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Abstract

Classical results about the Lusternik-Schnirelmann category of product
spaces have their analogues in the category of proper maps. By comparing
the proper Lusternik-Schnirelmann category of an open manifold X with the
smallest number of closed half-spaces needed to cover X, we obtain a proper
analogue of Singhof’s theorem on the category of X × S1.

Introduction

The Lusternik-Schnirelmann category (L-S category) cat(X) of a space X is the
smallest number k such that there exists an open cover {X1, . . .Xk} for which each
inclusion Xj ⊆ X is nullhomotopic in X. The L-S category turns to be a homotopy
invariant of the space X. See [9] for a survey on L-S category.

Ordinary homotopy invariants do not take care of the behaviour of spaces at
infinity. So, “proper” homotopy invariants are needed for the study of non-compact
spaces. Proper analogues of Lusternik-Schnirelmann numerical invariants were in-
troduced in [2] and [3].

The crucial point in the definition of the proper L-S category is the fact that
the half-line [0,∞) plays in proper homotopy part of the role played by the point
in ordinary homotopy. The parallelism between both roles breaks down on the
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fibration-side of homotopy theory since product and fibration projections are not
always proper maps. However, the class of proper maps still keeps the basic prop-
erties on the cofibration-side of homotopy theory which lead to a “combinatorial”
homotopy in the sense of J.H.C. Whitehead [19]; see [1].

This paper continues the study of the proper L-S category of non-compact spaces.
Here, we focus our interest on the behaviour of the proper L-S category on product
spaces. More explicitly we work out the proper L-S category of spaces of the form
W × Sk and M ×R

k with W and M open and closed manifolds respectively. These
results can be regarded as proper analogues of a theorem due to Singhof [17] in
relation with a classical question posed by Ganea; see Remark 3.9.

In this paper we follow closely the combinatorial proof of Singhof’s theorem given
by Montejano [12] since proper collapses [16] and a suitable Engulfing Theorem for
open manifolds [10] are available; see Appendix A for details. This way we can
compare the proper L-S category of an open manifold X with the smallest number
of properly embedded half-spaces needed to cover X.

Several new improvements of Singhof’s theorem have recently appeared in the
literature; see [14] and [18]. However, these results depend heavily on the study of
sections of certain fibrations. Since the category of proper maps provides an example
of homotopy theory with good properties only on the cofibration-side, it seems to
be interesting to look for alternative proofs of those results in the cofibration realm
of homotopy theory.

We shall deal with the category P of locally compact σ-compact Hausdorff spaces
and proper maps. Recall that a proper map (p-map) is a continuous map f : X → Y
such that f−1(K) is compact for each compact subset K ⊆ Y .

All maps and homotopies are assumed to be proper unless stated otherwise. We
use the symbol ' for proper homotopy and P/ ' stands for the corresponding
homotopy category. Furthermore, the symbol R+ denotes the half-line [0,∞) and
more generally R

n
+ denotes the upper n-dimensional half-space {(x1, x2, . . . , xn) ∈

R
n; xn ≥ 0}.

1 Proper L-S category

This section contains some technical observations about the notion of proper L-S
category which will be used later. Recall that, given a space X in P, a system of
∞-neighbourhoods of X is a decreasing sequence {Wj} of subsets of X such that
the closures Kj = X −Wj form an increasing sequence of compact subsets with
Kj ⊆ intKj+1 and X = ∪intKj .

Remark 1.1. Given a locally finite sequence of pairwise disjoint compact subsets
Ci ⊆ X (i ≥ 1), it is possible to choose the compact sets Kj above satisfying

Ci ∩ Fr Kj = ∅ for all i, j ≥ 1. For this we consider the compact set L̂1 =
K1 ∪ (∪{Ci; Ci ∩ K1 6= ∅}). By using the normality of X we find a compact set
L1 ⊆ X with L̂1 ⊆ int L1 and L1 ∩ Ci = ∅ whenever Ci ∩ K1 = ∅. Hence Ci ∩
Fr L1 = ∅ for all i ≥ 1. Then we pick n1 such that L1 ⊆ int Kn1

and we set
L̂2 = Kn1

∪ (∪{Ci; Ci ∩ Kn1
6= ∅}). Similarly we find a compact set L2 ⊆ X with

L̂2 ⊆ int L2 and Ci ∩ Fr L2 = ∅ for all i ≥ 1. We proceed inductively to obtain an
increasing sequence of compact sets Lj ⊆ int Lj+1 with the required properties.
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In the category P the constant map X → {p} is not defined if X is not compact.
Notwithstanding, the role of the point is played partially in P by the half-line R+

since for any space X in P there always exists a proper map r : X → R+. Moreover
the map r is unique up to p-homotopy. We shall briefly describe the construction of
such a map r. If {Uj}j≥0 is a system of ∞-neighbourhoods of X with U0 = X, the
Tietze Extension Theorem yields continuous maps rj = Uj − Uj+1 → [j, j + 1] with
rj(FrUj+1) = j + 1, rj(FrUj) = j. It is now clear that the maps rj define a proper
map r : X → R+.

Definition 1.2. A proper map r : R+ → X is called a ray in X. Moreover a proper
map f : X → Y is properly inessential if there exists a commutative diagram in
P/ '

X
�

�
��*

Y
?

∗

H
H

HHj

α

f

β

(1)

where ∗ is either R+ or the one-point space {p}. Notice that ∗ = {p} only if X is
compact.

Given a space X in P a closed subset A ⊆ X is called inessential if the inclusion
i : A → X is an inessential map. A set A ⊆ X is called properly categorical if
A ⊆ U with U an open set in X and the closure Ū is inessential. Moreover an open
cover {Uα} of X is said to be properly categorical if each Ūα is an inessential set.
The proper Lusternik-Schnirelmann category of X, p− cat(X), is the least number
n such that X admits a properly categorical open cover V = {U1, U2, . . . , Un} with
n elements. In case X is compact p− cat(X) = cat(X) is the ordinary L-S category
of X.

Remark 1.3. As in ordinary homotopy theory closed covers can also be used to
define the proper L-S category of ANR-spaces. Furthermore for polyhedra in P one
can use covers consisting of subpolyhedra in the definition of proper L-S category;
see [2] and [3] for details.

A Freudenthal end of a space X in P is an element of the inverse limit F(X) =
lim
←−

U(Wj). Here {Wj} is a system of ∞-neighbourhoods of X and U(−) stands

for the family of unbounded connected components. A subset A ⊆ X is termed
unbounded if its closure Ā is non-compact. If F(X) = {∗} then X is said to be
one-ended.

Remark 1.4. Notice that a properly categorical set A ⊆ X cannot contain se-
quences of points defining two different Freudenthal ends. Indeed, it is immediate
to check that any ray r : R+ → X defines a unique Freudenthal end. As a conse-
quence, for any system of∞-neighbourhoods {Wj}j≥1 of X, there exists j0 such that
for each j ≥ j0 there is at most one component Uj ∈ U(Wj) with A∩Wj 6= ∅; more-
over these components form a nested sequence Uj0+1 ⊇ Uj0+2 ⊇ . . . which defines a
unique Freudenthal end of X.
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Example 1.5. A lower bound for the proper L-S category of spaces with cylindrical
ends can be easily obtained as follows. Let X be a space in P with m cylindrical
ends; that is, there exists a relatively compact open set A ⊆ X such that X−A has
m unbounded components Wj (1 ≤ j ≤ m) homeomorphic to cylinders Zj × [0,∞)
where each Zj is compact. Then the inequality

p− cat(X) ≥ k =
m∑

j=1

cat(Zj)

holds. Indeed, given a properly categorical open cover {Us}1≤s≤n of X, by Remark
1.4, there is a compact subset B ⊆ X such that A ⊆ B, and each non-empty
difference Us − B is contained in exactly one component of X − B. Therefore, if
n ≤ k− 1 then at least one component Ωj0 ⊆ X−B is covered by less than cat(Zj0)
differences Usi

−B (1 ≤ i ≤ q < cat(Zj0)). Moreover, we can assume without loss of
generality that Ωj0 is of the form Zj0 × [t0,∞). As each Usi

is properly categorical
there exists t ≥ t0 such that the deformation of Usi

− (Zj0 × [t,∞)) occurs inside
Ωj0 . From this fact, we easily derive that the intersections Usi

∩ (Zj0 × {t + 1})
(1 ≤ i ≤ q < cat(Zj0)) provide an ordinary categorical cover of Zj0 × {t + 1} which
is a contradiction.

The proper homotopy class of the map β in diagram (1) is unique. However for
∗ = R+ the proper homotopy class of the map α in diagram (1) depends on the set
of proper homotopy classes [R+, Y ]. Each class [α] ∈ [R+, Y ] is called a strong end of
Y . When [R+, Y ] consists of only one element we say that Y is strongly one-ended.
Clearly each strong end defines a Freudenthal end. More precisely there exists an
onto map [R+, Y ] → F(Y ).

It is obvious that for strongly one-ended spaces all rays αi can be chosen to be
the same. Next proposition shows that the same holds for one-ended polyhedra.

Proposition 1.6. Let X be a connected one-ended polyhedron in P with p−cat(X) =
n. Then there exists a properly categorical (polyhedral) cover {V1, V2, . . . , Vn} of X
such that in the diagrams

Vi
�

�
��*

X
?

R+

H
H

HHj

αi

ki

r

(2)

all rays αi (i ≤ n) define the same strong end.

Proof. Let {U1, U2, . . . , Un} be a properly categorical cover of X consisting of
subpolyhedra; see Remark 1.3. Moreover, it is well known that any ray α : R+ → X
is properly homotopic to a ray embedded in the 1-skeleton of X.

In case all connected components of some Ui are compact, we next show that αi in
diagram (2) can be chosen to be arbitrary. Indeed, since all components C ⊆ Ui are
compact, one readily checks that there is a proper deformation H which contracts
each C to a point in X. Furthermore, by using the proper homotopy extension
property we can replace H by a new proper deformation H ′ which shrinks each C
to a point xC ∈ C relative xC . Finally, given any ray R ⊆ X, we use that X is
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one-ended to move each point xC to some point yC ∈ R via a proper homotopy
{xC} × I → X.

By using the previous arguments, we can assume without loss of generality that
some element of the cover {U1, U2, . . . , Un} has at least one unbounded component.
Let U1 be such an element. We assume inductively that Ui can be properly deformed
to a ray R ⊆ X for i ≤ k. Now we consider Uk+1. By the arguments above we can
assume that Uk+1 is not compact. Moreover we can also assume that U1 ∩Uk+1 6= ∅
is non-compact as well; otherwise we use the fact that X is one-ended to join U1 to
Uk+1 with a locally finite sequence of pairwise disjoint arcs which we add to U1. In
addition, if the intersection U1∩Uk+1 contains a ray R′ then the proper deformation
of U1 to R yields that both rays R and R′ represent the same strong end of X, and
so Uk+1 can be properly deformed to the ray R.

It only remains to consider the case when U1 ∩ Uk+1 consists of a locally finite
sequence {K1, K2, . . . } of compact components. In such a case one finds two pairwise
disjoint families {A1, A2, . . . } and {B1, B2, . . . } of compact subpolyhedra1 of Uk+1

with Uk+1 = (∪∞i=1Ai) ∪ (∪∞t=1Bt) and Ki ⊆ intUk+1
Ai for i ≥ 1. Also one chooses a

pairwise disjoint sequence {L1, L2, . . . } of compact subpolyhedra of U1 with Ki ⊆
intU1

Li for all i ≥ 1. Finally we take a locally finite sequence of pairwise disjoint
arcs γi ⊆ U1 joining Ki to Z = U1 − ∪∞i=1Li with intγi ⊆ intU1

Li. Then we replace
U1 and Uk+1 by

Ũ1 = (∪∞i=1Ai) ∪ Z ∪ (∪∞j=1γj) and Ũk+1 = (∪∞t=1Bt) ∪ (∪∞j=1Lj)

respectively. Now by the arguments above, we can assume in addition that the
disjoint union ∪∞s=1As is properly deformed to the discrete set D = ∪∞j=1(γj ∩ Kj)

relative to D. From this one easily shows that Ũ1 can be properly deformed to the
ray R. The set Ũk+1 is a locally finite disjoint union of compact subpolyhedra, and
so it can be properly deformed to the ray R as well. Since U1 ∪Uk+1 = Ũ1∪ Ũk+1 we
can replace the cover {U1, U1, . . . , Un} by {Ũ1, U2, . . . , Uk, Ũk+1, Uk+2, . . . , Un}. After
a finite number of steps we get a properly categorical (polyhedral) cover of X such
that all elements in it can be properly deformed to the ray R.

2 Proper L-S category of product spaces

For ordinary L-S category the following formula is well known for product spaces;
see [5]

max{cat(X), cat(Y )} ≤ cat(X × Y ) ≤ cat(X) + cat(Y )− 1 (∗)

In this section we study the proper analogue for this formula. Recall that the proper
L-S category p − cat(−) is a proper homotopy invariant; in fact if f : X → Y and
g : Y → X are proper maps with gf ' idX one has p − cat(X) ≤ p − cat(Y ). In
particular, if Y is compact the projection p1 : X × Y → X yields

1One finds these families as follows. Let {Lj} be an increasing sequence of compact subpolyhe-
dra in Uk+1 with Ki ∩Fr Lj = ∅ for i, j ≥ 1; see Remark 1.1. Then we pick n1 < n2 < . . . and we
choose any locally finite family of pairwise disjoint compact subpolyhedra Ai with Ki ⊆ intUk+1

Ai

for i 6= nj and Knj
∪ Fr Lj ⊆ intUk+1

Anj
for all j ≥ 1. It is immediate to check that the closure

Uk+1 − ∪∞i=1
Ai = ∪∞t=1Bt is a locally finite union of pairwise disjoint compact subpolyhedra.
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p− cat(X) ≤ p− cat(X × Y ) (3)

However, Example 3.10 below shows that inequality (3) does not hold if Y is not
compact.

Concerning the right-hand side inequality in (*) we can prove the following propo-
sition; compare [5]

Proposition 2.1. Let X and Y be two connected polyhedra in P. Assume X has at
most one end in case Y is compact. Then p−cat(X×Y ) ≤ p−cat(X)+p−cat(Y )−1.

Proof. Assume X and Y are not compact. Then by ([11];2.2) X × Y is strongly
one-ended. Let p − cat(X) = n and p − cat(Y ) = m and let {U1, . . . , Un} and
{W1, . . . , Wm} be families of inessential subpolyhedra whose interiors cover X and
Y respectively. By using regular neighbourhoods we find new properly categorical
covers {Ũi} and {W̃j} consisting of closed subpolyhedra with Ui ⊆ intŨi and Wj ⊆

int W̃j. Since R+ × R+ has the proper homotopy type of R+ it is clear that each

product Ũi×W̃j is inessential. Moreover, since X×Y is strongly one-ended we have
a commutative diagram in P/ '

Ũi × W̃j
�

�
��*

X × Y
?

R+

H
H

HHj

α

r

(4)

with the same α for all i, j. We now consider the unions Ai = ∪i
k=1Uk, i ≤ n, and

Bj = ∪j
h=1Wh, j ≤ m. Moreover let C1 ⊆ C2 ⊆ · · · ⊆ Cn+m−1 = X × Y be the

increasing sequence of closed sets

Cs = ∪i+j=s+1Ai × Bj, 1 ≤ s ≤ n + m− 1.

From this we can write X×Y = ∪n+m−1
s=1 Ds for the sets D1 = C1 and Ds = Cs−Cs−1,

s ≥ 2. Moreover we have Ds = ∪{Ei × Fj; i + j = s + 1} where Ei = Ai −Ai−1 and
Fj = Bj − Bj−1. We set A0 = B0 = ∅. Clearly the sets Ei × Fj ⊆ Ds are pairwise
disjoint. Moreover they are pairwise separated; that is, we have

(Ei × Fj) ∩ (Ei′ × Fj′) = (Ei × Fj) ∩ (Ei′ × Fj′) = ∅

if i + j = i′ + j ′. Since X × Y is hereditarily normal we find for each s ≤ n + m− 1
a pairwise disjoint family of open sets Vs = {V j

i }i+j=s+1 with Ei × Fj ⊆ V j
i ⊆

intŨi× intW̃j; see ([4];2.1.7). In particular the union V = ∪m+n−1
s=1 Vs is an open cover

of X×Y , and the paracompactness of X×Y provides us with a finite open refinement

of V, Z = ∪n+m−1
s=1 {Zj

i }i+j=s+1 with Z
j

i ⊆ V j
i ; see ([4]; 5.1.7). Moreover for each s

the closure of the open set Ωs = ∪i+j=s+1Z
j
i is the disjoint finite union of closed

sets Ωs = ∪i+j=s+1Z
j

i . Finally diagram (4) shows that {Ωs}1≤s≤n+m−1 is a properly
categorical open cover of X×Y and hence p−cat(X×Y ) ≤ p−cat(X)+p−cat(Y )−1.
Here we use the crucial fact that the ray α is the same for all i, j.

In case Y is compact the subpolyhedra Wj are contractible to a point in Y .
Moreover, since X is supposed to be at most one-ended, we can use Proposition 1.6
to assume that for the subpolyhedra Ui one has a commutative diagram
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Ui
�

�
��*

X
?

R+

H
H

HHj

α

ki

r

in P/ ' for all i ≥ 1. Next we argue as above to obtain the open sets Z j
i . Then by

using the previous diagram and the fact that each Wj is contractible in Y one easily
shows that the disjoint union ∪{Z̄j

i ; i+ j = s+1} is an inessential set in X×Y and
the result follows.

Remark 2.2. It is clear that Proposition 2.1 does not hold if X is not one-ended
in case Y is compact. Indeed, it is clear that p − cat(Sn × R) ≤ 4, and so from
Example 1.5 it follows p− cat(Sn × R) = 4 > 3 = cat(Sn) + p− cat(R)− 1.

3 Minimal covers with half-spaces and proper L-S category

If M is an open n-manifold one can consider covers consisting of closed subspaces
homeomorphic to the half-space R

n
+, and it is natural to ask for the comparison of

p− cat(M) with the smallest number, h(M), of half-spaces needed to cover M . By
using the proper Engulfing Theorem (A.6) we have the following result; compare
([20]; Ch. VII).

Theorem 3.1. Let M be a one-ended open PL n-manifold. Then p − cat(M) ≤
h(M) ≤ n + 1.

Proof. Let K be a triangulation of M . If b(σ) denotes the barycentre of σ ∈ K we
consider the discrete sets Γi = {b(σ); dimσ = i}. Since M is one-ended it is easily
checked that all sets Γi, 0 ≤ i ≤ n, are inessential in M and so by (A.6) there exist
half-spaces Hi with Γi ⊆ Hi. Next we consider the regular neighbourhoods Ni of
Γi in the second barycentric subdivision of K. Then M = ∪n

i=0Ni and moreover by
the uniqueness of regular neighbourhoods (A.3) there exist ambient isotopies φi in
M carrying Ni inside Hi. Hence M = ∪n

i=0φ
−1
i (Hi) and the result follows.

We now proceed to prove a proper analogue of a theorem due to Singhof [17]
which provides sufficient conditions for the equality p − cat(M) = h(M). Recall
that a space X in P is said to be properly k-connected if for any q ≤ k any proper
map f : K → X from a q-dimensional polyhedron K in P is properly inessential.
Notice that X is properly 0-connected if and only if X is one-ended.

Lemma 3.2. Let P be a properly k-connected polyhedron in P and let (K, L) be a
polyhedral pair in P with dim(K − L) ≤ k + 1. Then any proper map f : L → P
admits a proper extension f̃ : K → P . In particular, if R ⊂ Q ⊂ P , dim(Q−R) ≤ k,
and R is properly inessential then so is Q.

Proof. Assume that f̃ : Kr ∪ L → P exists. Then the restriction of f̃ to
the union ∆ = ∪{∂σ; σr+1 ∈ K} is properly inessential and hence f̃ |∆ admits a
proper extension to Kr+1 which yields a proper extension of f̃ to Kr+1 ∪L. For the
second part, let H : R× I → P be a proper deformation of R with H1 a composite
H1 : R

r
−→ R+

α
−→ P . Then we apply the first part of the lemma to K = Q × I,

L = R × I ∪ Q × {1} and f = H ∪ r̃ : L → P where r̃ : Q → R+ is any proper
extension of r.
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Theorem 3.3. Let M be a properly c-connected open PL n-manifold (c ≥ 0, n ≥ 4).
If p− cat(M) ≥ n+c+4

2(c+1)
then p− cat(M) = h(M).

The proof of Theorem 3.3 follows closely the proof due to Montejano [12] for
ordinary L-S category. More precisely we first prove the following proper analogue
of ([13], Thm. 1). See Appendix A for the definition of a proper collapse Y ↘p X.

Proposition 3.4. Let P be a properly c-connected n-dimensional polyhedron in P,
and let {P1, ..., Pm} be a properly categorical (polyhedral) cover of P . Then, for each
0 ≤ q ≤ c, there is a properly categorical cover {R1, ..., Rm} of P such that, for each
1 ≤ i ≤ m, Ri ↘p Ni where dim(Ni) ≤ max{n− (m− 1)(q + 1), q}.

Proof. Let T be a triangulation of P such that T1, ..., Tm are subcomplexes
which triangulate P1, ..., Pm. Let L1 be the (n − (m − 1)(q + 1))-skeleton of T1

and let L′1 be its dual skeleton. By Lemma A.2, there exists a polyhedral cover

{R1
2, ..., R

1
m} of |L′1| ∪ (

m⋃

i=2

Pi) such that R1
i ↘p Pi ∪Ni and dim(Ni) ≤ q, 2 ≤ i ≤ m.

Let R1
1 = |J |, where J is a second derived neighbourhood of L1 in T such that

P = |J | ∪ (
m⋃

i=2

R1
i ). Notice that each R1

i (i ≥ 2) is properly categorical by Lemma

3.2. Moreover, R1
1 ↘p |L1| ⊆ P1 with dim(L1) ≤ n− (m− 1)(q + 1), and hence R1

1

is also properly categorical. Next, let us suppose we have constructed a polyhedral
cover {Rk

1 , ..., R
k
m} satisfying

(a) Rk
i is properly categorical, 1 ≤ i ≤ m.

(b)k Rk
i ↘p Ni, with dim(Ni) ≤ max{n− (m− 1)(q + 1), q}, 1 ≤ i ≤ k < m.

By replacing R1
1 with Rk

k+1 and using the same argument as above one constructs
a polyhedral cover {Rk+1

1 , ..., Rk+1
m } such that Rk+1

i ↘p Rk
i ∪ N ′i , dim(N ′i) ≤ q (i 6=

k+1) and Rk+1
k+1 ↘p |Lk+1| ⊆ Rk

k+1 with dim(Lk+1) ≤ n−(m−1)(q+1). Moreover, for
each 1 ≤ i ≤ k, Rk+1

i ↘p Rk
i ∪N ′i and Rk

i ↘p Ni. Thus, by Lemma A.1, there exist
polyhedra Mi with dim(Mi) ≤ dim(N ′i) ≤ q and such that Rk

i ∪N ′i ↘p Ni∪Mi = N ′′i ,
whence Rk+1

i ↘p N ′′i and dim(N ′′i ) ≤ max{n−(m−1)(q+1), q}. By Lemma 3.2, each
Rk+1

i (i 6= k+1) is properly categorical. Moreover, Rk+1
k+1 ↘p |Lk+1| ⊆ Rk

k+1 and hence
Rk+1

k+1 is also properly categorical. Therefore, the polyhedral cover {Rk+1
1 , ..., Rk+1

m }
satisfies properties (a) and (b)k+1.

Proof of 3.3. Let q = min{c, n − 3}. According to Proposition 3.4 there exists
a properly categorical cover M = R1 ∪ · · · ∪ Rm (m = p − cat(M)) such that
Ri ↘p Ni with dimNi ≤ max{n − (m− 1)(q + 1), q}. If c ≤ n − 3 then q = c and
dimNi ≤

n+c−2
2

≤ n− 3. Otherwise c ≥ n− 2 and q = n− 3 yield dimNi ≤ n− 3 ≤
n+c−2

2
. Hence by the proper Engulfing Theorem (A.6) we can find m half-spaces

H1, . . . , Hm with Ni ⊆ Hi. As Ri ↘p Ni any regular neighbourhood Ωi of Ri is a
regular neighbourhood of Ni and by the uniqueness of regular neighbourhoods there
exists an isotopy φi carrying Ωi into Hi. See (A.3). Hence M = ∪m

i=1φ
−1
i (Hi) and

the proof is finished.

According to 2.1 and (2) above, for any one-ended open manifold M we see that
p − cat(M × Sk) is either p − cat(M) or p − cat(M) + 1. As a consequence of
Theorem 3.3 we can determine the proper L-S category of M × Sk in some cases.
More explicitly,
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Theorem 3.5. Let M be a one-ended open PL n-manifold, n ≥ 3. If p− cat(M) ≥
n+k

2
+ 2 then p− cat(M × Sk) = p− cat(M) + 1. In particular if p− cat(M) ≥ n+5

2

we have p− cat(M × S1) = p− cat(M) + 1.

Example 3.6. It is clear that Theorem 3.5 does not hold if M is not one-ended.
Indeed, for M = S2×R we have p− cat(M ×S1) ≤ 6 since cat(S2×S1) = 3. Hence
from Example 1.5 we get p− cat(M × S1) = 6 > 5 = p− cat(M) + 1.

In the proof of Theorem 3.5 we need the following

Lemma 3.7. Let X and Y be path connected spaces in P. If Y is compact then the
projection p1 : X × Y → X induces a bijection p1∗ : [R+, X × Y ] ∼= [R+, X] between
strong ends.

Proof. Given y0 ∈ Y let j : X → X × Y be the inclusion j(x) = (x, y0). It is
clear that pj = idX and hence p1∗ is onto and j∗ is injective. Moreover, given any
ray r : R+ → X × Y let H : p2r ' cy0

be a homotopy where cy0
is the constant map

cy0
(t) = y0. Although H is not a proper map the map H̃(t, s) = (p1r(t), H(t, s)) is

a proper homotopy such that H̃(t, 0) = r(t) and H̃(t, 1) is a ray in X × {y0}. We
have shown that j∗ is onto and hence j∗ as well as p1∗ are bijections.

Proof of 3.5 We have p−cat(M) ≤ p−cat(M×Sk) ≤ p−cat(M)+1 by Proposition
2.1. Assume for a moment s = p−cat(M×Sk) = p−cat(M) ≥ n+k

2
+2. By Theorem

3.3 with c = 0 applied to M × Sk there are closed half-spaces H1, H2, . . .Hs with
M × Sk = ∪s

i=1Hi. Let R ⊆ H1 be an embedded ray with H1 collapsing properly
to R and hence H1 is a regular neighbourhood of R; see (A.3). Let x0 ∈ Sk be
any point. By Lemma 3.7 we can find an embedded ray R′ ⊆ M × {x0} such that
both R and R′ define the same strong end of M × Sk. Hence there exists a proper
homotopy G : R+× I → M ×Sk with G(R+×{0}) = R and G(R+×{1}) = R′. As
dimM×Sk ≥ 4 there exists an ambient isotopy of M×Sk which carries R to R′; see
(A.5). Now we use the uniqueness of regular neighbourhoods (A.3) to find an isotopy
carrying H1 to a small regular neighbourhood N of R′ with N ∩ (M × {x}) = ∅
for some x 6= x0. Hence M × {x} ⊆ Z = H2 ∪ · · · ∪ Hs and so the restriction
r = p|Z : Z → M × {x} of the obvious projection is a proper retraction. Hence
p− cat(M × {x}) ≤ p− cat(Z) ≤ s− 1 which is a contradiction.

Recently Rudyak ([14]; 3.8) has proved that Singhof’s Theorem implies the
stronger result cat(M × Sk) = cat(M) + 1. Rudyak’s arguments can be repeated
here to derive from Theorem 3.5 the following

Theorem 3.8. Let M be a one-ended open PL n-manifold, n ≥ 3. If p− cat(M) ≥
n+5

2
we have p− cat(M ×Sk) = p− cat(M)+1 and p− cat(M ×Sm1 ×· · ·×Smk) =

p− cat(M) + k for all k ≥ 1.

Remark 3.9. It has been a long standing conjecture due to Ganea that the equality
cat(X×Sk) = cat(X)+1 always holds for any finite CW-complex X. In 1998, Iwase
[7] gave counterexamples to this conjecture. In addition, Iwase [8] has obtained
recently a closed manifold M for which cat(M × Sk) = cat(M). At present the
authors do not know whether the corresponding version of Ganea’s conjecture is
true for the proper L-S category of one-ended open manifolds.
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It is natural to ask for the behaviour of the invariant p− cat(−) with respect to
the product with R

n. Next example shows the anomalous behaviour of the proper
L-S category on the product of two open manifolds.

Example 3.10. Let W 4 = intM4 be the interior of a contractible 4-manifold
M 6= B4. We have p−cat(W ) = cat(∂M) = 4; see [2] and [6]. But W×R

k is homeo-
morphic to R

4+k ([20]; Ch. VII) and hence p−cat(W×R
k) = 2 < 5 = p−cat(W )+1.

However, if M is a closed manifold we have a formula similar to Theorem 3.5.
Namely,

Theorem 3.11. Let M be a closed n-manifold with cat(M) ≥ n+5
2

. Then p −
cat(M × R

k) = cat(M) + 1, k ≥ 2.

Proof. Let p−cat(M×R
k) = m and let {U1, . . . , Um} be an open cover of M×R

k

for which each closure U j is properly categorical. Moreover, we can assume that the
proper deformations H j : U j × I → M × R

k satisfy Hj
1(U j) ⊆ {x0} × {0} × R+ for

some x0 ∈ M . Here we use that M × R
k is strongly one-ended. Then let s ≥ 1

such that Hj carries Ωj = [U j ∩ (M × Sk−1 × [s,∞))]× I into M × Sk−1 × [1,∞)
for j = 1, . . . , n. The obvious proper retraction of [1,∞) onto [s,∞) shows that
{Ω1, . . . , Ωm} is a properly categorical cover of M × Sk−1 × [s,∞). Hence

cat(M) + 1 = cat(M × Sk−1) = p− cat(M × Sk−1 × [s,∞))

≤ p− cat(M × R
k) ≤ cat(M) + 1.

Here we use Rudyak’s theorem, see Theorem 3.8 for the first equality and Proposition
2.1 for the last inequality.

Appendix: Some results on the PL topology of open manifolds

This appendix is a collection of the results on open PL manifolds which are used in
this paper. We start recalling the notion of proper collapse. Given two polyhedra
X and Y in P it is said that there is an elementary proper collapse from Y onto X
and we write Y ↘ep X if Y = X ∪ C1 ∪ C2 · · · ∪ Cn . . . where {Ci} is a sequence of
compact polyhedra satisfying (Ci −X) ∩ (Cj −X) = ∅ if i 6= j and Ci ↘ Ci ∩ X.
Then a proper collapse Y ↘p X is a finite sequence of elementary proper collapses.
A polyhedron X in P is said to be properly collapsible if X ↘p R+.

Many results concerning ordinary collapses can be readily generalized to proper
collapses. In this paper we will use the following proper analogue of ([13], Lemma
2.1)

Lemma A.1. Let R, P and L be polyhedra in P, and suppose R ↘p P . Then, there
exists a polyhedron L′ in P such that R ∪ L ↘p P ∪ L′ and dim(L′) ≤ dim(L).

Proof. It suffices to show the result in the case R ↘ep P , i.e., R = P ∪C1∪C2∪ ...,
where the C ′is satisfy the conditions mentioned above for an elementary proper col-
lapse. Thus, P ∪ Ci ↘ P , for each i. The proof of ([15], Lemma 1.6.4) shows
that there are polyhedra L′i such that P ∪ Ci ∪ L ↘ P ∪ L′i, for each i, and
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dim(L′i) ≤ dim(L). Let L′ =
⋃

i L
′
i. Then, R ∪L ↘p P ∪L′ and dim(L′) ≤ dim(L).

It is worth noting that if K ⊆ T are locally finite simplicial complexes and N
is a second derived neighbourhood of K in T , then |N | ↘p |K| ([16], Lemmas 6-7).
This leads to the proper analogue of ([13], Lemma 2.2); namely,

Lemma A.2. Let P be a polyhedron in P, and X, Y ⊆ P be subpolyhedra. Let
{P1, ..., Pk} be a polyhedral cover of X in P , and suppose n1, ..., nk are non-negative

integers with dim(Y ) <
k∑

i=1

(ni +1). Then, there is a polyhedral cover {R1, ..., Rk} of

X ∪ Y in P such that
n⋃

i=1

Ri is a neighbourhood of Y in P and for each 1 ≤ i ≤ k,

Ri ↘p Pi ∪Ni with dim(Ni) ≤ ni.

Proof. Let T be a triangulation of P such that K and L are subcomplexes of
T which triangulate X and Y respectively. Note that if k = 1 we can just take
N1 = Y and R1 = |J |, where J is a second derived neighbourhood of K ∪ L in T .
The proof is by induction on k. Let T1, ..., Tk be subcomplexes of T which triangu-
late P1, ..., Pk. Let L1 be the n1-skeleton of L and let L2 be its dual skeleton. Then,

dim(L2) ≤ dim(Y ) − (n1 + 1). Let X ′ = X ∩ (
k⋃

i=2

Pi). By induction, there exists

a polyhedral cover {R2, ..., Rk} of X ′ ∪ |L2| satisfying the required conditions with
respect to the subpolyhedra X ′, |L2| ⊆ P . Let R1 = |J |, where J is a second derived

neighbourhood of T1 ∪ L1 such that X ∪ Y ⊂ |J | ∪ (
k⋃

i=2

Ri). Then, {R1, ..., Rk} is

the desired polyhedral cover of X ∪ Y in P .

For open manifolds we will use the following results involving the notion of proper
collapse.

Theorem A.3. ([16]) Let M be an open PL manifold and X ⊆ M a closed subpoly-
hedron. Then a subpolyhedron N ⊆ M is a regular neighbourhood of X in M if N is
a topological neighbourhood of X in M and N properly collapses onto X. Moreover
any two regular neighbourhoods of X are ambient isotopic, keeping X fixed.

Theorem A.4. ([10]) Suppose M is an open PL n-manifold and X ⊆ M is a non-
compact properly collapsible subpolyhedron. Then a regular neighbourhood of X in
M is PL homeomorphic to R

n
+.

We also use two further results due to Maxwell [10]. The first one is easily derived
from the proper unknotting theorem in ([10];5.2)

Theorem A.5. Let Mn and Qq be two open PL manifolds with q ≥ 2n+2. Suppose
f, g : M → Q are two proper embeddings such that f ' g relative ∂M . Then f is
ambient isotopic to g.

The second is the following proper engulfing theorem ([10];3.11)
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Theorem A.6. Let M be an open PL n-manifold. Suppose Q ⊆ M is an inessential
subpolyhedron of dimension q ≤ n − 3. If M is properly c-connected with c ≥
2q− n + 2 there exists a properly collapsible subpolyhedron P ⊆ M with Q ⊆ P and
dim(P −Q) ≤ q + 1. In particular Q is included in a half-space H ⊆ M .
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