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Abstract

The present thesis addresses the numerical modeling of turbulence by Richardson number-
based and Variational Multi-Scale (VMS) models.

In the first part, we focus on Richardson number-based models, frequently used in
oceanography. The ocean is a fundamentally turbulent system. Indeed, when we observe
animations of the ocean’s sea level changes, what is most striking is that the ocean is full
of small-scale eddies and meanders, at all latitude bands. Thus, it is crucial to model
the oceanic turbulence, in order to improve the understanding of its effects. Here, al-
gebraic closure models based on the gradient Richardson number are theoretically and
numerically studied. These are Unsteady Reynolds Averaged Navier-Stokes (URANS)
turbulence models, largely used by physical oceanographers to parameterize the mixing
layer in the context of Oceanic General Circulation Models (OGCM), in order to better
take into account the influence of the atmosphere-ocean surface interactions. We perform
a non-linear stability analysis of algebraic turbulence models for oceanic mixing layers,
supported by realistic numerical experiments. This establishes a more general criterion
for the analysis of mixing-layer models with respect to the existing references.

In the second part, VMS models for the simulation of laminar and turbulent incom-
pressible flows are studied. These are an emerging class of Large Eddy Simulation (LES)
turbulence models, that are increasingly used as a valid alternative to LES as they provide
a similar accuracy, and avoid some drawbacks. The simulation of wall-bounded flows with
VMS models, however, may become very expensive in terms of computational resources
due to the computation of boundary layers, that requires very fine meshes in the normal
direction to the walls. An alternative to overcome this difficulty is given by the use of wall
laws. Wall laws are widely used in engineering simulation of turbulence, usually in RANS
models. Here, we focus on the use of VMS-LES models with mixed boundary conditions
including wall laws. We propose to work with a projection-based VMS-LES model, that
provides a three-scale separation. In view of proposing a viable numerical method for
the approximation of both laminar and turbulent flows, we also consider the combination
with stabilized ad-hoc discretizations, that perfectly fit into the VMS framework. The nu-
merical analysis and the validation through the simulation of 3D relevant flows on coarse
grids justify the interest of our approach. The proposed method performs similarly to
more complex state-of-the-art VMS models, and offers a good balance between accuracy
and computational complexity.






Resumen

La presente tesis aborda el modelado numérico de la turbulencia mediante modelos de
Richardson y de Multiescala Variacional (VMS).

En la primera parte, nos centramos en los modelos basados en el niimero de Richard-
son, que se utilizan con frecuencia en Oceanogrfia. El océano es un sistema béasicamente
turbulento. Por lo tanto, es crucial modelar la turbulencia océanica, con el fin de mejorar
la comprension de sus efectos. En este trabajo, los modelos algebraicos basados en el
numero gradiente de Richardson son tedrica y numéricamente estudiados. Estos mode-
los pertenecen a la clase de modelos de turbulencia URANS (Unsteady Reynolds Ave-
raged Navier-Stokes), y son en gran medida utilizados por los fisicos oceandgrafos para
parametrizar la capa de mezcla en el contexto de los Modelos de Circulacion Oceédnica
General (OGCM), con el fin de tener mejor en cuenta la influencia de interacciones entre
la atmosfera y la superficie del océano. Llevamos a cabo un andlisis de estabilidad no-
lineal de modelos algebraicos de turbulencia para capas de mezcla oceanicas, apoyado por
experimentos numéricos. Este estudio establece un criterio mas general para el anélisis
de modelos de capa de mezcla con respecto a las referencias existentes.

En la segunda parte, se estudian los modelos VMS para la simulaciéon de flujos in-
compresibles en régimen laminar y turbulento. Estos modelos se utilizan cada vez mas
como una vélida alternativa a modelos de tipo LES (Large Eddy Simulation), ya que
proporcionan una precision similar, y evitan algunas desventajas. La simulacion de flujos
limitados por paredes sélidas a través de modelos VMS, sin embargo, puede llegar a ser
muy costosa en términos de recursos computacionales debido al calculo de las capas limite,
que requiere un mallado muy fino en la direccién normal a las paredes. Una alternativa
para superar esta dificultad viene dada por el uso de leyes de pared. Las leyes de pared
son ampliamente utilizadas en la simulaciéon de la turbulencia en Ingenieria, usualmente
en modelos de tipo RANS. En este trabajo, nos centramos en el uso de modelos VMS-LES
con condiciones de contorno mixtas, que incluyen leyes de pared. Proponemos trabajar
con un modelo de proyeccion VMS-LES, que proporciona una separacion del flujo en
tres escalas. Para proponer un método numérico viable para la aproximacién de flujos
laminares y turbulentos, también consideramos la combinacién con métodos estabilizados,
que encajan perfectamente en el marco VMS. El andlisis numérico y la validacién a través
de la simulacion de flujos relevantes en 3D justifican el interés de nuestro enfoque. El
método propuesto proporciona resultados similares a los de otros modelos VMS mas com-
plejos existentes en la literatura, y ofrece un buen balance entre precisién y complejidad
computacional.
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Introduction

One of the most challenging scientific problem of our days is the understanding of turbu-
lence. Turbulent phenomena are present in the everyday-life, so that its understanding
is of primary importance, but there is no a rigorous definition of it, and many physical
mechanisms governing turbulent motions remain unknown. Only to give an example on
how turbulence strongly influences our daily life, we can mention that without the mixing
it provides, we could get no fresh air to breath and everything in the modern world would
overheat or freeze. Although the problem of understanding turbulence is still far from
being solved, some facts can be deduced from observations and experiments. Neverthe-
less, large numerical simulations by means of turbulence models on huge computers seem
to be increasingly the key for understanding and predicting the turbulent motion of fluids.

In this work, we will focus our attention on incompressible flows. The incompressible
flows are specified mathematically by the incompressible version of the set of Navier-
Stokes equations, as well established by the classical theory of fluid mechanics. This is
theoretically valid at the same time for two crucial regimes of the flow, laminar and turbu-
lent, although they are very different to each other from the physical point of view. The
occurrence of one or the other state strongly depends on the so-called Reynolds number
associated to the flow. This was observed by Osborne Reynolds (1842-1912) in the later
half of the 19th century. In typical industrial, environmental, and other applications of
practical interest, turbulent flows (occurring at high Reynolds numbers) are surely preva-
lent due to its positive features like a more effective transport and mixing ability with
respect to a comparable laminar flow, that is why they have raised a very high interest
among the scientific community.

The major problem in treating turbulent flows is due to the wide range of scales
involved. For laminar flows already, a substantial range of scales may be encountered.
Dealing with turbulent flows, however, it means to deal with even broader ranges of scales
in comparison to laminar flows, that are also in non-linear interaction with each other.
This makes an analytical analysis extremely complex. Thus, a high hope is put on a
numerical way of solving this challenging problem. The straightforward approach, i.e.
solving directly the Navier-Stokes equations with appropriate boundary conditions in a
numerical manner discover its limitation very soon. Indeed, this procedure, called Direct
Numerical Simulation (DNS), demands for a enormously high computational effort (be-
yond the limits of the currently available computer power in most cases) to accurately
solve with extremely fine grids the broad range of scales involved. Turbulence models are
then introduced, in order to reduce this computational complexity.



2 Introduction

One of the approaches to turbulence modeling that substantially lower the demand of reso-
lution is given by simulations based on the Reynolds Averaged Navier-Stokes (RANS)
equations. This approach guarantees the lowest computing cost among the turbulence
models, but this fact is counter-balanced by a full degree of modeling. Indeed, this proce-
dure relies on the so-called Reynolds decomposition, which consists in decomposing all the
variables that determine the flow motion into a mean value, aimed at describing its beha-
vior at large scales, and a fluctuating part, aimed at describing its behavior at small scales.
According to this, the complete Reynolds stress tensor has to be modeled. Turbulence
models have to be used for this purpose which are, however, lacking generality, since they
have to model an extremely wide range of scales. A large number of related turbulence
modeling approaches (see Wilcox [88]) have been developed ranging from simple algebraic
models to a full Reynolds stress closure. To the category of URANS (Unsteady RANS)
models belong the algebraic models based on the so-called Richardson number, frequently
used in oceanography, that parameterize the turbulence by means of algebraic expressions
in terms of the gradient Richardson number, representing the balance between stabilizing
buoyancy forces and destabilizing shearing forces.

An improvement to RANS is given by the so-called Large Eddy Simulation (LES)
models, for which there exists a really extensive literature. It is an intermediate approach
in its requirement of computational effort and degree of modeling between DNS and the
simulation utilizing the RANS equations. The strategy of LES consists of resolving the
larger flow structures and modeling the effect of the smaller flow structures on the larger
structures. The traditional LES relies on a filter to separate resolved and un-resolved
scales. On the one hand, a coarser discretization, which is substantially coarser than a
comparable DNS discretization, is sufficient for resolving the larger scales and, on the
other hand, the universal character of the statistical behavior for the smaller scales jus-
tifies the modeling process (see Kolmogorov [64]). The principal advantage with respect
to RANS models is that only the action of the smaller scales, with their more universal
character, on the resolved flow (larger scales) have to be parameterized through a subgrid-
scale model, aspect that is lost within the RANS technique. Historically, the Smagorinsky
(cf. |56]) model was the first subgrid-scale model introduced, and is still a commonly used
one in the framework of LES due to its attractive simplicity. Since it was introduced in
1963 in the context of atmospheric weather prediction, a number of shortcomings of the
standard Smagorinsky model based on a constant coefficient have been detected in the
meantime, giving rise to more complex and advanced LES models.

Currently, we have distinguished three basic conceptual alternatives for the numeri-
cal simulation of turbulence: DNS, LES, and simulations based on the RANS equations.
Within this classification, the three concepts for the numerical simulation of turbulent
flows struggle with different problems in terms of computational accuracy and efficiency.
Note that an important feature of a turbulence model should be to replicate laminar flow
regimes t0o.



In view of this situation, the Variational Multi-Scale (VMS) method appears to be a va-
luable framework for developing improved numerical models in fluid mechanics. The VMS
procedure was introduced in 1998 by Hughes et al. in [51] for multi-scale modeling in com-
putational mechanics problems, and subsequently applied to turbulence modeling in com-
putational fluid dynamics in order to generate a new approach to LES (cf. [53], [54], [53]).
Nowadays, the VMS models constitute a particular class of LES models, and are in-
creasingly used as a valid alternative to LES for the approximation of the incompressible
Navier-Stokes equations, as they provide a similar accuracy and avoid some drawbacks.
The basic concept consists in differentiating scale groups. In contrast to the use of a filter
in the aforementioned traditional LES, a variational projection between function spaces
separates scale ranges within the VMS method. In its original version, it is assumed a
separation of two scale groups, with coupling terms. Usually, in analogy to the termi-
nology of LES methods, it may be referred to them as resolved scales and un-resolved
scales. The “closure” problem in this case is to provide an approximate solution to the
un-resolved small scale flow in terms of the resolved flow. Nevertheless, the framework
allows various other arrangements, going beyond this two-scale decomposition, so that
several classes of VMS methods have been distinguished in the meantime. In Collis [33]
and Gravemeier [43], for instance, the VMS method for LES, which may be abbreviated
as VMS-LES, was broadened by raising the number of separated scale groups beyond
the original two-scale separation to three scale groups. As in the two-scale separation, a
completely different numerical treatment for any of these groups is enabled. The three-
scale separation accounts specifically for “large resolved scales”, “small resolved scales”,
and “small un-resolved scales”.

In this framework, the direct influence of the subgrid-scale model, usually of (Smago-
rinsky) eddy viscosity-type in the applications to date, is confined to the small resolved
scales. As a result, the large resolved scales are solved as a DNS in the three-scale VMS
methods, i.e. without any direct influence of the modeling term. Of course, the large re-
solved scales are still influenced indirectly by the subgrid-scale model due to the inherent
coupling of all scales. The restriction of the direct influence of the subgrid-scale model to
the smaller resolved scales also approaches an established principle in turbulence theory,
namely Richardson’s enerqy cascade (cf. [75]). At the beginning of Richardson’s energy
cascade, the kinetic energy is brought into the turbulent flow by productive mechanisms
at the largest scales. Following the picture of a cascade, the energy is then transmitted to
smaller and smaller scales by processes not depending on the kinematic viscosity. The vis-
cosity merely acts at the end of the cascade, which is constituted by the smallest scales, by
enforcing dissipation of the energy. Thus, the energy cascade proceeds due to a breaking-
up of larger eddies which transfers the energy formerly attributed to them to smaller
eddies. This goes on until a finally stable eddy motion is reached, and the dissipation of
kinetic energy can then take place. Within this cascade, most of the energy that is ex-
changed across a certain scale-size level comes from the previous larger scale-size level and
goes to the next smaller scale-size level. Kolmogorov quantified Richardson’s picture of an
energy cascade through the well-known Kolmogorov’s energy spectrum (cf. [64]), that has
been established and confirmed as a typical energy spectrum of turbulence at sufficiently
high Reynolds number in the meantime. In the context of the three-scale separation of
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the VMS-LES, the energy cascade principle implies that it is reasonable to assume the
mutual influence of the large resolved scales (i.e., the largest scales of the problem) and
the un-resolved scales (i.e., the smallest scales of the problem) to be of minor relevance.
This feature is in contrast to the Smagorinsky model, where the effect of the un-resolved
scales is typically taken into account equally for all resolved scales. As a consequence, the
large resolved scales are usually over-damped, and this yields results with low accuracy,
un-useful for most flows of practical interest. Such difficulty is solved by more advanced
LES models, where the eddy viscosity affects only a short range of resolved small scales
(see, for instance, the Taylor and Rational LES models [28], [39], [56]), similarly to VMS
methods. However, there is another important aspect of turbulence modeling that seems
could be overcome by VMS, but not by LES models. Indeed, no commutation error
between the variational projection and differential operators occurs, that arises for LES
models because the averaged/filtered equations do not satisfy the boundary conditions
(cf. [58]). On the contrary, VMS are intrinsically discrete models, and not approximations
of an intermediate averaged model. Several works (cf. [44], |59]) show the commutation
between the projection operator defining the large scales in certain VMS methods and
differential operators.

In this work, we take into account several alternatives for the numerical simulation
of turbulence already presented, with a special mathematical insight on the numerical
modeling of turbulence by Richardson number-based and VMS models. The emphasis is
on the numerical analysis of these models in the context of the Finite Element Method
(FEM), without disregarding however theoretical aspects of a more general mathematical
analysis, that has allowed to shed some new light on various aspects of turbulence mode-
ling for practical fields of interest, especially in oceanography and engineering. I am pretty
convinced that the mathematical rigor can continue to offer a significant contribution to
understand turbulence, that despite the promising recent advances is still a problem pre-
senting lots of obscure aspects and open questions to work on. In this direction goes the
spirit of this work, where we have gathered different issues of modeling, mathematical and
numerical analysis, with the aim of trying to take another step forward towards a better
modeling of turbulence.

This work is structured in two parts. The first part concerns the study of Richardson
number-based models for the simulation of oceanic turbulent mixing layers, while the
second part is focused on projection-based VMS turbulence models improved with wall
laws for the simulation of laminar and turbulent incompressible flows. We are going to
describe more in detail the overview of each part, stating the difficulties and the state
of the art of the problems dealt with, as well as the strategies used to address and solve
them in this work.



Part I:

Richardson number-based Mixing Layer Turbulence Models.

The mixing layer is located immediately below the ocean surface, and its formation is
due to atmospheric-oceanic factors of exchange driven by the wind-stress, that generates
a strong turbulent mixing dominated by vertical fluxes. The dynamics of mixing layers
play an important role in the global oceanic circulation and global climate changes. In-
deed, due to the larger specific heat of seawater with respect to air, the top 2.5 m deep
oceanic layer holds as much heat as the full atmosphere over it. The depth of the mixed
layer, which is the upper homogeneous part of the mixing layer with almost constant
density, is thus of high interest for determining the Sea Surface Temperature (SST) range
in oceanic and coastal areas. In addition, the heat stored within the oceanic mixed layer
provides a source for heat that drives global variability such as El Nino. The mixed layer
has also a deep impact in the evolution of polar ices [25], and it is closely related to dif-
ferent aspects of the oceanic bio-systems too. In global oceanic circulation, it determines
how momentum, heat and eventually freshwater are entering or leaving the ocean |[3],
and for large time scales it is a central component of the global meridional overturning
circulation [52], that determines the ventilation of deep ocean.

The bottom of the mixed layer corresponds to the top of the pycnocline, a thin layer
with a large gradient of density (see |16], [34] for a physical description of the structure
of mixing layers). For instance, in tropical seas, where the density is just a function
of the temperature through a state law, a sharp thermocline (zone of high gradients of
temperature) is formed. A similar structure of the mixing layer takes place when haline
stratification is observed (cf. [62]).

The Oceanic General Circulation Models (OGCM) include mixing-layer parameteri-
zations in order to better take into account the influence of the atmosphere-ocean surface
interactions (cf. [8], [63]). Indeed, they incorporate specific turbulence models for mixing
layers, and within these the algebraic ones, that parameterize the turbulent viscosity and
diffusion by means of algebraic expressions in terms of the gradient Richardson number.
The Richardson number represents the balance between stabilizing buoyancy forces and
destabilizing shearing forces. These kinds of first-order closure models were introduced
in the 80’s by Pacanowski and Philander [49], and they apply to stratified shear flows,
that are assumed to have reached a vertical equilibrium, after the vertical mixing gene-
rated by the wind-stress has been re-stabilized by buoyancy forces. The model proposed
by Pacanowski and Philander (1981) was modified in several ways, in order to obtain
a better fitting with experimental data (see the model of Gent (1991) [22]). The cited
models are referred as local models, since they only describe local phenomena such as
turbulence induced by wind-stress. Another kind of improvement was based upon the
parameterization of the vertical profile of turbulent kinetic energy (KPP model of Large
et al. (1994) [32]). This model is called mixed model, as it combines a local and non-local
approach, that allows to take into account also non-local phenomena such as convection.
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The estimation of parameters characterizing local and non-local phenomena is based on
the well-known Monin-Obukhov similarity theory (cf. [46]). Note that in all models in-
troduced, only vertical eddy viscosity and diffusion effects are included. More complex
and sophisticated parameterizations of the vertical turbulent mixing of k£ — ¢ kind have
also been developed (e.g., second-order closure models of Mellor and Yamada (1982) [44],
and Gaspar et al. (1990) [21]), and widely used in physical oceanographic applications in
the context of OGCM.

In the recent years, the mathematical community has shown an increasing interest in
the theoretical and numerical analysis of geophysical flow problems. This interest has been
mainly addressed to models for large scale oceanic flows, frequently using shallow water
approaches in simulating coastal and tidal dynamics. The parameterization of turbulence
in the mixing layer must take into account the two forces that act in the momentum and
mass exchange produced by mixing effects: buoyancy and shear. However, rather minor
attention has been paid to buoyant turbulence effects. Despite that, the behavior of SST
strongly depends on a correct description of the turbulent mass and momentum mixing
in the upper oceanic layer, where buoyancy plays a key role. This introduces additional
complexities with respect to the usual modeling of turbulent flows with constant density,
from both the physical and mathematical standpoint. There are several relevant ques-
tions concerning mixing-layer models (MLM in the following) that may be analyzed in
mathematical terms, but that nowadays have received few attention from the mathemati-
cal community. The main one is to determine whether they provide accurate numerical
predictions of the oceanic flow in the surface layer, as this is the goal of these models.
This requires to determine whether these models are mathematically well posed problems
(in the sense of Hadamard), and whether their numerical approximations are stable and
provide discrete solutions close to the theoretical ones. Another relevant issue is to ana-
lyze the mathematical stability of physically stable configurations. These configurations
correspond to decreasing (from ocean surface to the bottom) density profiles, associated
to well-mixed turbulent layers, i.e. to stable distribution of mass and momentum, and
are typical in tropical oceans. A right numerical simulation of such configurations only
will be possible if they are mathematically stable. A third mathematical issue of interest
is the analysis of existence and asymptotic stability of continuous and discrete equilibria
related to MLM, and their relationship with the above-referenced well-mixed layer con-
figurations. This requires to determine whether well-mixed layers could act as a kind of
“absorbing configurations” in finite-time, that asymptotically evolve to steady states.

In general, the mathematical and numerical analysis of MLM technically faces hard
difficulties, and up to my knowledge, there are just a few references addressing this analy-
sis on the last cited more complex and sophisticated second-order closure models at the
present date. These studies has been mainly conducted in the geophysical community
by Burchard and Deleersnijder (cf. [17], [7]), and they address a linear stability analysis
on strongly simplified versions of second-order closure schemes. Hereafter, we focus our
attention on the classical first-order algebraic closure models of Pacanowski-Philander [49]
and Gent [22], and on a more recent algebraic turbulent MLM, proposed by Bennis et
al. in [2]. Despite their apparent simplicity, the mathematical analysis of these models is



quite involved. This mainly occurs because the turbulent viscosities and diffusions depend
on the gradients of the unknowns. In general, energy methods fail to obtain estimates in
norms strong enough (these should be of W?2? kind) to handle uniformly bounded gra-
dients from below and from above. In [2], we find an attempt to give a mathematical
and numerical insight to the study of algebraic closure models, by a linear analysis of
asymptotic stability for continuous and discrete equilibria. From the theoretical point of
view, the purpose of this first part of the thesis is mainly to improve and extend this
study to the actual non-linear case, performing a non-linear stability analysis of algebraic
turbulence models for oceanic mixing layers. The importance of such a study lies on the
fact that a linear analysis is simply justified as long as the perturbation from a smooth
solution (and its gradient in this case) is small, but only a non-linear analysis can precisely
delineate the effective boundaries of the stability region. This establishes a more general
criterion for the analysis of mixing-layer models with respect to the existing references.

The structure of Part I is as follows:

e In Chapter [1] we perform a mathematical analysis of unsteady algebraic closure
MLM, focused on the existence and non-linear stability of solutions close to steady
states, via the inverse function theorem in Banach spaces.

e In Chapter |2 we study the numerical stability of algebraic oceanic turbulent MLM,
discretized by the standard FEM. This analysis deals with existence and uniqueness
of discrete steady states, convergence of discrete equilibria to the continuous ones,
and non-linear asymptotic convergence of discrete time iterates to the continuous
equilibria. We will also introduce a Primitive Equations LES model for mixing
layers, that we will use as a benchmark for a numerical investigation of the finite-
time stability of MLM with respect to multidimensional perturbations.

e Finally, in Chapter |3 we investigate the finite-time (characteristic times of forma-
tion of well-developed mixing layers) and asymptotic behavior of algebraic turbulent
MLM by numerical simulations, using data corresponding to tropical seas as well as
to polar regions. The main purpose is to test on one hand the theoretical predictions
of the performed analysis, and on another hand the practical performances of the
studied models in realistic situations, in comparison with more complex models.

The main results of Part I are the product of the papers [10], [11], [12], [54] (see
Bibliography Part I), written in close collaboration with the advisors of this thesis,
Drs. Tomas Chacon-Rebollo and Macarena Gomez-Méarmol, and of the stay at the Alfred
Wegener Institute (AWI, Bremerhaven, Germany), where I have worked in close collabo-
ration with Drs. Sergey Danilov, Martin Losch, and Jens Schroter of Climate Dynamics
Section.
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Part 1I:

Finite Element Projection-based VMS Turbulence Models.

We focus here on the projection-based VMS-LES turbulence models (¢f. [51], [53], [54],
[55]). These are three-level models with “large resolved scales”, “small resolved scales”
(or sub-filter scales), and “small un-resolved scales”. The multi-scale setting clarifies the
use of sub-grid eddy viscosity to model the interaction between sub-filter scales and the
small un-resolved scales. In particular, we will address a multi-scale Smagorinsky mode-
ling of the eddy viscosity, which contains the restriction to the sub-filter scales through
a projection/interpolation operator, thus the adjective “projection-based”. A variant of
such methods consists in filtering the small scales of the deformation tensor to cons-
truct the eddy diffusion term. This method has been studied by John and co-workers
(cf. [58], [59], [60], |62]). A more complex alternative approach to projection-based VMS
methods is the “residual-based” VMS turbulence modeling (cf. [2]). The basic procedure
is to keep all terms in the residual-driven structure of the resolved flow equations, and to
compute an approximated analytical element-wise solution of the small-scale flow. Thus,
this procedure does not make use of the statistical theory of equilibrium turbulence, and
no eddy viscosity modeling is required by the residual-based VMS models.

The simulation of wall-bounded flows with VMS models, however, may become very
expensive in terms of computational resources due to the computation of boundary la-
yers with complex structures, as this requires very fine meshes in the normal direction to
the wall (see, for instance, John and Kindl [62], Bazilevs et al. [2]). A way to overcome
this difficulty, recently applied to VMS models, is to weakly impose no-slip (or Dirich-
let homogeneous) boundary conditions (cf. 3], [4]), i.e. to replace them by non-linear
Neumann-like boundary conditions. This is an alternative to the use of wall laws, which
in their turn replace the usual no-slip boundary conditions by modeled conditions that
set the stress of the flow at some distance from the wall. Wall laws are widely used in
engineering simulation of turbulence, usually in RANS models. In this work, we focus on
the combined use of VMS-LES models with general non-linear wall-law boundary condi-
tions, in the context of FEM.

The most common wall law is the logarithmic law, introduced by Prandtl in 1925
(cf. [73]), and derived by similarity laws by Von Karman in 1930 (c¢f. [87]). The mathe-
matical and numerical analysis of wall laws, as boundary conditions for the Smagorkinsky
LES turbulence model, was introduced by Parés (cf. [71]). A serious difficulty linked to
the approximation of wall laws is the discretization of slip boundary conditions. A strong
imposition of these laws only applies to polyhedric domains. The more general treatment,
introduced by Verfiirth (cf. [85], [86]), is by duality. This kind of discretization is quite
involved, as it requires a specific boundary finite element space for the multipliers. In [72],
Parés introduces a weak formulation of the slip condition. However, the analysis of these
techniques has not been extended to mixed boundary conditions, in which other kinds of
boundary conditions are imposed, in combination with wall laws, in different parts of the



boundary. This is due to a lack of density results by smooth functions for the functional
spaces involved. Here, we will analyze the case of mixed boundary conditions including
wall laws, replacing the lacking density result by smooth functions by a similar one with
finite element functions, for polyhedric domains.

Our main goal is to propose a viable numerical method for the approximation of
laminar and turbulent flows, so that we also consider the combination with stabilized
discretizations. We will use high-order term-by-term stabilization to stabilize each single
term that could lead to unstable discretizations (e.g., convection, pressure gradient), with
high accuracy (cf. [19], [20], [22]). This allows in particular to use polynomials of the same
degree to interpolate velocity and pressure. We will see as this stabilization procedure
perfectly fits into the framework of the VMS method. This further improvement too has
contributed to build a quite robust method for the simulation of laminar and turbulent
incompressible flows, that provides a good compromise between accuracy and computa-
tional complexity.

The structure of Part II is as follows:

e In Chapter 4, we derive the mathematical formulation of a projection-based VMS
model that approximate a mixed boundary value problem for the steady incompres-
sible Navier-Stokes equations, including Dirichlet and wall-law boundary conditions
to take into account inflow and solid wall boundaries at the same time. The proposed
model only needs a (fine) grid and interpolation operators on a (virtual) coarser grid.
The large scales are represented in the (virtual) coarse grid, while the sub-filter scales
are their complement into the fine grid.

e In Chapter [5] we perform the numerical analysis of the finite element approxi-
mation of steady laminar and turbulent flows by the proposed VMS model. We
prove stability in natural norms and perform a convergence analysis to the Navier-
Stokes equations with rather realistic boundary conditions, that include wall laws
and inflow boundary conditions, in steady regime. Moreover, we perform an error
analysis, which strengthen the fact that the proposed model is suitable both for
laminar and turbulent flows. In particular, for diffusion-dominated flows we recover
optimal convergence rates. The error analysis permits to prove the strong conver-
gence of the stabilized VMS method for slightly smooth flows, and a consequent
asymptotic energy balance of the system, in which the deformation and the friction
boundary energy are asymptotically conserved, and the dissipated eddy energy so
as the sub-grid energy due to stabilizing terms tend to zero. Note that the analysis
of more complex VMS methods, in particular of residual-based methods, requires
further adaptations of the analysis that we present here. Indeed, the sub-grid terms
have a very complex structure that includes convective interactions between large
and small scales, thus setting serious technical problems just to prove stability.

e Finally, in Chapter [6] we analyze the numerical performances of the proposed
projection-based VMS model applied to the computation of relevant 3D laminar
and turbulent flows, with and without wall-law boundary conditions. The numerical
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results are compared with experimental and DNS data, and other results related to
more complex VMS methods.

The main results of Part II are the product of the papers [21], [22], [23] (see Bib-
liography Part II), written in close collaboration with the advisors of this thesis, Drs.
Tomas Chacén-Rebollo and Macarena Gomez-Marmol, and other co-authors.
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Chapter 1

Algebraic Oceanic Turbulent
Mixing-Layer Models (MLM)

1.1 Introduction

In this chapter, we first introduce the governing equations of the ocean. Afterwards,
we derive the mathematical formulation of vertical (1D) algebraic closure mixing-layer
models (MLM) from a statistical Reynolds averaging of the Boussinesq equations of the
ocean. We then perform a mathematical analysis of unsteady algebraic closure MLM,
focused on the existence and non-linear stability of solutions close to steady states, via
the inverse function theorem in Banach spaces.

The chapter is structured as follows: In Section we introduce the Boussinesq
Equations of the ocean. In Section we derive the mathematical formulation of verti-
cal (1D) algebraic closure MLM from a statistical Reynolds averaging of the Boussinesq
Equations. Finally, in Section [1.4] we determine the steady states of perturbed algebraic
closure MLM (Subsection , we prove existence and uniqueness of unsteady solutions
close to a given equilibrium state (Subsection , and we use the result of existence to
prove the non-linear asymptotic stability of equilibrium solutions, for small enough data
of the problem (Subsection [1.4.3)).

The main results presented in this chapter can be found in [11].

1.2 Basic equations of the ocean

We introduce the governing equations of the ocean. Following Kowalik and Murty [30],
the effects of the Earth’s curvature on the motion of a fluid at relatively small horizontal
distances of the order of 1000 km may be neglected. To describe this motion, a rectan-
gular system of coordinates will be employed, thus making the equations and discussion
much simpler. Let us introduce a right-handed rectangular coordinate system in the tan-
gent plane to the origin (located at the undisturbed level of the free sea surface). The
coordinate system is such that the ¢ axis points towards east, the j axis points towards

13
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north, and the k axis points upwards, towards zenith (see Figure . Anyway, let us re-

w

Figure 1.1:
Rectangular coordinate system.

mark that in OGCM, spherical coordinates (see, for instance, the OPA-Ocean PArallelise
model [38], developed by the LODYC-Laboratoire d’Océanographie Dynamique et de Cli-
matologie, France, or the FESOM-Finite Element Sea-ice Ocean Model [63], developed
by the AWI-Alfred Wegener Institute, Germany) are often used.

Let us consider a connected domain w € R2. We shall assume that the fluid fills the
domain:

QO ={(x,2) eR*x = (1,y) €w,—D(x) < z <n(x;t)}, (1.1)

where D : @ — R, denotes the ocean bottom and 7 : @ x [0, 7] is the free sea surface,
being ¢ the time variable, and 7 a fixed time. The physical variables describing the state
of the ocean are:

e the velocity U:
U = u+ wk = ui + vj + wk,

where u and w denotes the horizontal and vertical components;
e the pressure p;
e the potential temperature © and the salinity S
e the density p.

Due to Earth’s rotation, oceanic flows are affected by Coriolis force. Therefore, the
governing equations of the ocean are the following (cf. [23], [50]):
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¢ Momentum conservation equations:
po U+ pV-(URU)+20W XU+ pW x (W x1r) -V -0 = —pg, (1.2)

where o is the stress tensor, W = 6(0, cos ®, sin ®) is the Earth’s rotation vector,
0 the angular rotation rate of the Earth and ® the latitude. The vectorial product
W x U represents the Coriolis acceleration, r the position vector of an arbitrary
fluid element, W x (W X r) the centripetal acceleration, and g = (0,0, g) the
gravity acceleration. Both Coriolis and centripetal accelerations are a consequence
of expressing the equations in a rotating coordinate frame.

e Mass conservation equation:
Dip+pV-U =0, (1.3)
where D; = 0, + U - V denotes the total derivative.
e Internal energy conservation equation:
pcpD© + ©(0ep/p)(Dip) = K AB, (1.4)

where ¢, denotes the specific heat of the fluid at constant pressure, and K its
thermal conductivity. In , the first summand represents convection by the
velocity field U, the second energy variations due to pressure fluctuations, and the
r.h.s. represents energy dissipation due to molecular diffusion.

e Salinity conservation equation:
Di(pS) = K:AS, (15)
where K is the coeflicient of salt diffusion.

e Equation of state:
p=p(©,5p). (1.6)

In the ocean, complications arise because the density of seawater can depend in
subtle ways on potential temperature ©, salinity S, and pressure p (cf. [61]). Ac-
tually, equation is a non-linear equation of ©, S and p, and different accurate
formulations can be derived for it (e.g., Jackett and McDougall 28], McDougall
et al. [41], implemented in MITgem [45]). However, often in theoretical studies a
simplified equation of state is adopted of the form:

p:pr(l_QG(@_@T)+BS(S_ST))7 (17)

where the subscript r denotes a reference value, and g, Bs are respectively the
thermal expansion and haline contraction (positive) coefficients of seawater.
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In the Coriolis acceleration term in (1.2, since vertical velocities are of the order of
thousandths of the horizontal ones, the contribution provided by the vertical velocity is
usually neglected. We may rewrite:

2W x U = (— fv, fu, —2uf cos ) = C,

where f = 20sin ®, and denote this term by C. About the centripetal acceleration term
in (1.2)), we may use a potential ®, to write (cf. [50]):

_ W x|

W x (W x1)=-Vb, & 5

One of the mean features of the ocean is that the only term where density variations are
important is the buoyancy (or gravity) term in the vertical component of the momentum
equations . This approach is called Boussinesq approzimation, and it leads to the
so-called Boussinesq Equations:

( (a) (9tU+(U-V)U—I/AU+C+Zp:—pﬁg in Qx(0,7)
(b) V-U=0 in Qx(0,7)
(¢) 80+U-VO - KoAO =0 in Qx(0,7) (1.8)
(d) 9,8 +U-VS— KsAS =0 in Qx(0,7)
(e) p=p(©,5,p) in Qx(0,7)

\

In (1.8)), we have approximated seawater by a Newtonian viscous incompressible fluid, so
that the stress tensor takes the form:

0ij = —Pdij + Tij,

where 6; ; is the Kronecker delta, and:

8ui i 8uj
Tij = ,
I a (9xj c‘hz
is the viscous stress, with p the dynamic (or molecular) viscosity. Moreover, we have
considered the density variable as a deviation from a reference seawater density p,, and we

have called the kinematic viscosity v = (11/p,), the temperature diffusion K¢ = (K%/p,c,)
and the salinity diffusion K¢ = (K?/p,).

1.3 Setting of algebraic closure models

We derive the mathematical formulation of vertical (1D) algebraic closure MLM from
a statistical Reynolds averaging of the Boussinesq Equations . The ocean flow is
fundamentally turbulent, and it is necessary to model the oceanic turbulence in order to
give a better understanding of its effects. In this work, we choose to use the URANS
(Unsteady Reynolds Averaged Navier-Stokes) approach (cf. [34]), and we briefly describe
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it. The first step consists in decomposing all the variables that determine the flow motion
into a mean value (7)), which describes its behavior at large scales, and a fluctuating
part ('), which describes its behavior at small scales. This is the so-called Reynolds
decomposition, and for an arbitrary scalar variable ¢ of the flow, it reads as ¢ = ¢ + ¢'.
If we call ¢ and 1) two generic scalar field variables, we have that the averaging operator
(7) must satisfy the following rules, called Reynolds azioms:

e Linearity: o -
o+ =0¢+1and ap = ap, a € R.

e Commutativity with temporal or spatial differentiation:

056 = 0,0, s=tors=ux,y,z2.

e Generalized idempotence: o
oY = ¢ Y.

There exist different ways of averaging, being ensemble, time and space averaging the
main ones. Here, we choose to work with ensemble (or statistical) averaging, that is
the most general, and of course satisfies the Reynolds axioms. It consists in taking into
account the measurements from N identical experiments or numerical simulations. If we
denote by ¢" the n — th result for an arbitrary scalar variable ¢ of the flow, the ensemble

averaging is obtained as:
N

_ . 1 n

d(x;t) = Jim — ; " (x;t). (1.9)
By applying the Reynolds decomposition to system (|1.8)), and averaging by the ensemble
operator ([1.9), we obtain the statistical averaged Boussinesq Equations for the mean flow:

, Vi_ P

(@) U+ (U-V)U+V-R—-vAU +C + PRl in Qx(0,7)
(b) V-U=0 in Qx(0,7)
(¢) 0+U -VO+V . -To - KoAO =0 in Qx(0,7) (L10)
(d) 9,S+U-VS+V -Ts— KsAS =0 in Qx(0,7)
(e) p=p(®,5,p) in Qx(0,7)

\

where R is the Reynolds stress tensor, given by:
R=U U, (1.11)

and:

To =0'U, T¢=SU. (1.12)
From the statistical averaging of the Boussinesq Equations ((1.10), we derive the mathe-
matical formulation of vertical (1D) algebraic closure MLM. Note that the classical al-
gebraic MLM of Pacanowski-Philander [49] and Gent [22] have been introduced to pa-

rameterize the vertical mixing in tropical oceans. In this situation, several physical ap-
proximations could be applied to system ([1.10]):
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e Hypothesis of horizontal homogeneity: The mixing layer is assumed to be
strongly dominated by vertical fluxes in the region considered, so that velocity U,
pressure p, potential temperature O, salinity S and, as consequence, density p of
the fluid are assumed to be horizontally homogeneous. Thus, only vertical viscosity
and diffusion effects are included.

e Hydrostatic hypothesis: The flow is assumed to be turbulent and well-mixed,
so that the statistical mean vertical velocity w is assumed to vanish. Physically,
this means that the cited models apply to stratified shear flows, that are assumed
to have reached a vertical equilibrium, after the vertical mixing generated by the
wind-stress has been re-stabilized by buoyancy forcing.

e Hypothesis of incompressibility: In tropical seas, the mixing layer normally
reaches depths of the order of 100 m, so that the density can be considered as
independent of pressure, since the effects of compression are only relevant at greater
depths (cf. [23]). In this way, the density is just a function of temperature and
salinity through a state law, so it can be considered as a thermodynamic variable,
which is intended to represent temperature and salinity variations.

e Hypothesis of null rotation: The Coriolis term C can be neglected, which is a
valid approximation since the influence of the Coriolis force is very small in Equa-
torial regions (cf. [50]).

All the previous assumptions lead to a simplified vertical (1D) system, where the convec-
tion terms disappear, and the continuity (or mass conservation) equation is automatically
verified. To describe it, let z € [—h, 0] be the vertical spatial variable, where h > 0 denotes
the thickness of the analyzed layer, that must contain the mixing layer, and ¢ € [0, 7] be
the time variable. The system affects the statistical mean horizontal velocity (@, ), the
statistical mean pressure p and the statistical mean density p as functions of the variables
z and t. The equations governing the mixing layer becomes:

( (a) O —vp0’u=—0.(vw') in (=h,0)x(0,7)

(b) 00 —v 0> =—0.(vw') in (—=h,0)x (0,7)
(1.13)

() a;ﬁ:‘pgg—aAW) in (=h,0)x(0,7)

\ (d) atp_KLagzﬁ: _GZ(W) n (_h70> X (O’T)

where vy, and K, denotes respectively the laminar viscosity and (density) diffusion coeffi-
cients, and we recall that (u/, v/, w') and p are the fluctuations of the velocity and density
of the fluid, respectively. Equations in are the classical equations corresponding to
the modeling of a water column. Note that equations in are not closed, as mean
variables appear coupled with their corresponding fluctuating part. To overcome the clo-
sure problem, typical in turbulence modeling, the vertical fluxes appearing in the r.h.s. of
(1.13) need to be modeled.
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The algebraic closure MLM use the concept of eddy viscosity and diffusion in order to
represent turbulent fluxes. In particular, we set:

—u'w' = vpd.u, —vw' =vrd,v, —pw = Krd.p,

where vy and K are the vertical eddy viscosity and diffusivity coefficients. Note that,
by hydrostatic hypothesis, equation (¢) in is reduced to the so-called hydrostatic
equation:

8.5 = 7, (1.14)

that we can skip in the following analysis as it is decoupled from the remaining equations.
The eddy coefficients vy and K are expressed as functions of the gradient Richardson
number R, defined as:
9 9.p

pr (0.1)2 + (0.7)%’
where we recall that g is the gravity acceleration, and p, a reference density for seawater
(pr = 10° kg m™3). When R >> 1, a strongly stratified layer takes place. This corres-
ponds to a stable configuration. When 0 < R << 1, a slightly stratified layer takes place.
This corresponds to a configuration with low stability. The case R < 0 corresponds to a
configuration statically unstable, for which 0,p > 0.

R =

(1.15)

Without risk of confusion, we can omit hereafter the symbol () to denote statistical
mean values, and system ((1.13) now reads as:

(a) Ou—0.(vo,u) =0 1in (—h,0)x (0,7)
(b) O —0.(vd,v)=0 in (—=h,0)x(0,7) (1.16)
(€) Op—0:(K0D.p) =0 in (=h,0)x(0,7)

where v = vy, + vp, K = K, + Kr respectively are the total viscosity and diffusion. We
describe hereafter the modeling of the eddy coefficients vy and K1 made by the standard
Pacanowski-Philander [49] and Gent [22] models, and a more recent model proposed by
Bennis et al. [2]. The eddy coefficients corresponding to the Pacanowski-Philander (PP)
model are given by:

V:fl(R)v K:f2<R)7

where:

b1
(1+5R)?
with a; = 1074, b; = 1072, a3 = 107 (units: m?s™!). The Gent model is a variant of the
PP model, designed to better fit experimental data, given by:

b
(1+10R)%’

fl(R) =a; +

fo(R) = as + (1.17)

by

fi(R) = a1 + A+ 10R)

fo(R) = az + (1.18)

with a; = 1074, by = 107!, ay = 107° (units: m2s7!). The main physical reason for the

structure of f; in (1.17)) and ((1.18)) is that buoyancy stratification inhibits mixing effects,
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so that the inhibition increases as R increases, and mixing effects should tend to disappear
as R tends to infinity. This suggests a structure for the turbulent viscosity as:

Yo
vp = ———
T (1+oR)™

for some positive adjustable parameters 1, 0 and n, chosen respecting the best agreement
of numerical results with observations done in different tropical areas. The expression for
foin and is largely dictated by measurements: K7 /vp has to decrease to zero
as R increases. This suggests a similar modeling, although this is less clear than the one
of vr, so that there exist different possibilities, as shown by the different parameterization
of PP and Gent models. The experimental origins of this kind of modeling may be found
in Robinson [53] and Jones [29].

The PP and Gent models apply to vertical stable configurations, and so to well-mixed
layer, for which 0,p < 0, and thus R > 0. It means that although turbulence may be
generated by wind shear stress and buoyancy, these models describes the state of the flow
once the vertical configuration has been stabilized by buoyancy forces. However, we shall
need a more global parameterization of vertical mixing to perform numerical experiments,
in order to take into account realistic initial conditions with unstable configurations, corre-
sponding to the case R < 0. Indeed, note that in their original form PP and Gent models
are no longer physically valid respectively for R € (—3.13,—0.2) and R € (—2.25,—0.1),
since the diffusion coefficient f, becomes negative. Moreover, in [1] it is proved by a linear
stability analysis that both formulations present a numerical instability zone for a certain
range of negative R (respectively, R € [—0.2,—0.1] and R € [—0.1,—0.0524]). So that
these models result useless in their original form for a large range of negative R (respec-
tively, R € (—3.13,—0.1] and R € (—2.25,—0.0524]). In practice, ocean modelers bypass
this problem by limiting the eddy viscosities and diffusivities to values below a certain
positive constant. In Bennis et al. [2], a modeling of the eddy diffusion that remains useful
for a larger range of negative values of R was introduced:

by
(1+5R)?’

fo(R) = az + _NlB) (1.19)

fl(R) =a; + (1+5R)27

with the same constants of the PP model. This model always provide positive diffusion
for negative values of R, so that it does not present a zone of physically unreasonable so-
lutions. Actually, it only presents a numerical instability zone (R € [—0.37, —0.2], cf. [1])
where the model can not be used in its original form, and the eddy coefficients need to be
smoothly extended to positive constant values, in order to model a forced return to a ver-
tical stable configuration. However, this model seems to be more natural and smoother in
handling static instabilities with respect to the artificial imposition of limited viscosities
and diffusivities in PP and Gent models for negative R, as usual.

In formulas to , the eddy coefficients vy and K are defined as functions of
the gradient Richardson number R through the terms (14~ R)" appearing at the denomi-
nator. Hereafter, these three formulations could also be denoted respectively by R213,
R23 and R224, where the integer values are the exponents of (1 + yR) in the definitions
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of vy and Kp. The results on the linear stability analysis for the different models are
summarized in Figure 1.2l Here, the blue line represents a zone where the solution is
physically not valid, and this is the case for the R23 and R213 formulations, while the
red zone is a numerical instability region, common to all formulations. Nevertheless, one
observes that for each model mathematical stability (green zone) holds for non-negative
R.

Modelo 2.3
e _________________________________}
-2.25 ~0.1 -0.0524
Modelo 2.1.3
11—
-3.13 -0.2 0.1
Modelo 2.2.4
——
-0.37 -0.2
Zona Estable
s 2ZO0Na donde el modelo no existe
m=m=s ZONa Inestable

Figure 1.2:
Linear stability analysis for models R224, R213 and R23.

More in detail, the eddy coefficients defined by models R213, R23 and R224 all present a
singularity for a negative value of the gradient Richardson number R. In Figure [1.3] we
have plotted the curves v = fi(R) and K = f3(R), obtained with the different formula-
tions, where we graphically see that for R213 (in green) and R23 (in blue) models, the
diffusivity coefficient K becomes negative for a certain range of negative values of R.

For a deeper analysis of the aforementioned models, we shall consider the following initial
and boundary conditions associated to problem ([1.16]):

(d) vo,u=Qut), v0,v=Q,(t), KO.p=Q,(t) at z=
(e) u=uy(t), v=uvy(t), p=ps(t) at z=—h (1.20)
() u=uo(z), v=10l2), = () b t=

The Neumann boundary conditions at z = 0 represent the fluxes at the sea-surface that
model the forcing by the atmosphere. In particular @,, @, are the surface momentum
fluxes, and (), represents thermodynamic fluxes: warming or cooling, precipitations or
evaporation. The momentum fluxes are given by:

Qu(t) = 22v,(0),  Qu(t) = 22V (1),

s pr
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Figure 1.3:

Viscosity and diffusivity for models R224, R213 and R23.



1.4. Analysis of continuous solutions 23

where p, is the air density (p, &~ 1 kg m™3), and V,,, V, respectively are the stresses
exerted by the zonal and the meridional winds:

(Vu(t), Vo (1)) = Cp[Ua(1)|Ua(t),

with Ugy(t) = (ua(t),v,(t)) the air velocity at the atmospheric boundary layer, and Cp
(= 1.2 x 107?) a friction coefficient (cf. [30]). The circulation for z < —h, under the
mixing layer, is supposed to be known, either by observations or a deep circulation nu-
merical model. This justifies the choice of Dirichlet boundary conditions at z = —h.

Note that model ([L.16))-(L.20)) is not expected to describe all the interaction phenomena
occurring in the mixing layer. Its purpose is mainly to give a better understanding of
algebraic closure models for oceanic turbulent mixing layers, and it is also used as a
pretext for the study of such kind of complex systems in a rather abstract framework.
Therefore, we shall use simplified equations governing the variables u (zonal velocity), v
(meridional velocity) and p (density). In practice, mixing-layer models are coupled with
3D models of global oceanic circulation, that yield the boundary values for velocity and
density at the bottom of the layer. The coupling of 1D mixing-layer models to 3D OGCM
for the inner oceanic flows causes that the 1D model may be affected by multidimensional
perturbations.

1.4 Analysis of continuous solutions

In this section, we determine the steady states of perturbed algebraic closure MLM (Sub-
section , we prove existence and uniqueness of unsteady solutions close to a given
equilibrium state (Subsection , and we use the result of existence to prove the non-
linear asymptotic stability of equilibrium solutions, for small enough data of the problem

(Subsection [1.4.3).

1.4.1 Existence and uniqueness of continuous equilibria

We prove in this subsection that there exist smooth steady solutions of model —
for slightly perturbed data. These perturbations may correspond to errors in the
experimental measurements, roundoff computational errors, errors in the boundary data
coming from the approximate solution of the 3D global model, etc. The steady solutions
correspond to an equilibrium between destabilizing wind shear effects and stabilizing ther-
modynamic fluxes. The result of existence of smooth equilibria permits to have effectively
a real smooth solution for the studied problem, to be used in the sequel for the proof of
the non-linear asymptotic stability.

Let us consider the perturbed model:
(a) O — 0.(vo,u) =D, in (—h,0)x (0,7)
(b) Ow — 0.(vO,v) =D, in (—=h,0)x (0,7T) (1.21)
(6) Op—0.(Kdp)=D, in (—h,0)x (0,T)
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with the perturbed initial and boundary conditions:

(d) Vazu = @u(t), Va V= Qv( ) Kazp = @p(t) at z=0
(e) uw=u(t), v="p(t), p=pu(t) at z=—h (1.22)

(f) u=10(2), v="10(2), p=po(2) at t=0

where D, D,, D, are smooth functions of z and ¢. Since we are searching for equilibria,
we remove the dependence on time from system —, and we mark by the apex
¢ the corresponding equilibrium quantities. Let us denote the space interval I = (—h,0),
and define the functions:

-/ "Di(s)ds, dufz) = / "Dils)ds, dy(2) = / D) ds

The existence and uniqueness of equilibria for problem (1.21))-(|1.22)) are given by the
following:

Theorem 1.1. Assume that for any z € I the implicit algebraic equation:

[f1(R))?
R=G(2)—F—=— h(R) (1.23)
where G(z) is the function defined by:
=2 Bl2) + < . (1.2)

P (duf2)+Qs) + (d(2)+ Q)

admits at least a solution R¢. Then, to each solution R¢ there exists a unique associated

equilibrium solution of problem -[1.29), given by:

(

) =T ), W)= [ *Qe
V) =T+ (), W(2) = /%d (1.25)
= ne). e - [ *Qe

Proof. The equilibrium states of , if these exist, are solutions of the system:
—0:(f1(R)0.u) = Dy,
—0:(f1(R)0:v) = Dy, (1.26)
~0.(f(R)D-p) = D,
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Integrating the three equations in (|1.26)) with respect to z, we obtain:

(

Ou = (du(2)+Q2)/Fi(R),
0.0 = (do(2) +Q5)/fi(R), (1.27)

[ 0p = (dp(2) + @)/ fao(R).

From , we deduce that the equilibrium profiles R® satisfy the implicit algebraic
equation , and then are functions of z. By integrating with respect to z the three
equations in , we deduce that the equilibrium solutions of problem — are
given by . ]

The existence of solutions of the algebraic equation ((1.23) is ensured under the following:

Hypothesis 1.2. The fluzes satisfy Q;, > 0, Q; > 0, Q5 < 0 and for some A € (0,1) it
holds:

Q5 — Q2 < (1—MNQS, Q% —Q < (1—-MQ%, Q% — Q4 < (1—N|Q: (1.28)

A A A
|1 Dellzy ) < 5@2» Dol < 5 Q5 1Dl < 5 Q5] (1.29)

The assumption Q¢ > 0, Q5 > 0 means that the wind velocity acts as a destabilizing
agent for the mixing layer flow, while Q)5 < 0 means that the thermodynamic flux plays
a stabilizing role. The conditions and mean that we are considering small
perturbations of the boundary data and also of the r.h.s. of equations . We conclude
that for all considered models, there exist smooth steady solutions of problem —

for perturbed data given by ((1.25):

Corollary 1.3. Assume that Hypothesis E holds. Then, the algebraic equation
admits at least a solution for the PP (1.17), Gent and Bennis et al. models.
As a consequence, to each solution of equation there corresponds a unique smooth

equilibrium solution of -(1.29) given by (1.25).

Proof. The solutions of the implicit algebraic equation (|1.23)) may be interpreted as the
intersection of the curves:

For the Bennis et al. model R224, there exists a unique gradient Richardson number R°
whenever G(z) > 0, as this implies that the slope of the straight line h, is positive (See
Figure[l.4)). For the PP R213 and Gent R23 models, if G(z) > 0 there exist two solutions
of equation (See Figures , . Hypothesis implies that G(z) > 0 for all
z € [=h,0]. By the expressions given by , we obtain that the equilibrium solutions
have regularity C>[(I)]>. =
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Figure 1.4:
Solution of the equation for equilibrium gradient Richardson number with model R224.
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Figure 1.5:
Solution of the equation for equilibrium gradient Richardson number with model R213.
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Figure 1.6:
Solution of the equation for equilibrium gradient Richardson number with model R23.

Remark 1.4. The equilibria of the un-perturbed model 18 studied in [@/ In that
case, R® does not depend on z, and, as consequence, the equilibrium profiles for velocity
and density are linear. The equilibria for the perturbed model — provided by
Theorem converge to those of the un-perturbed model as the perturbations in the data
vanish. This readily follows from identities (1.25) to (1.25)).

1.4.2 Existence and uniqueness of continuous unsteady solu-
tions

In this subection, we prove the existence and uniqueness of solutions for the initial-
boundary value problem —, close to a given equilibrium state, by using the in-
verse function theorem in Banach spaces (cf. ), and a classical result of Ladyzenskaya
et al. on the solvability of initial-boundary value problems for generic linear parabolic
systems. Hereafter, we will use the following convention on the notation: we denote with
the dot (-) the usual product between a matrix and a vector, to distinguish it from the com-
ponent to component product between two vectors, for which we do not use any symbol.
Moreover, for brevity of notation, we shall denote by LP(L?) the space LP(0,T; [L(1)]?),
and similarly the spaces LI(H*). The result of LadyZenskaya et al. adapted to our
situation reads as:
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Theorem 1.5. Consider an initial-boundary value problem for a linear parabolic system
of the form:

([ OW — 0, (M -0, W)= in [=(-h,0)x(0,7),
M-0,W =TI(t) at z=0,
(1.30)
W = W, (t) at z = —h,
L W = W(2) at t=0,

where W = (wyi,wy, w3)T, and M is a 3 x 3 matriz with time-independent coefficients
belonging to H'(I), such that all its eigenvalues have positive real part, for any z € I.
Assume that ¥ € L*(L?), T'(t) € [L*(0,T)]*, Wy(t) € [C°(0,T)]?, and Wq(z) € [H*(1)]?.
Then, problem has a unique solution W € L?*(H?), with O,W € L*(L?), and the
following estimate holds:

W [z2@2) + 10:Wz2we) < C (12 c2wz) + [T 20 + [Wolls o) + [Wolla(n)) -
where C' is a positive constant depending only on I, T and the coefficients of M.

Actually, we will prove our existence theorem in a rather abstract framework, where all
the MLM considered fit as particular cases. To do that, we consider an initial-boundary
value problem for the unknown vector U = (uy, uy, uz)” of the form:

([ 0,U -0, (v(0,U0)0,U)+D(U)=0 in I=(—h,0)x(0,7T),
v(0,U)0,U = C(t) at 2z =0,
(1.31)
U = Uy(t) at z= —h,
L U= UO(Z) at t= 0,

where v = (v1,v5,v3)T, D = (D1, Dy, D3)T (supposed to be a smooth function of z, t)
and we assume the following:

Hypothesis 1.6. The vector function v € [W,2°(R?)]?, and there exists a constant y > 0

loc
such that its components are greater than v on R3.

Hypothesis 1.7. Problem admits an equilibrium solution:
Ue(z) = (uf(2), u3(2), us(2)),

with at least [H*(I)]3-regqularity, and the linearization of problem around the equi-
librium is a parabolic system of the form (1.30), where M = M(U®(z)) is such that all

its eigenvalues have positive real part, for any z € I.

Problem ([1.21))-(1.22]) in vector form is a particular case of problem ([1.31]) by considering:
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e U= (u,v,p)", v=(vv,K)', D(U)=—(D,,D,,D,)";

C(t) = (Qu(t), Qu(t), Qp(1);
o Uy(t) = (u(t), 0u(t), pu(t))";

o Uy(z) = (to(2),V0(2), po(2))""

Note that the eddy viscosities and diffusivities given by MLM to are not
defined for R = —1/o for some 0 > 0 (0 = 5 for PP and Bennis et al. models, 0 =
10 for Gent model), and also for (0,u,d.v,0.p) = (0,0,0). Moreover, they generate
physical invalid values (except for the Bennis et al. model) and numerical instabilities
in a neighborhood of R = —1/0 (see Section [L.3). This situation is solved in practice
by ocean modelers extending the eddy viscosities and diffusivities to these regions with
positive constant values (cf. [22], [58], [45]). Here, we adapt this technique to verify
Hypothesis [I.6] Indeed, let us introduce the new variables:

a = azu7 5 = 621;, 0= azp7

and denote Z = (o, 3,0). The gradient Richardson number, in terms of these variables,

is given by:

g 0

R=R(Z)=—-—=——,
2=

and, as consequence, the turbulent viscosity and diffusion previously described by MLM

(1.17) to (1.19) are functions of Z. For instance, Bennis et al. model ((1.19) reads as:

. by(a? + 52)? o
N U
fi(@)(a? + 5
(@ + 52— o a]p 0P

and similarly for PP model (1.17)) and Gent model (1.18)).

f2(Z) = ay +

o =25,

We split the Z space into three regions:

e A region containing the positive equilibrium gradient Richardson numbers, whose
boundary is formed by the union of the surfaces R(Z) = —1/c+7 and o+ %2 +6? =
r? for positive r,7 small enough (Region 1 in Figure , where for simplicity of
presentation we have assumed S = 0).

e A region containing the physically invalid and numerical unstable gradient Richard-
son numbers, whose boundary is formed by the union of the surfaces R(Z) = —1/o

and a? + 2 4 62 = (r/2)? (Region 3 in Figure [L.7)).
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R(Z) =1 /0

oE+6°=(r 1 2)°

Figure 1.7:
Example of a smooth extension of v in the plane (¢, ) (similarly for K).

e A buffer region whose boundary is the union of the boundaries of Regions 1 and 3
(Region 2 in Figure [1.7)).
We then consider an extension of the total viscosity and diffusion v, K such that:
(a) In Region 1: If Z is in Region 1, then:
v=f(Z). K= fu2).

b) In Region 3: The functions v, K take positive constant values, set by physical
g
criteria.

(c¢) In Region 2: The functions v, K in Region 2 are smooth extensions of their values
in Regions 1 and 3, such that that v, K € W;>®(R3) and there exist two positive

loc

constants 1, v verifying 0 < v < v(Z), K(Z) < 7, for all Z in Region 2.
Observe that it is possible to obtain v, K € WB’OO(R?’), because v, K have C'*°-regularity

loc
in Regions 1 and 2. Also, typically v, K are set to rather large values in Region 2, forcing
the flow to become suddenly stable. Usually, Region 2 does not explicitly appear in the
computations, simply Region 1 is changed into Region 3 from a grid line to the next. By
construction, problem — with smoothly extended v, K verifies Hypothesis .

In addition, it verifies Hypothesis 1.7, This proof is rather lengthy and we report it to
Corollary [1.10}

To prove the existence theorem for problem ((1.31)), let us define the Banach space:
X = {L*(H?) such that 9, € L*(L*)},
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and let us consider the set U = B(U® ) = {Ue X :||U—-U°||x < ¢}, with ¢ small
enough. We will also use the following result of Verfiirth on a posteriori error estimates
for non-linear problems (cf. [60]):

Lemma 1.8. Let X, Y be two Banach spaces. Let F': X — Y be a continuously Fréchet
differentiable function. Let u* € X be a regular solution of F(u) = 0, i.e. DF(u*) is a
Banach space isomorphism from X onto Y, where DF denotes the Fréchet derivative of
F. Assume in addition that DF is Lipschitz continuous at u*, i.e. there exists an R* > 0
such that:

- |DF(u) = DF(u") | zxv)
v:i= sup .
u€B(u*,R*) HU —Uu HX

where L(X,Y") is the space of bounded linear maps from X to Y. Set:

)

R =min{R", 7w X", 2y | DF (u) | ey }-
Then, the following error estimate holds for all u € B(u*, R):
[l —u™|lx < 2fjuol|x [|F(w)]]y-

The existence and uniqueness of solutions for problem ([1.31)) close to the equilibrium state
is given by the following:

Theorem 1.9. Assume that Hypotheses and [1.7 hold. Then, if C(t) € [L*(0,T)]?,
Uy(t) € [C°0, 7)), Ug(z) € [H'(I)]?, and these quantities are close enough to the cor-
responding quantities at the equilibrium (respectively C¢, U§ and U*°), problem
admits a unique solution in an open neighborhood Uc U, satisfying the estimate:

JU=Ufllx < C (IC() - Clatom + 1U() = Uilzmiom + 1Uo — Uslinr) » (1.32)
where C' 1s a positive constant independent of U.

Proof. Let Y be the Banach space:
Y = LX(L?) x [L*(0, ) x [C°(0, TP x [HN(D)P,

and let us define the mapping:
.U —Y,

®(U) = {(3U-9.(r(0.U)o.U) +D(U)), (vd.U_, — C°),
(U‘zth - Ug) ) (U|t:0 - Ue)}'

As the vector D stands for smooth known perturbations, we may assume it as a linear map
from R3 to R®. Observe that ®(U®) = 0. If the hypotheses of the inverse function theo-
rem are satisfied, we can conclude that there exists an open neighborhood U of U in X,
U C U, and an open neighborhood V of ®(U¢) in Y such that & : U — V is invertible,
with continuously differentiable inverse. So, if C(t) € [L*(0,7)]?, Uy(t) € [C°(0,T)]3,
Uy(z) € [HY(I)]?, and these quantities are close enough to the corresponding quantities
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at_the steady state in an obvious sense, then there exists a unique solution of problem
ind. In addition, the inequality follows by applying Lemma m, because
D® (i.e., the Fréchet derivative of ®) is locally Lipschitz continuous (we prove it below,
in Step 1). We next prove that effectively the hypotheses of the inverse function theorem
are satisfied.

Step 1. ® is continuously Fréchet differentiable.
By definition of Fréchet derivative (cf. [14]), we have to prove that:

i 12U+ W) —@(U) — (D2 (U), W)y

=0, VUeU, 1.33
W |[x—0 W |x (133)

where (D® (U), W) denotes the Gateaux derivative of ® at U. We have:

(DS (U), W) — %@ (U+sW),_
= {(GW =0, (v(9.U)0.W + (Dv(9.U),W)d,U) + D(W)),
(v0.W + (Dv(0.U),W)a.U),__ (W) __ (W), _}

where:

(Dv(9.U), W) = %u(azu +50.W)

Let us set f(t) = ®(U 4 tW). Observe that f(t) belongs to [W.2>°(R)]* as v belongs to

loc

[W2°(R3)]? from Hypothesis So, the numerator appearing in expression (1.33) can

loc
be rewritten as:

= Vv (9,U) - O, W,

|s:0

1£(1) = £(0) = £'(0)[ly = [IR: (D)l

t
where R4 (t) = / f(s)(t — s) ds is the integral form of the reminder in the Taylor’s

expansion formulao up to the first order. We have:
£/(t) = (D*® (U + tW), (W, W)) = {A(t), B(t), 0,0},

where:
A(t) = —8.2(Vr(9.U0) - .W)a, W + (D*(3,U), (W, W))3. U,
B(t) = [2(Vv(9.U) - 9. W), W + (D*v(8,U), (W, W))d, U]

Iz:O7

with U = U(t) = U + tW, and:

(D*v(0,U),(W,W)) = —Vu(0,(U +sW))
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H denoting the Hessian matrix. We have to verify that:

)(1—s)d
L2(L2)
= 0 1.34
W0 [W]|x ’ (1.34)
1
’/ B(s)(1 —s)ds
lim LPOTE - — . (1.35)

[W]lx—0 W |lx

From Hypothesis . the components of Vv and Hv belong to VVl1 °(R?). Then, the
following estimates hold:

$)(1 - s) ds < C (W) + Wl )

L2(L2)

1
| B9 < (W1 Baqe) + 1IW )

0

with C a positive constant. We conclude that (1.34) and (1.35) hold, and thus & is
Fréchet differentiable.

[L2(0,T)]3

Next, we have to prove that the Fréchet derivative D® is continuous, i.e. we have to
show, for any U € U, that:

lim ||D®(U) — D®(V o
||U—VHx—>OH (U) (V) llzxv)

where £(X,Y) is the space of bounded linear maps from X to Y. It is easy to check that
this is reduced to prove that:

. I-0B00) ~BO.Vlan ) _
im sup = 0,
[U-V]x—0 \WeX,W+0 [W{x

: I1E(0.U) — E(9.V)]|._lliz2(0,72

lim sup = 0,
[U-Vx—0 \WeX , W0 ||WHX

where:

E(@.U) = v(0.U)0.W + (Du(9.U), W)9.U
= v(0,U)0.W + (Vr(0,U) - 9,W)0,U. (Similarly for E(0.V)).

By adding and subtracting the quantity (Vv(0,U) - 0,W)0,V to E(0,U) — E(9.V), we
obtain:

E(0.U) — E(0,V) = [1(3.U) — v(9.V)]o.W + [Vv(9.U) - 0.W]0,(U — V)

+H[Vv(0.U) - Vv(9.V)] - 0.W}0.V.
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We define:
g(t) =v(0.(V+t(U-=V))), H(t)=Vr(d.(V+t(U-=V))).
Then:

E(0.U) - E(0.V) = ( /O 1 g'(s) ds) W + [Vv(9.U) - 9.W]0,(U — V)

N ((/01 H'(s) ds) -azw) 2.V,

where:

[ (0.0) - 0.0 - V)] '
g(0) = Vr(.0)-0.U-V), H()=| [Hn@0)-0.0-V)] |,
H(0.0) - 0.(U - V)|
with U = U(t) = V + t(U — V), and H denoting the Hessian matrix. As before, from
Hypothesis [1.6], we deduce the following estimates:

|-0.[B(0-U) ~ E@.V)lll 2y < € (IU = Vllzageen) [Wilzeer)

IE(8.U) —E0.V)]__lliz0mpr < C (U= Vl2m2) W 2m2)) ,

with C' a positive constant. We conclude that D® is continuous (really, D® is locally
Lipschitz continuous). Thus, we have proved that ® is continuously Fréchet differentiable.

Step 2. The mapping D®(U®) is a Banach space isomorphism from X onto Y.
We need to prove the well-posedness (in the sense of Hadamard) of the linear problem:

([ O,W — 0, [v(0,U°)9, W + 9,U° (Vr(9,U¢) -9, W)| =¥ in I=(—h0)x(0,7),
v(0,U°)0. W + 0.U° (Vv (0.U°) - 0,W) = TI'(1) at z =0,
W = W, (t) at z = —h,

| W =Wy(2) at ¢t =0,

(1.36)
with data G = (¥, I', W,, W) € Y, where D(W) is embedded in ¥. Thus, we have to
prove, for any G € Y, that this problem admits a unique solution W that continuously

depends on G. Note that problem ([1.36]) can be rewritten as:
([ OW — 0, (M¢-0,W) =% in [=(—h,0)x(0,7T),

Me-0,W =T\(t) at z=0,
(1.37)
W = Wb(t) at 2z = —h,

| W =W(z2) at t=0,
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where M*¢ = M (U®(z)). By Hypotheses[L.6/and[L.7 problem ([1.36) is a well-posed coupled
linear parabolic problem with H*(I) time-independent coefficients. So that, from Theorem

, as G = (U, I', W,, Wy) € Y, then there exists a unique W € X, solution of problem
(1.36)), that continuously depends on the data, with the estimate ||[W||x < C||G||y. =

Corollary 1.10. Assume that (Q.(t), Qu(t), Q,(t)T € [L2(0, T, (Ws(t), B(t), p(t))” €
[C°(0, T3, (W(2),00(2), po(2))" € [HY(I)]?, and these quantities are close enough to the
corresponding quantities at an equilibrium corresponding to a positive gradient Richardson
number; then, problem — with smoothly extended viscosity v and diffusivity K
admits a unique solution in an open neighborhood Uc U, satisfying the estimate .

Proof. We have to prove that problem (1.21))-(1.22) with the above extension of the
viscosity v and diffusivity K satisfies Hypotheses and [I.71 Then, the thesis will
follow by Theorem [1.9] since problem (1.21])-(1.22) will be a particular case of problem

(1.31). Problem (1.21)-(1.22) with smoothly extended v, K verifies Hypothesis by
construction. Moreover, it admits equilibrium solutions (1.25) with C°(I)-regularity,

as shown in Theorem [I.1], corresponding to a positive gradient Richardson number. The

linearization of problem (1.21))-(1.22)) around them is given by a system of the form ((1.37)),
where M€ is the matrix:

(@) e (@)
) o) ()
Ve = 1(9,U°) = v(a®, B°, 6°),

NN (r) (N () (o) (o
da - \da |Z:6U5’ a6 N a6 \z:aue’ 90 - \oY |z:aU67

and similarly for K. We have to prove that all the eigenvalues of M*¢ have positive real
part, for any z € I. To ensure that, it is enough that three independent invariants of
matrix M€ are positive, for any z € I. By means of a Computer Algebra System (CAS)
it is verified that, since R® = R(0,U¢) > 0, then there exist some positive constants 4y,
09, 03 independent of z such that:

with:

Trace(M®) = 2f1(R%) + fo(R°) + R*(f3(R°) — 2f1(R%)) > 41,
Det(M?) = fi(R)(f1(R°) f2(R°) + R° f1(R) f5(R°) — 2R° fo(R°) f1(1°)) > 62,

Trace(AdjM¢) = 2f1(R°) f2(R°) + 2f1(R*) R°[f5(R°) — fi(R°)]
— 2fo(R)Rfi(R°) + fi(R)* > 8.
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So, problem ([1.21))-(|1.22)) with smoothly extended viscosity v and diffusivity K verifies
Hypothesis [1.7 =

This result proves that [|0.U — 9,U®||2(1,) can be made arbitrarily small by choosing
the data for problem — close enough to those corresponding to the equilibrium
solution U¥® related to a positive gradient Richardson number. If instead we had a similar
estimate in L*°(L>), then Theorem and Corollary would apply to the original
model with eddy viscosity and diffusivity given by either (1.17)), (1.18]) or (1.19)). Indeed,
such an estimate would imply that, for data close enough to those corresponding to the
equilibrium solution, 0,U(z, t) remains in the Region 1, for all z € I and for all ¢ € [0, 7],
as 0,U¢(z) lies in the interior of Region 1, for all z € I. Then, v(0,U) = f1(9,U) and
K(0,U) = f5(0.U) in I x (0,7).

Unfortunately, the existence result of Theorem (1.5) does not apply to L*-regularity in
time (cf. [31]). Thus, we only may conclude a weaker result, as follows:

Theorem 1.11. The solution of problem — with smoothly extended viscosity
v and diffusivity K provided by Corollary is also a solution of the same problem
with the eddy viscosity and diffusivity given by either (1.17), (1.18) or (1.19) in a set
I x((0,7)\.A), where A is a set whose Lebesque measure tends to zero as the distance
between the data:

IC(#) — Clz20,m) + [[Us(t) — Ugllc o,y + U0 — US|l 11,
tends to zero.

Proof. As 0.U¢(z) lies in Region 1 for all z € I, there exists a 6 > 0 such that if
|0.U(z,t) — 0,U¢(2)| <0, then 0,U(z,1) lies in Region 1. Define the set:

A={te€[0,T]:|0.U(z,t)— 0, U(z)| >4, for some z € I }.

Then:
”82U - ateHLZ(Loo) > (5 |./4|1/2

As [|0,U — 0,U°|| 2= can be arbitrarily small by making small the distance between
the data, then |A| should tend to zero as this distance tends to zero. m

Note that this result applies to all formulas for the eddy viscosity and diffusion given
by either (1.17), (1.18]) or (1.19)), the only need is that the coefficients a;, by and ay are
positive. The actual values of these coefficients will affect the Lebesgue measure of the
set A, but in all cases this measure will tend to zero as the distance between the data
tends to zero.

1.4.3 Non-linear stability of continuous equilibria

In this subsection, we prove the non-linear exponential asymptotic stability of the equi-

librium states, for small data of the problem ((1.21)-(1.22). To do that in a more general
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context, we assume that Hypotheses and previously defined in Subsection [1.4.2
hold.

Let us consider an initial perturbation of a given equilibrium solution of the form:
Uy, =U“+ U, € [HY(I)).

We consider problem ([1.31)) with the same boundary data as U¢ and initial condition Uj,.
We assume that the initial perturbation U} is small enough in [H'(I)]3-norm, in order to
guarantee that the initial condition Uy belongs to the neighborhood of the equilibrium
that ensures the existence of U, solution of problem , stated in Theorem

Theorem 1.12. Assume that Hypotheses and hold. Then, for small enough
data C¢ and D, the equilibrium solution of problem 15 non-linearly exponentially
asymptotically stable, in the sense that:

U ()]|2r) < e[ Upll 21y,
for some A > 0, where U = U — U°,

Proof. In weak form, as the perturbation U’ satisfies homogeneous boundary conditions,
we have:

/ C00)-W i / (0. 0)0.U] - W = LU.W), (1.39)
“h —h
/ Y007 Wt / (0.0, U7] - 0.W = L(U*, W), (1.40)

for all W € [H'(I)]® such that W(—h;t) = 0, where:

L(U, W) = C°- W(0: ) — /0 D(U) - W,

LU, W) = C° - W(0: ) — /0 D(U*) - W,

and the dot (-) denotes the Euclidean scalar product in R3. We take the difference between
(11.39) and (1.40f), and we add and subtract the quantity:

0
/ (0.U)0.U] - ., W.
—h
We obtain:
0 0
/ OU) W + / V(0.U)0.U] - . W
—h “h

- [ .y -vo.vjouy-ow- [ DU)-W. (14

—h
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Applying the same technique used in the proof of Theorem on the right-hand side of
equation ([1.41)), we have:

/ i(atU’) ‘W + / (;[V(azU)c?zU’] AW

— _/Z K/Olg'(s)ds) (‘)ZUe] -6ZW—/1D(U’)-W, (1.42)

where g(t) = v(0,(U°® +tU’)). Let us take W = U’. From ([1.42)), we deduce:

1d
2 dt

S /_ Oh{[ /O 1 (w(@ﬁ) azU') ds} ate} -0, U — /_ ZD(U’)-UC

with U = U(s) = U + sU’. From Hypothesis , we have:

0
—||U| |L2 /h[u(&zU) 8.U’] - o,U’

d
U2y + 29110V [172r)

< -2 / i {{ /0 1 (Vv(azﬁ) azU'> ds} 8ZU6} 9.U

2
< H{ vV 0,0) 0, U’) ds] 9, U*

L2(1)

+ 7||azU/||i2(1) + D) - Ul ),
where we have used Young’s inequality. By Holder’s inequality, we obtain:

HU/HL2 + 10U |[Zz s

2

1
< =
Y

[Vu(azﬁ)] )

v

1001221 10-0° [ Loe 1y + DU |20y 10| 21y
Lee(I)
From Hypothesis [1.6} it follows that [0, U~ < C/7, where C is a positive constant

sup
s€[0,1],4,5=1,2,3

depending on the data, i.e. C' =C (mla2X3 | D;(U°)|| ooy + ||Ce||oo>. Moreover, we have
that: h

q

<
Le=(I)

sup
s€[0,1],4,j=1,2,3

[vu(azﬁ)] )

v

So that, using Poincaré inequality, we deduce:
HU/HL2 + 0T 22y < AlOU||Z2 sy

where A is a positive constant depending on the data. Reiterating the use of Poincaré
inequality, we have:

d
%IIU'IIizu) + AU 72 <0,
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where A is a positive constant for small enough data. Finally, by Gronwall’s lemma, we
conclude:
t—+o00

U ()72 < e M [UGN1Z20r) = 0.

Corollary 1.13. Under the hypotheses of Corollary the equilibrium solutions of
problem — with smoothly extended viscosity v and diffusivity K are non-linearly
exponentially asymptotically stable for small data.

Remark 1.14. This analysis implies a weak result on the asymptotic stability of the
original problem (1.21)-(1.23) with the eddy viscosities and diffusivities given by either
, or (1.19). Indeed, from Theorem[1.11] we know that for each time interval
[0, 7] and for each € > 0 there exists a subset A. 7 C [0,T] such that lgrg) |A.7] =0, and

if | Ul ey < €, then U(z;t) is the solution of this original problem in I x ((0,7T)\ A 7).
From Theorem[1.13, this imples that, for small data:

U )72y < e MU0, if t & Acr

Resuming, we have analyzed the existence of regular solutions around equilibria for oceanic
turbulent MLM based on the gradient Richardson number, and we have studied the non-
linear asymptotic stability of the equilibrium states. In general, it is not possible to ensure
the existence of solutions for Richardson-number based turbulence models, due to the
singularity presented by all the eddy coefficients defined by relations to . Here,
we have obtained the proof about the existence and uniqueness of unsteady solutions for
the regularized version of these models around equilibria, based upon their smoothness. As
consequence, it follows the asymptotic exponential stability of the equilibrium solutions,
thanks to the dissipative nature of the equations of the problem. These results imply the
existence of solutions of the original non-regularized models out from a small time set, as
well as a weak asymptotic stability result.






Chapter 2

Numerical Analysis of Algebraic
Oceanic MLM

2.1 Introduction

In this chapter, we study the numerical stability of algebraic oceanic turbulent MLM,
discretized by the standard Finite Element Method (FEM). Actually, this discretization
is used to perform the numerical analysis. To run the numerical tests, a conservative finite
difference (FD) discretization is used in practice by physical oceanographers (cf. [§], [45]),
derived by applying mass-lumping and quadrature formulas to approximate the integrals
appearing in the FEM formulation.

Following this strategy, we initially discretize the initial-boundary value problem
(L.21))-(1.22)) by piecewise affine finite elements, and we next present how to obtain the
standard conservative implicit and semi-implicit FD schemes, that we will use in Chap-
ter |3| to run numerical simulations. Coming back to the FEM formulation, we perform
the numerical stability analysis of the discretized models. We prove that, under certain
hypotheses on the turbulent viscosities and diffusions, the discretization introduced is
well suited, in the sense that is stable (in low-order parabolic norms), and verify a maxi-
mum principle. However, this preliminary analysis, introduced in [2] for the un-perturbed
model —, presents some limitations. On one hand, the low-order parabolic
norm of the stability result are not strong enough to deduce the existence of solutions
for the continuous problem (see Chapter . To do that, we should prove stability in
W?2P-norm, which would allow to bound the gradients of the discrete solutions, and then
to prove the convergence of the scheme, but it still remains an open problem. On an-
other hand, the hypotheses required on the turbulent viscosities and diffusions result to
be somewhat unrealistic. So that, we will develop in the sequel a specific analysis for
the actual turbulent viscosities and diffusivities corresponding to PP [49], Gent [22], and
Bennis et al. [2] models, with much less restrictive conditions. This analysis deals with
existence and uniqueness of discrete steady states, convergence of discrete equilibria to the
continuous ones, and non-linear asymptotic convergence of discrete time iterates to the
continuous equilibria. Note that, as proved in [2], in the case of the un-perturbed model
the equilibria of the discrete problem coincide with those of the continuous problem, so

41
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that the existence of discrete steady states as well as the convergence to the continuous
ones are trivially proved. This is not the case for the perturbed model — under
consideration, for which we have to use not-straightforward techniques. Moreover, we
will extend to the non-linear case the linear stability analysis of discrete equilibria carried
out in [2]. Numerical tests in Chapter |3 will be performed to analyze the theoretical
predictions on the non-linear asymptotic stability of MLM. Finally, we will introduce a
Primitive Equations Large-Eddy Simulation (LES) model for mixing layers, that we will
use as a benchmark in Chapter |3| for a numerical investigation of the finite-time stability
of MLM with respect to multidimensional perturbations.

The chapter is structured as follows: In Section we introduce the numerical dis-
cretization of algebraic oceanic MLM, which is analyzed in Section [2.3] This analysis
concerns the existence and uniqueness of discrete steady states (Subsection , con-
vergence of discrete equilibria to the continuous ones (Subsection, and the non-linear
stability of the discrete equilibria (Subsection [2.3.3)). Finally, in Section [2.4] we present
a LES approach, where a hydrostatic ocean model is introduced in order to perform in
Chapter [3] a numerical investigation of the finite-time stability of algebraic MLM with
respect to multidimensional perturbations.

The main results presented in this chapter can be found in [12].

2.2 Discretization of vertical Richardson number -
based schemes

We initially discretize the initial-boundary value problem — by linear piecewise
finite elements. To describe this approximation, assume that the interval I = [—h, 0] is
divided into N subintervals of length Az = h/N, with nodes z; = —h+iAz, i =0,..., N,
and construct the finite element space:

Va = {wa € C°(I) |way,, ., is affine,i =1,.... Ny wa(—h) = 0}. (2.1)

i)
To discretize the equation for u, for instance, we consider on one hand the semi-implicit
method:
Obtain wua € up + Va such that
0 n+l _ 0
(PA) / ATtA WA + / fl(RZ) azuzﬂazwA = LZJrl(wA), VwA € VA, (2.2)
—h —h
where: .
L' (wa) = Q" wa (0) + / DI wa. (2.3)
—h
On another hand, we also consider the implicit method:

Obtain  ua € up + VA  such that

0 ,n+tl __  n 0
(Qa) / %m + / AR 0.0 0.wa = LN (wa), Vwa € Va, (2.4)
—h —h
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which will be used hereafter to prove the non-linear stability of discrete equilibrium solu-
tions (Section[2.3.3). We consider similar discretizations for v and p. These discretizations
were introduced in [2] for the un-perturbed model (L.16)-(1.20). Following the guidelines
given in [2], we preliminarily prove that both discretizations proposed, under certain
hypotheses, are stable and verify a maximum principle. Denote by U the continuous
piecewise affine function from [0, 7] onto [VA]> whose value in t, is U% = (u}, vk, pk),
and by La the piecewise constant in time function whose value in (t,,,,1) is L" =
(Lp*t, Lyp+t, Ly, This function is defined a.e. in [0, 7]. We have the following:

Lemma 2.1. Assume that the turbulent viscosities fi, fo are uniformly bounded and
positive:
3 m, M € Ry such that m < fi(R), fo(R) <M, VReR. (2.5)

Then, the discrete unsteady solution U (in its semi-implicit and implicit version) satis-

fies:
[Uall ey + [ Uall 2y + [10:Ual 21y < 10ollz2ay + CllLall 21, (2.6)

where C' is a positive constant that only depends on the data (and not on Az and At),
and UO = (ao,’ﬁg,ﬁo).

Proof. We assume, without loss of generality, that I~Jb (T, Up, pp) = 0. The estimates
for U in L®(L?) and L?(H') are standard, by taking W = UX" and using the identity:

(a—b)a==(la]* = b +|a—b]*), Va,beR.

N | —

The estimate for 9,Ux is more involved, because as f; and fy; are not constant, the
usual techniques to obtain estimates in L?(L?) fail. However, we may obtain estimates in
L*(H™1) as follows: Let [T denote the orthogonal projection from L?(I) onto Va. As Va
is a 1D finite element space of continuous piecewise linear functions with fixed element
size, Il is also stable in H*(I) (cf. [5], Section 6), i.e. there exists a constant C such
that:

||HAw||H1(]) < C1||1,U||H1(]), Yw € Hl(I) (27)

Let us consider method (Pa) for the unknown ua. For any w € H'(I), and t € (t,,tn41),

by Hypothesis (2.5) and (2.7]) we have:

0 0 i+l _ym
/ duaw = / 4 A A7 ATl w = / f1(RR)OuX 0. Maw + LM (TTaw)
—h —h

< (L2 N -2y + MY ) [Taw| oy

< Cr (1L a-ray + Mllur™ ) wllm - (2.8)
The same estimate applies to the implicit method (Qa). From (2.8)), we deduce:

10vuallm-1r) < Cr (1L -2y + MNJuk ) -



44 Chapter 2. Numerical Analysis of Algebraic Oceanic MLM

As a similar estimate also holds for vA and pa, we conclude:

10:UA | 21y < Co (||UA||L2(H1) + ||LAHL2(H*1)) )
and the thesis follows. =

Ny
Note that || La|zm 1) < € At (IQV[ + D"z, ), where Q" = (@2, @2, Qp) and
n=1
D" = (Dy, Dy, Dy).
Remark 2.2. Lemmaproves the stability of the discrete solutions in (quasi-)standard
norms for parabolic problems. The issue of existence of solutions for the implicit method
(Qa) is solved with the help of the stability result (@ Indeed, it allows to apply a
standard finite-dimensional fixed-point argument based upon linearization of the equations

of the method.

The FEM discretizations proposed are replaced in practice by centered conservative FD
schemes obtained by numerical integration. In particular, we use the canonical piecewise
affine basis functions of Vo as test functions, we approximate the integrals containing the
viscous and diffusive terms by the mid-point rule, and we apply mass-lumping to the mass
and forcing integral. Concerning for instance the semi-implicit method (Pa), used in the
numerical experiments, the following FD scheme is proposed for u:

pEL fl(R?flm)“?jll - [fl(R?A/Q) + f1(R?+1/2)] up fl(R?Jrl/z)u?jll

u
% T — Dn+1

At (Az)? w7

(2.9)

fort=1,...,N — 1. For i = N, the Neumann condition at the sea-surface is discretized
by:

un+1 o untl .
f1(R%,1/2)% = Q. (2.10)

In matrix form, this discretization reads as:
n+lymnt+l n+1
A UM =B

where U"*! is the vector of the unknowns:

n+1l __ n+1 n+1\T
U = (uf™ o uy ),

while A1 and B"*! are respectively the tridiagonal matrix and the vector of known
terms defined as:

n+l __ n n n+l _  n
Al =1+ Qg T Qg Al = X372
n+l _ _ n n+l __ n n n+l _ _ n 9. _
Al = Q1729 Al =1+ Q9 T Qi) Al = Oy 1=20 N =2
n+1 _ _.n n+1 _ n
AN = ON_3/29 AVTino =1+ ON_3/25

At ~
B = (uf +afpapt + ADRE L uf  ADT Ll + x Qutt + AtD )T,

u,l wu,g )
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with: A A
0‘?—1/2 = W fi( ?—1/2)7 04?+1/2 = W fi( ?+1/2)'

By using an analogous notation, also the implicit method (Qa) may be written in matrix
form as:

An+1<U7’L+1) Un+1 — Bn+1.
We consider similar discretizations for v and p.
We now prove that this approximation (in its semi-implicit and implicit version) verifies
a maximum principle:

Lemma 2.3. Assume f1 > 0. If the initial datum uy, the Dirichlet boundary condition iy,
and the zonal wind-stress QQ,, are positive, and the forcing term D, is non-negative, then
ua is positive in [—h, 0] x [0, +00).

Proof. Let us prove this result for the semi-implicit version of the approximation. We

proceed by induction on n: we suppose u > 0, i = 0,...,N. We prove u""' > 0,
i=0,...,N. Let m"™" = '_I(I)linNu?“. Let k € {0,..., N} such that u}*' = m*t. If
k=0, fori=0,...,N we have u/*' > m"*! = @/*! > 0. If k = N, from the discretized

Neumann boundary condition (2.10]), we have:

mt =t = [ (8Q07) SRR )|+t 2 [(8500) MRy )] +

— [(Az@}l) /fl(Rg_m)} < 0

that is impossible for the assumptions of the Lemma. As consequence, k € {0,..., N — 1},
and uytt > ultt i =0,...,N—1. If k€ {1,...,N — 1}, from the FD scheme (2.9)), we
have:

(I+ap_y+ aZ+1/2)mn+1 = (I+aj i+ OCZH/Q)UZH

= Up + gt A Ay Uit + AEDIEY > (0 + Oy )M 4 m® - ALDT!

n+1
= m" >m" 4+ ADE > mC+ ALY Dy (2.11)
r=1

where m° > 1%11}151 ]ﬁo(z). Since by hypothesis D,, > 0, we conclude m™*! > 0. Similarly,
z&€[—h,0

it is possible to deduce this result for va. The same proof applies to the implicit version
of the approximation. m

Remark 2.4. If the time components of Dy, k € {1,...,N — 1}, are negative, from
the same argument proves that ua 1is positive in a time interval [0,T]| such that
n+1
- 1 .
ZDZk > — ( r[ni}rllo] uo(z)> 7 T = (n+ 1)At, for all k. This is reasonable from a
? z€|—h,

r=1

physical point of view, as in this case the forcing term is adverse and will revert the
direction of the velocity if it is applied for a long enough time.
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2.3 Analysis of discrete equilibrium states

As we already mention in Section [2.1], the preliminary numerical analysis of Section
presents some limitations. On one hand, the low-order parabolic norm of Lemma [2.1] are
not strong enough to deduce the existence of solutions for the continuous problem (see
Chapter . On another hand, the assumption that the turbulent viscosities and diffusions
are uniformly bounded is somewhat unrealistic, as in practice f; and f, are unbounded
for some negative gradient Richardson numbers.

In this section, we develop a specific analysis for the actual turbulent viscosities and
diffusivities corresponding to PP [49], Gent [22] and Bennis et al. [2] models, with much
less restrictive conditions. In particular, we prove existence and uniqueness of discrete
equilibrium (Subsection , and its convergence to the continuous one as Az — 0
(Subsection . We also prove a result of practical interest: the continuous equilibria
are asymptotically reached by the solutions of the implicit scheme as n — +oo and
Az — 0 (Subsection [2.3.3)). We assume the following:

Hypothesis 2.5. The turbulent viscosities and diffusions fi, fo € C*([0,4+00)), and are
uniformly bounded and positive for R > 0, that is:

3 m, M € Ry such that m < f1(R), fo(R) < M, VR >0. (2.12)

The turbulent viscosities and diffusions of PP ([1.17)), Gent (1.18) and Bennis et al. ((1.19)
models satisfy Hyptohesis Indeed, for PP and Bennis et al. models:

a < fi(R) <ay+by, ax < fo(R) <as+a;+b, YR>0,
while for Gent model:

a1 < fi(R) <ay+b, as < fo(R) <as+0b, VR>DO0.

2.3.1 Existence and uniqueness of discrete equilibria

We prove existence and uniqueness of discrete equilibrium solutions. The main problem
that we face is that for zero gradient velocities, the gradient Richardson number is not
defined. We prove that under Hypothesis 2.5 there exists an equilibrium with bounded
(from below and from above) velocity gradient.

We reformulate the discrete steady problem as a system of algebraic equations for the
unknowns:
an = dupn, Ba=0va, Oa=0.pa.

To do that, we define the piecewise constant finite element space:
Ga = {c,pA € L*(I) such that YAl ., is constant, i =1,... ,N} .
The equilibria of the discrete problem, if these exist, are solutions:

(ui, VA, PA) € (@, Ty, p1) + [Val,



2.3. Analysis of discrete equilibrium states 47

of the non-linear system of equations:

( 0
/ fi(RA) Oup0,win = LS (wia),  Ywia € Va,
—h

0
g / f1(Ra) O,uad,won = LE(wapn),  Vwga € Va, (2.13)
—h

0
/ fo(Ra) O:pad.wsa = Li(wsa),  Vwza € Va,
\ J-h

where:
g 0.pA

P (Qoun)? + (9.va)”

Ra =
. 0 . 0

L (wia) = OF wna(0) + / DS wna,  LE(wsn) = OF won(0) + / DE waa,
—h —h

0
L;(w:}A) = QZ U)gA(O) +/ D; W3A -
—h

We prove that problem ([2.13)) is equivalent to:

(0 _
/ fi(Ra) aapia = L (w(pia)),  Yoia € Ga,
—h

0 ~
(aa, Ba,0a) € [Ga]® s.t. / fi(RA) Bapan = Li(w(pan)),  Vpan € Ga, (2.14)
“h

0 ~
/ fo(Ra) Oapsa = Ly(w(psa)),  Vesa € Ga,
\ —h

where:
g Oa
PR

pr (@)’ + (Ba)
(w(pa))(z) = /h ¢a(s)ds (see Figure 2.1)).

EA = §A<aA7BA79A) = -

Lemma 2.6. Problem 18 equivalent to problem , in the sense that (aa, Ba, 0A)
is a solution of if and only if the triplet:

z z

ua(z) = up + / an(s)ds, va(z) =0 + / Ba(s)ds, pa(z) = ps +/ Oa(s)ds,
~h —h —h
is a solution of (2.13).

Proof. On one hand, as Ga = {9.wa : wa € Va}, if (ua,va, pa) € (Up, Uy, o) + [Va]? is

solution of problem (2.13)), then (aa, Ba,0a) € [Ga]? is solution of problem (2.14). On
another hand, if (aa, Ba,0a) € [Ga]? is solution of problem (£2.14)), as:

{ O, up = o, 0.va = Ba, 0.pa = 04,

_ _ _ (2.15)
ua(=h) =uy,  va(=h) =1,  pal=h) = ps,
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Figure 2.1:
Graphic of the function y = (w(pa))(2).

then (ua,va, pa) € (W, 0y, pp) + [Va]? is solution of problem (2.13). m

To prove existence of discrete equilibria, we may refer to problem ([2.14]):

Theorem 2.7. Under Hypotheses and problem admits at least a solution
that verifies:

an>0, Ba>0, Oa<0, and Cy<l|aal|Bal|0a] < Cs, (2.16)

where:
C, = A : e e e C, =3 A e e e 2.17
1 — W mln{Qu7 v |Qp|}7 2 — % ma‘X{Qqu v |Qp|} . ( . )

Proof. We initially focus on the first component of the velocity. Let aa, Ba, 0a € Ga.
Assume that Rx = Ra(aa, Ba,0a) > 0. Consider the following linearization of the first
equation of system ([2.14)):

0
aa € G such that / fi(Ra) @apin = Li(w(p1a)), Veia € Ga. (2.18)
“h
Problem ({2.14)) is exactly solved as follows:
N
Set ap = Z@igom, where 1A = 1(;,_, ) = Y1 € Ga, and 1(;,_, ., is the indicator
i=1

function of the subinterval (z;_1, z;). Then, (2.18) becomes:

a/ Fu(Ba) = LE (w(pn)), fori—1,....N.
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It implies that:

& = La(w(pn) ( / flufm)l .

Li<w(901z')) = @ 9011 / D;w Cﬂu

Observe that:

0, if 2 < 2z;_q;

(w(p))(z) = / e1i(s)ds = ¢ z— zi_1, if 2,1 <2< z;
—h
zi —zio1 = Az, if 2> 2.

Then, we obtain:

(w($1:))(0) = Az,

/ D (2) (w(p1)) (2 dZ—/ Di(2)(z — 2z 1)dz+Az/ DS (2) dz.

Moreover, we can write:
/ fl(}N%A) = Azfi(R;), with R; = ﬁ(am@i,ei)-
21
Thus, we have:

G= (Gt [ D) s)asas D)) (R

Zi

< |IDgllz )

Di(z) (2 — zi—1)/Azdz + / D:(z)dz

Zi—1

using Hypothesis 1.2, we obtain:
)\ e ~€ = e 0 e )\ e
§Qu <@+ Di(z)(z — zi-1)/Azdz+ | Di(z)dz < 3§Qu.

Using Hypothesis [2.5] this implies that:

Similarly:

Let us define the set:

KaA(Cy,Cy) = {(wlA,ng,ng) € [Ga]? such that C; < |wia| < Cy,i = 1,2,3},

(2.19)

(2.20)

(2.21)

(2.22)
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where Cy and Cy are given by (12.17). The set KA (C4, Cs) is a non-empty convex compact
subset of the finite-dimensional vector space [Ga]®. Let 7 : Ka(Cy,Cy) — Ka(Cy, Cy)
be the map defined by:

T(aa, Ba,0a) = (Qa, Ba,0a).
By (2.19), it is clear that 7 is continuous. By applying Brouwer’s fixed point theorem

(cf. 16]), it follows the existence of at least a solution of the discrete steady problem ([2.14)).
]

We next step to the analysis of uniqueness of solution of problem (2.14). We state at
first a technical result. We denote by | - | the Euclidean norm on R", and without risk of
confusion, hereafter we omit the apex ¢ to denote equilibrium fluxes.

Lemma 2.8. Let the set:

A 3\ A 3\ 3\ A
S = [mgua%Qu} X {vau%Qv} X {%QWWQP} : (223)

Then, for any Ay = (aq, B1,01), Az = (ag, B2,0:) € S, the following estimates hold:

|fi(R(A1)) — fi(R(A2))] < Ky [Ar — Ay, (2.24)
|f2(R(A1)) — fo(R(A2))] < Ko Ay — Ay, (2.25)
where: 0
__9 i L
R(A;) = a1 B i=1, 2, (2.26)
and: N 2 _
_ ¢ M\ [(Qu+ Q)R +1
= (1+R)3 (mA) [ Q7 + Q3 ] ’ (227)
O (M (Qut+ Q)R +1
% e () [ v ) .
with:
_ Q] 4 if fi, fo are defined by PP , Gent ,
R= o "= . .
Qr + Q5 5 if fi, fo are defined by Bennis et al. ,

and C a numerical constant.

Proof. Observe that, if 4 = («,5,0) € S, then the associated gradient Richardson

g
number R = _E RERE
S. By the mean value theorem:

[fi(R(A1)) — fi(R(Ay))]

is positive. So, fi(R(-)) and fo(R(-)) are smooth functions on

IN

[ £illLoe () [ R(A1) — R(Ap)|

IN
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for some B in the open segment of extremities A; and Ay, and J denoting the set:

g 2m— g 2M —
J=|——R, ——R]|.
or 3N T A

Assume, for instance, that f; and fy are given by Gent model ((1.18)). Then:

fi(R) = —20b;(1+10R)™®, f3(R) = —30b(1 + 10R)™*;
VR(a,,0) = pi(2ae(a2+@2)—2, 2B0(a® + B*) 72, —(a® + B%)7).
By estimates ([2.16])-(2.17)), we deduce:
01 C'2
! oo < I ——— ! oo < D —
HleL )y = (1+R)37 HfZHL (J) = (1+R)47
M\ T(Qu+ Q)R +1
HVRHL‘X’(S) < 03 (M) |: Q2 ‘|‘Q2 :|7
where:
M\Z 9N M ) M\Z 9N M p )
Pr Pr
01:2051111&)({(%) ,Q—Owg} 5 C’2:3Ob1max{(g> ’%ﬁ?} N
Cy=7122,
Pr

Combining with (2.29)), estimates ([2.24) and (2.25)) follow.

When f; and f; are given by PP ((1.17) and Bennis et al. ((1.19)) models, estimates ([2.24)
and (2.25)) follow in the same manner, as in these cases:

G
(1+R)™

&

m7 | fallzoe () <

[ fillzee(ry <
for some numerical constants C, Cy > 0, and n = 4, 5 respectively for PP (1.17)) and Ben-
nis et al. ((1.19) models. These exponents indicate the leading terms in the computation
of f5, and are justified by the fact that the present analysis holds for tropical seas, where

— 2-107°\ 2-1072
usually R ~ 10? (See Section , andso Re J ~ 5 Y , since A 1072,
Pr
and m = 107°, M ~ 1072 for PP ([1.17) and Bennis et al. (1.19) models. It implies that,
at least for A > 107!, R < 0.2, and the aforementioned exponents are recovered in the
leading terms of f;. m

We can now state the result of uniqueness of solution for problem (2.14)):

Theorem 2.9. Under Hypotheses and for large enough (negative) surface ther-
modynamic fluzes Q,, problem admits a unique solution.
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Proof. Assume that aa and oy are both solutions of the first equation of system ([2.14)).
0 0

Let us set dap = ap — ak. As / fi(Ra)aapin = / fi(RX)axpia, with obvious
~h ~h

notation, we have:

0 . 0 " "
/ () dangra = / [ARY) = A(Ra) ohgia, Vs € G (2.30)

Using Lemma 2.8}

0

0
| A(Rs)saseis <Ko [ 154allah]loial (2.31)
—h —h
where (5AA = (OélA — QA, ﬁlA - 6A7 QlA — QA)
Let 1o = da, so that, as f; > a1, we obtain:
ay [|6aallz2gy < K16 Aall 2oy laallze oy < Null0Aall 2, (2.32)
3\ .
where N, = — K; ),,. Similarly:
2m
ar |08all 2y < Ny [|0AA| 201y, (2.33)
3\
where N, = — K; Q,, and:
2m
(05} Hé@AH[}([) S Np H(SAAH[}(]), (234)

3\
where N, = % K5 |Q,|. Then, we can write:

Cll6Aall 22y <0,

where:
C=m(l—N), m=min{ay,a},

and:

C <M>4|:(Qu+Qv)E+1
N = —
(1+R)* \m QF + Q3
for some numerical constant C' > 0. Assuming o < Q,, @, < 7 for some 0 < ¢ < 7, then
the bound:

] (Qut Qu+1Q,). (2.35)

C M\, — —
< (—) [3R+T/U2 + 27’R2] ,
1+ \m
holds. It implies that N < 1 if |@Q,| is large enough, and consequently, the solution of the

discrete problem (2.14]) is unique. =
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Remark 2.10. We have proved the uniqueness of solutions of the discrete model
for flows dominated by negative (warming) surface thermodynamic fluxes. This is coherent
from a physical point of view, as the warming of the surface has a stabilizing effect on the
mixing layer. The flow in the tropical seas fits into this case, as @, is typically negative.
Howewver, for all models, if we consider realistic values of the momentum and heat surface
fluzes in tropical seas (See Section , the constant N defined by 15 typically
greater than one. Nevertheless, if we move in a small neighborhood of a fixed discrete
equiltbrium, 1.e. we restrict considerably the set S, the estimate for the constant N given
by can be directly replaced by an expression in terms of the fixed discrete equilibrium
solution, and thus can be reduced enough, resulting to be effectively smaller than one for
all models.

2.3.2 Convergence of discrete equilibria to the continuous ones

We next prove that the discrete equilibria converge to the continuous ones, for large
enough (negative) surface thermodynamic fluxes. This analysis implies the existence of
equilibria of problem — as weak solutions of the steady version of this problem,
so as its stability with respect to numerical discretizations.

Theorem 2.11. Assume that Hypotheses and hold, and that D,, D,, D, €
L>(I). Then, for large enough (negative) surface thermodynamic fluzes Q,, the sequence
{(un,va, pa)}a-so is strongly convergent in [HY(I)]® to a weak solution (u,v,p) of the

steady version of problem -(1.29).

Proof. We prove that aa, fa, 0 are BV (bounded variation) functions on I = (—h,0).
Indeed, let us consider the total variation of aa on I, that is defined as:

TV (oa) Z |ovipr —
By identity (2.19) and Hypotheses [1.2] and 2.5 -, we have:

_ 1 /0 ~ 10
Qu + A_z/h Dy w(pr,i41) dz B Qu+ A_Z/h Dy w(p1;) dz

|CY¢+1 - CYz'| =

fl(Rz'+1)
< | [Ptk 1 [, Do o) R~ wler) o) ds
< u (Riy1) fi(Rs) Az Fi(R) f1(R;)

< <2—A>%rfl<a+1> A+ BB [ b, i) - el

Azm?

1 M
< s (2= N)Qu+ |Dullrry ] |f1(Ris1) = fi(Ri)| +2 s | Dullpeery Az, (2.36)

/_ Duuliens) L(R) = fi(Rew) d:
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where the last inequality follows from |w(¢1 ;)| < Az and from the estimate:

0
/hDu [werit1) — wlpr)] dz
Zit1 z
< D,(2) (z — z)dz — / Dy(2) (z — zi_1) dz
'LO 0 1—1
+ Dy(2)Azdz — | D,(2)Azdz
Zit1 Zi

Zit1
< D=2+ Az [ D) e < 2Dl A

Recall that, by Theorem , for all Az > 0 the triplet (aa, Sa,0A) lies in the set S
defined by (2.23). By Lemma [2.8}

|f1(Ri+1) - fl(Rz)‘ < K, [|Oéz'+1 - Oéz'| + |Bi+1 - 5¢| + |02‘+1 - ‘91“ s

where K is given by ([2.27). Combining this estimate with (2.36)), we obtain:
M
laip1 — a;| < Lifloaggr — oul 4+ |Bir — Bl + 10iv1 — 6i]] + 2 oo HDuHLoo(I) Az,

_ Cl M? ? (Qu—i_Qv)R"f'l
where L, = (1+}—%)3 <m2)\) [ Q2+ Q2

|Bix1 — Bi| and |0;11 — 6;], so we can write:

]Qu. Similar estimates hold for

N-1 N-1

(1 — L) Z (lip1r — ag| + | Big1 — Bil + |0ix1 — 6:]) < Ls Z Az < Lsh,
i—1

=1

where: )2 o
Ly = = ut &y + )
o= s () | @+ 1)
for some numerical constant Cy > 0, and:

M
Ly=2_ ([1Dull o1y + N1 Dol Lo (ry + |1 Dpllzoe(ry) -

Arguing as in the proof of Theorem , the constant L is smaller than one if |Q,| is
large enough, then:

N-1

(lipr — ag| + 1 Biv1 — Bil + |0ix1 — 04]) <
i=1

Ls

h.
1—- 1L,

It implies that aa, Ba, Oa are uniformly bounded in BV (I). As BV(I) is compactly
embedded in L'(I) (cf. [24]), there exists a sub-sequence {(aa/, Bar, 0a7)} of {(an, Ba,04)}
strongly convergent in [L*(I)]? to («, 8,6). We deduce that there exists a sub-sequence of
{(aas, Bar,0a7)}, that we may denote in the same way, such that (aar, Bar, 0a/) — (@, 53,0)
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a.e. in I. It follows that fi(Ra/) — fi(R) a.e. in I. At the same time, {fi(Ra/)} is
bounded in L?(I), so that, up to a sub-sequence, f;(Ras) weakly converges to a function
g in L*(I). Let ¢ € L*(I). For a positive constant C, we have:

|fi(Rar)le] < Clgl,  fi(Ra)e — fi(R)p ae. in I,

By the dominated convergence theorem (cf. [20]):

[ #Ee [ ke

As fi(Ra/) — ¢ in L2(I), we obtain:
0 ~ ~
| Glf) - ge=0. oe 1) = F(R) =g

So that, fi(Ra/) — fi(R) in L*(I). Moreover, for a positive constant C'

A(RA)E <O, |F(Ra)? = [A(R)] ace. in 1.

By the dominated convergence theorem:

11 (Ran)|ln2ry = 11 (R)]] 2.

It follows that {f1(Ra/)} strongly converges to fi(R) in L2(I). Let us consider ¢ € C°(T).
There exists a sequence {@as} with par € Ga such that par — ¢ in L*°(I). Then:

fl(éA/)gOA/ — fl(é)go n L2([)

Finally, as aar — « in L?(I), we can conclude:

/ fi(Ra) OZA’(PA’—>/ (R

Then, {(uar,vas, par)} strongly converges in [H'(I)]® to a weak solution (u, v, p) of the
steady version of problem (|[1.21])-(1.22)). Since we proved in Theorem that (u,v,p) is
unique, then the whole sequence {(ua,va, pa)} converges to it. m

Remark 2.12. It holds an analogous of Remark[2.10, i.e. the result of convergence holds
for mizing layer flows dominated by negative (warming) surface thermodynamic fluxes.

2.3.3 Non-linear stability of discrete equilibria

We analyze in this section the asymptotic stability of the discrete equilibria. The ob-
jective is to prove that the continuous equilibria are well approximated by the solution
of the evolutive (implicit and semi-implicit) discrete problems and (2.4), which are
computable in practice. We give a positive answer when the time iterates have bounded
derivatives. Actually, we prove the asymptotic stability of the implicit discrete model
(Qa) given by (2.4). We assume the following:
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Hypothesis 2.13. The sequence {0, UX }nen remains in the set S given by , for all
n € N.

The proof of this hypothesis is still an open problem. Under this hypothesis, we prove
the asymptotic stability of the implicit discrete model (Qa). Let us denote by IIA the
standard nodal interpolation operator from continuous functions onto the space V.

Theorem 2.14. Assume that Hypotheses[1.9,[2.9 and[2.13 hold, and that D,, D,, D, are
smooth functions of z (and t). Then, for large enough (negative) surface thermodynamzc
fluzes @Q,, the implicit discrete method (Qa) is asymptotically stable, in the sense that:

limsup [UX — HaU"|[ 121y < CAz, (2.37)

n—-+00
where U = (uR, vx, Ox), U = (u®, v%, 6°) and C is a positive constant.

Proof. Let us look for u} as uX = Ilau® + @)X, where u} is a perturbation with
homogeneous boundary conditions. As IIau® € u, + Va, then aX € Va. If we set
ITAu® = au® — u®, for all wa € Va, we have that:

Ut —uj ’ n+1 n+1 n+1
/ —Ap Wa —i—/ fi(RX)0.u 0,wa = L™ (wa), (2.38)
—h —h
0 Tau® — 11 e 0 0
/ MU}A +/ f1(R9)0,au0,wa = Lye(wa) +/ f1(R%) 0T\ u0,wa.
—h —h —h

At
(2.39)
We take the difference between (2.38]) and (|2.39), and we add and subtract the quantity:

0
/ fl(RZ“)@zHAue@zwA.
—h
We obtain:

0
/ (A2+1 _UA>wA —i—At/ f Rn+1)a An+la WA

—h

0
_ At / FL(RS) — fu (R0 TTAu Dwa — At / Fu(RO)OITu D
“h

/D o u)wa. (2.40)

1
Let us take wa = @/x™". Using the identity (a—b)a = 5 (Ja]* = [b]* + |a — bJ*), we deduce:

s 3y + 157 = @A 1220y + 2m A0 A5 B

0
< (a2 + 24t / (RS — fi(RY )0 auc 0.y

0

o QAt/ fl Re aHAuea ~n+1 / D( Z—I—l ue)AZ—l—l,

—h
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where we have used fi(RX"™) > m > 0 from Hypotheses [2.5[ and By Lemma , we

have:

/_ AR = AR 0N 0.5

< K )|0.(0° = UXT 2 10T || ooy 10087 (| 2201y,
where K; is defined by (2.27)). From (1.27) and Hypothesis [1.2] it follows:

Qu
10T au ey < 10 ey < 222,

so that:

/_ AR = A0 Ma0. 5

IN

Ko [10.(0° = UK 2y 1008 | 22(r)

< Ko (10080 g2y + 10:05 120 ) 10:057 1201

where we denote K, = 2 K; & Then:
m

| WHHL? + 2m At||0, An—HHL?(I
< Iy + 280 Ko 005 e 10-057 2
+ 2A¢ (K, |03 U0° | 2y + M |05 || 22y + C) |00X | 22ny,
as fi(R°) < M from Hypothesis 2.5 Similar estimates apply to the perturbations:
Pl = o —TIa0®, O = 0% — TIA0°.
Summing these up, we deduce:
IOX 2y + 2m A0 UK 721y
< ORIZ ) + 2AL K (|0, TR 2
+ 20t (K + M + C) 013U p2ry 10O 2

where:

K:Q[(lM
m

or, 1@l C (M?)T(Quwv)ﬁﬂ
m

m(1+ R)3 \m2\ Q% + Q3

Thus, for large enough |Q,|, we have K" < m. Then, denoting m = m — K, we obtain:

IOR 720y + 27 AL 00X 72

< OA ) + 248 (K + M + C) |03 U | 21 100X | 2

} (Qu+0u Q).
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Using Young’s inequality:

Ein N Eon Eon (K+M+C)°
HUAHH%%I) +mAtHaZUA+1H%2(I) < HUAH%%I) + At =

10-ITA U 22
< HGZH%Q(I) +C (Az)* At, (2.41)

for some numerical constant C; > 0, where the last inequality follows from the finite
element interpolation error estimate:

[0 TAU| 121y < Co Az]|02,U° || 121y,

for some numerical constant Cy, and we use the fact that U¢ € [C=(I)]® from (1.25)).
Using Poincaré inequality [UA™ |7,y < Cs [[0:UR|72 ;) for some constant Cy > 0, we
deduce from (2.41)):

(1 + 03_1 ﬁlAt) Oni1 < 0n 4+ C1 (A2)?At,

1
(1+ Gy mAt)

where we denote o, = HUZH%Q(I). Let K = , SO we can write:

Opi1 < Koy + KC1(A2)At = (1 — C41At)o, + (1 — CiAL) Oy (Az)2At,
where we denote Cy = C;* K . Then:
Onp1 < (1 — CuA)" Moo + (C1/Cy) (Az)?, (2.42)

and we conclude (2.37). =

Corollary 2.15. Under the hypotheses of Theorem the sequence {U }nen asymp-
totically converges to the continuous equilibrium U® in [L*(I)]* as (n, Az) — (+00,0).

Remark 2.16. Concerning Hypothesis , if the initial perturbation lies in the set S,
to prove that its time iterates remain in it is still an open problem. However, in Section
we will perform some numerical tests for realistic initial and boundary conditions
to analyze the asymptotic convergence of the time iterates computed with the numerical
scheme to the continuous equilibria, in order to numerically validate the thesis of

Corollary [2.15,

2.4 A Primitive Equations multidimensional LES for
mixing layers

To investigate the finite-time stability of the algebraic MLM (1.17)), (1.18]) and (1.19)
with respect to multidimensional perturbations, we introduce in this section a hydro-

static ocean model based on a LES approach. For computational efficiency, we choose a
domain that represents a vertical section through the ocean in the x — z plane, periodic
in the x—direction, which is physically reasonable. Our procedure is to solve on this
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domain a 2D Primitive Equations model of oceanic flow, whose data are 1D plus small
2D perturbations.

The Primitive Equations govern oceanic flows at large scales in space and time, and are
often used as a physical-mathematical basic model to analyze global climate changes and
oceanic bio-systems, usually in combination with turbulence models (cf. [18]). In their
reduced formulation, they form a set of PDEs for horizontal velocity, surface pressure
and density, arising from the Boussinesq Equations together with the hydrostatic
approximation (|1.14]).

Instead of the free-surface condition, we consider here the rigid-lid assumption, that
states that the sea-surface is flat and the vertical velocity vanishes on it. Let us consider
the 1D domain:

=(0,L), L >0,

that shall represent the rigid-surface domain of the flow. We define the 2D flow domain
as:
Q={(z,2) eR’s.t. s Ew, —h <2< 0}.
We assume that the flow is homogeneous in the y direction and turbulent, and we represent
by:
U = (u(w,zt), w(z, 2;1)), p=plz,zt), p=p i),
the mean velocity, density and pressure (rescaled by p,) of the fluid, arising from a sta-

tistical Reynolds averaging of the 2D Boussinesq Equations. The averaged form of the
Primitive Equations is:

(((a) Ou+ (U-V)u—aiAu+38,p=-V-(UW) in Qx(0,7)
(b) ap=-"g in Qx(0,7)

! " (2.43)
(¢) V-U= in Qx(0,7)
(d) Op+ (U-V)p—ahp=-V-(Uy) in Qx(0,7)

As we are considering tropical seas, we neglect the Coriolis force. Also, the anisotropy of
the domain (L >> h) permits to apply the hydrostatic approximation:

dp=-Lg. (2.44)
In system ([2.43)), U’, /, and p’ are respectively the fluctuations of the total velocity,
the horizontal velocity and the density of the fluid, and a;, as are the laminar viscosity
and diffusion. To solve the closure problem for model (2.43)), we use the concept of eddy
viscosity and diffusion. So, we set:

~U v = (v} Opu, v Ou), —U p = (K| 0.p, K.0.p),

where v} and 1/, are the horizontal and vertical eddy viscosity coefficients, while K} and
K! are the horizontal and vertical eddy diffusivity coefficients. We apply a Smagorinsky
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turbulence model for the horizontal eddy viscosity and diffusivity coefficients v}, and K.
The Smagorinsky turbulence model is a LES model based upon the eddy viscosity and
mixing length concepts, intrinsically linked to a discretization grid (cf. [56]). We consider:

a
vl = (Cg Ax)2 |Opu|, K| = a—j vl

where Cyg is the Smagorinsky constant, estimated from experimental measurements (cf.
[35]), and Az is the horizontal turbulent mixing length, identified with the horizontal
diameter of the elements of the grid considered on the computational domain 2. As
for the vertical eddy viscosity and diffusivity coefficients v and K, we use the gradient
Richardson number-based model of Bennis et al. . So, we consider:

¢ by n ai by

= — K:
YT U sr2 T (U4sRE T (L F5R)

where the gradient Richardson number R is now defined as:

I T
Pr (8zu)2 .

The hydrostatic and the rigid-lid assumptions allow to integrate the hydrostatic equation
(2.44) from an arbitrary depth z up to the rigid-surface z = 0:

0 0
L[ plosst) ds — o zst) = puGast) + L [ plosie) ds,
Pr Jz Pr Jz

r

0
/ Osp(x, s;t) ds

with ps denoting the surface pressure. It follows that the horizontal gradient of the
pressure is rewritten in terms of the horizontal gradient of the surface pressure, plus a
baroclinic contribution:

0
Opp(z, 23 t) = Opps(x;t) + iaz/ p(x,s;t)ds.
Pr z

The reduced formulation of the Primitive Equations becomes:

0
(a) O+ (U-V)u— 0p(vp0,u) — 0,(vp0.u) + Ops + piax/ plx,s;t)ds =0

(b) O.w = —0,u
(2.45)

where v, = a1 +v}, v, = a1 + V!, respectively are the total horizontal and vertical viscosity,
and Ky, = a;+ K}, K, = as+ K respectively are the total horizontal and vertical diffusion.

Let us decompose the boundary of € into four pieces, 02 = I, UT'sUT'y, UT'y,, where I,
is the domain bottom, Iy is the ocean surface, and I'y,, I'y, are artificial vertical sidewalls.
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We shall consider the following initial and boundary conditions associated to problem
(2.45)):

((d) Uy, = Ub,  Plr, = Pb
(e) Wy, = wp, =0
(f) e, =, s P, =P, (2.46)
(9) vlOuy, =Qu Kyo.p, =Q,
(h) u(t=0)=up pt=0)=pp w(t=0)=0

The boundary condition (2.46) — (e) includes the rigid-lid assumption: w = 0 at the
surface z = 0, while the boundary condition (2.46) — (f) represents periodic boundary
conditions that we impose on the sidewalls I'y,, I';,. The remaining boundary conditions

are those of the 1D model (|1.16)-(/1.20)).

Remark 2.17. If the initial conditions (2.46) — (k) are 1D (do not depend on x), the
solutions of the MLM are solutions of the Primitive Equations with a zero pressure gra-
dient.

We discretize model — with a Galerkin FEM in the spatial variables, and a
semi-implicit Euler scheme for the temporal variable. In particular, we use a Taylor-Hood
(P2 — P1) discretization for velocity-pressure. This ensures the stability of the discretiza-
tion of the pressure (cf. [13]). We also use a P1 discretization for the density. Note that
the integral appearing in equation ([2.45)) — (a), related to the baroclinic contribution, is
approximated by composite quadrature formulas (e.g., composite trapezoidal rule). As
for the temporal discretization, we linearize the convective, viscous and diffusive terms
appearing in the problem. Moreover, we solve decoupled problems for the pair velocity-
pressure and density, by considering the baroclinic contribution at a previous time step.
This yields a stable full discretization.

In Section|3.2.4] the approximated LES model (2.45))-(2.46)) is integrated for characteris-
tic times associated to the formation of mixing-layer profiles (almost constant density from

the surface down to the depth where a sharp gradient appears), typically of the order of
several days. The purpose is to test whether, in tropical seas, replacing a multidimensional
model with a 1D MLM provides accurate results. We will observe that the finite-time
solutions provided by the 2D model loose memory of 2D rather small initial perturbations,
and are close to the solutions provided by the 1D MLM.






Chapter 3

Numerical Experiments by MLM

3.1 Introduction

In this chapter, we investigate the finite-time (characteristic times of formation of well-
developed mixing layers) and asymptotic behavior of algebraic turbulent MLM by nu-
merical simulations, using data corresponding to tropical seas as well as to polar regions.
We start by comparing the performances given by the three different settings of the eddy
viscosity previously introduced in Chapter , i.e. the Pacanowski-Philander model ,
the Gent model and the Bennis et al. model . This comparison is per-
formed for relatively large deviations of realistic initial conditions provided by the Tropi-
cal Atmosphere Ocean (TAO) array. These initial conditions correspond to states close
to mixing-layer profiles, measured on the Equatorial Pacific region called West-Pacific
Warm Pool. The applied initial perturbations admit meaningful physical interpretations:
on one hand, we take into account strong heating or precipitation phenomena at the sur-
face, while on another hand we consider the cooling or evaporation of surface waters. To
run the numerical tests, the conservative FD discretization proposed in Section is used
in its semi-implicit form. This first numerical study allows to conclude that mixing-layer
profiles could be considered as kinds of “absorbing configurations” in finite-time, that
asymptotically evolve to steady states under the application of warming surface fluxes.

Moreover, we use the Primitive Equations LES model for mixing layer, introduced
in Section [2.4] as a reference for a numerical investigation of the finite-time stability of
MLM with respect to multidimensional perturbations. We will find that, in tropical seas,
replacing a multidimensional model by a 1D MLM provides quite accurate results to pre-
dict the mixing-layer evolution.

To provide a more comprehensive numerical investigation, some results on different
parameterizations of vertical mixing in polar regions are finally presented. We will clearly
observe as strong cooling effects provide a rather different dynamics of the mixing layer
with respect to typical dynamics in tropical regions. In particular, we focus the attention
on two situations of interest: the mixed layer induced by wind stress in the Arctic Ocean,
and the deep mixed regime in the Labrador Sea driven by buoyancy loss at the surface.
The vertical mixing parameterizations that we test on realistic initial conditions extracted
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from the World Ocean Atlas 2001 (WOAO1) data are the first-order closure PP and KPP
models, a modified version of Mellor and Yamada scheme, and the second-order closure

model of Gaspar et al., as they are implemented in the MIT general circulation model
(MITgcm).

In a first stage, the surface wind forcing and buoyancy fluxes are prescribed and con-
stant during all time integration. This is obviously an idealized situation, since in more
realistic cases time-dependent surface currents, sensible and latent heat fluxes as well as
fresh-water fluxes/brine rejection during melting/sea-ice formation are involved, and can
modify the ocean stratification. Furthermore, lateral advection processes too play an in-
creasing important role as time progresses, and can dominate variability over seasonal and
inter-annual time-scales (cf. [39]). For these reasons, we conclude that vertical (1D) MLM
can be successfully used in general to represent the evolving mixed layer on short time
scales, but to properly represent lateral exchanges for larger time scales, we have decided
to move to a more meaningful 3D configuration. For computational efficiency, we use a
regional Arctic Ocean configuration of the MITgcem global grid. We perform an inter-
comparison of the Arctic Ocean circulation simulated with PP and KPP models, driven
by realistic (CORE-II, 1958-2007) forcing. Coordinated Ocean-ice Reference Experiments
(CORESs) are commonly used as a tool to explore the behavior of global ocean-ice models
under forcing from a common atmospheric dataset (cf. [26])

The chapter is structured as follows: In Section |3.2] we investigate the finite-time and
asymptotic behavior of algebraic turbulent MLM by numerical simulations, using data
corresponding to the Equatorial Pacific region called West-Pacific Warm Pool (Test 1).
In the framework of Test 1, we present four cases of study. Case 1 (Subsection is
devoted to test the ability of the various MLM introduced to reproduce the formation of
well-mixed boundary layers, starting by a large negative deviation from realistic density
initial conditions in absence of convection (i.e., d.py < 0 for any z € (—h,0)). The per-
turbation applied in this case intends to simulate strong initial heating or precipitation
processes at the surface. With the same purpose, in Case 2 (Subsection we con-
sider an initialization of the code by a large positive surface deviation from a real density
profile in presence of convection (i.e., 9,pp > 0 for some z € (—h,0)). The perturbation
applied in this case simulates strong initial processes such as the cooling of surface waters
or evaporation. Case 3 (Subsection is devoted to the computational analysis of
asymptotic stability of discrete equilibria, while in Case 4 (Subsection we perform
a numerical study of finite-time stability with respect to 2D perturbations. On another
hand, in Section [3.3| we test the performances of MLM in various configurations pertaining
to high latitudes of the Northern Hemisphere (Test 2). Within the setting of Test 2, we
present two cases of study. Case 1 (Subsection is related to the impact of different
MLM driven by wind forcing and/or cooling at the surface, while Case 2 (Subsection
analyzes the sensitivity of the Arctic Ocean circulation simulated by a 3D coupled
ocean - sea-ice model with two different mixed-layer physics.

The results of Test 2 have been carried out during my stay at the Alfred Wegener
Institute (AWI, Bremerhaven, GERMANY, http://www.awi.de/en/)) for the period from
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15.09 to 15.12.2013, in close collaboration with Drs. Sergey Danilov, Martin Losch, and
Jens Schroter of Climate Dynamics Section, and presented at the Section Seminar. The

results of Test 1 can be found in , , .

3.2 Test 1: West-Pacific Warm Pool

In this section, we study the application of oceanic turbulent MLM in the Equatorial
Pacific region, called West-Pacific Warm Pool. The West-Pacific Warm Pool is an area
located at the equator between 120°F and 180°E (see Figure , where the tempera-
ture is high and almost constant along the year (oscillating between 28 — 30° C). The
precipitations are intense and, as consequence, the salinity is low.

45°N|8

45°s _ :
0° 90°E 180°

Figure 3.1:
West-Pacific Warm Pool location.

In particular, we are interested in perturbing real initial data available from the TAO
array . The TAO project aims at studying the exchange between tropical oceans
and the atmosphere, source of phenomena such as ENSO (El Nino Southern Oscilla-
tion), and it provides data often used in many numerical simulations (see the TAO El
Nino web-page http://www.pmel.noaa.gov/tao/elnino/simulation.html). These data cor-
respond in general to profiles close to mixing-layer configurations, that have been analyzed
in , , . From these studies, one can conclude that by starting from initial condi-
tions close to mixing-layer profiles it is possible to reach a well-developed surface turbulent
mixing layer within two days, and mathematical stable equilibria within two months ap-
proximately. Here, as in , we are mainly interested in analyzing whether the formation
of a homogeneous mixing layer first, and then of theoretical equilibria, are reachable even
starting from initial conditions far away either from mixing-layer profiles and steady state
solutions, within the respective characteristic times.
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To obtain the actual initial profiles, we approximate the data measured at 0°N, 165°F
by a linear interpolation, and we largely perturb the density at the surface, leaving un-
changed the velocity profiles. We consider a warming flux acting on the sea-surface in
accordance with [22], so that the only turbulence source is the wind stress. All the nu-
merical experiments are grid-size and time-step independent, in the sense that the results
remain practically unchanged as Az and At decrease.

3.2.1 Case 1: Mixed layer induced by wind stress in absence of
convection

In this test, we consider a perturbation of the initial conditions corresponding to the
TAO’s data for the 15th June 1991. The studied layer depth is 100 m. The initial profiles
are displayed on Figure [3.2] The initial zonal velocity presents a westward current at
the surface and, below it, an eastward undercurrent whose maximum is located at about
- 55 m. Deepest, we observe a westward undercurrent. The initial meridional velocity
presents a southward current whose maximum is located at about - 90 m. The initial
density presents at the surface (first 20 m) a strong negative deviation of the original
data, in order to move away the density profile from a (homogeneous) mixing-layer con-
figuration. Physically, we are in absence of convection, since the initial density profile has
negative derivative along the water column, and by the perturbation we are simulating
an important initial increase of heating or precipitation phenomena. At the surface, we
impose a zonal wind equal to 8.1 m s™! (eastward wind) and a meridional wind equal to
2.1 m s7! (northward wind). We consider a surface heat flux equal to -107% kg m=2 s7!,
which is consistent with the observations of Gent [22].

The formation of a well-developed mixing layer is achieved by integrating the various
models for a time 7 = 192 hours (8 days). The grid spacing is Az = 5 m and the
time step is At = 60 s. The corresponding numerical results are displayed on Figure
B3] We consider hereafter a standard definition of mixed layer (¢f. [57), [51]), that states
that the base of the mixed layer is the depth at which the density changes by 0.01 kg
m~3. The final density profile displays a similar mixed layer for R213, R23 and R224
models of about 20 m, in agreement with the observations reported by [4]. Furthermore,
the pycnocline simulated by the three models is similar. In the upper oceanic layer, the
surface currents for R213 and R224 models show almost the same behavior, while the
R23 model underestimates these profiles, simulating a weaker surface current. Anyway,
we notice an increase in the zonal and meridional surface currents in comparison with
the initial profiles, which is in agreement with the application of a north-easterly wind.
The surface current behavior can be explained by the final viscosity and diffusivity values,
displayed on Figure for all models, where in particular we observe that R23 model
produces the strongest viscosity and diffusivity, and this mitigates the effect of surface
winds.
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3.2.2 Case 2: Mixed layer induced by wind stress in presence
of convection

The code is initialized with a perturbation of the 15th November 1990 TAO’s data (see
Figure . The studied layer depth is 100 m. The initial zonal velocity profile displays
an eastward current all along the water column, whose maximum is located at the sea-
surface. The initial meridional velocity displays a southward current whose maximum is
located at about 40 m of depth. The initial density profile displays at the surface (first
20 m) a strong positive deviation of the original data, in order to move away the density
profile from a (not-homogeneous) mixing-layer configuration, and to create a deep (first
50 m) significant surface zone of negative initial gradient Richardson numbers. So, we
are in presence of convection, where convection phenomena are in particular linked to
physical processes such as the cooling of surface waters or evaporation. Note that the
presence of static instabilities zones in the density profiles can be detected with a certain
frequency in the TAO’s data. We impose at the surface a zonal wind equal to 7.3 m s*
(eastward wind) and a meridional wind equal to 2.1 m s™! (northward wind), and we
consider a surface heat flux equal to -107% kg m=2 s7!, as in Case 1.

In Figure [3.6, we display the initial gradient Richardson number, that is effectively
negative for the first 50 m of depth. This fact is reflected on the initial diffusivities of the
various models, as shown in Figure |3.7] where in particular we observe negative values
for models R213 and R23, while for model R224 we always have positive values. Physi-
cally, negative diffusivity can not exist, so we can not use here R213 and R23 models in
their original formulations (see equations (|1.17)) and (1.18])), described in [49] and [22]. In
practice, ocean modelers bypass this problem by extending the eddy diffusivities to these
regions with positive constant values. Usually, a limited viscosity with typical value of
1072 m? s (¢f. [58]) is applied to modify the Pacanowski-Philander and Gent models,
in order to handle static instabilities. We compare hereafter the numerical results given
by the Bennis et al. model R224 with the ones of the modified Pacanowski-Philander
R213 and Gent R23 models. The Bennis et al. model R224 presents the advantage that
it can be used here without needing any additional parameter, which is an important fea-
ture in situations where we have to simulate different turbulent regimes. The large value
displayed by the initial R224 diffusivity corresponds to a negative gradient Richardson
number near to its singularity, that is at & = —0.2.

The formation of a well-developed mixing layer is achieved by integrating the various
models for 7 = 48 hours (2 days). The grid-spacing is Az = 5 m and the time-step is
At = 60 s. The results are displayed on Figure[3.8 In particular, the final density profiles
show a statically stable configuration, where the density increases with the depth. We
observe that the Bennis et al. model R224 has approximately the same behavior of the
modified PP model R213, but it performs a smoother and faster transition from static
instabilities to a homogeneous mixed layer. In fact, it produces a mixed layer of 75 m,
at least 10 m deeper with respect to the modified Gent model R23, i.e. the scheme that
reacts slower. In any case, the application of a warming flux at the surface permits to
stabilize the water column, creating a well-developed mixing layer even for initial condi-
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Figure 3.6:
Case 2: initial gradient Richardson number.

tions that present strong and deep vertical instabilities. Also, we notice an increase in
the zonal surface current, by applying an eastward wind at the surface (u, > 0). At the
same time, an efficient northward wind at the surface (v, > 0) causes an increase in the
meridional surface current. These results are in agreement with the physical reality. As
for the diffusivity, a simple calculation shows that the modified Pacanowski-Philander and
Gent models limit the diffusivity respectively to 1072 and 3x 10~3 (units: m? s™!). During
the computation, the Bennis et al. model is able to automatically adjusts the diffusivity,
reducing the initial peak until converging to a range between 10~* and 1072 (units: m?
s71), which is in agreement with Osborn and Cox [48]. By estimating the diffusivity with
measurements of very small scale vertical structures, they have shown that it fits in the
range [107% m? s7%; 107! m? s7!] in the studied region, i.e. the West-Pacific Warm Pool.

To sum up, Case 1 and 2 show that the analyzed algebraic MLM seem to have good
stability properties in finite-time for warming surface fluxes, and that they provide accu-
rate physical predictions of mixing-layer profiles, even with relatively large perturbations
of the data, remaining in the respective characteristic times of formation.
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Case 2: mixing-layer zonal velocity, meridional velocity and density profiles for models
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3.2.3 Case 3: Analysis of asymptotic stability of discrete equi-
libria

In this case, we investigate the asymptotic behavior of algebraic turbulent MLM by nu-

merical simulations. Firstly, we are interested in analyzing whether the formation of

theoretical equilibria are reachable even starting from initial conditions far away either

from mixing-layer profiles and steady-state solutions, by using the same initial data of
Case 1 and 2.

Starting with the perturbed initial conditions of Case 1 (see Figure [3.2), and the
same boundary conditions, we integrate the various models for 7 = 10000 h (about 14
months), with Az = 5 m and At = 1 h, to obtain the steady states of the flow. In
practice, the discrete unsteady solutions corresponding to time 7 = 10000 h change very
little as time increases, so we consider them as steady solutions. In Figure [3.9] we can
notice the formation of linear steady profiles for velocity and density, conforming to the
theoretical expectations (cf. [2]). Similar numerical results are obtained for R213 and
R224 models, while R23 model diverges from these results in all the water column. In
Figure [3.10, we can observe for all models a monotonic numerical convergence to the
steady states, corresponding to rather high levels of turbulent viscosity and diffusions due
to the dissipative nature of the equations of the models. Model R23 reaches first a stable
equilibrium (after about 3000 hours, i.e. 4 months approximately), since it provides
stronger eddy viscosity and diffusivity, as suggested by Figure Here, we compute the
residual values as:

1/2
2

N
e D e o e
=0

and we refer to a stable equilibrium when r™ < 107°. Collecting data at time 7 = 10000
h implies to consider a subsequent relaxation time, until to obtain 7" < 1071 for all mo-
dels. This shows the non-linear stability of equilibrium solutions, that act as point-wise
attractors, whenever we apply a warming flux at the surface as in this case. In particular,
the steady states attract configurations corresponding to mixing layers, that appear as
intermediate transient states reached by the asymptotic evolution of the flow to mathe-
matical equilibria.

Also to obtain the steady states of the flow for the perturbed initial conditions of Case
2 (see Figure and the same boundary conditions, we propose to integrate the various
models for 7 = 10000 h (about 14 months), with Az =5 m and At = 1 h. Recall that
to apply R213 and R23 models in this case, where we have to handle initial negative
gradient Richardson numbers, we must modify them by imposing a limited eddy viscosity
as in Case 2. This forces the so-modified models to switch to positive gradient Richardson
number during the computation to reach the theoretical equilibria. It implies that for all
models considered the theoretical equilibrium solutions will be unique, as shown in Section
[[.4.1] Remarkable is the fact that R224 model does not need any adjustment in order
to ensure the uniqueness of the theoretical equilibria, to which the discrete numerical
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Figure 3.9:
Case 1: steady zonal velocity, meridional velocity and density profiles for models R224,

R213 and R23.
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Figure 3.10:
Case 1: temporal evolution of residual values for models k224, R213 and R23.

equilibria will converge. In Figure [3.11] we observe that we obtain linear steady profiles
for velocity and density, conforming to the theoretical expectations (c¢f. [2]). In Figure
the residual values display a good monotonic numerical convergence to the steady
states. So, although physically stable equilibria correspond to positive gradient Richard-
son numbers, even initial conditions that present strong and deep vertical instabilities
could asymptotically converge to those equilibria, i.e. these initial conditions too are in
the range of attraction. We conclude that mixing-layer configurations act attracting the
perturbed initial conditions in time scales of the order of several days, in agreement with
the physics of the problem, and asymptotically evolve to the theoretical equilibria in time
scales of the order of several months.

To further validate the stability properties for discrete equilibria, we propose another
numerical test, where we directly perturb the equations of the models. We initialize the
code with the 17th November 1991 original TAO’s data (see Figure . The studied
layer depth is 100 m. The initial density profile displays an instability zone between
- 30 m and - 50 m, that corresponds to negative initial gradient Richardson numbers. As
confirmed by Case 2, this is not an isolated situation. We directly apply the Bennis et
al. model R224, that is more suitable to this kind of situation, as we have already seen.
We impose the boundary conditions u, = 11.7 m s™! (eastward wind), v, = 0.4 m s~*
(northward wind) and Q, = —107% kg m™2- s (heat flux). We set Az = 1 m and At =1
h. We consider the case D, = 0 m s™%, D, = D, = D = constant, with the following
values: D =107 m s72, D = 0 m s~ 2, where we recall that these quantities have been



78 Chapter 3. Numerical Experiments by MLM

Final Zonal Velocity
0 T T T T T £ Py
- -R224 R
-101 - + - R213 (Modified) A
- ¢ - R23 (Modified) RN
-20 ¢ - B
’ 4
’ O.
30} R 4
—_ K4 '/
g 401 X, B
S #oe
= -501 . . B
2 o
K -eor s :
8"
70} . oo ’ 4
’, ”
80| e¥ 4
/“’
90} . @’ -
*
R4
-100 g L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ul[m/s]
Final Meridional Velocity
0 T T T T € L 4
-« -R224 o 8
7 4
101 - 4+ - R213 (Modified) e 1
- & - R23 (Modified) ¥ »
-20 AR Y b
&
30 R 8
_ 0
g —4of R 8
— ¥
= -5oF wr A
2 P24
é’ -60 - 74 e
&
’
70 ,0,( i
R
-80[ R b
o
—oof- g :
Kd
_100 ¢ | | | | | |
—0.0! 0 0.05 0.1 0.15 0.2 0.25 0.3
v[m/s]
Final Density
0 3 < T T 4
o, L
—10+ L ® \»\ 4
0, L
—20 R ¥ o 4
\« \‘1
30} S¢ » N
~ )
—_ LN L5
g -40p o, » 8
— LS \“
N sof % » 4
= N \
i o *
L 60 LY » 4
a e \;‘
~
~70F »\ o ‘\,“ i
-80 N & —
- » -R224 * o %
_gol| = + -~ R213 (Modified) e b
- 6 - R23 (Modified) X
_11(())31.465 102‘1.47 1021‘.475 102‘1.48 10321‘.485 102‘1.49 1021‘.495 1021.5
p[keg/m™]
Figure 3.11:

Case 2: steady zonal velocity, meridional velocity and density profiles for models R224,

R213 (Modified) and R23 (Modified).
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Case 2: temporal evolution of residual values for models R224, R213 (Modified) and
R23 (Modified).

introduced in the perturbed model . The results are presented in Figures and
As the equilibrium solutions are unique in the case of model R224, we can compute
the theoretical solutions and compare them with the numerical ones. In Figure [3.14] at
first we observe that the theoretical and the numerical solutions are very close. Also,
for D = 0 m s~2 we effectively obtain linear profiles for both equilibrium velocity and
density, as in [2]. For D = 107% m s72 (and in general for small perturbation of D from 0
m s~2) the density does not practically change its linear profile, while the zonal and the
meridional velocities are largely changed. Looking at the residual values in Figure [3.15]
we can observe in both cases a fast monotonic numerical convergence to the steady state.

We also test the convergence order of the numerical iterates to the continuous equili-
bria, as stated in Corollary [2.15] Note that this result is based upon the hypothesis that
the time iterates lie in a small enough neighborhood of the equilibrium. Our results are
presented in Table .1 where we confirm the thesis of Corollary 2.15} The time iterates
of the numerical scheme approximate, for large enough time, the continuous equilibria,
with order 1, in the sense that |[UX — U¢||12(;) > C Az for large enough n. Actually, the
convergence order deteriorates as Az decreases, due to the error term coming from the
time discretization in estimate .
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Figure 3.13:
Case 3: initial zonal velocity, meridional velocity and density profiles.



3.2. Test 1: West-Pacific Warm Pool 81

Final Zonal Velocity

0 T T O+ ]
O+ [ ]
-10 O+ ] -
O+ [ ]
20 OoF u -
Or [ ]
-30 Or [ -
—_ Cr [ ]
E -40 [« ] -
— [c ] [
N 5o @ m 4
E‘Q_‘ [c ] [ |
L 60| @ ] B
A [c ] ]
-70+ @ ] -
e [ |
_sol- o m + Theoretical Solution (D =10~ %)
e m O Numerical Solution (D =10" 6 )
-90F o-u o Theoretical Solution (D = 0)
e e Numerical Solution (D = 0)
-100 a—!
0 0.5 1 1.5 2 25
ul[m/s]
Final Meridional Velocity
0 O+ L]
o+ *+ Theoretical Solution (D=10" 6) [ ]
-1of- O+ | o Numerical Solution (D =10"%) = 1
ol O | B Theoretical Solution (D = 0) . |
o L_° Numerical Solution (D = 0) -
-30 o+ [ ] -
—_ o+ ]
E -40 O+ [] -
— o+ [ ]
N sof o+ u .
g o .
2 60 oF [ B
Q o [ ]
-70 {a 3 [ ] -
(<] [ ]
-80 {c ] ] -
(<] [ ]
90 (<] ] -
® [ ]
- 00 L L L L L . L
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
v[m/s]
Final Density
or—+@
+a + Theoretical Solution (D =10"%)
-101 +@ © Numerical Solution (D = 10~ %)
o o Theoretical Solution (D = 0)
-2 *"'«_ ¢ Numerical Solution (D = 0)
=30 L | -
—_ am
E -40 <0m -
[a— Lo |
N 5o m 4
g -
L 60| @ B
A @
-70+ L -
a
-80 L | -
a
-90 a -
a
_1 00 L L L L L
1021.33 1021.332 1021.334 1021.336 1021.338 1021.34 1021.342
p[kgm®]
Figure 3.14:

Case 3: steady zonal velocity, meridional velocity and density profiles for models R224
(theoretical vs. numerical equilibria).
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Figure 3.15:
Case 3: temporal evolution of residual values for model R224.

Final time 7 = 10000 h, D = 107°% m s>

Az (m) | [UR — U2y |  Convergence order
I 0.7895 \ - |
HE 0.3893 \ 1.02 |
2 ] 0.2048 \ 0.93 |
1 0.1149 \ 0.83 |
| 05 | 0.0733 \ 0.65 |

Table 3.1:

Case 3: estimated error and convergence order for model R224.
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Remark 3.1. In all numerical experiments, we have noticed that the convergence to
steady states takes time of the order of several months. This time scale s much larger
than that needed to generate a typical homogeneous mized layer, which is of the order
of a few days by applying steady boundary data. This may explain why these equilibria
profiles are not found in real surface layers of tropical oceans, as the boundary data usually
change in time scales of the order of hours. Fven the formation of a homogeneous mized
layer is not possible if these data change too fast. From the numerical point of view,
the investigation of the asymptotic behavior of algebraic turbulent MLM has been useful
on one hand to show the effective good stability properties of these schemes for warming
surface fluxes and, on another hand, to prove that the equilibria states behave as point-wise
attractors for intermediate transient mizing-layer configurations, for which the analyzed
models provide accurate physical predictions. In their turn, mixing-layer profiles act as
“absorbing configurations” with characteristic times of a few days.

3.2.4 Case 4: Analysis of finite-time stability with respect to
2D perturbations

We analyze here the finite-time stability of algebraic MLM with respect to 2D perturba-
tions in tropical oceans. The strategy is described in Section We solve the Primitive
Equations —, and we compare the corresponding numerical results with the
ones of the algebraic MLM —, with the Bennis et al. modeling of the

turbulent viscosity and diffusivity.

The Primitive Equations — are solved on the rectangular computational
domain €2, with a length . = 3 km, and a thickness h = 100 m, periodic in the horizontal
direction. The grid spacing is Ax = 15 m and Az = 1 m respectively in the horizontal and
vertical directions. We perform two numerical simulations, respectively corresponding to
physically unstable and physically stable initial conditions (inverse and favorable vertical
density gradients). We set periodic horizontal perturbations of 1D (vertical) initial data,
of the form:

u(t =0) =up(z) + Ao(z), p(t=0)=po(z)+ Ao(x) in £, (3.1)

by choosing a small A. It permits to set genuine 2D initial conditions for the current

problem ([2.45)-(2.46)). The initial 1D zonal velocity (ug) and density (po) profiles are
taken from the TAO array. We use the software FreeFem++ [27] to compute the practical

solution of problem ([2.45))-([2.46]).

Simulation 1

The initial 1D zonal velocity and density profiles are the same of Case 3 (see Figure ,
so that we have an instability zone below the ocean surface, where d,p > 0. The initial
fields are perturbed with random horizontal noise of small amplitude (A = 107%) to start
the convection.
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We also apply the same boundary conditions of Case 3, i.e. we impose a warming surface
flux @, = —=107% kg m? s7!, and a zonal wind-stress @, ~ 107! m? s72. We integrate
the 2D model for a final time 7 = 48 h, with At = 60 s. After 48 h of integration lateral
exchange between the convection site and the ambient fluid through advective processes
(cf. |39]) is assumed to dominate. The lateral exchange can not be represented properly
by our two-dimensional configuration and the integration is stopped. In order to perform
a comparison with the results of the 1D model, we compute it with the same data, by
neglecting the meridional velocity, which is usually smaller than the zonal one.

Figure [3.16| shows a comparison between the final zonal velocity and the final density
computed by the 2D model (horizontally averaged), and the 1D model with D, = D =
100"ms2 and D, =D =0ms 2
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Figure 3.16:

Simulation 1: mixing-layer zonal velocity and density profiles (2D model vs. 1D model).

The order of magnitude for D is found by observing that it plays the role of a horizontal
pressure gradient, that may compensate for a loss of incompressibility in the initial con-
ditions. Indeed, it is computed by the well-known Bernoulli’s law applied to the initial
velocity field along flow lines:

1
ST +p=0,
where C' is a constant, and then:
| D] = |0up| = |u(t = 0)0,u(t = 0)].

From the final density profile, we observe the formation of a mixed layer (almost con-
stant density) of about 70 m depth, by using either the 2D model or the 1D model
with a zero and non-zero pressure gradient D. A pycnocline (high gradient of density)
is formed immediately below, that is a characteristic density profile for a well-mixed layer.
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The final fluid velocity and density obtained with the 2D model are horizontally homoge-
neous, even starting from 2D initial conditions (see Figure . Moreover, the vertical
component of the velocity is almost zero. The final surface pressure assumes its values in
the range [—2-1077,2 - 1077].

The results of Figure |3.16| stress that if we take into account a non-zero horizontal
pressure gradient D in the 1D model, we barely improve the accuracy in the mixing-layer
profiles, with respect to the mixing-layer profiles obtained with the 2D model. This not
only shows the stability of the 1D model with respect to 2D perturbations, but also its
accuracy to compute the mixing layer.
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Figure 3.17:
Simulation 1: final zonal velocity, density and surface pressure (LES reference).
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Simulation 2

The initial 1D zonal velocity and density profiles are the same of Case 1 (see Figure ,
so that this simulation corresponds to a stable initial density condition. The initial fields
are perturbed with random horizontal noise of small amplitude (A = 107%) to start the
convection. We also apply the same boundary conditions of Case 1, i.e. we impose a
warming surface flux @, = —107% kg m2 s7!, and a zonal wind-stress @, ~ 107! m?
s72. We integrate the 2D model for a final time 7 = 24 h, with At = 60 s. In order to
perform a comparison with the results of the 1D model, we compute it with the same data.

Figure [3.18 shows a comparison between the final zonal velocity and the final density
computed by the 2D model (horizontally averaged), and the 1D model with the horizontal
pressure gradient D, = D =10"" m s 2, and D, = D =0 m s 2
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Figure 3.18:

Simulation 2: mixing-layer zonal velocity and density profiles (2D model vs. 1D model).

From the final density profile we observe the formation of a mixed layer of about 20 m
depth, by using either the 2D model or the 1D model with a zero and non-zero pressure
gradient D. A pycnocline is formed immediately below. This structure is quite similar to
the one of Simulation 1, where the initial density presented an unstable configuration.

Again in this test, the final fluid velocity and density obtained with the 2D model
are horizontally homogeneous (see Figure [3.19)). Moreover, the vertical component of
the velocity is almost zero. The final surface pressure assumes its values in the range

[~1-1073,1-1079].

The results of Figure|3.18|stress that taking into account a non-zero horizontal pressure
gradient in the 1D model does not improve the accuracy in the computation of the 2D
mixing-layer profiles through the 1D MLM. Then, we could assert that the unsteady flow
leading to mixing-layer configurations is also stable under 2D perturbations. The 1D
model provide mixing-layer profiles on time scales of the order of a few days, which are
accurate with respect to 2D perturbations of the initial conditions, and with respect to
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Figure 3.19:
Simulation 2: final zonal velocity, density and surface pressure (LES reference).
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horizontal pressure gradients. We finally conclude that algebraic oceanic turbulent MLM
applied to tropical seas bear excellent stability properties and provide good predictions
of the formation of mixing-layer profiles and of flow equilibria, even with relatively large
perturbations of the data.

3.3 Test 2: Arctic Ocean and Labrador Sea

In this section, we study the performances of oceanic turbulent MLM in various configu-
rations pertaining to high latitudes of the Northern Hemisphere. In a first stage, we do
inter-comparison of dynamics simulated by one of the models previously used with respect
to more complex vertical (1D) mixing schemes, driven by wind forcing and/or cooling at
the surface, by using the tools provided by the MIT general circulation model (MITgcm,
[45]). Within the models already used, we choose to work with the Pacanowski-Philander
model R213, as it gives similar results with respect to the Bennis et al. model R224,
and it is the most used by physical oceanographers. Actually, we will use the modified
version of R213, by limiting the eddy viscosities to 1072 m? s=! for all values of the
gradient Richardson number smaller than the corresponding critical value in the present
implementation of MITgem. In this way, statically unstable stratifications are forced to
return to a vertical stable stratification. To shorten the notation, we will denote hereafter
the so modified version of the Pacanowski-Philander model simply by the acronym PP81.
The other schemes to compare with are:

1. KPP model of Large et al. (KPP). The more sophisticated K-Profile Parame-
terization is a first order turbulent closure scheme which models higher turbulent
moments by means of a counter-gradient flux.

2. Modified Level 2.5 model of Mellor and Yamada (MY82). In the present
implementation of MITgcm, the turbulent kinetic energy is just parameterized, thus
leading to an overall method of first order.

3. Gaspar et al. model (GGL90). This is effectively implemented in MITgem as
a second order turbulent closure model.

In particular, we focus the attention on two situations of interest:
(a) Mixed layer induced by wind stress in the Arctic Ocean (see Figure [3.20)).

(b) Deep mixed regime in the Labrador Sea (see Figure [3.21]) driven by buoyancy loss
at the surface.

To run these simulations, we use realistic initial conditions extracted from the WOAO1
data (http://www.nodc.noaa.gov/OC5/WOAO1/pr_woa0l.html), and we prescribe con-
stant surface wind forcing and buoyancy fluxes during all time integration.

This is obviously an idealized situation, but it gives some preliminary qualitative
highlights on the impact of different parameterizations of vertical mixing in polar regions.
Remarkable is the fact that the PP81 model is the one which gives inferior performances
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Figure 3.20:
Arctic Ocean map.
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Figure 3.21:
Labrador Sea location.
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with respect to physical and observational expectations, while on the contrary the more
sophisticated KPP model is the one which outperforms mixing by other models. Thus, in
a second step, we decide to compare these two schemes in the context of a more meaningful
3D configuration focused on the Arctic Ocean, driven by realistic (CORE-II, 1958-2007)
forcing (cf. [26]). We use a regional Arctic Ocean configuration of the MITgem global
grid, and we run a 3D coupled ocean - sea-ice model with the two different mixed-layer
physics. The aim is to monitor the mixed-layer behavior in different seasons, and also
the sea-ice concentration and thickness, and to analyze the sensitivity with respect to the
different MLM.

3.3.1 Case 1: Impact of different parameterizations of vertical
mixing

We present the numerical results on a systematic study that aims to compare the impact

of different parameterizations of vertical mixing in northern polar oceanic areas.

(a) Mixed layer induced by wind stress in the Arctic Ocean

We use realistic initial conditions that correspond to the northern polar region of the
Arctic Ocean. We select seven different coordinates in this area, whose latitudes range
from 80.5°N to 85.5°N, and whose longitudes vary from 0.5°E to 5°W (anti-clockwise
rotating), trying to distribute them well over the basin. We take into account the upper
1 km of the water column.

We consider the vertical profiles for the initial temperature and salinity extracted
from the monthly averaged WOAO1 in-situ data, corresponding to the period of Septem-
ber (typical condition of freezing). In order to get unique water-column vertical profiles,
the selected data are horizontally averaged. The initial conditions are displayed in Figure
3.22] where we can discern the climatological profiles of potential temperature (), salini-
ty (S) and potential density (o(, normalized by subtracting 10® kg m~3). The potential
density is computed by using the accurate non-linear Equation Of State (E.O.S.) by Mec-
Dougall et al. [41], as implemented in the MATLAB script contained in the utilities of
MITgem. Observe that the initial (potential) density profile does not present a mixed
layer. An impulsive start is performed, i.e. the initial velocity condition is a zero velocity
field. A Coriolis parameter f = 1.4 x 10™* s™! is considered for the rotational term, in
accordance with [39]. The boundary conditions correspond to a constant wind stress of
strong magnitude, much larger than the measured ones to force the formation of a mixed
layer. Note that the simulations presented here do not contain any buoyancy effects, to
isolate the action of wind forcing. A horizontal wind stress of 1 N m~2 is prescribed at
the surface during the computation time. It corresponds to a zonal wind velocity of 32 m

s~! (eastward wind), i.e. to a violent storm of 11 Beaufort number.

A coarse vertical resolution is chosen to represent typical grids in numerical OGCM:
the vertical grid spacing increases within 18 layers (18 Az) from 10 m near the surface
up to 100 m at 1 km depth. The various models are integrated for a relatively large
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Figure 3.22:
Simulation (a): initial potential temperature, salinity and potential density profiles.
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Simulation (a): Comparison between initial and final potential temperature profiles.

time 7 = 10 days with a time-step At = 20 minutes. We display the results for the
upper 100 m of the water column. Figures [3.23] [3.24], [3.25] show respectively the final
potential density, salinity and potential temperature. The hydrography is characterized
for all models by the formation of a low-salinity (S < 33 psu) mixed layer, varying in
depth depending on the model, overlying a cold (near freezing temperature) isothermal
layer of the same thickness. In particular, the KPP model shows the deepest mixed layer,
of about 63 m depth, the GGL9I0 shows a mixed layer of about 41 m depth, while the
MY82 and PP81 models show the shallowest mixed layer, of about 26 m depth. Also, the
latter show a certain vertical instability in the profile of final potential temperature. The
upper cold mixed layer is followed by a cold halocline layer (CHL) down to the bottom of
the studied water column, where the density change is dominated by increasing salinity.
Below (not shown, as similar to the initial profiles), both © and S increase until a depth
of about 250 m, both contributing to density variations. Warm water with © > 0 °C is
already found below 180 m, above temperature maxima at 280 m and 340 m separated by
a well-mixed 60 m thick layer (see Figure . This is a physical stratification typical
of the upper 1 km of the observed Arctic Ocean (cf. [55]).

(b) Deep mixed regime in the Labrador Sea driven by buoyancy
loss at the surface

We use realistic initial conditions that correspond to the North-Atlantic Ocean region of
the Labrador Sea, near 61°/N, 56°W. For this test, we take into account the upper 2 km of
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the water column, since we expect to obtain a deep mixed regime. Indeed, in this region,
characterized by weak stratification and, in winter and early spring, exposed to intense
buoyancy loss to the atmosphere, violent and deep-reaching motion mixes surface waters
to great depth. Deep convection in this site feeds the thermohaline circulation, i.e. the
global meridional overturning circulation (MOC) of the ocean responsible for roughly half
of the heat transport demanded of the atmosphere-ocean system (cf. [37]).

The vertical profiles for the initial temperature and salinity are extracted from the
monthly averaged WOAO1 in-situ data, corresponding to the period of April, when rather
large values of buoyancy loss at the sea-surface are registered. The initial conditions are
displayed in Figure [3.26, where we can observe the climatological profiles of potential
temperature, salinity and potential density. An impulsive start is performed, i.e. the
initial velocity condition is a zero velocity field. The surface layer is stirred by the winds
and undergoes a regular cycle of convection and re-stratification in response to the annual
cycle of buoyancy fluxes at the sea-surface. The buoyancy flux is expressed in terms of
heat and fresh-water fluxes as:

B=2%99 9BsS,(E — P) = Thermal Part + Haline Part (units: m* s™°).

Pr Cw

Here, ag = 107* K! and Bg = 8 x 10~* psu~! are respectively the coefficient of ther-
mal expansion and haline contraction, S, = 35 psu is a constant reference salinity value,
cw = 3900 J kg=! K1 is the heat capacity of water, H is the surface heat flux and (£ — P)
represents the fresh water flux (evaporation minus precipitations). In this experiment, a
constant surface heat flux H = 200 W m™2 out of the ocean is applied over the time
of integration. The value is chosen to represent typical buoyancy loss in the Labrador
Sea in early spring (see [36], [39]). The buoyancy contribution of precipitation is rather
small compared with the magnitude of heat flux, so that we neglect haline effects in the
simulations. The heat flux value leads to a buoyancy flux of the order of 0.5x 1077 m? s73,
dictated by the thermal component. A constant weak wind stress of magnitude 4 x 1072
N m~2, typical of the period and the region considered, is prescribed at the sea-surface.
A Coriolis parameter f = 1.4 x 107 s7! leads to a deep mixed regime that is affected by
rotation.

Also in this case, a coarse vertical resolution is chosen to represent typical grids in
numerical OGCM: the vertical grid spacing increases within 25 layers (25 Az) from 10
m near the surface up to 250 m at 2 km depth. The various models are integrated for
a relatively large time 7 = 20 days with a time-step At = 1 h, that is typical of a
coarse, large-scale OGCM. We display the results all along the water column. Figures
[3.27], [3.28], [3.29] show respectively the time evolution of the potential density, salinity and
potential temperature after 20 days of surface cooling. The final density profiles show for
all models, except for the PP81 model, that the buoyancy forcing is sufficiently large and
strong enough to break the initial stratification and mix surface waters to great depth all
along the water column, setting and maintaining the properties of the abyss.
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Figure 3.26:
Simulation (b): initial potential temperature, salinity and potential density profiles.
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potential density profiles.
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Simulation (b): Time evolution of the salinity profiles.
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Simulation (b): Time evolution of the potential temperature profiles.

Discussion

The numerical experiments presented show that the PP81 model is the one which gives
inferior performances with respect to physical and observational expectations, that is not
surprising, due to the simplicity of the model. On the contrary, the more sophisticated
KPP model, despite being an overall turbulent closure scheme of first order, is the one
which outperforms mixing by other models. This is probably due to the important role
played by the non-local transport term (c¢f. [32]), i.e. the counter-gradient flux which
models higher turbulent moments. This term is determined mostly from surface fluxes
and therefore, in the case of heat loss at the surface of Simulation (b) for instance, it
represents an additional up-ward heat flux over the entire boundary layer, which is not
present in the other models.

More in detail, looking through the results of Simulation (a), we can conclude how
the single application of wind forcing (neglecting buoyancy effects), although very strong,
gives rise to a rather shallow mixed layer, suggesting that surface cooling fluxes lead the
capability of deep mixing penetration for the various models during numerical simulations.
This is clear looking through the results of Simulation (b), where we have to detach how
the KPP model is the faster in mixing surface cold water until reaching a deep mixed
layer of about 600 m after 16 days, even if vertical instabilities (negative gradient of tem-
perature) are completely removed only after 20 days, when the entire water column is
homogenized. So, not only the integral buoyancy supply is important, but also its timing.
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On the contrary, the slowest method is precisely PP81 model, that even after 20 days has
not removed yet the instabilities of the water column from the initial stratification, em-
phasizing the weakness of this model, probably resulting in a too crude parameterization
of the vertical mixing.

3.3.2 Case 2: Vertical mixing schemes in a 3D sea-ice ocean
circulation model

We aim to test the different parameterizations of vertical mixing given by KPP and PP81
models in a 3D MITgem configuration. The MIT General Circulation Model (MITgem)
is a numerical model designed for study of the atmosphere, ocean and climate, based on a
spatial finite-volume (FV) discretization. The model algorithm is described in Marshall et
al. [40], for online documentation and access to the model code, see MITgem Group [45].
The interest is focused on numerical simulation of the Arctic Ocean circulation. The
Arctic Ocean depends on a delicate balance in which the magnitude and distribution of
the oceanic vertical buoyancy flux are important. Thermal and mechanical forcing, ocean
stratification, internal waves, and turbulent mixing have significant impact on this buo-
yancy flux (¢f. [19]).

For computational efficiency, we use a regional Arctic Ocean configuration of the
MITgem global grid (see Figure , with open boundaries. The inter-comparison of
the Arctic Ocean circulation simulated with KPP and PP81 models is driven by realistic
(CORE-II, 1958-2007) forcing (cf. [26]). The algorithm presents as a tracer advection
model a high (seventh) order monotonicity-preserving scheme (Daru and Tenaud [15]).

The simulation starts on January 1958, and it runs for 50 years, until December 2007.
The analysis is centered on the mixed layer behavior in different seasons. In particular,
as usual, we will compare the mean (over the last years of simulation, i.e. for the period
1979-2006) monthly averaged mixed layer depth in March (end of winter) and September
(end of summer), and the corresponding mean sea-ice concentration and thickness, for
the different models. The first diagnostic of this analysis is the mixed layer depth (MLD),
shown in Figure 3.31] It is quite evident the formation of a rather large zone of deep con-
vection in Labrador Sea in March. In September, a rather shallow mixed layer takes place,
that in particular achieve the highest depths near the southeastern coast of Greenland
washed by the waters of the open North Atlantic, i.e. in the so-called Ammassalik area.
Indeed, this important area, which takes the name by the englobed Ammassalik Island, is
subject to strong downslope wind events in winter, that increase convection phenomena
(cf. [47]). Globally, the result are quite similar for both models, and the reason is pro-
bably given by the important role played by the prescribed high-order advection scheme,
that homogenizes the performances of the different diffusion schemes. Nevertheless, in
September, KPP model outperforms mixing by PP81 model. This fact shows one of the
main deficiencies of this model, that is the simulation of unrealistically shallow mixed
layers in summer. To avoid this problem, an additional positive constant (of magnitude
1072 m? s7!) vertical diffusivity (and viscosity) could be applied over a depth defined
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Figure 3.30:
Map of the Arctic Ocean sector of the MITgem and water depth [ m |.

by the Monin-Obukhov length, as suggested by Timmermann and Beckmann [58]. The
Monin-Obukhov length characterizes the oceanic surface boundary layer where the wind
effects are strong, and it is computed from a diagnostic equation given by Lemke [33].
This leads to a modified PP81 model, that has been proved to give good results in the
Antarctic geographical region of Weddell Sea (c¢f. [58]), where important convective phe-
nomena occur. These results are comparable with the ones of more sophisticated models,
such as KPP.
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Maps of simulated sea-ice thickness and concentration are shown in Figure and [3.33]
respectively. They indicate the mean minimum (September) and maximum (March) ice
coverage in the Arctic. Here, the results for the two models are practically identical, with
almost undetectable differences. Actually, this is in partly due to the fact that the two
models perform similar mixed layer depth, to which the sea-ice evolution is strictly cor-
related. However, this sensitivity is effectively more significant when considering global
(and not regional, as in this case) coupled ocean - sea-ice models. Figure , taken from
Timmermann et al. [59], permits to do a comparison with other numerical results and
observed data. The numerical results are obtained by Timmermann et al. [59] using a
Finite Element Sea-ice Ocean Model (FESOM), that implements in the vertical direction
the modified Pacanowski-Philander scheme just described, while the observed fields are
derived from the datasets of Cavalieri et al. [9] and Meier et al. [43]. In general, the
MITgcm code used in this work agrees slightly better with the observed data respect to
the FESOM code, probably due to the coarser resolution of the latter.
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Figure 3.31:
Mean Mixed Layer Depth (MLD, in [ m |) for the period 1979-2006 in September (left)
and March (right), for PP81 model (top) and KPP model (bottom).
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Figure 3.32:
Mean Sea-Ice Thickness (SIT, in [ m |) for the period 1979-2006 in September (left) and
March (right), for PP81 model (top) and KPP model (bottom).
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Mean Sea-Ice Concentration (SIC) for the period 1979-2006 in September (left) and
March (right), for PP81 model (top) and KPP model (bottom).
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Figure 3.34:
Simulated (top) and observed (bottom) mean Sea-Ice Concentration (SIC) for the period
1979-2006 in September (left) and March (right) [From Timmermann et al. [59]].
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The results presented in Case 2 are of interest to show non-trivial effects stemming from
the difference in the mixed-layer physics, that could influence the ocean circulation as a
whole in a global scale. They also put in evidence practical aspect of ocean numerical
modeling, showing difficulties and compromises necessarily involved in modeling of such
complex systems.
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Chapter 4

A Variational Multi-Scale Sub-Grid
Model (VMS-SGM) for Laminar and
Turbulent Incompressible Flows

4.1 Introduction

In this chapter, we firstly introduce a mixed boundary value problem for the steady incom-
pressible Navier-Stokes equations, that includes Dirichlet and wall-law boundary condi-
tions to take into account inflow and solid wall boundaries at the same time. After setting
the variational formulation of the continuous problem, and establishing a mathematical
analysis of wall-law functions, we approximate the weak formulation of the boundary
value problem by a finite element projection-based VMS model that only needs a (fine)
grid and interpolation operators on a (virtual) coarser grid. The large scales are repre-
sented in the (virtual) coarse grid, while the sub-filter scales are their complement into
the fine grid. The interaction between the small un-resolved scales and the small resolved
scales is assumed to be diffusive, and is modeled by the Smagorinsky sub-grid term with
projection structure. We use high-order term-by-term stabilization to stabilize each single
term that could lead to unstable discretizations (e.g., convection, pressure gradient), with
high accuracy (cf. |19], [20], [22]). This allows in particular to use polynomials of the
same degree to interpolate velocity and pressure.

The chapter is structured as follows: In Section[4.2] we present the continuous problem
we work with, recalling its main properties, and we consider its variational formulation
(Subsection [£.2.1)). Section is devoted to the mathematical analysis of wall-law func-
tions. In Section we derive the discrete approximation of the continuous problem
by a projection-based VMS approach including wall laws. We construct specific finite
element spaces that approximate the slip condition (Subsection , and we specify in
details the sub-grid eddy viscosity form (Subsection . Finally, we establish a proper
stabilization procedure (Subsection [4.4.3]), in order to construct a more comprehensive
and viable numerical method in view of its application in realistic turbulent situations.

109
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4.2 Steady Navier-Stokes equations with wall - law
boundary conditions

We introduce a mixed boundary value problem for the steady Navier-Stokes equations,
that includes a wall-law boundary condition in combination with inflow boundary con-
ditions. Let Q be a bounded polyhedric connected domain in R?, d = 2 or 3, with a
Lipschitz boundary split into I' = T'p UT,,. We suppose I' split as the union of the sides

¥y, ...,%,, that we assume to be closed (d —1)—dimensional sets (straight segments when
k—1 T

d = 2 or polygons when d = 3), in such a way that ['p = U ¥, I,= U 3};, for some
i=1 i=k

integer k € {2,...,7}.

We impose a Dirichlet inflow boundary condition on I'p and a wall-law boundary condi-
tion on I',,. The problem reads:

Findu:Q — R? and p: Q — R such that:

V-(u®u)—-2vV-D(u)+Vp = f in Q,
V-u = 0 in €,
—mn-2vD(u)], = g(u), on I, (4.1)
u-n = 0 on I,
u = up on I'p,

where u®u is the tensor function of components u;u;, D(u) is the symmetric deformation
tensor given by D(u) = (1/2)(Vu + (Vu)"), n is the outer normal to T, the notation
represents the tangential component with respect to I' defined as u, = u — (u-n)n, and
g : R — R? is a given function, specific of the chosen wall law. The unknowns are the
velocity u and the pressure p of the incompressible fluid. The data are the source term f,
that represents a body force per mass unit (typically the gravity), the kinematic viscosity
v of the fluid, that is a positive constant, and the Dirichlet data up. By a slight but
technical adaptation of the analysis performed in this work, that we skip for brevity, it
is possible to add free-normal-tension (also called “do-nothing”) boundary conditions on
outflow boundaries.

In a more general context, this problem may be set on domains with Lipschitz boun-
dary. For homogeneous Dirichlet boundary conditions on the whole I', its numerical
analysis has been extensively studied. Let us mention, for instance, the basic books of
Girault and Raviart [42], and Temam [82], where in particular it is proved that it admits a
solution (u,p) € [Ha(Q)]¢x L3(£2), that continuously depends on the data (f, ). However,
slip conditions on general Lipschitz domains must be treated by penalty, and solved by
mixed finite elements (cf. [84]).
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4.2.1 Variational formulation of the continuous problem

We consider the Sobolev spaces H*(2), s € R, and W™P(Q), m € N, 1 < p < o0,
equipped with the standard norms and semi-norms. We denote by |[|-||npo and | - |0
respectively the standard norm and semi-norm in W"?(2). In order to give a variational
formulation of problem , let us consider the spaces:

M= L3(Q) = {q€L2(Q):/qux:0},

W={we[H' Q)" w=0onTp,w-n=0o0nT,}.

The first one is the pressure space, which is isomorphic to the quotient space L*(€2)/R.
The second one is the velocity space, which is a closed linear sub-space of [H'(€2)]¢, and
thus a Hilbert space endowed with the [H'(Q)]%norm. Indeed, it is well known that
the trace is a continuous mapping from H'(€) into L?(T"). Also, the normal component
of w exists a.e. on I', as n € [L®(I)]4, and since w € [H'(Q2)]?, by trace theorem
and Sobolev injection (cf. [8]), its trace on T' belongs to [L*(T")]¢. Then, the mapping
w € W w-n e LYT,) is continuous, as:

[w-nllosr, < [[Wlloar, <C w20

Thanks to Korn’s inequalities (cf. [50]), the [H'(Q)]%norm is equivalent on W to the
norm:
Iwliw = [[D(W)llo2.0-

We assume the Dirichlet boundary data admissible, in the sense that there exists a
divergence-free lifting Up € [H'(Q)]? such that UD\FD =up and Up =0onI,. Such a

lifting exists if up € [Hy*(T'p)]¢, as we assume hereafter, where:
Hy’(Tp) = {0 € I*('p) : 5 € HYX(I)}

o denoting the extension by zero of o on the whole I'. In this way, we search for a
continuous solution u = uy + Up, with uy € W divergence-free. We shall consider the
following variational formulation of (4.1):

Find (u,p) € (Up + W) x M such that:

b(u;u,v) +a(u,v) — (p,V-v)g+ (Gu),v) = (f,v),
(4.2)
(V-u,q)q = 0,

for any (v,q) € W x M, where (-,) stands for the duality pairing between W and its
dual W’. The forms b, a and G are given by:

b(w;u,v) = % (Ww-Vu,v)g—(w-Vv,u)gl, (4.3)
a(u,v) = 2v(D(u),D(Vv))aq, (4.4)
(G(u),v) = (g(uw),v)r,, (4.5)
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for u, v, w € [H*(Q)]?. Semicolons (;) are used for forms that are non-linear with respect
to its first argument. The function g is given in implicit form as:

%(%)2 if [u| > 0,
g(u) = (4.6)
0 if |u| =0,

where u, = u,(|u]) is the wall-friction velocity, computed as unique solution (see Lemma
in the next section) of the algebraic equation:

ut = L(y"), with ut = u] and y* = 7Y,

T

(4.7)

Here, u* is a friction non-dimensional velocity, L is the wall-law function, obtained from an
asymptotic analysis in the boundary layer, ¥ denotes a friction non-dimensional normal
distance to the solid wall, and y denotes the normal distance to the solid wall. We suppose
that the boundary layer is divided into two sub-layers (cf. [25]):

T =T x [0.4¢], T5 = Lo x [, A*],

where 35 denotes a fixed friction non-dimensional normal distance to the solid wall. The
most common wall-law function is the logarithmic law of Prandtl |[73] and Von Kérmén
[87]:

y* if y* € [0,y5],
Liy") ={ , (4.8)
o los(y") + Gy ify” € [yf, A7),
1

where C] ~ 0.41 and Cy ~ 5.5 are constants, calculated from experimental measurements,
and yg is chosen by preserving the continuity of L (y4 =~ 11.5). Actually, there exist other
several possible settings of L (cf. [49], [81]). In all cases, the wall-law function L is non-
negative, strictly increasing and continuous, L' admits a finite number of discontinuities,
and there exist two positive constants K; and K, such that:

L(z+ L(z+
hm B0 _ g gm0

sA—ot 27t zt—o00 IOg zt

= K,. (4.9)

4.3 Mathematical analysis of wall - law functions

In this section, we analyze the properties of the mapping G, defined by (4.5)), that sets
the wall-law boundary condition in the steady Navier-Stokes problem (4.2)). We start by
proving the existence and uniqueness of solution for the algebraic equation ({4.7)).

Lemma 4.1. Let L : Ry — R be a wall-law function. Let X > 0 be a fixed parameter.
Then, for any o € R, the algebraic equation:

% = L(BN), (4.10)

admits a unique solution B € R,.
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Proof. Let us re-write equation (4.10)) as:

a=F(B), where F(8) = BL(B).
As L is strictly increasing and continuous, then F' is strictly increasing and continuous.
Also, by 1) F' is continuous at § = 0 with F(0) = 0, and ma F(B) = +o0. Then, F
—00
is bijective from R, onto R,. Consequently, the equation (4.10) admits a unique solution

f=F1a) =
Lemma 4.2. Let h(a) = § be the unique solution of . Then, h is a continuous

bijection from Ry onto Ry. Moreover, there exists a constant C' > 0 such that:
()| < C(1+|e|), forall o € Ry (4.11)

Proof. The function h = F~1! is clearly bijective and continuous, since F' is. Also, from

[9):
h(a) . t _ 1 , 1 log(At)

lim —% = lim — = lim ——— = lim = 0.

aoo a  imoo F(t)  tooo LX) t=oo log(At) L(At)
As h is continuous, (4.11)) follows. m

We now prove the main properties of the function g, given by (4.6)), that appears in the
definition of the mapping G.

Lemma 4.3. Let g : RY — R? the function defined by:

A%
—h(v)?* if v >0,
vl

0 if [v] = 0.

g(v) =

Then, g € [WE(R4\ {0}) NCO(RH)]? and is monotone. Moreover, g satisfies the growth
property:
lg(v)| < C(1+|v[}), forallv e R (4.12)

for some constant C > 0. Also, Vg satisfies the growth property:
Vg(v)| < C(1+|v|), ae inRY (4.13)
for some constant C' > 0.

Proof. The continuity of g over R?\ {0} follows from the continuity of h in R,. Also, as
h(a) — 0 as a — 07, we have that g(v) — 0 as [v| = 0". Therefore, g is a continuous
function over R%. To prove that g € [W,5>°(R?\ {0})]%, we first note that F € W5 (R).
Then, if 8 = F~1(a) = h(a):

1 1 1
F(B) LN + AAL(BN) ~ L(BN)

h(a) = a.e. in Ry,
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as L is strictly increasing. Then, as L’ admits a finite number of discontinuities, so does
R, which is non-negative. From (4.9)), lim h(a) = 0, and consequently b’ € L*(R,). As
a—o0

the application v — |v| belongs to C°(R¢\ {0}), we conclude g € [W,2°(R4\ {0})]%

To prove that g is monotone, it is sufficient to prove that it is the gradient of a convex
function in R? (cf. [36]). Let us define the functions:

H(a) = /a R (v)dv, C(v)= H(|v]).

0

Then, g(v) = VCO(v) for any v € R% Indeed, on one hand the function C'is differentiable
and VC € [W2=(R?\ 0)]%, since H is differentiable in R with H € W,>®(R). Moreover:

loc loc

aiC(v) = (V) H'([v]) = |i_| R2(v) = g:i(v), i=1,....d ifveR\O0.
On another hand, VC(0) = g(0). Indeed:

v vl

v| ~ 0<wv<|v]
and then hH(l) C(v)/|v| = 0. C is convex, as it is the composition of convex functions.
v—
Indeed:
H"(a) =2h(a) W (a) >0 ae. in Ry,

as h = F~' € WL(R,), is non-negative and strictly increasing.

To determine the growth property of g, observe that |g(v)| = h%(Jv|) if v # 0, hence

(4.12) follows from (4.11]). We investigate the growth property of Vg. We have g(v) =
(v/|v]) H'(|v]) if v # 0. A straightforward calculation yields:

5
av) = (72 -

vl v

V;iV;

) (v + 5% 1)) (4.14)

[v[?

with §; ; the Kronecker delta. We easily deduce from (4.11)) that:

(34-) oo

It remains to investigate the term involving H”(|v]). From the relation 8 = F~(a) =
h(a), we deduce:

< CO(1+ |v)). (4.15)

Wy ol L 20 :
H' (o) =2F (Q)F'(ﬂ) = TN T BNV a.e. in R,.
Thus, as 5 = a/L(S\), we get:
i) 2 2 a.e. in Ry.

o LBN(LGN 1 BAL(BN) = LBV
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Then, lim H”(a)/a = 0. Also, H” is bounded in compact sets as h € W, ®(R,).
a—r 00

loc

Consequently, there exists a constant C' > 0 such that:

|H"(a)| < C(1+a) ae. in R,. (4.16)
Combining (4.14)), and (4.16), we obtain:

10;9:(v)| < C(1 + |v|)a.e. in RY,
which yields (4.13). =

We are now in a position to prove the following properties of the mapping G, essential
for the subsequent analysis in Chapter

Lemma 4.4. The functional G given by is well defined from W into its dual W',
1s monotone, compact and satisfies the estimates: Vv, w € W,

1G(V)llwr
1G(v) = G(w)]lw

< CO+IVIE20), (4.17)
< CO+|vihee + [wlhize) [[v = wlize, (4.18)
where C' is a positive constant only depending on d, 2 and T',,.
Proof. Consider v € W. By trace theorem and Sobolev injection, its trace on I' belongs
to [LA(Q)]4. Moreover, ||[v]oar, < [[Vloar < C|v]120. Thus, the duality (G(v), w)
expressed by (4.5)) is well defined following (4.12)), and satisfies:

HG(v), w)| < [lgW)]logr. [[Wlozr, < C1+ [v]fsa)lwllize-

Hence, (4.17) follows. As g € W,2>°(R%\ {0})NCO(R?), the Taylor’s formula with integral

reminder leads to:
g(v(x)) — g(w(x)) = /01 Veg(v(x) + (1 = 0)w(x)) - (v(x) — w(x)) df.
Using estimate , we obtain:
g8(v(x)) — g(w(x))| < (1 + [v(x)[ + [W(x)[)|v(x) — w(x)], (4.19)
which in conjunction with Holder’s inequality leads to:

lg(v) —gW)llozr, < Cl1+v[+|wWllloar,[[Vv—wloar,
< CO+|vlhze + Iwllizo)llv — w20, (4.20)

where the last inequality follows by trace theorem and Sobolev injection. Estimate (4.18)
follows from (4.20)). Also, G is monotone as g is monotone.
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To prove the compactness of G, it is enough to prove that for any sequence {v,},en
weakly convergent to some v € W, then, up to a sub-sequence, {G(v,)}nen strongly
converges to G(v) in W'. Let w € W. By Hélder’s inequality and (4.19)), we have:

(G(vn) = G(v), W) < ClIA+ Vol + [VD)IVe = Vlllos/zr, [Wllosr,
< O+ val + [vllosr, Ve = viesr, W20
< v = Vloar. w20,
where C" depends on Q, ||v||osr, and sup(||v,llosr,). In particular:
neN
1G(va) = GV)llwr < C'lve = Vioar,- (4.21)

As {v, }nen weakly converges to v in W, the corresponding traces sequence weakly con-
verges to v in [H'/?(T")]%. Since the embedding [H'/?(T")]? — [L3(T")]? is compact, up to
a sub-sequence, ||v, — V|31, — 0 for n — oo, hence the result by estimate (4.21]). =

4.4 A projection-based VMS approach including wall
laws

We approximate the weak formulation (4.2)) of the boundary value problem (4.1) for
the steady Navier-Stokes equations by a Variational Multi-Scale Sub-Grid Model (VMS-
SGM). To state it, we decompose the spaces W and M as:

W=X,6X, M=DM,eM,

where X},, M, respectively are the large scale finite-dimensional spaces for velocity and
pressure, and X', M’ are small scale complementary spaces. The sum is assumed to be
direct (i.e., X, N X' = {0}, M, "M’ = {0}), to ensure a proper separation between large
and small scales. Moreover, we subdivide the lifting Up between large and small scales,
by considering a suitable interpolant U, on a foreground large scale space, and denoting
by U, its small scale complement.

The solution of the steady Navier-Stokes equations (4.1)) is decomposed into:
(u,p) = (Wy, p,) + (0, "), with (W, 7;,) € (Upn + Xp) X My, (0, p') € (U, + X') x M,

The pairs (T, p;,) and (v, p’) satisfy the following set of coupled equations:

b(u; Uy, vy) + a(@p, Vy) — (Pp, V- Vi)a + (G(u), Vi) = —(R(w;u',p'),v),
(4.22)
(v . ﬁhaqh)Q = _(V ) u/th)gb
for all (Vh,qh) S Xh X Mh, and:
b, o', v') +a(W,v') — (P, V- v)o + (G(u),v) = —(R(w;a,p,), V'),
(4.23)

(V 'ulvq/)Q = _(v 'ﬁth/)Q7
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for all (v/,¢') € X! x M, where:
(R(w2,7), w) = b(w; 2, w) + a(z, W) — (1, V - w)o — (£, w).

In the coupled set of equations (4.22)-(4.23]), the large scales are driven by the residual
associated to the small scales R(u;u’,p’), while the small scales are driven by the residual
associated to the large scales R(u;Up,py,).

The VMS-SGM modeling is a discretization of this set of macro-micro scales equations,
based upon the following procedure:

(i) Approximate the small scales spaces X’ and M’ by finite-dimensional sub-spaces
of small resolved scales Xj and M, respectively. Then, X' = X} & X", M’ =
M, & M”, where X” and M" are complementary spaces of small un-resolved scales
of infinite dimension. As the sum is assumed to be direct, this yields the unique
decompositions:

v = Vp+v,+Vv’ forall veWw,
q = Qtq+q forall geM,

with obvious notation.

(ii) Neglect the interactions between large and small un-resolved scales. It is assumed
that the interaction large - small un-resolved scales is weak whenever these are inside
the inertial spectrum.

(iii) Model the action of small un-resolved scales on small resolved scales in problem

(4.23) by an eddy viscosity procedure.

(iv) Neglect the small un-resolved scales in the modeling of wall laws. This is justified
since wall laws apply to the mean flow, and we can identify it with the resolved flow.

Let us decompose u = Uy, + uj, + u” € (Up + W), and similarly p = p, + p), + p” € M.
We denote:

(Upn +Xn) = (Upn + Xp) & (Up,, + X},), My =M, & M,
with U’,,, a suitable interpolant of U, on a foreground small scale space, and:
u, =0, +u), € (Upy+Xp), pn=D0,+0D), €M (4.24)
The equations for (4, p,) are modeled as follows: By (ii) and (iv), we approximate

b(u;ﬁh,Vh) ~ b(uh;ﬁh,vh), <G(u),vh> ~ <G(llh),vh>,

<R<u; u/7p/>’vh> = <R<uh; u,h7p?:,>7vh>7 (V ’ ulvqh)Q = (V ’ u,h7qh>9'
This suggests the following modeled equations for (@, p,):

b(uhSﬁhavh> + a(ﬁhavh) - (Tjha % Vh)ﬂ + <G(uh)’vh> = _<R(uh; u%,p%),vh%

(V-Up,Gp)a = —(V-u),,q)a,
(4.25)
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for all (v,q,) € Xi x M.

The modeling of equations (4.23)) is more involved. Set v/ = v} € X} and p’ = p}, € M.
By (ii) and (iv), we approximate:

b vE) 2 by vE) b vE) + b5, vh) + b, )

(G(),vy) = (G(un),vy), (R, By), vi,) = (R(an; Th, By, Vi)
Equations (4.23) become:

b(up; wy, viy) + a(wy,, vi,) = (ph, V- Vi)o + (Gun), vi) = = (R(un; @h, py), Vi)
= (T(w;u”,p"), V),

(V-w, qpo= — (V- T g0
= (V1" ),
for all (v}, ¢q,) € X}, x M}, where: 420
(T(y; ", p"),vy,) = b(uy; 0", vy) +b(u”;u), vy) +b(u”; 0", vi) +a(u”,vy,) — (p", V-v))a.
We sum up the two equations in , and we call:
(T(wy; 0", p"), (vh, q)) = (T(wy; 0", p"), v) + (V-0 gj)a.
Applying (iii), we approximate (T'(uy;u”,p"), (v}, q,)) =~ ¢ (ap;up, vi), where:

c(up; up, vi) = c(wy; uy, vi) = 2(vr(wy,) D(wy,), D(vy,))e, (4.27)

and vy is a turbulent viscosity that we will specify later on. Thus, we deduce the following
modeled equations for (uj}, p},):

b(up; uy, viy) + a(uy, vi) + ¢ (wpup, vi) — (0, V- vi)a + (G(uy), v})
—(R(up;an,Dp)s Vi),

(V ) u;w q;},)Q = —(V “ Uy, q;L)Q’

(4.28)
for all (v},q;) € X}, x Mj. Reunifying the large scale equations and the small
resolved scale equations , the model may be simplified to a single problem for the
unknowns (uy, pr) € (Upp + Xp,) x M, defined by . This problem reads as follows:

b(up; up, vi) + a(ap, vi) + < (up;up, vi) — (pn, V- vi)a + (G(ag), via) = (f,va),

(V * Up, C]h)sz = 0,
(4.29)
for all (v, qn) € Xp, X Ml,. This is a preliminary version of the VMS-SGM model that we
will analyze in the sequel.
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4.4.1 Velocity finite element spaces

In problem (4.29), we are searching for a resolved velocity in the affine variety (Up,+X,).
In this work, we identify the finite-dimensional space X;, with a finite element (FE) space.
This subsection focuses on the construction of FE spaces that approximate the slip con-
dition u-n=0on I',.

Let {7Tn}n>0 be a family of affine-equivalent and conforming (i.e, without hanging nodes)
triangulations of Q, formed by triangles or quadrilaterals (d = 2), tetrahedra or hexaedra
(d = 3). As usual, the parameter h is the largest diameter hy among the elements K of
Tn. We shall assume that the family of triangulations {7 },~¢ is also admissible in the
following sense:

Definition 4.5. The family of triangulations {Tp, }nso is admissible if Tp and T, are the
union of whole sides of elements of T, h > 0.

Here, we call “side”either an edge (when d = 2) or a face (when d = 3). Given an integer
[ >0, and an element K € T, denote by R;(K) either P;(K) (i.e., the space of Lagrange
polynomials of degree <[, defined on K), if the grids are formed by triangles (d = 2) or
tetrahedra (d = 3), or Q;(K) (i.e., the space of Lagrange polynomials of degree < [ on
each variable, defined on K), if the family of triangulations is formed by quadrilaterals
(d = 2) or hexaedra (d = 3). We consider the following FE spaces for the velocity:

Vi =VHQ) = {vn € C°(0) s vy, € RY(K), VK € Tr},

Y, = V4= {vi € [COQ))? : v, € [Ry(K)]%, VK € Tp}, (4.30)

Xh:{VhGYﬁL:Vh:OonfD,vh-ni:OonEi,i:k‘,...,r}CYL,

T
where n; is the outer normal to ¥; for ¢ = k,...,r, and we recall that I, = U .
i=k

Hereafter, Y! (V)!) will constitute the discrete foreground vectorial (scalar) spaces in
which we will work on. We prove that the family of spaces {X,}n0 is effectively an
internal approximation of W, i.e. a family of finite-dimensional sub-spaces of W such
that for any v € W:

hm d1727Q(V, Xh) = 0,
h—0

where:

d1,27Q(V, Xh) = Vlg}f( ||V — Vh||1,27Q~
nE€Xp

To do it, let us consider the uniformly stable and convergent Bernardi-Maday-Rapetti
(BMR, [6]) interpolation operator IPj, from [H'(£2)]¢ on Y as follows. Let us denote by
Aj, the set of Lagrange interpolation nodes for space Y!. Then:

P,v = Z Vo da(x) forx e, (4.31)

ac Ay,
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where )\, are the canonic basis functions of the Lagrange interpolation, given by:
Ao €Y Aa(B) =6ap forall a,B € A,

with 6, the Kronecker delta and v, an averaged value of v in a neighborhood of node
a. Following Chacén and Lewandowski [26], it may be proved that if the family of
triangulations is admissible, then the values v, may be chosen to preserve both the no-
slip and slip boundary conditions: If v. € W, then

Vorn, = 0 forany F € 9T,(a)if a € A, NT,,
Vo = 0 ifOéEAhmFD,

where:
OTh(a) ={F CT : F is aside of some element of T}, such that a € F'},

and n|,, denotes the outer normal to {2 on /. Indeed, let us define the vector regularization
operator 7 as follows:

1. If « lies in the interior of €2, let K, be any element of 7, that contains «.

2. Else, either if @ € T'p or « lies in the interior of some ¥;, i = k,..., 7, let K, be a
side of some element of 7;, such that « € K, C ¥;, i =1,... 7.

The vector regularization operator @ : [L'(Ka)]? — [R;(K,)]% is defined component-

wise as:
TV = (a1, - - -, TaVa)", (4.32)

where 7, : L'(K,) — R;(K,) is given by:

/ (v—mav)g =0, forall qeR/(K,). (4.33)

3. Else, a must belong to the intersection of (at least) two %;, i = k,...,r, say X
and X, for simplicity of notation. We associate to o two sets K,; C ¥; and
K2 C Y, both of them a side of some element of 7, and such that both contain
a. Additionally, in 3D we associate one more set K, 3 defined as either K, ; or K, ».

Let us respectively denote by n; and n, the normal vectors to »; and ¥,, and
n3 = n; Xny, my = n; Xnz. Then, {n;, my, n3} is an orthogonal basis of R? (in 2D,
n3 = 0), and there exist two non-zero constants a, b € R such that ny = an; +bms,.
We set:

1

Tov = 70(v.n)ng + 5 [7?((12) (v-ny) —arM(v- n;)| m, (4.34)
+ 79(v-n3)ng, for v e [H(AL)]Y,

where Wg}), 72 and 7% are the regularization operators defined by 1} with K,

respectively equal to K, 1, K, 2 and K, 3, and A, is the union of the elements of 7y,

that contain a.
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Note that in the last case we assume v € [H'(A,)]% as then (v -n), € L*(Kq,),
= 1,2, and so 7 ,v is well defined. We can thus set:

Vo= Tav(a). (4.35)
and then we have:

Lemma 4.6. Assume that the family of triangulations {Ty}rso is admissible. Then,
P,v e X, ZfV cW.

Proof. Let ve W, a € A,.

(i) If o € Tp, then K, C T'p, and by (4.33) we deduce @,v(a) = 0. As {Tp}rso is
admissible, from (4.31]) we obtain:

P,v(x) = Z T ov(@) Ao (x), for any x € Tp.

aEAhQFD
Consequently, IP,v =0 on I'p.
(i) If « lies in the interior of some ¥;, i = k,...,r, from (4.33)) we deduce:

/ [v.n— (7.v)-n| ¢=0, for all ¢ € R)(K,),

[e3

where n is the normal to K,. As n is constant, then (7v) - n € R;(K,). Conse-
quently, 7ov-n = 0 and, in particular, (?av(a)) -n=0.

(iii) Assume that « lies in the intersection of two ¥;, ¢ = k,...,r, say ¥; and %5 for
simplicity of notation. Let us denote by n; the normal to »;, ¢+ = 1,2. From (4.34])
we readily deduce:

(Tov) -my =7W0(v-ny), (Fav) ny=72(v-ny).
Asv e W, then v-n; =0 a.e. on K, ;, i = 1,2. Thus, m(f)(v ‘n)(a) =0,1=1,2,
reasoning as in the item (ii) above. As a consequence, (7 ov(a)) -n; = 0,4 = 1,2.

In sum, items (ii) and (iii) above prove that for any 3;, ¢ = k,...,r, and for any o €
A, NS5, it holds (7 ov()) - n; = 0, where n; denotes the normal to ;. As {7 }nso is
admissible, from (4.31]) we obtain:

Pyv(x)-n; = Z (T av(@)) - m; Ao (x), for any x € ;.

acA,NE;
Consequently, (P,v) -n;, =0on %;,i=%k,...,r. =m
Lemma [4.6| and the convergence in H'(Q) of the BMR interpolation operator IP;, permits

easily to conclude that the family {Xj}>¢ is an internal approximation of W if we con-
sider a regular and admissible family of triangulations {7} }x~0 of €.
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4.4.2 Sub-grid eddy viscosity modeling

In this subsection, we detail the form ¢’ appearing in the VMS-SGM discretization (4.29)).
To do so, let us introduce the space:

X, ={v, € Y;L_l vy =0onTp,vy-n;=00n%;,i=k,...,r} (4.36)
and consider a uniformly stable (in H'(2)-norm) interpolation operator II, on Y},, where:
¥ = V@), (437)

or:

Yo = [Va (@), (4.38)

and V4(Q) in is a sub-space of V}(Q) with larger grid size H > h (typically,
H =2h or H = 3h). The considered interpolation operator II, must satisfy optimal error
estimates (see Proposition in the next section), and preserve both the no-slip and slip
boundary conditions when restricted to X;. Thus, we define:

X! = (Id — T1,)X,

where Id is the identity operator. In accordance to , we identify X, = I1,X,, C
Y, = [V71(Q)]? as the large scales velocity space, and X, as the sub-filter scales velocity
space. Space Xj does not need to be explicitly constructed, only the operator II; is
needed. In accordance to (4.38), another possible definition of X, is:

X, ={vi € VL)Y :vi=00onTp,vy-n;=00n%;,i=k,...,r} C Y, = [VLQ)]~
(4.39)

In practical implementations, we consider a standard nodal Lagrange interpolation oper-
ator II, for its simplicity and its efficiency with respect to other choices. This provides
quite stable and accurate results. However, there exist other possibilities: we may men-
tion the Scott-Zhang interpolation operator (cf. [79]), or the already cited BMR (c¢f. [6]).
Also, the L*-projection is used by John in [61] to define the large scales.

We take the form ¢’ in (4.29) as a multi-scale Smagorinsky modeling of the eddy viscosity,
given by:
¢ (uns Wi, vi) = 2(vr(w,) D(w}), D))o (4.40)

where:
! * ! * *

and the eddy viscosity vr is defined as:
vr(v)(x) = (Cshg)?|D(v,)(x)| for x € K, (4.41)

where | - | denoties the Frobenius norm on R%¥? and Cjg is a (theoretically) universal
constant. However, in practical applications, depending on the flow, the value of C's may
vary between 0.065 (cf. [69]) and 0.25 (c¢f. [67]). Here, we shall use an intermediate value
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Cs = 0.1. Actually, it can be dynamically adapted in a time-dependent computation (see
e.g. [40], [65]), to better fit the dissipation balance of the flow. It can also be adjusted
close to solid walls, in order to avoid over-diffusion phenomena. This is usually done
either by wall laws, or by “damping functions”, that adjust the constant to the normal
distance to the wall, so that is changed to the expression (see Van Driest [83]):

vr(v)(%) = f(y")(Cshx)*|D(vi ) (x)],  with f(y") =1 —exp(—y"/AT),  (4.42)

where A* is the Van Driest constant, i.e. a constant distance located inside the logarith-
mic layer, that sets the intensity of the damping (typically, A™ = 26).

Note that model includes three grid levels: large resolved scales (those of Xj,),
sub-filter scales (those of X} ), and un-resolved scales (the remaining scales, that are taken
into account by means of the eddy viscosity term). In the terminology of VMS methods,
this corresponds to the Small-Small setting of the eddy viscosity (c¢f. [53]). Another
possibility is to set the turbulent viscosity as a function of the whole resolved velocity
field (the Small-All setting of the eddy viscosity in the terminology of VMS methods):

¢ (wp;up, vi) = 2(vr(up)D(w},), D(v}))a- (4.43)

However, the Small-Small setting seems to be more meaningful from a physical point of
view, and it provides in general more accurate results, so that we will use it hereafter.

In any case, the eddy viscosity only acts on the small resolved scales uj, of the velocity.
The role of the high frequency components uj, is to absorb the energy consumed in the
formation of small eddies in the inertial range. So, the basic grid to build space X} should
be fine enough to ensure that this space covers the large scales and an initial segment of
the inertial range.

In Berselli et al. (¢f. [7], Chapter 11), the eddy viscosity term is reformulated
as an eddy viscosity acting on the resolved small scales of the deformation tensor. This
applies when the restriction operator is the elliptic projection II, on Y. This allows to
rewrite the term ¢ as:

¢ (up; up, viy) = 2(vr (15D (wp))ITE D (wy), 1D (va) o, (4.44)

where II; = Id — II,, and we have denoted by II, the [L2(Q)]%*®-orthogonal projection
on the space:

L, = D(?h) = {dh € [LQ(Q)]dXd cdy, = D(Wh), for some wj, € ?h}

Then, to compute the eddy viscosity, filtering the small scales of the velocity is equivalent
to filter the small scale component of the deformation tensor. This allows in practice to
replace the eddy viscosity term (4.40) by (4.44). However, this assumes that II, is the
elliptic projection operator. This idea is also used by John in his works [58], [59], [60], [62].




124 Chapter 4. A VMS-SGM for Laminar and Turbulent Incompressible Flows

Remark 4.7. The standard Smagorinsky model was introduced in 1963 in the context of
atmospheric weather prediction (cf. [80]). It is a LES model that relies on modeling the
eddy viscosity effects by the form c¢ defined by:

c(uh; Uy, Vh) = 2(VT(uh)D(uh), D(Vh))Q (445)

This form does not include the restriction term, so the eddy viscosity acts on both large and
small resolved scales. This usually produces an over-diffusive effect, that the restriction
term intends to correct.

4.4.3 Stabilization procedure

Remaining in the context of FEM, a more coherent VMS formulation to reproduce pro-
perly turbulent flows, when the convection term is dominant, must take into account
also stabilizing terms (cf. [45]). Indeed, even choosing a pair of FE spaces for velocity-
pressure satisfying the well-known uniform discrete inf-sup condition (cf. [9]), it has to be
emphasized that a practical multi-scale implementation does not need to be stable “per
se”  unless using very fine grids, due to the dominant convection that generates spurious
instabilities. On the contrary, most of the approaches rather demand for additional sta-
bilization to represent a viable numerical method.

Stabilized discretizations were introduced by Hughes, Franca and co-workers. These
discretizations are based upon an “augmented” variational formulation of the flow equa-
tions, that includes additional terms to the standard Galerkin discretization. Let us
mention, for instance, the stabilized Galerkin-Least Squares (GALS) method, introduced
in [52]. There exist several modifications of the GALS discretization for steady and
unsteady flows: the Streamline Upwind Galerkin (SUPG) method (cf. [14]), the Adjoint-
Stabilized (also called USFEM, Unusual Stabilized) method (cf. [38]), and the projection-
stabilized methods (cf. [13], [15], [30], [32], [47]), that also increase the precision of the
former. All of them share the properties of using equal-order interpolation in velocity
and pressure (no additional degrees of freedom in velocity are needed, really, to achieve
the stability of the pressure discretization), and of stabilizing the convection-dominance
effects. Also, they are residual-based methods, in the sense that the stabilizing terms
are products of the residual by some convenient test functions. As a consequence, the
continuous solution exactly satisfies the discrete equations, whenever it is smooth enough.

An alternative is provided by the penalty-stabilized methods, that have a simpler and
less expensive structure, but are only approximately consistent. Let us mention, in par-
ticular, the penalty term-by-term stabilized method (cf. [16]), that provides a separate
stabilization of each single operator that could lead to unstable discretizations (e. g., con-
vection, pressure gradient). An accurate and easy-to-implement stabilized method could
be provided by the combination of projection-stabilized methods and penalty-stabilized
methods. This is the high-order term-by-term stabilized method, that provides the sepa-
rate stabilization of each single operator that could lead to unstable discretizations (e.g.,
convection, pressure gradient) as the penalty term-by-term stabilized method, but with
higher accuracy (cf. [19], |20], [22]). This is a particular type of projection-stabilized
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method, where each operator that needs stabilization is stabilized by least-squares inter-
polation penalty terms added to the Galerkin formulation.

The discretization of the VMS-SGM model (4.29) by the high-order term-by-term stabi-
lized method reads as follows:

Find (up,pr) € (Upp + X3) X My, such that:

b(un; up, vi) + a(up, vi) + (s an, vi) — (0, V- vi)o + (G(an), vp)
+Scom}(uh;vh) = <f,Vh>, (446)

(v - Up, Qh)Q + Spres(pha q}z) = 07

for all (vy, qn) € Xp, X My, where X, is given by (4.30)). As we can use the same interpo-
lation for velocity and pressure, we consider the following FE pressure spaces:

M, = Y N L(9),

where we recall that Y)! = V}/(Q) is the foreground scalar space already given in (4.30)).
Let us also define the space:

Yil={vieY, " :v,=00onT} C Y},

and consider an approximation Up, € Yﬁfl of Up such that Up, = 0 on I,,, given by
the Stokes projection:

(D(Upn), D(vi))a — (rn, V- vi)a = (D(Up), D(vi))a,
(4.47)
(V'UDh7Qh)Q = 0,

for all (v, qp) € Yé;;l x M}, and some associated pressure r, € M. As the family of pairs
of FE spaces {(Y{;!, My,)}nso satisfies the so-called uniform discrete inf-sup condition
(exhaustively described, for instance, in Brezzi and Fortin [9]), it is well-known that this
problem admits a unique solution that satisfies:

ID(Upn)llo2e < ClD(Ub)loza, (4.48)
IUp — Upnllizag < Cdiao(Up, Yo, (4.49)

for some constant C' > 0 independent of h. In (4.46]), we search really for a solution
up = Ugp + UDh7 with ug, € Xh, and Up,, given by "

Coming back to (4.46]), the forms s.,,, and sp,.s correspond to the high-order term-by-
term stabilized method, and are given by:

Seono(Wn; Vi) = > Tuxc(o7(wy - V), o (wy - Vi),
KeTs,

Spres(Pn- @) = Y T (07(Vpn), 03 (Van) k.
KeTs
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Here, 7, xk and 7, k are stabilization coefficients for convection and pressure gradient, re-
spectively, and o} = Id—o},, where oy, is some locally stable (in L?(£2)-norm) projection or
interpolation operator on the foreground vectorial space Y;L_l (also called “buffer space”
in this context). The proposed method provides a separate stabilization of convection
and pressure gradient with high accuracy. In practical implementations, we choose o,
as a Scott-Zhang-like interpolation operator on space Yi ' (cf. [79]). This gives rise to
a discretization with a reduced computational cost, but that maintains the same high-
order accuracy with respect to standard projection-stabilized methods. Furthermore, if
needed, specific stabilizations for convection and pressure gradient may be used, via dif-
ferent approximation operators and stabilization coefficients. Note that the case o} = Id
corresponds to the pure penalty-stabilized method.

The interpolation operators oy, and I, must satisfy the following properties (cf. [6]), that
we will use in the sequel:

Proposition 4.8. Consider a regular family of triangulations {T,}no of Q, and an in-
teger 1 > 1. Then, there exists an interpolation operator Ly, : L'(Q) — ViI(Q) satisfying:

(i) Stability. For any v € LP(2), 1 < p < +oo:
ILn()llopx < Cllvllopws VK € Th, (4.50)

where, for any K € Ty, we denote by wi the union of all elements of Ty, that intersect
K. In addition:

ILn(0)lope < Cllvllope- (4.51)
Moreover, for any v € WHP(Q):

[Ln(v)ll1pe < Cllv]

1,p,82» (452)

where C' > 0 is a constant only depending on p, €2, d and the aspect ratio of the
family of triangulations.

(ii) Error estimates. Let m =0 orm = 1. Ifv € H*(Q) form+1<s<[+1, then:
[0 = La(0)lmp i < Chi " 7P 0] 50, VK € Th (4.53)

In addition:
[0 = Li(0) [mpg < ChZ U2y 50, (4.54)

where C' > 0 is a constant only depending on m, p, s, ), d and the aspect ratio of
the family of triangulations.

Note that the standard nodal Lagrange interpolation operator satisfies the properties of
Proposition for functions that additionally belongs to C°(Q).

For the subsequent numerical analysis of model (4.46|), we also need the following technical
hypothesis on the stabilization coefficients:
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Hypothesis 4.9. The stabilization coefficients 7, i, T,k appearing in the stabilization
teTMS Sconw, Spress Tespectively, satisfy the following condition:

arh3 < Tk, Tpx < aghy, VK €T, (4.55)
for some positive constants oy and aw, independent of h.

We will work with the following expression for the stabilization coefficients:

v4+T U \17!
Tv K = TpK = [(q—hQTlK) + (Czh—K>] , (4.56)
K K

by adapting the form of Codina (cf. [29]), designed by asymptotic scaling arguments
applied to the framework of stabilized methods. In (4.56|), ¢; and ¢y are experimental
positive constants, Ur|, is some local eddy viscosity on element K, and U is some local
speed on element K. We assume Uy uniformly bounded from below and from above for
technical reasons. This ensures . We are now ready to start the numerical analysis

of model ([4.46) in Chapter [5|






Chapter 5

Numerical Analysis of VMS-SGM

5.1 Introduction

In this chapter, we perform the numerical analysis of the approximation of steady laminar
and turbulent flows by model (4.46)), with the Small-Small setting of the eddy viscosity
term ¢ defined by —. In the sequel, we will call this model VMS-S model. This
analysis may be extended to other definitions of the eddy viscosity term ¢ already cited
in Chapter [4] with slight modifications.

We first introduce some technical results that are required for the numerical analy-
sis. Then, we prove stability in natural norms and perform a convergence analysis to
the Navier-Stokes equations with rather realistic boundary conditions, that include wall
laws and inflow boundary conditions, in steady regime. We obtain weak convergence
in natural norms, and we prove that a result of strong convergence for solutions with
natural minimal regularity is obtained by the use of the Galerkin method, together with
the subsequent asymptotic energy balance. Moreover, we analyze the approximation of
diffusion-dominated flows by the stabilized VMS-S method, through the computation of
error estimates. The error analysis strengthen the fact that the proposed model is suitable
both for laminar and turbulent flows. We obtain optimal error estimates with respect to
the polynomial interpolation for laminar smooth flows. This results permits to prove
the strong convergence of the stabilized VMS-S method for slightly smooth flows, and a
consequent asymptotic energy balance of the system, in which the deformation and the
friction boundary energy are asymptotically conserved, and the dissipated eddy energy
so as the sub-grid energy due to stabilizing terms tend to zero. For technical reasons, we
will assume throughout the work that the family of triangulations {7, }x>0 is uniformly
regular. Actually, this technical hypothesis may be relaxed to the more general case of
regular grids, but we keep it to focus the analysis on the new aspects of the method, and
to not unnecessarily lengthen it.

The chapter is structured as follows: In Section [5.2] we establish some technical
considerations, essential for the numerical analysis of the VMS-S method, which is the
core of the chapter. This analysis deals with existence (Section and weak convergence
(Section for solutions with the natural minimal regularity. This implies in particular

129
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the existence of weak solutions of problem , so as its stability with respect to FE
multi-scale discretizations. We also insert the proof of strong convergence for solutions
with the natural minimal regularity in the context of mixed methods (Subsection ,
that allows to study the asymptotic energy balance of the corresponding system for any
solutions, without needing further regularity. Finally, in Section [5.5] we come back to the
stabilized VMS-S method, and perform the error analysis. The VMS-S method attempts
optimal accuracy for laminar regular flows, and the order decreases with the regularity.
The error analysis allows to conclude the strong convergence of VMS-S method for slightly
smooth flows, and to study the corresponding asymptotic energy balance of the system
(Subsection . We obtain that the total energy balance is asymptotically maintained
in such a way that the deformation energy and the energy dissipated at the wall pass to
the limit. In addition, the dissipated sub-grid energy due to the eddy viscosity and the
stabilizing terms asymptotically vanish.

The main results presented in this chapter can be found in [23].

5.2 Technical background

We state in this section some technical results that are required for the numerical analysis.
We shall denote hereafter by C, Cy, Cy, Cs, ... constants that may vary from a line to
another, but which are always independent of h.

We first establish the main properties of the main operators involved in the weak
formulation of the steady Navier-Stokes equations (4.1)), i.e. the transport operator defined
by the form b and the diffusion operator defined by the form a.

Lemma 5.1. The form b defined by verifies the following properties:
(i) b is trilinear and bounded in [H*(Q)]?:

|b(z; v, w)| < Cllz[|1 2.0/ v|

12.0Wll12.0, (5.1)
for all z, v, w € [HY(Q)]¢, and some constant C' > 0 only depending on 2.

(i) b is antisymmetric:
b(z;v,w) = —b(z; w, V), (5.2)
for all z, v, w € [H*(Q)]¢.
Proof.

(i) The form b is obviously trilinear. The boundedness in [H*(€2)]¢ follows by Sobolev
embedding theorem and Holder’s inequality. Indeed, let z, v, w € [H1(Q2)]%. We
have:

[(z- Vv, w)a| < |[z[oaallVViozallWwlose < CllzlizallviizellWize,

where C'is a constant only depending on 2, by using the injection H!(Q) — L*(Q).

Then ((5.1)) follows.
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(ii) Property (5.2) directly follows from definition (4.3]) of form b.
|
Lemma 5.2. The form a defined by is bilinear and bounded in [H'(£2)]%.

Proof. The form a is obviously bilinear. Let v, w € [H'(©2)]?. By Cauchy-Schwarz
inequality, we get:
la(v, w)| < 2v[[D(v)[lo 2.0l D(W)llo2.0;

hence the continuity of a. m

The following well-known local inverse inequalities (cf. [6]) will be frequently used in
the sequel. Their proof consists in a standard application of norm equivalence on finite-
dimensional spaces.

Lemma 5.3. Let q1, g2 be two real numbers such that 1 < q1,qs < +00. Let ki, ky be two
non-negative integer numbers. Assume that ko < ky and ko — d/qs < ky — d/q,. For each
non-negative integer | there exists a constant C' > 0 such that:

d

_d d
" h}z(l ’p|/€2,tI2,K7 (53)

k1

ko—
VK € 7717 vp € RZ(K)a ’p|k1,q1,K S OPK

where pg s the diameter of the ball inscribed in K.

If in addition the family of triangulations {Tp}n=o is reqular (i.e., hx < spk, for s positive
constant independent of h), then there exists a constant C' > 0 such that:

—kl—%-‘ri

" |p|k2,QQ,Ka (54)

for all Ty, where the constant C only depends on qi, qo, ki, ko, d, I, and the aspect ratio
of the family of triangulations.

k
VK S 777,7 VP € RI(K)a |p|k17q1,K S Ch}j

We now define the scalar products:
(,)r, LQ(Q) X LQ(Q) — R,
(f)g)‘ﬁ/ — Z TI/,K(fvg)Ka
KeTy,
(- -)Tp : LQ(Q) X LQ(Q) — R,
(f’g)Tp — Z Tp,K(fag)K7
KeTh,
and their associated norms:

£l = CF X2 Ml = (F, )2
Lemma 5.4. Assume that Hypothesis @ holds. Then, the following conditions are sa-
tisfied:

Ve LX(Q), C1 Y Wllz2lfan < M2l < Co Y hilzllf ok (5.5)
KeTy, KeTy

where T denotes either T, or 7,, and:

Vg € L*(Q),  llon(9)ll- < Chllgllozs- (5.6)
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Proof. Estimates (5.5) immediately follow from Hypothesis [£.9) Now, let g € L*(2). By
applying the second part of (5.5)) to o}(g), we obtain:

loh(9)17 < G Y Wikl (@)lg2x < Coh®loi (@)l 20 < CHElgl5 2.0,
KeTh

where we have used the global stability property (4.51)) of oy, due to the regularity of the
mesh. Thus, we conclude:

lok(9)ll> < Chllgllo2.0-
|

We next state a specific discrete inf-sup condition for stabilized approximations, that is
essential for the stability of method . The main difficulty in its proof stems from
the fact that the interpolation operator o takes value in YZ_I, thus reducing the effective
number of degrees of freedom (d.o.f.) of the foreground velocity space Y.

Lemma 5.5. Assume that Hypothesis [{.9 holds. Then, we have the following inf-sup
condition:

Vg, € My, | |qn

‘(V : Vhth)Q’ >
<(C| sup ———+|loF. (V -, 5.7
oan < C ((sup [Tl jor ), ). 60

for some positive constant C independent of h.

The proof of this Lemma can be derived from [19], and consists in an adaptation of a
discrete inf-sup condition obtained by Verfiirth (cf. [84]). Actually, in [19] the discrete
inf-sup condition is proved with the discrete velocity space Xop = [ViH(Q) N H (Q)]4,
but since X, C Xy, then it is trivially valid also in our case. Moreover, note that the
discrete inf-sup condition can be extended to a more complex condition, that holds
for regular family of triangulations, as proved in [19]. However, in that case, the analysis
becomes quite lengthy, and here we restrict it to uniformly regular grids.

Our analysis also needs some properties of the eddy viscosity vr defined by (4.41) and
the form ¢’ defined by (4.40), that we state next.

Lemma 5.6. There exists a constant C > 0 only depending on d, €2 and the aspect ratio
of the family of triangulations such that:

lrr(villocsn < Ch*2 | D(va)loze, (5-8)
[ Vs v wa)l < CR 2 D) a0l D(wa)llo.2.0. (5.9)

Proof. As Vvj, is piecewise discontinuous, then there exists K € 7}, such that:

v (Vi)llosoe = [vr(Vi)llosox < CFhi | D(V])]]0,00,k-

By the local inverse estimate (5.4]):

[V llocore < Che? || Vv}]

0,2,K
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for some constant C' > 0 only depending on d and the aspect ratio of the family of
triangulations. Then:

CCEhy P IDV}) o2k < CH 2 | D(V})loze
C >~ ||D((Id — TIy)vi)[loze < CE* = |D(vi) |02 (5.10)

lvr(Vi) oo <
<

where the last inequality follows from the (H!-)uniform stability property (4.52)) of the
interpolation operator IT;. By estimate (5.8)) and the (H!-)uniform stability of the inter-
polation operator II:

1 (Vi v, W) <0 2[lvr(Vi) oo [ D(Vi)llo2.oll D(W3) o2
< CR D)5 2.0l D(wWa)llo2.0-

Also, the convection stabilizing term s.,,, satisfies the following estimate:
Lemma 5.7. Assume that Hypothesis[{.9 holds. Then:
[Scons (Wh; Va)| < CR*= V2| D(un) 1§ 20/l D(Va) 020, (5.11)

for some constant C' > 0 only depending on d, Q0 and the aspect ratio of the family of
triangulations.

Proof. By the definition of the form $..,,, we have:

‘Sconv(uh; Vh)’ = Z Tu,K(UZ(uh : VUh)JZ(uh : VVh))K
KeTy
< C Y hilor (- Va)llozxllon (. - Vvi) oz,
KeT,

where we have applied Hypothesis 4.9 and Cauchy-Schwarz inequality.

By using the (L2-)local stability property (4.50) of the interpolation operator o, we
obtain:

[Seono (Wi Vi) < C > Wicl[un - Vunllo 2w |[un - VVallo 2w
KeT,

Cllunlfs

IN

bag > il D(un)lloaw ID(VA) o4
KeTy

where we have applied Holder’s inequality. By Sobolev embedding theorem, we can write:

(Vh) ||0,4,wK

[Scons (Wis vi)l < CID(Wn)lI20 Y Pl D(up)
KeTy

2—d/2
< D20 Y i P IUD W) o 2w 1D (Vi) llo 2.0
KeTy
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where in the last inequality we have applied the local inverse estimate (5.4) and the
local uniform regularity of the grid, which is implied by the regularity. Using again the
regularity of the grid, which implies that card(wg) < N bounded for any K, we finally
obtain:

IN

‘Scom} (Uh; Vh) |

1/2 1/2
CR*= 2 D(wy)|[} 20 ( > ||D<uh>|r§,2,w> ( > ID(vi) H%w)

KeT;, KeTy,
< CR*2ID(w)[[3 2.0 D(va)llo2.0-

5.3 Existence and stability results

Problem (4.46]) is equivalent to a system of algebraic non-linear equations in finite dimen-
sion. The non-linearity is due to several effects: the convection operator, the VMS-eddy
viscosity, the convection stabilizing term, and the wall-law boundary condition. We use
the Brouwer fixed point theorem to prove that it admits a solution (cf. [§]). In particular,
we have the following stability result:

Theorem 5.8. Assume that Hypothesis[{.9 holds. Let £ € W'. Then, if ||D(Up)llog,q is
small enough, problem admits at least a solution, that satisfies the estimate:

1D (uon) o2, + [log (@on - Vaon) |+, + lo(Von)ll7, + [[palloze < C ([Ellw [[D(Ub)loz2e) ,
(5.12)

where C' > 0 is an increasing function of the data norms ||f||w, ||D(Up)|lo2.q, indepen-
dent of h.

Proof. We prove the existence and stability of solutions in 4 steps.

Step 1. Linearization of (4.46)).

Let wj, = wop, + Upp, with wo, € X, such that || D(wop)|lo2.0 < R (where R is a positive

constant independent of h to be determined later), and consider the following linearized
problem:

Given f € W' find (ugp, pr) € X x M, such that:

BT(W}“ (uohyph)> (Vm Qh)) = <f, Vh>7 (5~13)

for all (vy,qn) € X x My, where:

BT(Wh> (u0h7ph)7 (Vh, Qh)) = b(Wm U—Ohavh) + a(uom Vh) + C/(Wh, UOh,Vh)

~

_(ph7 V- Vh)Q + gconv(uOha Vh) + <G(u0h)7 Vh> + (v * Uop, C]h)ﬂ + Spres(pfw qh)a

and:

G, Vh> = <f7 Vh> - b(Wh, UDh,Vh) - &(UDh,Vh) - C/(Wh, UDhyvh) - gcom}(UDhth)-
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The symbol ~ denotes the linearization of the corresponding terms with respect to wy,
ie.:

Seonv(Uon, V) = Z Tk (07 (Wy, - Vugy), oy (Wh, - VVi)) k,
KeTy

Glan)vi) = [ o vielfwil) ds
Iy

where the function e : R, — R is defined by:

el s
|u] ’
e(luf) = (5.14)
1 =0
(y/v) Ky ’

and K is given by (4.9). We recall that u, is the unique solution (see Lemma[4.1]) of the
implicit equation (4.7). We prove that e is continuous. Indeed, let us re-write equation

[T as:
lu| = u,L(u,y/v) = F(u,).

The wall-law function L is strictly increasing and continuous, then F' is strictly increasing
and continuous. Due to 1' lim F(u,) =0and lim F(u;) = +oo. It implies that
ur—0t Ur—>00

u, = F~1(Jul) is continuous, and so e is continuous at any |u| # 0. To prove the continuity
at |u| =0, we set t = u,(|u|). Then, |u| = tL(At), with A = y/v, and:

12 ot 1

L(\t) MKy’

lim e(|ul) = lim

=1
ul—0 =0 tL(At) 530

where the last identity follows from (4.9). We deduce that e(|wy]|) is bounded on €:

max e(|wp(x)|) < M(||wall0,000), Where M(r) = m[ax} e(x).
xeN z€[0,r

The estimate for the form CAJ becomes:

(G(uon), va) M ([|Whllo,00.02) [tonlo2,r, [Vallozr,

<
< CM([[whllo.co) |1 (uon) o2l D(Va)llo2.0- (5.15)

Step 2. Existence of solution of problem (5.13)).

Problem is equivalent to a linear system with dim(X},) + dim(M},) unknowns and
equations. Then, the existence of solutions is equivalent to its uniqueness. To prove
uniqueness, let us assume that problem admits a solution (ugp,pp) € Xy X My,
that we next estimate in terms of the data.
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e Velocity estimate.

Take v, = ug, and g, = py in (5.13)) as test functions. This yields:

o~ ~

2v || D(uon) 1§ 2.0+ ¢ (Wh, Uon, Uon) +Seonw (Won, Uon) + (G (Wor), Won) + Spres (s ) = (£, uon),
as the form b is antisymmetric. Since the form ¢ and G are non-negative, we have:

2V‘|D(u0h) H(2)72,Q + /S\conv<u0h7 uOh) + Spres (pha ph) < <,fv.7 u0h>- (516)

From the boundedness of the forms b and a in [H*(Q2)]¢, and (5.9)), it follows:

(f,u0n) < ([[fllw +0)[[D(aon)llo20 + CoRl[D(Up)llo2.0l D(von)llo2.0

+ Cildiam(Q)]*" (R + | D(Up)llo22) | D(Ub)llozg + [Scons(Unn, uon)|,

where 6 = (Cy||D(Up)|lo2.a + 2v)||D(Up)llo2.0, and we have used (4.48)). By applying
Hypothesis [£.9) and Young’s inequality, we have:

N Z Ry . 1.
|Sco7w(UDh7u0h)| S C12 ( 2K ||Oh(wh : VUDh)H(%,Q,K) + §Sconv(u0h7u0h) =1 + I1.
KeTy,

Using the (L2-)local stability property (4.50)) of the interpolation operator o}, on the first
summand I, we obtain:

I < Cs Y hi(Iwon - VUG 2w + Uk - VUDL[G 2.0 )

KeTy,

< Oy Y W (IWorllf e + 0 DB8 00 ) I DU DG 2
KeTh

where we have used Holder’s inequality in the last line. By the local inverse estimate
(5.4), the regularity of the grid, and the Sobolev embedding theorem, we can write:

2(1—-d/4
I < G Y hE (I wonl g + U DRIZ 4 ID(Upn) 12 5.0
KeTy,

< Cs W YY(R? + | D(Up)|I3 2 0)ID(Ub)ll 20 < M(R),

with M (R) = Cj [diam(Q)]**~4Y(R? + | D(Up) I3 2.0) | D(Up)|2 5.o- Collecting all these
estimates, from ([5.16)) we obtain:

1.
2V||D(u0h) ||S7Q,Q + §Sconv(u0ha uOh) + Spres (ph,ph)

< |Iflwe + 3(B)] 1D oz + M(R).
where we have denoted:

O(R) = 6+ {CoR + Ci[diam(Q)]***(R + | D(Up)lo20)HID(Up)lo20-
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Using Young’s inequality:
~ 2
L1 [1Ellww -+ 3(R)|
v||D(uop) Ho,z,ﬂ =+ 5 Sconv(Won, Won) + Spres(Pn, Pn) < 1 M(R).
Finally, we conclude:
Iflw +3(B)] 7R
L i (5.17)
it Fual, < L L ) (5.18)
W, - VU > = = ) .
Uh h Oh m
* [£llw + 3(R)
Hap,h(vph)HTp < = 2\/; =+ M<R) (519)
Observe that the bound ((5.17) may be written as:
A
[D(aon)llo20 < K+ §||D(UD)||0,2,QRa (5.20)
with: ( )[ ( >]2 .
[||€]|w + 0] Ci + 2V Csv) [diam(Q)]*~
K = ¥ IDUDIEse:  (5:21)
2v 2v
and: o2
C C 4+ 2v/C diam ()]~
4= Gt (G4 2VCsv) [diam( @7 (5.22)
v
As we want wg, in the same ball of ug,, we impose R = 2K, so that it must be:
| D(uon)llo2.0 < K+ A||D(Up)|lo2ak < 2K, (5.23)

thai is satisfied if:
I D(Up) o2 < AL

e Pressure estimate.

Take g, = 0 in (5.13)). Using the previous estimates, this yields:

(o, V- vi)al < | = (£, vi) + b(Wn, ugn, vi) + a(uon, vi) + ¢ (Wh, ugn, Vi)

~

+ /S\conv<u0ha Vh) + <G(u0h)7 Vh>|

IN

IN

C{Iflwr + 14+ v+ M{[willosee)] K} IDOA) o2,

C {HFHW/ + [T+ 272 20 + M(|Walloo0)] HD(UOh)Ho,z,ﬂ} [D(Vi)lo2.0



138 Chapter 5. Numerical Analysis of VMS-SGM

where the second inequality follows from the boundedness of the forms b and a in [H 1(Q)]d,

and we have used properties (5.9)), (5.11]) and ( estlmate respectively the forms ¢/,

scom, and G while the last 1nequahty follows from 1.) By the discrete inf-sup condltlon
and the fact that ||y, (Vpn)|l7, < 24/VK, we obtain:

[(V - v, pr)al .
Pulloge < C ( sup —————— + [0 ,(Vpn)|l-
|| h”OQQ v X, ||D<Vh)||0,2’g || p,h( h)H P

< C{Ifllw + [+ v+ V7 + M(walloeo)] K}

Step 3. Existence of solution of problem (4.46)).
We use Brouwer fixed point theorem to prove existence of solution of problem . Let
us define the mapping F : X, — X, that transforms wy, € X, into ugy,, the unique
solution of problem . The previous estimates and the uniqueness of solution of
allow to prove the continuity of F. Indeed, let {w, },en C X; be a sequence convergent
to w € [H}(Q)]%. Let us consider the sequence of images {F(W,)}nen = {W, bnen C X,
The previous estimates allow to extract a sub-sequence, that we denote in the same way,
strongly convergent (as X, is of finite dimension) to t € X;. Also, there exists a sub-
sequence {p,tnen C My, strongly convergent to p € M,. We take the limit n — +oo
in:

Br(wWp, (W, pn)s (Vi qn)) = (£, vh),  V(va,qn) € Xp X M.
Note that, as we are working in finite dimension, By is a continuous function, as all terms
appearing in the definition of By are continuous functions of the d.o.f. of their arguments.
We can conclude that:

Br(w, (t,p), (Va,q)) = (£,v4),  Y(vh,qn) € Xp, x M.

Thus, F(w) = t. As the limit problem satisfied by t admits a unique solution, then
the whole sequence {F(w,)},en converges to it, by reductio ad absurdum. The previous
estimates also prove that JF transforms the closed ball Bx, (0, 2K) into itself. Then,
by Brouwer fixed point theorem, the mapping F admits a fixed point. This fixed point is
a solution of , satisfying the estimate for the first three summands.

Step 4. Estimate ([5.12]).

It remains just to prove that the estimate for ||ps|lo2,q does not depend on h for the
non-linear problem . Note that the dependence on A in the linear case is due to
estimate of the form G, where M depends on |lWhl0.00.02, and thus on h. Instead,
in the non- hnear case, we can directly apply (4.17 - to estimate the form G, and thus the
pressure estimate does not depend on h. Indeed, we have:

|(pn, V- vp)al < |- <?, Vi) + b(up; uon, vi) + a(uon, vi) + ¢ (ug; uon, vi)

+ Sconv(uh; Uop, Vh) + <G(u0h)7 Vh>‘

where now:

<f Vh> (f Vh> - b(uh7 UDth) - G(UDh,Vh) —C (uh, UDh>Vh) Sconv(uh; UDhth)-
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Following the proof of the previous error estimate for the linear problem ([5.13), and
applying (4.17) to estimate the form G, we obtain:

(o, V- vi)ol < CH{lElwr + (140> +20) [ D(uon) [lop.0} 1D(va)]
+ C{A+ )1+ [[D(uon) [52.0) } 1DV oz

0,2,Q

< CH{lflw + 1+ v)K+ 1+ K} D(va)loze-

By the discrete inf-sup condition (5.7) and the fact that |07, (Vps)ll, < 2V/VK, we
obtain:

|(V - Vi, pr)al X
Phrll0,2,0 < C ( Sup ———————— *+ |0 Vph 7
|| ||02 vreXs ||D(Vh)||0,2,ﬂ || p,h( )H P

< C{llfllw + QA +v+ VK + 1 +K2},

and we have no more dependence on h. m

Remark 5.9. The estimate for the convective stabilization term makes apparent a certain
stabilization of the convective derivative. We next give an interpretation of this mecha-
nism.

In convection-dominated flows, the velocities provided by the Galerkin method lose sta-
bility in L. Small-period oscillations appear, unless the grid size is small enough. For
practical applications, where Reynolds number may reach the value of 10* (or greater),
this restriction is frequently unaffordable, and stabilization procedures are needed.

This phenomenon seemingly is due to an accumulation of sub-grid energy: when the
grid is not fine enough, the initial viscosity v of the problem can not dissipate all the
energy, and the flow produces short-period (or high-frequency) oscillations. This accumu-
lation of energy is only in part counter-balanced in method by the eddy diffusion
term ¢, deriving from a multi-scale sub-grid discretization, because without the stabilizing
terms, this method is in practice a Galerkin method (cf. [21]). So, while the pressure
stabilization term is used to estimate the pressure by means of the specific discrete inf-
sup condition introduced, the convective stabilization term, as indeed is a diffusive term,
helps to counter-balance the accumulation of energy. We are thus adding some numerical
diffusion, that together with the one provided by the sub-grid eddy viscosity, permits to
replace the sub-grid dissipation of energy which is not present at all in a simple multi-
scale sub-grid discretization. The space of high frequencies of the numerical velocity is
given by the operator o;. So that, o (uy, - Vuy,) represents the high-frequency component
of the convective derivative. The estimate of the convective stabilization term guarantees
an extra-control on the high frequencies of the convective derivative, which is not obtained

by the standard VMS-SGM method .

Some of these ideas are used in (18] to elaborate a post-processing of oscillating solu-
tions of the steady Navier-Stokes equations, discretized by a standard Galerkin FE method.
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5.4 Convergence analysis

The convergence analysis is based upon the theory developed in [17], that enables to ex-
tend to stabilized methods the standard techniques for the numerical analysis of mixed
methods.

We shall need a technical result that allows to represent formulation (4.2]) as an internal
approximation of an “augmented” variational formulation.

Definition 5.10. A FE space Zj,, constructed on a triangulation Ty, is called a bubble
FE space if, for all b, € Zy, for all K € Ty, by, € H} (K).

A similar definition applies for vectorial bubble FE spaces.

Lemma 5.11. There exists a family {Zp,}nso of bubble FE sub-spaces of [H}(2)]¢ and a
family {Sy}n=0 of bilinear uniformly continuous and uniformly coercive forms on [H}(2)]%
such that:

Spres(Phs @n) = Sn(Rn(0y,1,(Vpn)), R0, (Van))),  Vpu, qn € My, (5.24)

where Ry, : [H1(Q)]? — Zy, is the “static condensation” operator on Zy, defined as follows:
Given p € [H7HQ)]4, Ri(p) is the only element of Zj, that satisfies:

Sh(Ru(v), z1) = <907 2),  Van € Ly.

This result is proved in [17]. We shall also need the following property of bubble FE
spaces (cf. [17]):

Lemma 5.12. If a sequence {Zp}no of bubble FE sub-spaces of [H}(Q)]¢ is uniformly
bounded in [H}(Q)]?, then it weakly converges to zero in [HL(Q)]?.

We now state the weak convergence of solutions provided by method (4.46) to a weak
solution of the Navier-Stokes boundary value problem (4.2]).

Theorem 5.13. Assume that Hypothesis holds. Then, the sequence {(un, pn)}nso
of solutions of the VMS-S approximation contains a sub-sequence which is weakly
convergent in [H*(Q)]¢ x L*(Q) to a solution of the steady Navier-Stokes equations .
If this solution is unique, then the whole sequence converges to it.

Proof. The proof is divided into various steps.

Step 1. Extracting sub-sequences.

Due to estimate (5.12)), the sequence {(uos,ps)}trso is uniformly bounded in the space
W x M, which is a Hilbert space. Then, it contains a sub-sequence, that we still denote
in the same way, weakly convergent in that space to some pair (ug,p). As the injection
of H'(Q) in L4(Q) is compact for 1 < ¢ < ¢* = 2d/(d — 2), by the Rellich-Kondrakov
compactness theorem (cf. [8]) we may assume that the sub-sequence {ugy, }x~0 is strongly
convergent in [L()]¢, and so, in particular, in [L*(Q2)]?. Also, the operator G is compact
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from W to its dual W', by Lemma 4.4, Then, we may assume that the sub-sequence
{G(uop) }n>o is strongly convergent in W’. We recall that by (4.49)) Upy, is strongly con-
verges to Up in [H*(Q2)]%. Let us prove that (u,p) is a solution of problem (4.2)), where
u = Uy + UD-

Step 2. Limit of convection terms.

Let us consider a pair of test functions (v, ¢) such that v.€ W, ¢ € D(Q)NM, where D({2)
is the space of C§°(2)-functions (i.e., smooth functions with compact support), which is
dense in L2(Q) (cf. [66]). As X}, is an internal approximation of W (see Subsection [4.4.1)),
then there exists a sequence {v},},~0 € X}, strongly convergent to v in W. Moreover, as
M, is an internal approximation of H'(£2) M, then there exists a sequence {qp }n>0 € My,
strongly convergent to ¢ in particular in M. We have:

|(up - Vup, vp)g — (u- Vu, v)q|
< [((up, —u) - Vug, vi)a| + [(u- V(u, —u),v)o| + [(u- Vug, v, — v)g]

d
< Jun = ulloselVunllozelvilloae + > 1005 (uni — w), ujvi)al
ij=1
+  J[wlloscllVarlozellve — vioaa,
where we have denoted uy, = (up1, ..., unq). All terms in the r.h.s. of the last inequality

vanish in the limit because {uy}sso is strongly convergent in [L*(Q)]%, {Ouni}tnso is
weakly convergent in L*(Q), and {v},}r>o is strongly convergent in [H1(£2)]¢. Then:

lim(uy, - Vug, vi)a = (u- Vu, v)q.
h—0

Similarly:

lim(uy, - Vvp,up)o = (u- Vv, u)g,
h—0

and then:
lim b(up; up, vy) = b(u;u, v).
h—0

Moreover, by (5.11)), for the convection stabilizing term we have:
[conw (Un; V)| < CR2 2 D(us) [[§ 5.0l D(va)llo2.0-
Since the sequences {uy }n~o and {v;}rso are bounded in [H1(2)], we deduce:

}llli}’(l) Sconv(uh; Vh) = 0.

Step 3. Limit of diffusion terms.
As a is bilinear and continuous:

lim a(uy, vi) = a(u, v).
h—0
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Next, since the sequences {uy, }r~0 and {v;, }x=o are bounded in [H(92)]%, we deduce from
Lemma [5.6

; / . —
’IZIL%C (uh, Uy, Vh) = 0.

Step 4. Limit of pressure terms.
Since {V-uy, }s0 is weakly convergent in L?(Q) to V-u and {g }r>0 is strongly convergent
in L?(Q) to ¢:

hm(v - Up, Qh)Q - (v - u, Q)Q
h—0

Also, we obviously have:
}lig(l)(ph, V-vi)a=(p,V-V)a.

The pressure stabilizing term also vanishes in the limit. To prove this, we use the repre-

sentation formula (5.24)). This yields:

o n(VPR)I17, = Spres(pn, pr) = Si(Ra(01(Vn)), Ra(oy,(Von))
> MS||Rh<J;,h(Vph))H?{(}(Q)’

using the uniform coercivity of the forms S,. Then, using the fact that |[o7 ,(Vpn)l|-, <

2\/vK, we deduce that the sequence {Ry, (07 ,(Vpr)) }ro is uniformly bounded in [Hg(€2)]?
and, by Lemma [5.12] as:

Spres(Phy @n) = Sn(Rn(0,,,(VPn)), Ri(07,(Van))) = (0,4(Van), Ru(oy,,(Vpn))),

we conclude:
lim s = 0.
b0 pres (ph) Qh>

Consequently, the pair (u,p) is a weak solution of the Navier-Stokes equations ({4.2)).

Step 5. Uniqueness.

As this weak convergence follows from a compactness argument, it is standard to prove,
by reductio ad absurdum, that if the limit is unique, then the whole sequence converges
to it, in the same weak sense. m

5.4.1 Convergence analysis for mixed methods

In this subsection, we prove a result of strong convergence for solutions with natural
minimal regularity that holds for mixed methods. To approximate problem (4.1)), let us
consider the following mixed formulation:

Find (up,pr) € (Upp + X)) X My, such that:
b(up; up, vi) + a(up, vi) + ¢ (Wpsup, vi) = (pn, V- vi)a + (G(ag), vi) = (£, va),

(V'uh,Qh)Q - 07
(5.25)
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for all (vp,qn) € X x My, where now {(Xp,,M},)}rso is a family of pairs of FE spaces
that is an internal approximation of W x M, and at the same time satisfies the uniform
discrete inf-sup condition (cf. [9]):

Vv,
Vg, € My, lanllo20 < C sup IV Vh, gn)al

) 5.26
SO DMz (5:26)

for some positive constant C' independent of h. As for the stabilized VMS-S method (4.46)),
problem ([5.25)) admits at least a solution (uy, pj,) uniformly bounded in [H(92)]¢ x L*(Q).
This result is the key to prove the following:

Theorem 5.14. Assume that Hypothesis holds. Then, the sequence {(un,pn)}n=o0
of solutions of the mixed approximation contains a sub-sequence which s strongly
convergent in [H*(Q)]? x L*(Q) to a solution of the steady Navier-Stokes equations ({.2).

Proof. The weak convergence of a sub-sequence (that we denote in the same way) is
proved analogously to Theorem [5.13] so that we directly prove the strong convergence.

e Strong convergence of the velocities.

Set v, = ugy, in (5.25). Then:

2v|D(uon) 520 = (£, 90n) — b(Upn; Upn, uon) — b(uon; Upn, ugn) — a(Upp, ug)

¢ (up;up, upn) — (G(up), ugp).

From ((5.9)), since the sequence {uy, };,>0 is uniformly bounded in [H'(2)]¢, we have:

lim c’(uh; Uy, uoh) =0.
h—0

Moreover, as a is bilinear and continuous:

lim a(Upp, ugp) = a(Up, uy),
h—0

and by standard arguments already used in the proof of Theorem (Step 2), we deduce
(up to a sub-sequence):

}Li_{f(l) b(Upn; Upn, uon) + b(ugn; Upp, ugn) = b(Up; Up, ug) + b(up; Up, uy).

Therefore, as G is compact by Lemma , we obtain (up to a sub-sequence):
lim 20| D(uon) |3 00 = (£, u0) —b(Up; Up,ug) — b(ug; Up, ug) — a(Up, ug) — (G(u), ue)
= 2[|D(uo)[[5 2.0

where the last equality holds because (u, p) is a weak solution of the Navier-Stokes equa-
tions (4.1)). As W is a Hilbert space, and {ugy, }5>0 is weakly convergent to ug in W, this
proves the strong convergence of the velocities.
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e Strong convergence of the pressures.

We use the discrete inf-sup condition ([5.26)) to estimate ||py, — pllo2.0. As M}, is an internal
approximation of M, there exists a sequence {P,}n~0 € M, strongly convergent to p in
M. We shall show that:

flg% [ph — Pullo2.0 = 0.
Let vj, € X},. Then, (4.2) holds with v = v;,. Let us write:
(p,V-v)g= (P, V- -V)a+(p— PV V),
so that (4.2) becomes:

{ b(u;u,v)+a(u,v) — (P, V-V)g— (p— Pr,V-v)g + (G(u),v) = (f,v),

(V-wq)a = 0, (5.27)

for any (v,q) € W x M. We subtract the first equation of (5.27) with v = v;, from the
first equation of ([5.25)). This yields:

(ph — Pn, V- vi)a = blup;uy, vy) — blu;u, viy) + alu, —u,vy) + ¢ (up; up, vi)
+ (G(uy) —G(u),vi) + (p— P, V- vi)a.

As:

b(uh; Up, Vh) - b(u; u, Vh) = b(uh; up — u, Vh) + b(uh —uu, Vh)
< C|D(up — u)loz.o([D(ur)lloz0 + D) |lo2.0) | D(Va)llo2.0,

using the continuity of a, and estimates ((5.9), (4.18)), we deduce:

(b= PoV-vido < CUID@)loza + 1D@)oza +2v + 1] Dlw, — oz
+ R 2D) R g0+ 9~ Pilozal D) oz

Then, by the discrete inf-sup condition (5.26f), there exists a constant C' > 0 such that:

|(V - Vi, pn — Pr)al
ph— Piulloga < C sup
lpn — Pallo2.0 viex,  IDV)]oze

< C(ID(un = wlloz + [P = Prlloze) -

As { P, }n>0 strongly converges to p in L%*(€2), and we have proved the strong convergence
of the velocities, we have:

i — P = 0.
hlgll)th wllo2.0 =0

It follows that pj, strongly converges to p in L?(Q2). =

The proof of Theorem [5.14] and more concretely the proof of the strong convergence
of the velocities, contains as a sub-product the asymptotic energy balance of the mixed
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approximation ((5.25)). Indeed, let us respectively define the deformation energy Ep, the
boundary friction energy Er, and the sub-grid eddy dissipation energy Fg by:

Ep(w) =  afwuw) = 20| DW)2,0.
Er(w) = (Gu)u) = /g<u>-uds,

I'n
Es(up) = d(wpsup,up) = QZ(CShK)2/ | D(wy)|* dx.
KeT, K

Then, it holds:

Corollary 5.15. Let {(up,pn)}tnso be a sub-sequence of solutions of the mixed method
strongly convergent in [H'(Q)]¢ x L*(Q) to a weak solution (u,p) of the steady
Navier-Stokes equations . Then:

lim[Ep(up) + Er(un) + Es(w)] = Ep(u) + Er(u),

as:

lim ED(llh) = ED<11), lim EF(llh) = EF(U),
h—0 h—0

and:

}LILI(I) Es(llh) =0.

Thus, the total energy balance is asymptotically maintained in such a way that the de-
formation energy and the energy dissipated at the wall pass to the limit. In addition, the
dissipated eddy energy asymptotically vanish.

Remark 5.16. Following the same strategy to initially prove the strong convergence of the
velocities for the stabilized VMS-S method, it is easy to check that one can only conclude:

lim 20[| D (aon) [5.2.0 + o5, (Von) 17, = 201D (w0) 15 2,0,

so that in this case we can not achieve a strong convergence result for solutions with natu-
ral minimal reqularity, neither the corresponding asymptotic energy balance of the system,
because we can not separate the deformation energy Ep from the sub-grid energy related
to the pressure stabilizing term when passing to the limat.

However, assuming a slightly increased reqularity of the solution for the steady Navier-
Stokes equations leads to a strong convergence result also in the context of the sta-
bilized VMS-S method by an error estimate analysis, as we will show in the next section.
This will guarantees the corresponding asymptotic energy balance of the system.

5.5 Error estimates

In this section, we derive error estimates for the VMS-S discretization (4.46|) for diffusion-
dominated flows. The interest of this analysis is to remark the fact that the VMS-S
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method proposed may be used to approximate both laminar and turbulent flows. About
the former, if they are regular enough, we obtain convergence of optimal order, and the or-
der decreases with the regularity. As a consequence, we also obtain an asymptotic energy
balance of the system for slightly smooth flows. Similar error estimates may be obtained
in a more general framework, when the solution of Navier-Stokes equations is located in
a branch of non-singular Reynolds numbers, in the sense that at these Reynolds numbers
there are not bifurcations to more complex flows (c¢f. [10], [11], [12]). Roughly speaking,
the mathematical concept of non-singular flow is closer to the physical concept of lami-
nar flow than just the diffusion-dominated one. Here, we consider the diffusion-dominated
regime (much more restrictive than non-singular flow) to determine the accuracy of VMS-
S method. The same accuracy will hold for non-singular flows, but the related analysis,
that makes mainly use of the implicit function theorem in Banach spaces, is quite involved.

We start by setting a condition that ensures the uniqueness of solutions of the steady
Navier-Stokes equations (4.2). As b is a bounded trilinear form, then the quantity:

b(z;v,w)
g = sup )
avwew || D(z)]o20 [D(V)[loza [[D(W)o20

is finite.
Theorem 5.17. Assume that:
2v > B(2K + [|D(Up)|lo2.0), (5.28)

where IC is the quantity defined by . Then, the solution of the steady Navier-Stokes
equations is unique.

Proof. Consider two solutions w,z € (Up + W) of (4.2). Let e = w — z, and subtract
the equations satisfied by w and z with v = e. Then:

20| D(e)[5.0 + (G(W) — G(2), ) = b(w; w,e) — b(z: 2, e)
= b(w;w,e) £ b(z;w,e) — b(z;z,e) = b(e;w, e)
< B(ID(wo)lloze + [D(Up)lloze)l| D) 2.0-

By the monotonicity of G, (G(w) — G(z),e) > 0. As estimate (5.23)) holds for w solution
of (4.2)), we have:

2v||D(e)l[5 0.0 < BEK +[ID(Up)llo.0) | D(e)l[5 2.0-
Then, condition ([5.28) implies e =0. =
Remark 5.18. The condition means that the flow is diffusion-dominated. The

viscosity v is large enough to balance the convection effects relatively to the data f and
Up.
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Theorem 5.19. Assume that Hypothesis and estimate hold, and that, for
smooth enough data, the (unique) solution (u,p) of the steady Navier-Stokes equations
has augmented reqularity, i.e. (u,p) € [H*T(Q)]? x H*(Q), 2 < s < . Then, the
following error estimates for a solution (uy,py) of the VMS-S method hold:

| D(u — uh)||0,2,9 +lp — ph||0,2,9 <C (hs + h2_d/2+2n) ) (5.29)

for some constant C' independent of h, and 2 < n < (l_— 1) if I}, takes values in Y,
defined by , while 2 < n < if I}, takes values in Yy, defined by , [ denoting

the degree of the polynomial interpolation.

Proof. We consider an approximation ug, = Ryug € X, C Yﬁl ofup=u—-—Up e W
satisfying:
(Wo — Uon, vi)o =0, Vv, €Y.t (5.30)

Note that such interpolant R), exists, and satisfies the stability and optimal approximation
properties of Proposition (cf. [19]). Also, let p, = Tpp € M, with T}, the standard
FE interpolation operator, that satisfies the properties of Proposition [4.8] We set 1, =

oy, + Upp, where Upy, is given by (4.47). From (4.2)), we have:
b(ﬁh; ﬁh, V) + a(ﬁh, V) - (ﬁh, V- V)Q + <G(ﬁh), V> + (V : ﬁh, q)g = <f, V> (531)
+ <Evh7 V> + <€qh7 Q>a
for all (v,q) € W x M, where ¢,;, € W’ and ¢4, € M}, define the consistency error:
con = bap;up,v) —b(u;u,v)+a(a, —u,v) + (Gy) — G(u),v) + (p — pn, V - v)q,
g = —(V-(u—up),qa.

Set e, = u, —uy, A\, = pr, — pr. Taking v = v, € Xy, ¢ = qn, € M, and subtracting
(5.31)) from (4.46)), we obtain the error equation:
ben; en, vi) +alen, vi) — (An, V- vi)o + (G(ay) — G(ug),vi) + (V- en, qn)a
= (oh, Vi) + (Eqh, an) — D(up; e, vi) — blen; uy, viy) + ¢ (up; up, vi)
+ Sconv(uh; Vh) + Spres (ph7 Qh>7 (532>

where we have used the identity:
b(Up; Up, Vi) — b(up; un, vi) = bep; en, vi) + b(up; en, vi) + b(en; uy, vi).
Set v, = en, qn = Ap. As (G(uy,) — G(uy),e,) > 0 by the monotonicity of G, we deduce:

2v|D(en)52n < (Eonsen) + (qn An) — blen; uy; ep)

+ Cl(uh; Uy, eh) + Sconv(uh; eh) + Spres(pfw )\h>

IA

leon [l D(en)llo2.0 + Bl D(en) 5 2.0ll D(un) 020
+ C/(uh; Uy, eh) + Sconv(uh; eh) + 5pres<ph> Ah) + <€qha >\h>

IA

ewnllwrl[Den)llo2.0 + B(2K + [|D(Up)lo2.0) 1D (en)|5 2,0
+ C/(uh; Uy, eh) + Sconv(uh; eh) + Spres<ph> )\h) + <5qha >\h>
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By (5.28), d =2v — B(2K + ||D(Up)llo2.0) > 0. Using Young’s inequality:

1 )
o D(en)llize < g5llewnlln: +5l1D(en) G20

+ Cl(uh; Uy, eh) + Scorw(uh; eh) + Spres(phu )\h) + <€qh7 )\h>

Then:

1
8[| D(en)lf 2.0 < gthH%w + 2 ((up; up, €n) + Sconv(Wns €4) + Spres(Dhy An) + (Eqns An)) -

(5.33)
From Lemma (/5.6]), we have:
¢ (s up, ep) < CR*D(w)) |5 2.0l D(€)lo 20 (5.34)

Set uj, = (Id — IIy)uy, €, = uj}, — uj, ' = (Id — II,)u. Then, by the stability property

(4.52) satisfied by I1:

ID(w,) 02,0 ID(e))llo2.0 + D@, —u')[lo2,0 + | D)oz,

<
< C(ID(en)lloze + 1D — w)lloze + 1D(a)[o2.0)
< C(||D(en)llo2.0 + h*+ A7),

where in the last inequality we have used the optimal error estimates (4.54) for the
interpolation operators R;, and II,. Inserting this last inequality in ([5.34]), we have:

¢ (ups up, ) < Ch Y2 (|| D(en) 1520 + (0° + ") |D(en)lo20) -
Observe that:
[D(en)lloz2.0 < [D(un)lloz.a+ D) |loz.e < C2E+ || D(uo)lloz2.0+[[D(Ub)loze) < C,

and then:
ID(en)ll§ 2.0 < ClID(en)llh 2.0

so that we obtain the following estimate for the form ¢':
¢ (wy;wy, €4) < CH* 2 (|D(en)|[5 0.0 + (h° + h")* [[D(en)[lo2.0) - (5.35)

From Hypothesis and Holder’s inequality, for the form s..,, we have:

Sconv(uh; eh) = Z TV,K(U}:(uh : Vuh), U;(uh : Veh))K
KeT,
< C Y bl Vag)llozxllor (. - Ven)llozk-
KET;,

Then, by the local stability property (4.50) satisfied by oy:

lon(un - Vup)llogx < C(|lun - Venllozws + [[un - V(@ —a)l|o2wx + o7 (un - Va)lo2.wx)
< C(lun - Verllogwx + llan - V(a, —u)lo2wx + llen - Vullozwy)
+ C(|[(up —u) - Vullow, + o (- Vu)llo2wy) -
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The standard application of local inverse estimates (see Lemma , the regularity of the
grid, and Sobolev injections yields:

Sconv(uh;eh) S CZ h, ||0h uy - Vuh)”O?KHUh(uh veh)l|02K

KeTh
< CR (| D(un) 5 2.0 + 1D(W) 020l D(un)lloze) [1D(en)l 2.0

(en)

+ Ch* | D(u)lff 20/l D(h — w)

+ Ch* % D(u)

(en)

wy, — o 000 D(up)

+ Ch* Y5 op(u- V)20l D(us)lo2allD(en)loza

IN

Ch>=3||D(ey,) |2 5.0 + C(RP 3% 4 p324/3%+s 4 p2=4/6%5) | D(ey)[lp 2.0
CH*= 1 D(en) [ 0 + CR*~*** [ D(en) lnza. (5:36)

IN

where we have used the optimal error estimates (4.54]) for the interpolation operators
Ry, and oy, and assumed h < 1. For clarity, we detail, for instance, the bound for the
following term appearing estimating the form s.on, (us;ep):

Z hi||uy, - V(1 — u)

KeTy

\U-h : Veh||o,2,wK-

Similarly, we have worked for the other terms. By Holder’s inequality, we have:

> bl - V(1 - u) Ve lo2wi
KeT,
< > hi IV (ar —a)lfo2.wi I Venllo2.w
KeT,
2—d/3 ~
< O i P InlR g 1V (@ = W) [0 20 [ Verlo.2.0c (5.37)
KeT,

where in the last inequality we have applied the local inverse estimate (5.4]) and the local
uniform regularity of the grid, which is implied by the regularity. By Cauchy-Schwarz
inequality, from ([5.37) we obtain:

> Bl V(@ = w02 llwn - Venllow

KeTy,
1/2 1/2
< CR*Plunlff 6.6 (Z IV (u, — U)||3,2,wK> (Z IIVehIIS,Q,wK>
KeT;, KeTy,
< CR*"P|ID(w) [ 2.0/ D(@ — ) (en)lo.2.;

where in the last inequality we have used again the regularity of the grid, and the Sobolev
injection H(Q) — L5(Q).
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Combining (5.33) with (5.35) and (5.36]), we obtain:

1
(6 = Ch* )| D(en)ll5p0 < gllf-?vhll%w + ORI 22340 D en) [lo.0.0
+ 2[<€qha )\h> + Spres<ph7 )\h)]
Using Young’s inequality, we deduce:

5 B 1 CO2 (h2(2-d/2+20) 4 p2(2~d/3+s)
(5 - cmm) IDtelian < jleuliy + ( 5 )

2
+ 2[<5qh7 )\h> + Spres(pha )\h)]
For h small enough, say h < (6/4C)Y?=4/2) we have:

o 1 C B s
ZHD(eh)Hg,Q,Q < g\lsvhll%w + = (hz(z d/2+2m) | p2(2-d/3+ ))
+ 2[<5qh> /\h> + Spres(ph; )\h)]
To estimate ., consider that:

|b(up;ap, v) —b(u;u,v)| = [b(ap;u, —u,v) +b(a, —u;u, v
< C([[D@n)lloza + D) |oz2.0) D —u)llozell D(V)llo2.0;

la(@y —u,v)| < CDn — w20l D(V)llo2.0;

IN

[(p = Pn, V- V)al Cllp = Pullo2allD(V)lo2.0-
Then, using estimate (4.18]), we have ||e,n|lw < Ch®, so that we obtain:

ID(en)llpag < C[h* + h2E4200 4 p2Cd/5%) 4 (e XY + Spres (Dhs An)]
< C |:h28 1 p2—d/242m) (eqh> An) + Spres(Ph, )\h)} ) (5.38)

Note that by divergence theorem and ([5.30)) it follows:
(Eqn, An) = =(V - (w =), M) = (u — 1y, 03, (V) ),
By using Hypothesis (4.9)), we estimate:

(Egns Mn) = (=T, 07 (VAo < > u=tnllozxllon(VAn)llozx

KeT,
1/2
< Non (VA ZT_”u_uhHO,Q,K
KeT;, DK

1 1 1/2
< oVl <Z h—2||u—ﬁh||§,z,;<)

1 KT, K
<

C C
ar lon(VAn)llz, h* < TR (VIR + Cn™,
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where we have used the local error estimate (4.53|) for the interpolant Ry, the regularity
of the grid, and Young’s inequality in the last line. As p, = p, — A\, we have:

Sp'reS(phJ )‘h) - SPTGS(ﬁiM /\h) - ||U;(v>\h>”72'p

Thus, ((5.38) becomes:
C * s — * ~
1D(en) |3 2.0 + EHO'h(V/\h)H?_p <C {h2 | p2e—d/22m) ||0h(Vph)||zp} 7 (5.39)

where we have used Young’s inequality to estimate Sp,es(Ph, An). It remains to bound the
last term in ((5.39). To do it, we add and subtract Vp; This yields:

lon (Vo) < llon(V(pn = p)lls, + llopn (VD) -,
< ChIV(Pr—p)loze + Chllo;(Vp)lloza < CR, (5.40)

by applying Lemma and the optimal error estimates (4.54)) for the interpolation ope-
rators T}, and oj,. Combining this estimate with ([5.39)), we obtain:

HD(eh)||0,2,Q + ||U;;(V/\h)||7p <C (hs + hz_d/2+277) . (5.41)
The estimate ([5.29)) for the velocity follows from (5.41)) using:
[1D(u =)l < |D(u—1)lloz0 + [ D(en)|o20

To obtain the estimate for the pressure error, set ¢, = 0 in error equation ((5.32). By
similar arguments, we deduce:

(M, V- vi)a < C (B + B2 Y2P21) | D(v) ] o.2.0-
Thus, by the discrete inf-sup condition and :
Anlloge < C(h°+ BP0 0% (VL) [|,) < C (h° + h>74/227) (5.42)
Again, the estimate for the pressure follows from using:
1P = prlloze < llp = Prlloze + [[Anlloze-
This concludes the proof. m

Remark 5.20. To obtain optimal estimates with respect to the polynomial interpolation,
we must take s = 1. This yields:

||D(11 - Uh)||0,2,§z + ||p - ph||0,2,Q <C (hl + h2_d/2+2n) .

If the interpolation operator I1;, that defines the sub-grid eddy viscosity takes values in Y,
defined by ({4.57), we have 2 —d/2 + 21 > 1, since we can take (at most) n = (I —1), and
it must be l > 3 asn > 2, so that we need at least piecewise cubic FE. FElse, if 11, takes
values in Y, defined by , we again obtain 2 — d/2 + 2n > 1, since we can take (at
most) n =1, and it must be | > 2 as n > 2, thus piecewise quadratic FE are sufficient.
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Note that the assumption s > 2, and hence n > 2, is necessary to use optimal error
estimates for the interpolation operator o, in . In any case, the convergence
order of the VMS-S method 15 optimal with respect to the polynomial interpolation
for laminar smooth flows.

Decreasing the regularity of the solution (u,p) of the steady Navier-Stokes equations
(at most) to [H*(Q)]? x HY(Q) implies that the convergence order of the VMS-S method is
limited to one, due to the estimate of the pressure stabilizing term. However, this slightly
augmented regularity already guarantees the strong convergence of the VMS-S method, and
1t is enough to prove the corresponding asymptotic energy balance in the next subsection.

Also, it is easy to check that the use of the Small-All setting of the eddy viscosity
instead of the Small-Small setting (4.40) used in the proof leads to an optimal method only
if 11, takes values in Y, defined by, while it leads to a sub-optimal method (in 3D),
of order (I — 1/2) with respect to the polynomial interpolation, if I1;, takes values in Y,
defined by . The use of the standard Smagorinsky model limats the order to
h*=42_ In this case, there is no interest in increasing the accuracy of the interpolation,
as this would requires a larger computational effort without increasing the accuracy of the
numerical solution. This low convergence order appears linked to the diffusive nature of
the Smagorinsky model, that extends the eddy diffusion to all wave-numbers.

5.5.1 Asymptotic energy balance

The proof of Theorem [5.19] that implies more concretely the strong convergence, in par-
ticular, of the velocities, contains as a sub-product the asymptotic energy balance of the
VMS-S model . Indeed, let us define the deformation energy Ep, the boundary
friction energy Ep, the sub-grid eddy dissipation energy Eg, and the energy Fsc and
Esp respectively corresponding to the convection and the pressure stabilization terms by:

Ep(u) = a(wu) = 2/[D()[},0
Er(u) = (G(u),u) = /Fg(u)-uds,

Es(w) = d(womom) = 23 (Cshie)? /K DU, dx.,

KeTy,
ESC’(uh) = Sconv(uh; uh) = ||O-I>:(uh ' vuh) ||3,,7
Esp(pn) = Spres(Propn) = [lon(Von)|2.

Then, it holds:

Corollary 5.21. Let {(up,pn)}nso be a sequence of solutions of the VMS-S model
strongly convergent in [H*(2)]? x L*(Q) to a solution (u,p) of the Navier-Stokes equations
with regularity [H*(Q)]¢ x HY(Q) (at least). Then:

}E%[Ep(uh) + Ep(u) + Es(uy) + Esc(un) + Esp(prn)] = Ep(u) + Er(u),
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as:

lim ED(llh) = ED<11), lim EF(llh) = EF(U),
h—0 h—0

and:
}ZIL% Eg(llh) = llzli% Egc(llh) = }111{)% ESP(ph) = 0.

Thus, the total energy balance is asymptotically maintained in such a way that the de-
formation energy and the energy dissipated at the wall pass to the limit. In addition, the
dissipated eddy energy so as the sub-grid energy due to stabilizing terms asymptotically
vanish.






Chapter 6

Numerical Experiments by

VMS-SGM

6.1 Introduction

This section is devoted to analyze the numerical performances of the projection-based
VMS model applied to the computation of laminar and turbulent flows, with and
without wall-law boundary conditions. We address simulations of two relevant 3D steady
flows, for which there exists an extensive literature providing experimental measurements
and reliable numerical results:

e Test 1: 3D lid-driven cavity flow - No-slip boundary conditions (Section [6.3)).
e Test 2: 3D turbulent channel flow - Wall-law boundary conditions (Section [6.4).

Note that both of them are examples of flows possessing one direction of inhomogeneity.
Turbulent flow examples may be distinguished in view of the number of directions of
inhomogeneity, according to Sagaut [77], Chapter 13. The computer resources needed for
an adequate resolution usually increase with every additional direction of inhomogeneity,
so that, under this consideration, the focus is on flows possessing one direction of inho-
mogeneity, which provides a good balance between degree of interest in the context of
practical applications and computational affordability.

First of all, we discuss the basic aspects of the practical implementation of the discrete
model . We test this model with the different settings of the eddy viscosity term
already introduced in Chapter |4 and compare the corresponding practical performances.
The steady state of both flows under consideration is reached through unsteady time dis-
cretizations, where in particular the Crank-Nicolson scheme together with a linearization
by a fixed point like iteration is used. Once clarified the basic aspects of the practical
implementation, we introduce the most relevant features of the analyzed flows.

The first numerical test concerns the 3D lid-driven cavity flow, that is one of the most
studied problem in computational fluid dynamics, that exhibits one direction of inhomo-

geneity. We address three significant Reynolds numbers (Re = 3200, 7500, 10 000), that

155
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cover the laminar, transient and turbulent regimes. As usual, we set a unit horizontal
velocity on the top boundary layer, while no-slip boundary conditions are prescribed on
the rest of the boundary. After introducing the setup for numerical solutions, we present
simulations on coarse grids, in order to validate the proposed model. A comparison of
first and second-order statistics with experimental data so as to other numerical results
justifies the interest of our approach.

The second numerical test concerns the 3D turbulent channel flow, that is one of the
most popular test problem for the investigation of wall-bounded turbulent flows. We
present simulations of turbulent channel flows at friction Reynolds number Re, = 180
on coarse grids. Here, the interest is mainly focused on comparing the use of no-slip
boundary conditions at the walls versus the use of wall-law boundary conditions. We
provide some qualitative and quantitative highlights on the the application of wall laws.
Compared to direct numerical simulations and other numerical results, we obtain a good
prediction of first and second-order statistics of the flow, with a substantial reduction of
the computation time with the use of wall laws.

The numerical experiments confirm the ability of the proposed model to simulate both
laminar and turbulent flows. They also show a reasonable accuracy with respect to the
coarse discretization at hand, as well as the efficiency based on the fact that only a single
mesh and nodal interpolation operators are needed to implement the algorithm. Similar
errors levels are obtained with respect to more complex VMS models. Moreover, the use
of wall laws permits to maintain a rather good accuracy, with a significant reduction of
the computational cost. So that, the proposed projection-based VMS method, even in
combination with wall laws, seems to provide a promising tool to simulate laminar and
turbulent flows, which guarantees a good compromise between accuracy and computa-
tional complexity. This is an important feature, especially in view of its use in industrial,
environmental and other practical applications.

The chapter is structured as follows: In Section [6.2] we discuss the basic aspects of the
discrete model , that we will use to perform the numerical tests. In Section we
address the simulation of a 3D lid-driven cavity flow at Reynolds numbers 3200, 7500,
and 10000, to cover the spectrum from laminar to turbulent regime. In this context, we fix
the setup for the numerical simulations (Subsection , and we display the numerical
results obtained for coarse grids by comparing with experimental data and numerical
solutions obtained by other authors (Subsection [6.3.2)). In Section [6.4] we address the
simulation of a 3D turbulent channel flow at friction Reynolds number Re, = 180. For
this problem, we fix the setup for the numerical simulations (Subsection , where in
addition we propose to perform a comparison between the application of standard no-
slip boundary conditions at the walls and non-standard wall laws. Finally, the numerical
results are also compared with direct numerical simulations and VMS-LES performed by
other authors (Subsection [6.4.2)).
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6.2 Practical implementation

In all numerical experiments performed, we test the projection-based VMS model (|4.46])
with the following different settings of the eddy viscosity term:

e VMS-S model: The Small-Small VMS-Smagorinsky setting, given by (4.40));

e VMS-B model: The Berselli-Iliescu-Layton setting of Ref. [7], given by (4.44), in

which we replace the [L?(£2)]4*¢ orthogonal projection II;, on space L; by an inter-
polation operator on a coarser (e.g., P0) FE space, much faster to compute;

e SMA model: The Smagorinsky setting, given by (4.45)).

Moreover, to reach a (quasi-)steady state, an unsteady time discretization is used. In
particular, we consider the Crank-Nicolson scheme for the temporal discretization.
We solve in practice the following linearized system in each time step:

4 un-‘rl —u”
<h—h,vh) + b(uy, uZ*a,vh) + a(uZ*‘g,vh) + d(uf, uZ*e,Vh)
Q

At
—(pZJre, V. Vh)Q + (é(uﬁ”), Vh> + §conv(u2+9, Vh) = (fh; Vh)Q; (6-1)
\ (V-ul™ g)a + Spres (070 an) + @) qn)a = 0,

where:
wl = gutt (1 -0y, prt =oprTt (1 —0)pr, 6=1/2.

In , the form ¢ denotes the linearized (with respect to the convection velocity at
a previous time step u}) eddy diffusion term defined by either VMS-S, VMS-B or SMA
models, and the term with factor € denotes a penalty term, that permits to fix the constant
the pressure is determined up through the formulation, for a small positive value of € (e.g.,
e = 1071% in the numerical simulations). The boundary term is linearized as:

(G),va) = / W vy e[ )ds,

n

where the function e is given by ([5.14]). Moreover, the stabilizing terms are defined by:

Seono (W Vi) = > (T on(ay - Vait?), o7 (uf - Vvy,)),
KeTy,

Sores(F 0 an) = D (1 (VD) 53 (Van)),
KeTy,

where o; = Id. The choice 0} = o} gives raise to small oscillations, that could bring
to small numerical instabilities during the computation. Our choice limits the accuracy
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order of method (6.1)) to one, but in practice it provides accurate results. The stabilization
coefficients are given by the adapted Codina’s form (4.56)):

" n v+vy U\
k

where Up = ||[ul|[o2,x/|K|/?, and 7 = (Cshy)?Ux", with:
o U" = ||D(IT;up)||o2.r /| K|? for the VMS-S model;
o Up" = ||l D(ul)|o2.x /| K|*? for the VMS-B model;
o U" = ||D(u)|lo2x/|K|"? for the SMA model.

The value for the constants ¢; and ¢y are ¢; = 16 (as we will use quadratic elements),
and ¢; = /c1 (c¢f. [31]). For simplicity of implementation, we define the element size
hk = {”/m, for all K € T,. Problem is implemented on a FreeFem++ (cf. [48]) nu-
merical code, and the corresponding system is solved by a GMRES (Generalized Minimal
Residual) method (cf. [76]). The interested reader may consult the FreeFem++ numerical
code [24] used for the computations in Chacén and Lewandowski [26], where some hints
on the algorithm strategy are included in the form of comments.

Remark 6.1. The semi-implicit Crank-Nicolson scheme produces less numerical
diffusion with respect to a simple semi-implicit Euler scheme (cf. [21]), and thus it does
not tend to artificially increment the turbulent diffusion. Furthermore, it is less expensive
in terms of storage requirements with respect to two-step schemes (e.g., Adams-Bashfort
method), that could achieve a second-order accuracy in time. So that, the temporal dis-
cretization used provides a good compromise between accuracy and computational cost.
Also, it is crucial to discretize the convective term by an anti-symmetric form b(u},-,-)
to obtain a good stability in time. This ensures the conservation of the kinetic energy in
the absence of diffusive effects and source terms.

6.3 Test 1: 3D lid-driven cavity flow

The lid-driven cavity flow is one of the most studied problem in computational fluid dy-
namics, that exhibits one direction of inhomogeneity. It consists in computing the flow
induced in a cavity by an external flow, parallel to its lid. This flow presents the occur-
rence of some genuine 3D features, even at relatively low Reynolds numbers. One of the
most remarkable is the formation of Taylor-Gortler-like (TGL) vortices at the corners of
the cavity bottom, i.e. small counter-rotating vortices formed as a result of the curvature
of the streamlines due to the main vortex in the middle of the cavity (cf. [78]). Zang et
al. [89] report the numerical simulation of the 3D cavity flow by a LES model in a Finite
Volume Method (FVM), using the dynamic procedure of Germano et al. (c¢f. [40]). Based
on experimental experiences performed in Prasad and Koseff [74], they describe the flow
at Reynolds number 3200 to be essentially laminar, although an inherent unsteadiness
may occur. For Reynolds number 7500, a transitional stage is reached, since the flow
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becomes unstable near the downstream eddies at Reynolds numbers higher than about
6 000. With even higher Reynolds numbers at about 10000, the flow becomes fully turbu-
lent. Thus, laminar, transient, and turbulent regimes are covered by the choice of these
three cases.

The primary goal of the simulation of the 3D cavity flow is to obtain a bounded kinetic
energy as time increases, during the complete simulation time needed to reach a stable
equilibrium (c¢f. [68]). This may look a simple requirement, but some turbulence models
violate it. Indeed, Iliescu et al. |57] reported the numerical results obtained with three
subgrid-scale models: The Smagorinsky model, a traditional Taylor LES model of Clark et
al. 28], and two variants of a new rational LES model developed in Galdi and Layton [39).
It was shown that the Taylor LES model produces an energy blow-up in finite time.
The two rational LES models dis not cause an energy blow-up, but exhibited important
oscillations. The standard Smagorinsky model (with the Smagorinsky constant C's = 0.1)
turned out to be notably more diffusive, as expected. These results were obtained for a
Reynolds number of 10, using 8 x 8 x 8 elements with biquadratic velocity interpolation
and discontinuous bilinear pressure interpolation. These elements are known to fulfill the
standard inf-sup condition and, moreover, they are considered to be the most stable and
best performing elements for FE discretizations of the Navier-Stokes equations fulfilling
the inf-sup condition (see Fortin [37], Gresho and Sani [46]).

6.3.1 Setup for numerical simulations

We simulate the 3D cavity flow at Reynolds numbers (Re = 1/v) 3200, 7500, and 10 000,
following the works of Gravemeier [43] and Zang et al. [89]. In his PhD thesis [43], Grave-
meier analyzes (among others) the performances of two types of VMS models, based on
the Residual Free Bubbles (RFB) method, and the use of several nested meshes. These
are called two-level method (VMS-2L) and three-level method (VMS-3L), where the lat-
ter is the most similar to our scheme, as it includes three grid levels, and it takes into
account the effect of small un-resolved scales onto small resolved scales by a sub-grid
viscosity approach in Smagorinsky’s form. However, it is more complicated to implement
and requires an higher computational cost. The numerical results of these VMS models
are compared by Gravemeier with the ones of the Adjoint-Stabilized FEM (also called
USFEM, Uncommon-Stabilized FEM), and of the Smagorinsky model on a PSPG (Pres-
sure Stabilizing Petrov-Galerkin) FE discretization, and with the experimental results of
Prasad and Koseft |74].

Dirichlet boundary conditions are used: On the top boundary layer a unit horizontal
velocity is prescribed, while no-slip boundary conditions are set on the rest of the boun-
dary. We compare the solution provided by model with the different settings of the
eddy viscosity term specified in Section [6.2], where in all cases we use a static modeling
of the Smagorinsky constant Cg, by imposing Cs = 0.1 (see Iliescu et al. [57], Grave-
meier [43]), in order to avoid further complexity. Actually, in the VMS-3L method of
Gravemeier [43] also the possibility of dynamic modeling is investigated in the numerical
simulations for Reynolds numbers 3200 and 7 500.
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Figure 6.1:
3D lid-driven cavity flow mesh (refined top boundary layer).

The difficulty we face in the numerical simulations is to obtain a good accuracy with rela-
tively coarse basic discretizations (i.e., low computational cost), for all flow situations.
The computational grid consists of a uniform 16 x 16 x 16 partition of the unit cube,
where in addition we refine the grid-line corresponding to the top boundary layer (see
Figure , in order to handle large velocity gradients. This already provides a large im-
provement in the accuracy of the numerical results. On this mesh (26 112 tetrahedra), we
consider three-dimensional P2 FE for velocity and pressure. Actually, we are considering
less d.o.f. with respect to the VMS-3L numerical simulation of Gravemeier [43], as its
sub-mesh consists of a 3 x 3 x 3 isotropic subdivision of the coarse basic discretization
(16 x 16 x 16 trilinear hexahedral elements).

Following Gravemeier , we solve the 3D steady Navier-Stokes equations through an
evolution approach, by using the linearized Crank-Nicolson temporal scheme with
a time step At = 0.1. An impulsive start is performed, i.e. the initial condition is a
zero velocity field. A characteristic time scale T,,, is defined in Zang et al. to be
the estimated time for a fluid particle at the edge of the top boundary layer to turn and
travel back to its starting position in the cavity. This time scale is roughly estimated to
be about 10 time units for the current calculation. Initially, the simulation is run for five
time scales Tpq,, i.e. 50 time units or 500 time steps. Within this time period (cf. ),
the flow is expected to develop to full extent, including a subsequent relaxation time.
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Afterwards, statistics are collected for another five time scales T, .

6.3.2 Numerical results

All results are graphically compared to the experimental data of Prasad and Koseff [74],
and numerical results of Gravemeier [43]. The experimental data for the flow at Reynolds
number 7500 have only been evaluated for half of the cavity.

The temporal evolution of the total kinetic energy subject to:
n 1 n n
Erin(uy) = = [ up - uj dx,
2 Jo

for the three cases Re = 3200, Re = 7500, Re = 10000 is displayed on Figure [6.2] The
flows become roughly stationary at t ~ 57T,,, (i.e., at 50 time units about), as expected.
Method SMA, which is supposed to introduce the highest amount of numerical viscosity,
also exhibits the highest values of the total kinetic energy throughout the simulation, for
all three Reynolds numbers considered, which is physically reasonable. Indeed, it is well-
known that the higher the physical viscosity of the flow the larger is the zone of influence
of the prescribed velocity at the top boundary of the cavity. Both the VMS-S and the
VMS-B methods produce similar amount levels of numerical viscosity, with the VMS-B
method being slightly less viscous for every case under consideration. These results are
in good agreement with the ones obtained in Gravemeier [43]. In particular, our SMA
method is less diffusive than the Smagorinsky model (SM) of Gravemeier, discretized by
a Pressure Stabilizing Petrov-Galerkin (PSPG) FE method. The energy curves for the
VMS-S and VMS-B methods are located between the energy curves of the VMS-3L and
VMS-2L methods of Gravemeier, being this last one the method that introduces the least
numerical viscosity in the Gravemeier’s simulations, for every case under consideration.

The mean velocities (u;) and (ug) are computed as a discrete time average according to:
1
(u;)(x) = —= Z wi(x,t,), 1=1,3, N = # time steps = 1000.

Figure 6.3 shows the mean velocity (u;) on the centerline z = 0.5 of the longitudinal mid-
plane y = 0.5, for the various Reynolds numbers under consideration. Both the VMS-S
and the VMS-B methods show a good agreement with the experimental data of Prasad
and Koseff [74], even with the coarse basic discretization at hand, and compare well also
to the VMS-3L method [43], which is the method Gravemeier states working better in
its simulations. A similar accuracy is found for the mean velocity (us) on the centerline
x = 0.5 of the longitudinal mid-plane y = 0.5 (see Figure[6.4). The SMA model is the one
that presents the largest distance from the experimental curves. In Table 6.1, we perform
a quantitative comparison between our numerical results and the ones of the VMS-3L

method, by evaluating the deviation eé“”, eéu3> for the mean velocities profiles from the
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respective experimental data in a normalized discrete L?-norm subject to:

- =1 1/2
/ |((ur)n — (U1)eap)(0.5,0.5, 2)*dz
e , (6.2)
/ [(U1)exp(0.5,0.5, 2) [2dz
: z=1 - 1/2
/ |((uz)n — (U3)ewp) (z,0.5,0.5)|*dx
o = | == - (6.3)
/ |(u3) eap(,0.5,0.5)|*dx
- =0

We may observe that the errors due to the SMA method deteriorate as Re increases, while
the errors due to all VMS methods remain within the same levels, between 15% to 30%.

olun) olus)

Methods | Re = 3200 | Re —7500 | Re =10000 | Re = 3200 | Re 7500 | Re = 10000
| VMS-S [ 01497 | 01221 | 020692 [ 0218 [ 01710 | 0.2862 |
| VMS-B | 01676 | 01828 | 02230 | 02399 | 01566 | 0.2682 |
| SMA [ 01790 | 0.2627 | 04231 [ 02870 [ 0.2066 | 0.4147 |
| VMS-3L [ 02434 | 03529 | 02962 [ 06522 | 01428 | 02153 |

Table 6.1:

L?-norm of the deviation from the experimental profiles for the mean velocities.

Also, higher-order moments ("), with n > 1 and @ denoting the fluctuating part of
u, are achieved by collecting values in the sense of a discrete time average, which is an
appropriate procedure for stationary turbulence. In particular, we have considered the
variance (n = 2) for the first and third component of the velocity, that reads (a?) =
(u?) — (u;)?, with the standard deviation (root-mean-square, r.m.s.) defined as +/(a?)
(i = 1,3). Finally, the off-diagonal component (u;t3) = (ujus) — (u1)(us) of the Reynolds
stress tensor is depicted. As in Prasad and Koseff [74], the r.m.s. values and the off-
diagonal Reynolds stress component are multiplied by the amplification factors 10 and
500, respectively, in order to ensure a reasonable visual impression of these values within
the respective graphs. With respect to the experimental data, larger errors appear for
the r.m.s. values and the crossed component of the Reynolds stress tensor in particular.
These deviations are shown for Re = 10000 in Figures [6.5 and in Table [6.2] that
presents the normalized discrete L?-norm of the errors. Mispredictions of various peaks
of these curves may also be found in the numerical results of Zang et al. [89], achieved
with a four-times finer discretization in every coordinate direction. This underlines the
difficulty in predicting these sensitive measures.
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Figure 6.3:

(u1) on the vertical centerline (z = 0.5) of the mid-plane y = 0.5 for Re = 3200,
Re = 7500, Re = 10000.
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Figure 6.4:

(uz) on the horizontal centerline (z = 0.5) of the mid-plane y = 0.5 for Re = 3200,

Re = 7500, Re = 10000.
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Figure 6.5:
V(a?) and +/(u2) on the centerlines of the mid-plane y = 0.5 for Re = 10 000.
(factor 10)
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Re = 10000
a2 3 f11s) (2 a11s)(z
Methods | e, ) A (5 eé 3)(2) eé 3)(@)
VMS-S ‘ 0.3256 | 0.4046 | 0.9251 0.8836
VMS-B ‘ 0.3426 | 0.4696 | 0.6856 0.8971

| | | | |
; SMA \0.242410.5109} 0.6195 } 1.1532 }
| VMS-3L | 0.7808 | 0.6975 | 2.3415 | |

Table 6.2:
L?-norm of the deviation for the r.m.s. and the crossed component of the Reynolds
stress tensor.

Qualitatively, we have observed that the flow exhibits effectively the formation of three-
dimensional TGL corner vortices at the cavity end walls, that interact with the primary
circulation vortex, thus influencing the distribution of momentum within the entire cavity
(see Figure [6.7). In the case Re = 3200, in accordance to Prasad and Koseff [74], it is
possible to discern these vortices as organized structures, while for higher Re, increa-
sing turbulent effects cause the breakdown of these organized structures, resulting in a
“weaker” flow when compared with the pure two-dimensional flow (see, for example, the
numerical simulations of Ghia et al. [41]), in which it is not possible to discern at all the
presence of TGL vortices. This suggests that the high-frequency turbulent fluctuations
become dominant, and they partially destroy the integrity (or coherence) of the TGL
vortices.

6.3.3 Conclusions

As a conclusion, in the case of the 3D cavity flow, both VMS-S and VMS-B methods
act in general like a RFB-based VMS method with three grid levels (VMS-3L of Grave-
meier [43]), with errors levels similar, or even smaller in some cases. Actually, both VMS-S
and VMS-B methods are methods with three grid levels: Resolved large scales, resolved
small scales and un-resolved small scales, whose action on the resolved small scales is
modeled through the sub-grid eddy turbulence projection term.

From the computational point of view, the use of RFB-based VMS methods is quite
involved. Several simplifying assumptions and modeling procedures are needed, but the
more questionable point is the usefulness of the computed resolved small scales, because of
the dominating influence of the viscosity model in the numerical solution of these equations
on very coarse local grids (cf. [62]). To sum up, REB-based VMS methods seem to need
further improvement to be efficiently used, while the projection-based VMS-S method
seems to be more promising in terms of accuracy, with reduced modeling issues, and also
easier from the computational point of view.
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Figure 6.7:
Flow streamlines at Re = 3200 (top) and Re = 7500 (bottom); results for VMS-S
method.
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6.4 Test 2: 3D turbulent channel flow

The 3D channel flow is one of the most popular test problems for the investigation of
wall bounded turbulent flows. It was pioneered as a LES test problem by Moin and
Kim (¢f. [69]), and more recently has been extensively used to test several versions of
LES models. Let us mention, for instance, the simulation carried out by Iliescu and
Fischer [56] using a Rational LES (RLES) model, in the context of a spectral element
code. A number of numerical studies on turbulent channel flow has also been performed
applying VMS methods. Among others, Bazilevs et al. [2] tested a Residual-based VMS
(RB-VMS) turbulence model on a channel flow, employing linear, quadratic and cubic
NURBS (Non-Uniform Rational B-Splines), while John and Kindl [62] compared the
performances of two types of VMS methods, where one uses bubble functions to model
resolved small scales (RFB-based method), whereas the other one contains the definition
of the resolved small scales by an explicit projection in its set of equations (Projection-
based method). For the setup of our numerical simulations, we choose to follow the
guidelines given by Gravemeier in [45], where different scale-separating operators for a
VMS-LES of a turbulent channel flow in the context of a FV method are tested. As a
benchmark, we will use the fine Direct Numerical Simulations (DNS) of Moser, Kim and
Mansour [70].

6.4.1 Setup for numerical simulations

The simulations concern a fully developed 3D turbulent channel flow at Re, = 180. We
test model (4.46) with the different settings of the eddy viscosity term specified in Section
6.2

We use a setup similar to the one of Gravemeier [45]. The computational domain (see
Figure[6.8)) is @ = (0, L1) x (=4, 6.) x (0, L), with §, = 1 (wall-normal direction), L; = 2
(stream-wise direction), and L3 = (4/3)7 (span-wise direction). The boundary conditions
are periodic in both the stream-wise and span-wise directions, commonly referred to as
homogeneous directions. We perform a comparison between the application of no-slip
and wall-law boundary conditions at the walls. The viscosity is v = 1/180 = 5.5 x 1073.
The turbulent wall-shear velocity u, = /7, where 7 denotes the wall-shear stress, and
the channel half-width . define the Reynolds number:

besides the kinematic viscosity v. The Reynolds number based on a unit friction velocity
reachable at a steady state is Re, = 180.

Our strategy is as follows: to reach a statistically steady state, we use an evolution
approach starting by an initial parabolic velocity profile perturbed by a random velocity
fluctuation. We first run a simulation with no-slip boundary conditions at the walls, in
order to stabilize u, near a unitary value. Random velocity fluctuations of 10%-amplitude



6.4. Test 2: 3D turbulent channel flow 171

Xy
/—- I]

8

‘ X3 —— = flow direction
L: -

8, .

3
1[. 1L
L,
Figure 6.8:

Sketch of channel geometry [From Gravemeier [45]].

of the bulk mean stream-wise velocity perturb the initial condition for the velocity field:

U1 (yat = 0) = ul,c(l - 92) + O'lul,mwrana
’U,Q(y,t = 0) = Olul,mwrana
uz(y,t =0) = 0.1ugm®ran,

where u; . denotes the stream-wise velocity at the centerline of the channel, u; ,, the bulk
mean stream-wise velocity, and 9,4, € [—1,1] a random number. We choose u; . = 25,

c

and hence uy ,, = / uy (1 —y*)dy = 2uy /3 = 16.7. So, the corresponding Reynolds
0
number based on the bulk mean stream-wise velocity (Re, = u1,2d./v, see |63]) is

Re,, = 6012. The flow is driven by a constant forcing f = (f,,0,0) = (1,0,0), that mod-
els an imposed pressure gradient in the stream-wise direction. The specific choice of a unit
value for f, aims at obtaining a unit value for u, in the statistically steady state, subject
to the relation u, = /f,0. (¢f. [35]). We choose to work with Van Driest damping [83],
so that the Smagorinsky constant is changed to the expression Cg(1 — exp(—y*/A™)),
where C's = 0.1 according to the original choice in [34], y* = (. — |y|)u, /v is the non-
dimensional distance from the wall, and AT = 26 is the Van Driest constant.

The difficulty we face in the numerical simulations is to obtain a good accuracy with
a relatively coarse spatial resolution. Our grid consists of a 16% partition of the channel,
uniform in the homogeneous directions. The distribution of nodes in the wall-normal
direction is non-uniform, and obeys the cosine function of Gauss-Lobatto:

yi:—cos<;\[—ﬁ), 1=0,...,N, = 16.

Y
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We use three-dimensional P2 FE for velocity and pressure. These choices give rise to 4 096
mesh cells (i.e., 24576 tetrahedra), 33792 d.o.f. for each scalar variable, and a distance
of the d.o.f. next to the walls y. = 1.7293. In Gravemeier [45], a VMS-Smagorinsky
model, based on projection/averaging operators and the use of two nested meshes, is used
in a FV method with 32 control volumes in all coordinate directions for Reynolds number
Re,. = 180. A simulation equivalent in number of d.o.f. to our discretization for a turbu-
lent channel flow at Re, = 180 has been carried out by Akkerman in his PhD thesis [1],
by using a RB-VMS turbulence model. Indeed, his coarsest computation consists on Q)1
FE applied on a 323 partition of the computational domain, that results in a number of
d.o.f. equivalent to our value, obtained by using P2 FE on a 162 partition of the channel.
Note that the data from the fine DNS of Moser, Kim and Mansour [70] are obtained by
a subdivision of the channel of 1283,

We use the semi-implicit Crank-Nicolson scheme for the temporal discretization.
The discretized scheme is first integrated for 1250 time steps, with At = 0.004. This
time step is smaller than the Kolmogorov time scale, and it fits into the range proposed
in [27] to ensure numerical stability. Within this time period, the flow is expected to
develop to full extent, including a subsequent relaxation time.

Afterwards, we further integrate in parallel the scheme either with no-slip boun-
dary conditions and wall-law boundary conditions, within another 1250 time steps, in
order to collect statistics and perform a comparison. We choose to show the application
of wall-law boundary conditions only to VMS-S method as it is the model that gives
the most promising results. We consider the logarithmic wall-law of Prandtl and Von
Kéarman , where we fix y* = 11.5, and we use a uniform mesh with 12 grid-lines
in wall-normal direction, neglecting the use of Van Driest damping too. This permits
to avoid the quite costly calculation of the flow near the walls, reducing the number
of d.o.f. to 25600 for each scalar variable, with a saving in computing time of about
34% compared with the use of no-slip boundary conditions. Note that before the flow
becomes (quasi-)stationary, the value of u, changes a lot in time (see Figure , and
this implies a dynamic development of the boundary layer thickness, due to the definition
of y™. This requires a dynamic adaptation in the use of wall laws. Here, we choose a
simpler procedure, letting the flow develop until reaching a stable configuration before
applying wall laws in a static way. Actually, there exist flows for which the modeling of
the boundary layer turbulence by means of wall laws yields good and accurate results
near the solid walls without needing further adaptations. This is the case, for instance, of
the backward step flow (cf. [22]), since this flow recirculates and then the boundary layer
thickness is approximately constant.

6.4.2 Numerical results

Figure displays the temporal evolution of the H', L? and L* norms of the velocity
field during the simulation. We observe that we effectively reach a statistically stable equi-
librium already at half of simulation. In Figure we consider the temporal evolution
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Time evolution of the H', L? and L*™ norms of the velocity field.
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of the normalized mean wall-shear stress:

where (-) indicates in this case averaging over the homogeneous directions. We note that
the curves are almost symmetric with respect to the centerline of the channel. More-
over, when a (quasi-)steady state is reached (at half of simulation), the mean quantities
oscillates (in modulus) around 180, as indicated by the temporal averaged (from ¢ = 5
to t = 10) values shown in Figure m These values have been used to compute for all
methods the actual value of u.,, subject to:

1/2
N-1
v 1 O uy), INuy) , L _
Uy, = I N2 Z ( o (—1;t,) a—y(—i—l,tn) , N = # time steps = 1250.
n=N/2

The simulated friction velocity u, (computed as the average of the computed friction ve-
locities at both walls) is reported in Table together with the corresponding computed
Re, for all methods. We note that the friction velocity u, is within 0.2%-4.1% of the
nominal value u, = 1, and, as a result, so is the actual Re..

Hereafter, we denote by () the mean values and by ~ the respective fluctuations, where
mean values are obtained averaging over all time steps of the statistical period as well as
over the homogeneous directions. In Figure |6.11] we show the mean stream-wise velocity
profile (u;) (first-order statistic), normalized by the computed wu,, in wall coordinates y™.
As usual, only half of the channel width is illustrated (i.e., the upper half-width here,
ranging from y = 0 to y = 1). According to the definition of the wall coordinate y*, the
upper wall is located at y* = 0 and the channel center at y* = u, /v = 180.

In particular, the displayed mean stream-wise velocity profiles are obtained by using
both no-slip boundary conditions (for all methods) and wall-law boundary conditions (for
VMS-S method), and a comparison is performed with DNS data [70] and the numerical
results of Akkerman [1]. Note that the DNS data so as the RB-VMS results of Akkerman
are obtained by the standard approach that uses no-slip boundary conditions at the
walls. Actually, the grid resolution seems to be too coarse to reproduce exactly the DNS
profile, so that in any case we have an over-estimation of the DNS data. Anyway, the
results show an acceptable agreement with the fine DNS, even with the very coarse basic
discretization at hand (8 times coarser than the DNS one). The profile obtained with the
wall-law boundary conditions starting from y™ = 11.5 is simply extended linearly up to
the wall located at y* = 0. We are entitled to do so, because in this case the leading
component of the velocity is the stream-wise velocity, so that we can “identify” the friction

non-dimensional velocity u™, defined in (4.7)), by (u1)/u,. We display in Table [6.4] (first
column) the deviation eéu1> for the mean stream-wise velocity profile from the respective



6.4. Test 2: 3D turbulent channel flow 175

250
200
150
100

250
200
150
100

250
200
150

100

Ret= 180
I SN - VMS-S
4 s Pad \‘~
i 1 TESe=mT ~--_~-—‘---t
7
L / 7
‘I
-
i -=-=-y=-1(Average: 177.5198)
----- y = + 1 (Average: - 174.3808)
= ~e
- \‘ a
i \
\ -—ame !PT I -~ a’_-A
N - Semim T T =
L \ "f N
! /YM*'*"’ ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10
- | l) ‘-_\Y - Y Y Y Y Y VMS_B
’ -"'\_- -, - —— b
L 7 B N
1
p=="
i - - -y =-1(Average: 168.3430)
----- y = + 1 (Average: — 163.0491)
- ‘\‘\ —
i \ . ]
KN - - = —-‘-.—~_~_‘-‘~
L Y PR i
! \‘\“<", ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10
T T ’,T "'\\*\ T T T T SMA
B Vs \~__—--_——_~-_______-——-
’
- I a
4
L P24 1
i - - -y = -1 (Average: 179.7976)
R RE T y =+ 1 (Average: - 178.5812)
i "‘x,’\, i
~
- ‘\ _“.— ] ~ a
\f\ o= S Timiem
1 2 3 4 5 6 7 8 9 10
Time Units
Figure 6.10:
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DNS data in a normalized discrete L2-norm subject to:

/y+180
olur) _ y+t=0

1/2

— (u)psl* dy”

0 - yT=180 (64)
[ Hubasl dy*
yT=0
We can observe as all methods gives similar errors levels between 10% and 20%.
Nominal Re, = 180
Methods | Computed u, | Computed Re,

| VMS-S | 177.966 |

| VMS-B | 172692 |

| SMA | 179.586 |

Table 6.3:
Computed u, and Re,.
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Figure 6.11:

Normalized mean stream-wise velocity profiles in wall coordinates y™.

To investigate more in detail statistical properties of this wall-bounded turbulence test,
we plot second-order statistics as measure of turbulence intensities, by using either no-
slip (for all methods) and wall-law (for VMS-S method) boundary conditions. Figure -
displays the normalized (by the computed wu,) r.m.s. values of velocity fluctuations /(a?)
(i =1,2,3) in wall coordinates y™ at the upper half-width of the channel. If we compare
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Methods ) (y+ € 10,180]) | e ™ (y* € [30,180], inertial layer)
VMS-S (NO-SLIP BC) 0.1141 0.2320
VMS-S (WALL-LAW BC) 0.1734 0.2004

| | | |
; VMS B (NO-SLIP BC) } 0.1756 } 0.3341 }
| | | |
| | | |

SMA (NO-SLIP BC) 0.1260 0.3123
RB-VMS (Akkerman) 0.2221 0.6104
Table 6.4:

L?-norm of the deviation from the DNS profiles for the stream-wise velocity.

with DNS data the various methods tested with no-slip boundary conditions, we can see
slight differences for the curves associated to wall-normal and span-wise velocities, while
the curve related to stream-wise velocity shows a noticeable over-prediction. We can also
observe as for the r.m.s. values, the results obtained by the application of wall laws are
only meaningful for the stream-wise component of the velocity, that is the leading one.
Note that in this case the related curve starts at y™ = 11.5, since the computational
domain starts at y© = 11.5, and no extension is possible, as for the mean stream-wise
velocity. However, a comparison with the other curves is possible starting from y* = 30,
i.e. in the so-called inertial layer, as we could physically expect. Indeed, the inertial
layer is where the logarithmic approximation of the friction-velocity u" is more accurate
(see Figure [6.11)). Actually, the best approximation of the r.m.s. stream-wise velocity
fluctuation in the inertial layer is effectively given by the use of wall-laws, as shown
quantitatively in Table (second column), where the normalized discrete L?-norm of the
deviation from the DNS profile is computed, analogously to formula . Nevertheless,
the results for the other “minor” velocity components are not acceptable compared with
the DNS data at hand. In particular, this is true for the wall-normal component of the
velocity, as in this case the model itself contemplates the imposition of a null wall-normal
velocity at the fictitious boundary of the resulting “reduced” computational domain (see
the boundary condition u-n =0on ', in, that is not expected by the use of standard
no-slip boundary conditions.

This consideration obviously influences also the behavior of the Reynolds shear stress
R, , = (@Uz2), where the wall-normal velocity trivially interferes. The Reynolds shear
stress is plotted in Figure in global coordinates y, and normalized by the computed
friction velocity squared u?. Anyway, qualitatively we can observe that for all methods
the Reynolds shear stress is antisymmetric, almost vanishes at the center of the channel
(y = 0), and presents a linear trend. This also indicates that a statistically steady state
is already reached (cf. [63]). If we compare with the DNS results of Moser et al. [70], the
curves related to the use of no-slip boundary conditions at the walls are quite close.
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Normalized r.m.s. velocity fluctuations profiles in wall coordinates y*.
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Figure 6.13:
Normalized Reynolds shear stress in global coordinates y.

Table provides a quantitative picture for errors levels related to second-order statistics
when the standard no-slip boundary conditions at the physical walls are incorporated in
the various methods. Again, the VMS-S method is in general more in agreement with the
DNS data.

ﬁ2 ﬁ2 ,a? G
Methods e (a3) e (t3) e (a3) 6(<] 1U2)

| VMS-S (NO-SLIP BC) [ 0.2252 | 0.1652 | 0.1108 | 0.1249 |
| VMS-B (NO-SLIP BC) | 0.3002 | 0.2018 | 0.1246 [ 0.1162 |
| SMA (NO-SLIP BC) |0.2881 | 0.2236 | 0.1597 | 0.1706 |
| RB-VMS (Akkerman) [ 0.5694 | 0.1753 | 0.1331 | - |

Table 6.5:
L?-norm of the deviation from the DNS profiles for the second-order statistics.

We highlight also some considerations on the computational cost corresponding to the
various methods. The computing times related to the statistical period from ¢ = 5 to
t = 10 time units (1250 time steps) for all methods are given in Table [6.6f These are
referred to the sequential execution of the numerical code on a MacPro with a Quad-Core
Intel Xeon processor of 2.8 GHz and 10 GB of RAM. It can be seen that effectively the
use of wall laws provides a significant reduction of the computing time, of about 34%,
while the CPU time of both VMS approaches is comparable with the one of the standard
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Smagorinsky approach, that saves at most a 4% of computing time.

’ Methods \ CPU time ‘
| VMS-S (NO-SLIP BC) | 398207 (134) |
| VMS-S (WALL-LAW BC) | 297524 (100) |
| VMS-B (NO-SLIP BC) | 401128 (135) |
| SMA (NO-SLIP BC) [ 389260 (131) |

Table 6.6:
Computing times (in seconds); in parentheses: percentage to computing time with
VMS-S (WALL-LAW BC).

6.4.3 Conclusions

Summarizing, on one hand we can state that the application of wall-law boundary con-
ditions in this test could provide (at least for the leading stream-wise component of the
velocity) similar results to those obtained by the standard approach based on the use of
no-slip boundary conditions, a refined mesh towards the walls and the Van Driest dam-
ping improvement, with a noticeable reduced computational cost. On another hand, this
preliminary study permits to assert that the VMS-S method gives for this test quite good
results for both first and second-order statistics, in the worst condition of a very coarse
basic discretization.

The results obtained in this section are quite promising as starting point for further im-
provements. Especially, the comparison with the numerical results of Akkerman [1] shows
that the VMS-S method presents errors similar, or even smaller, than those of a RB-based
method. The use of finer discretizations and the investigation of higher Reynolds numbers
for this test need to be analyzed in order to draw more definitive conclusions. These issues
are subject of a forthcoming paper [23], aimed at obtaining a more relevant benchmark
for future works on the 3D turbulent channel flow.

In my opinion, the strength of the VMS-S method relies on the fact that it is not a
simply projection-based VMS method, but a combination of (high-order term-by-term)
stabilization and (projection) VMS-LES modeling. Similarly, the RB-VMS method of
Akkerman [1] is a combination of (unusual) stabilization and (residual-based) VMS-LES
modeling. The additional advantage introduced by the RB-VMS method is to keep all
inertial (also convective) interactions between large and small scales, and to automatically
insert also a stabilization of the divergence. In the VMS-S method, the stabilization of
the divergence is not present. Actually, as we are applying a term-by-term stabilization,
it could be considered by simply adding the corresponding (high-order) term. However,
the divergence of the velocity is monitored and remains less than 1072 throughout the
simulation, thus the fulfillment of the continuity equation is approximately achieved in
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the discrete case in a stable way. So that, it seems that the most relevant interactions be-
tween large and small scales are taken into account in the VMS-S method by the classical
Galerkin term and the sub-grid eddy diffusion term, as well as the stabilization terms for
the convection and the pressure gradient, which could lead to the higher instabilities, are
already considered. This fact probably explains the achievement of similar error levels,
that are not reachable without the aid of the stabilization procedure.

Nevertheless, Akkerman [1| shows that a Q2 FE discretization gives a marked im-
provement over the Q1 FE discretization. Also, increasing the continuity of the basis
functions (e.g., C* quadratic NURBS) results in a further improvement of the results,
as found in Bazilevs et al. [2] too. Effectively, a step in which we are working on is the
efficient parallelization of the numerical code, by domain decomposition techniques and
GMRES-like parallel iterative solvers. The aim is to reduce the computational cost when
using the code on a double-refined mesh in each direction, at least. This should be suf-
ficient to hopefully approach in reasonable CPU times the results pointed out in [1], [2]
for at least second-order discretizations. Admittedly, these results are really impressive,
as they reproduce with an excellent accuracy first and second-order statistics.

We have also to remark that the structure of RB-VMS methods is quite complex
(cf- |1], |2]), and requires a large programming effort. Instead, projection-based VMS
methods are highly simpler to work out, so that the proposed VMS-S method seems to
provide a good compromise between accuracy and computational complexity, which is an
important feature in the context of its practical performances, especially in view of its
use in engineering and other applications.
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