(i_lj'aiIE]'),HOmﬁzF(i_lff“,iIH'))
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and
n® i Hombeo (Homk, (3°,3%), Hom¥  (9°,3°))
— Homo (Hom, (i~'9%,1'3%), Hom, (i~'F*,'3"))
the morphism induced by
n® it Homazg( (Hom%  (3°,3%), Hom%  (3°,3%))
— Homf (i' Homy  (3°,3°),i' Homy (9*,3"))
and the isomorphisms
i' Hom, (9°,3°) ~2— Homs, (i~13*,i'3"),
i' Hom,(F°,3%) ~2— Homg, (i7'F*,i'3*).

A.13. Lemma — With the above notations, the equality n*o (i~ *€*) = £*o f* holds.

A.14. Let p:Y — X be a continuous map between topological spaces and denote
Ry =p~1Rx, R} = p~1RE. Given two left Ry-modules A, B, the well known natural
morphism

h:p. Homg, (A, B) — Homx, (ps«A, pB)

induces a natural morphism h* at the level of complexes in the obvious way (no signs
are involved).

Given three complexes of left Ry-modules A®, B*, C*, consider the following natural
morphisms

p«&*  px Hom%  (A*, B*) — p. Hom, (Hom%,, (B*,C*), Homy, (A*,C*%))
h* : p. Homy, (A*, B*) — Hom%x  (p+A®,p«B*)
m* : p. Homge (Homy, (B*,C*), Hom%, (A*,€C*))
— Homy (ps Hom% , (B*,€*), Hom%  (p«A®,p«C*))

the morphism induced by using h* twice, and
q* : Homy (p.A®, p.B*) — Hom, (p« Homg,, (B, C*), Hom% . (p+A°, p«C*))

the morphism induced by £* and h*.

A.15. Lemma — With the above notations, the equality q* oh® = m® o (p.&*) holds.
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