Journal of Universal Computer Science, vol. 10, no. 5 (2004), 650-670
submitted: 1/4/04, accepted: 10/4/04, appeared: 28/5/04 © J.UCS

An Efficient Family of P Systems
for Packing Items into Bins

Mario J. Pérez-Jiménez, Francisco José Romero-Campero
(University of Sevilla, Spain
{Mario.Perez, Francisco-Jose.Romero}@cs.us.es)

Abstract: In this paper we present an effective solution to the Bin Paching problem
using a family of recognizer P systems with active membranes. The analysis of the
solution presented here will be done from the point of view of complexity classes. A
CLIPS simulator for recognizer P systems is used to describe a session for an instance
of Bin Packing, using a P system from the designed family.

Key Words: Membrane computing, Recognizer P systems, Complexity classes, Bin
Packing problem, CLIPS.

Category: F.1.1, F.1.3, F.2.1.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing which in-
vestigated various distributed parallel computing models based upon the obser-
vation that the processes which take place in the complex structure of a living
cell can be considered as computations.

Since Gh. Paun introduced this unconventional model of computation in
[Paun 2000], several variants have been considered from different approaches. A
fairly complete presentation of the domain can be found in [Paun 2002]. Many
of the proposed types of P systems have been proved to be computationally
complete, that is, equivalent in power to Turing machines. Furthermore, some
types of P systems have been proved to be computationally efficient, able to
solve NP-complete problems in polynomial time (see [Paun 2002], Chapter 7).

One more NP-complete problem is addressed in this paper, namely the Bin
Packing problem.

The solution presented here is designed using a family of recognizer P systems
with active membranes. This variant of P systems is studied in many places
(see [Pérez et al. 2003b] and [P&un 2002]). In our approach we have followed
several ideas and techniques used to solve other numerical NP-problems, such
as the Subset—Sum in [Pérez and Riscos 2004] and the Knapsack problem in
[Pérez and Riscos 2002]. Due to the strong similarities of the design of these
solutions the idea of a cellular programming language seems possible as it is
suggested in [Gutiérrez et al. 2004].

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 651

The analysis of the presented solution will be done from the point of view
of the complexity classes, specifically, within the framework of the complexity
classes in P systems studied in [Pérez et al. 2002] and [Pérez et al. 2003b]. A
complezity class for a model of computation is a collection of problems that can
be solved (or languages that can be decided) by devices of the considered type,
using similar computational resources.

The paper is organized as follows: Section 2 recalls recognizer P systems with
active membranes. In section 3 the complexity classes for P systems are briefly
introduced. Sections 4, 5, and 6 present a cellular solution to the Bin Packing
problem. In section 7 we illustrate the use of a CLIPS simulator for recognizer P
systems with active membranes in solving an instance of Bin Packing problem.
Conclusions are given in section 8.

2 Recognizer P Systems with Active Membranes

Let us recall that a decision problem, X, is a pair (Ix,fx) such that Ix is a
language over a finite alphabet (whose elements are called instances) and 0x is
a total boolean function over Ix.

In what follows, we assume the reader to be familiar with basic elements of
membrane computing, e.g., from [Paun 2002].

Definition 1. A P system with input is a tuple (II, X, i), where:

— II is a P system, with working alphabet I', with p membranes labelled by
1,...,p, and initial multisets M, ..., M, associated with them.

— Y is an (input) alphabet strictly contained in I'; the initial multisets are
over [' — X

— g7 is the label of a distinguished (input) membrane.

The computations of a P system with input m, a multiset over X' are defined
in a natural way. The only novelty is that the initial configuration must be the
initial configuration of the system associated with the input multiset m.

Definition 2. Let (I7, X,i57) be a P system with input. Let I" be the working
alphabet of I7, ;1 the membrane structure and My, ..., M, the initial multisets
of IT1. Let m be a multiset over X. The initial configuration of (I, X i) with
input m is (o, My,..., Mi, Um, ..., Mp).

In the case of P systems with input and with external output, the concept
of computation is introduced in a similar way but with a slight change. Namely,
we assume that it is not possible to observe the internal processes from the
P system, but we can only know that the computation has halted when some
distinguished objects are sent out of the skin membrane.

We can formalize these ideas in the following way.

652 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

Definition 3. A recognizer P system is a P system with input, (II, ¥, i), and
with external output such that:

1. The working alphabet contains two distinguished elements YES, NO.
2. All computations in IT halt.

3. If C is a computation of IT, then either the object YES or the object NO
(but not both) is released into the environment, and only in the last step of
the computation. We say that C is an accepting computation (respectively,
rejecting computation) if the object YES (respectively, NO) appears in the
environment associated to the corresponding halting configuration of C.

These recognizer systems are especially suitable when trying to solve decision
problems.

In this paper we will deal with recognizer P systems with active membranes.
Such a system is a tuple

II = (F,H,,LL,Ml,...,Mp,R),
where:

1. p > 1, is the initial degree of the system;
2. I' is the alphabet of symbol-objects;
3. H is a finite set of labels for membranes;

4. p is a membrane structure, of p membranes, labelled (not necessarily in a
one-to-one manner) with elements of H;

5. Mi,..., M, are strings over I', describing the initial multisets of objects
placed in the p regions of y;

6. R is a finite set of evolution rules, of the following forms:

(a) [a—>w]¥, forhe Ha € {+,—,0},ae,we ™
Object evolution rules: such a rule is associated with a membrane labelled
with h and depends on the polarity of that membrane, but not directly
involve the membrane.

(b) a[13" — [b]3?, for h € H, ai, a3 € {+,—,0},a,be I
Communication rules (send in rules): an object from the region immedi-
ately outside a membrane labelled with h is introduced in this membrane,
possibly transformed into another object; simultaneously, the polarity of
the membrane can be changed.

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 653

(c) [a]yt = b[132, for h e H, ay, a5 € {+,—,0},a,be I
Communication rules (send out rules): an object is sent out from a mem-
brane labelled with h to the region immediately outside, possibly trans-
formed into another object; simultaneously, the polarity of the membrane
can be changed.

(d) [a]y = b, for he H,a € {+,—,0},a,beI.
Dissolving rules: a membrane labelled with h is dissolved in reaction with
an object. The skin is never dissolved.

(e) [aly' = [b]p? [e]p?, for h e H, aq, 9,03 € {+,—,0}, a,b,c€ I
Division rules for elementary membranes: an elementary membrane can
be divided into two membranes with the same label, possibly transform-
ing some objects and their polarities.

These rules are applied according to the following principles:

— All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non
deterministic way), but any object which can evolve by one rule of any form,
should evolve.

— If a membrane is dissolved, then its content (multiset and internal mem-
branes) is left free in the surrounding region.

— If at the same time a membrane h is divided by a rule of type (e) and there
are objects in this membrane which evolve by means of rules of type (a),
then we suppose that first the evolution rules of type (a) are used, and then
the division is performed. Of course, this process takes only one step.

— The rules associated with membranes labelled with h are used for all copies of
this membrane. At one step, a membrane labelled with A can be the subject
of only one rule of types (b)—(e).

Let us denote by AM the class of language recognizer P systems with active
membranes using 2-division.

3 The Complexity Class PMCx

Roughly speaking, a computational complexity study of a solution for a problem
is an estimation of the resources (time, space, etc.) that are required during all
processes that take place in the way from the bare instance of the problem up
to the final answer.

The first results about “solvability” of NP—complete problems in polynomial
time (even linear) by cellular computing systems with membranes were obtained

654 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

using variants of P systems that lack an input membrane. Thus, the constructive
proofs of such results need to design one system for each instance of the problem,
hence a system constructed to solve a concrete instance is useless when trying to
solve another instance. On the other hand, if we consider P systems with input,
then the same system can solve different instances of the problem, provided that
the corresponding input multisets are introduced in the input membrane.

Definition 4. Let F be a class of recognizer P systems. We say that a deci-
sion problem X = (Ix,0x) is solvable in polynomial time by a family II =
(II(n))nen, of F, and we denote this by X € PMCy, if the following is true:

— The family IT is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing II(n) from n € N in
polynomial time.

— There exists a pair (g, h) of polynomial-time computable functions g : L —
Unen Imny and h: L — N such that for every u € L we have g(u) €
IH(h(u))a and:

e the family IT is polynomially bounded with regard to (g, h); that is, there
exists a polynomial function p, such that for each u € I'y every compu-
tation of IT(h(u)) with input g(u) is halting and, moreover, it performs
at most, p(|u|) steps;

e the family IT is sound, with regard to (X, g, h); that is, for each u € Ix
it is verified that if there exists an accepting computation of IT(h(u))
with input g(u), then 0x(u) = 1;

e the family IT is complete, with regard to (X, g, h); that is, for each u € Ix
it is verified that if fx (u) = 1, then every computation of IT(h(u)) with
input g(u) is an accepting one.

In the above definition we have imposed to every P system II(n) to be confluent,
in the following sense: every computation with the same input produces the same
output.

It is easy to prove that the class PMC £ is closed under polynomial-time
reduction and complement.

4 The Bin Paching Problem

The Bin Packing problem can be stated as follows: Given a finite set A =
{s1,-..,8n}, a weight function w : A — N and two constants b € N, ¢ € N,
decide whether or not there exists a partition of A into b subsets such that their
weights do not exceed c.

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 655

This problem can be viewed as the situation when given a set of n items and
b bins of capacity ¢, we want to pack the items into bins.

It is well known that Bin Paching is a strongly NP—complete problem (that is,
a problem remaining NP—complete even if any instance of length n is restricted
to contain integers of size at most p(n), where p(n) is a polynomial). Let us recall
that if there exist a pseudopolynomial (classical) algorithm solving a strongly
NP—complete problem, then P=NP (the Knapsack problem is not a strongly
NP—complete problem).

Bin Packing (especially the corresponding optimization problem) arises in a
wide variety of packaging and manufacturing problems.

We will represent the instances of the problem using tuples of the form
(n, (w1, ...,wn),b,c), where n is the number of items, (wy, . ..,w,) are the weights,
b is the number of bins, and ¢ their capacity.

We will address this problem via a brute force algorithm, in the framework
of recognizer P systems with active membranes using 2-division, without coop-
eration nor priority among rules. Our strategy will be the following.

— For each bin we proceed through the following stages:
e (eneration stage: Membrane division is used until a specific membrane

for each subset S of the remaining items is obtained.

o Clalculation stage: In each membrane the weight of its associated subset
is computed.

e Checking stage : The condition w(S) < ¢ is checked for every subset
S C A.

e Transition stage: If the associated subset satisfies w(S) < ¢, then the sys-
tem continues the computation for the next bin; otherwise the membrane
is dissolved.

— Output stage: The answer is sent out to the environment according to the
results in the checking stage for each bin.

Now we construct a family of recognizer P systems with active membranes
using 2-division solving the Bin Packing problem.

Let us consider a polynomial bijection, (), between N® and N (e.g., (z,y, z) =
({(m,y), z), induced by the pair function (z,y) = (zr+vy) - (z +y +1)/2 + x).

The family presented here is the following;:

I = {(I({n,b,c)), Z(n,b,c),i(n,b,c)) : (n,b,c) € N*}.
For each element of the family, the input alphabet is

Y(n,byc) = {S1,-+-,8n, 1+, n}s

656 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

the input membrane is i(n,b,c) = 2, and the P system
H((”v b7 C>) = (F(na ba C), {17 2}7 M, Mla M27 R)
is defined as follows:

— Working alphabet:

I'(n,b,c) = X(n,b,e)U{eijr,2zijk:1<i<b-1,-1<j<n,1<k<n}
U{EBiju,Zijr:1<i<b—1,-1<j<n,1<k<n}
U{g:i:0<i<2n+1}U{ch;,Ch;:0<j<2c+1}
U{y;:0<i<2c+3tU{n;:0<i<2c+6}

U {w,W,D,ﬁ,ﬁ,G,zO,z,neg,jj,YES, NO}

— Membrane structure: g =[; [2]2]1 (we will say that every membrane with
label 2 is an internal membrane).

— Initial Multisets: M; =0, My = {go, D°}.
— The set of evolution rules, R, consists of the following rules:

1. [Sk —> €1,k,k](2), [T’k — 21 ,k,k](2), for 1 <k <n.

The multiplicity of the objects s represents in the initial configuration
the weight of the item number k. The object rj represents the item
number k. The objects e;;x, and z;;; encode the fact that the item number
k occupies the position number j in the order in which the items are
considered to be introduced in the bin number i.

2. [ziae19—=121F [2i 1]y, for 1<k<n,1<i<b-1.

The goal of these rules is to generate one membrane for each subset of
the remaining items that can be introduced in the current bin. When
the object z; 1, is present in a neutrally charged internal membrane
the system produces two membranes: one (positively charged) where the
item number k is added to the subset associated with the membrane
— the object z appears in this membrane; and another one (neutrally
charged) where the item number k is not added to the subset associated
with the membrane — the object z; _; ; appears in this membrane.

3. [eijk = eij—145,
[2ij6 = zij—1k]3, for0<j<n, 1<k<nm, 1<i<b-1L
These rules decrease the second subscript of the objects e and z. This

subscript encodes the order in which the items are considered to be added
to the subset associated with the internal membranes.

10.

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 657

[eior = w]i, for I<k<n, 1<i<b-—1.

The multiplicity of the object e; . encodes the weight of the item &
and the multiplicity of the object w encodes the weight of the subset
associated with the membrane. Thus, when an item is added to the
subset associated with a membrane the objects s; .1 evolve to w.

Lzl > g

The object z is used to change the polarization of the internal membranes
from positive to neutral.

g = 913, L9 = gipaly, for0<i<2n-—1,

[92n = Gont1cho]d, [2n = gons1cho]3, [gons1 19 — [15

The objects g; are counters used in the generation stage. The object
gon+1 changes the polarization of the internal membranes from neutral
to negative and the checking stage starts.

[ei—16 = Eigk s,

[Ziﬁfl,k — Zi,k,k];, for].Sigb—]., 1<k<n.

The objects e;,—1,; and z; _1 1 are renamed to F;; and Z; ;5 at the
beginning of the checking stage in order to avoid conflicts with the pre-

vious stage. Moreover, the position in which the items are considered to
be added is restarted by these rules.

CJwo—> W,

In the transition to the checking stage the objects w are renamed to W
in order to avoid conflicts with the previous stage.

.[D - D, DJ;.

The multiplicity of the object D represents the capacity of the bins. In
the checking stage we have to check if the weight of the subset introduced
in the current bin exceeds or not its capacity. At the beginning of this
stage the objects D evolve to the objects D and D. The objects D are
used in the checking stage of the current bin, while the objects D encode
the capacity of the bins so that this information can be used later in the
computation.

(D] =4[1%, [WH— ¢]]5.

These rules are used to compare the multiplicity of the objects W and
D.

658

11.

12.

13.

14.

15.

16.

17.

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

[chi — chit1]y, [chi = chiy1]9, for 0<i<2c—1,
[chae — chacy1 G20y, [chae — chacy1 G 2019,

[chacrr]y — 8113, [chaer1]9 — #1153

The objects ch; are counters used in the checking stage. The object
chacy1 changes the polarization of the internal membranes to positive
and the transition stage starts.

(W1 = &

If there are objects W when the checking stage has finished, then the
multiplicity of the object W exceeded the multiplicity of the object D.
Thus, the weight of the subset introduced in the bin exceeds its capacity,
therefore this is not a solution to the problem and the membrane is
dissolved.

[D = t)5, [D - DI
The remaining objects D are “erased” in the transition stage and the

objects D are renamed to D so that they can be used in the computation
for the next bin.

[Eikk — €itikk |3
[Zi,k,k — Zitl,k.k]2+, for 1 <1< b— 2, 1< k <n.

The objects E; 1, and Z; 1, are renamed to e;y1 k.1 and 241,k S0 that
they can be used in the computation for the next bin.

[20 — z];, [G — go];

According to these rules the objects zp and G evolve to the objects z
and g, respectively.

[Eb—l,k,k - w]g_, [Zb—l,k,k — neg]g_, for 1 <k <n.

According to these rules, all the remaining objects that represent the
weight of the items that can be introduced in the last bin evolve to w,
so that these rules introduce all the remaining items in the last bin. The
objects Zy_1,x evolve to the object neg and this object will force the
system to skip the generation stage for the last bin.

[negly = nol 1y, [g1 = Choyoly, [neg —],

The object neg changes the polarization of the internal membranes from
neutral to negative and the object g; evolves to the objects Chg (counter
in the checking stage for the last bin) and yo. The remaining objects neg
are “erased” when the internal membranes become negatively charged.

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 659

18. [Chl — Chi+1]2_, [Chl — Chi+1]g, fOI‘OSiSQC,
[Chact1]y = 815, [Chaetr I3 = £[13-

The objects Ch; are counters used in the checking stage of the last bin.
The object C'hye41 changes the polarization of the internal membranes
to positive and the output stage starts.

19. [yz — yi+1]g, [yi — yi+1];, for 0 Slf 20+1,

[Y2e12 = Yoera |3y [Yoera]y = YES[]5.
The objects y; are counters in the internal membranes that will eventu-
ally send to the skin the object Y ES.

20. [nz — N1](1), f0r0§i§20+4,
[1’L26+5 — NO](1)

The objects n; are counters in the skin that will eventually evolve to the
object NO.

21. [YES]? —» YES[{, [NO]Y - NO| |7

These rules send out the answer to the environment.

5 An Overview of the Computation

First of all, we must define a suitable pair of polynomial-time computable func-
tions associated with the family IT in order to study its computational complex-
ity. Given an instance u = (n, (w1, . ..,wy), b, ¢) of the Bin Packing problem, we
define h(u) = (n,b,c) (recall the bijection mentioned in the previous section)
and g(u) = {ry,...r,s7", ..., s4»}. Next, we will informally describe how the
system IT(h(u)) with input g(u) works.

In the initial configuration the multiset from the skin is empty but the multi-
set from the initial internal membrane (the input membrane) contains the input
g(u), one object go (a counter for the generation stage) and objects D. The mul-
tiplicity of the object D in the initial configuration encodes the capacity of the
bins.

In the first step of the computation, the objects s and r evolve, according
to the rules in (1), to the objects e and 2. The objects e encode the weight of
the items and the objects z encode the items. The objects e;;; and z;;;, encode
the fact that the item number k& occupies the position number j in the order in
which the items are considered to be introduced in the bin number :.

For each bin i, for 1 < i < b — 1, the generation and calculation stages
take place in parallel, following the instructions from the rules in groups (2) -
(5). The system generates every subset of the remaining items, associating each
of them with a single internal membrane. Let us describe the evolution of the

660 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

subsets associated with internal membranes during the generation and calculation
stages.

At the beginning of the generation stage of each bin the subsets associated
with the internal membranes are empty.

When the object z; 1 appears in a neutrally charged internal membrane,
using the rule in (2) the system produces two membranes. One of them is pos-
itively charged, and the item number k is added to its associated subset; the
object z appears in this membrane. The other membrane is neutrally charged,
and the item number % is not added to its associated subset; the object z; _1 1
appears in this membrane, indicating the fact that this object remains outside
the bin so it can be introduced in the next bins.

These two new membranes behave in a different way:

— In the positively charged membrane the weight of its associated subset is
updated using the rules in (4) (calculation stage). The multiplicity of the
object e; o, encodes the weight of the item k and the multiplicity of the
object w encodes the weight of the subset associated with the membrane.
Thus, as the item number k£ has been added to the associated subset, the
objects s;, o, 1. evolve to w. To carry on with the generation stage following
the rule in (5), the object z changes the polarization of the membranes from
positive to neutral.

— In the neutrally charged membrane, according to the rules in (3) the system
decreases the second subscript of the objects e and z that represent the order
in which the items are studied. Here the object z; 1 represents the fact
that the item number & has been left out of the bin number ¢, hence it can
be introduced in the next bins.

The generation and calculation stages end when the object gapn41, according
to the last rule in (6), changes the polarization of the internal membranes to
negative and the checking stage starts. In the previous step, the object g», evolves
following the rules in (6) to g2p41 and cho (a counter used in the checking stage).

In the transition to the checking stage the system renames the objects e,
z and w, following the rules in (7) and (8), in order to avoid conflicts with
the previous stages. Moreover, the second subscript of the objects e and z are
set equal to their third subscript restarting the position in which the items are
studied. Finally, in the transition to the checking stage the objects D evolve,
using the rule in (9), to the objects D and D. The objects D are used in the
checking stage of the current bin, while the objects D encode the capacity of the
bins so that this information can be used later in the computation.

The purpose of the checking stage is to compare the multiplicities of objects
W and D. This task is carried out by the rules in (10). The objects ch; are
counters used in this stage; the stage ends when the object chs.11, according

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 661

to the last rules in (11), changes the polarization of the internal membranes to
positive. At the end of the checking stage, if there are objects W in an internal
membrane, then the multiplicity of the object W exceeded the multiplicity of
the object D. This means that the weight of the subset associated with this
membrane exceeds the capacity of the bins, therefore this is not a solution to
the problem and the membrane is dissolved by the rule in (12).

In the last steps of the checking stage the object chy., following the rules
in (11), evolve to the objects chac11, G, and zg. The last two objects are used
in the transition stage to the next bin. Using the rules in (15) the object G
evolves to the object go (a counter for the generation stage) and the object zg
to the object z (this object changes the polarization to neutral). At the same
time, the system, applying the rules in (14), increases the first subscript of the
objects e and z. This subscript represents the bin that is being studied. Now,
the generation stage for the next bin starts, and we continue in this way until
the system considers the last bin.

The computation for the last bin is quite different from the previous bins.
The system, using the first rule in (16), introduces all the remaining items in
the last bin. When the second rule in (16) is applied the object neg appears in
the internal membranes. This object changes the polarization of the membranes
to negative and so the system skips the generation stage for the last bin and the
checking stage starts.

According to the rules in (17), the object ng (an object that eventually pro-
duces the object NO) is sent to the skin and the objects Chy (a counter in the
checking stage) and yo (an object that eventually produces the object Y ES)
appear in the internal membranes. The checking stage for the last bin ends when
the object Chact1, following the rules in (18), changes the polarization of the
internal membranes to positive and the system, using the rule in (12), checks
whether or not the weights of the associated subsets exceed the capacity of the
bins.

At the end of the checking stage of the last bin, all the internal membranes
that have not been dissolved codify solutions to the instance of the Bin Packing
problem that was introduced as input. Thus, these membranes, according to the
rules in (19), send to the skin the object YES. On the other hand, if at the
end of the checking stage there are no internal membranes, then the object NO
appears in the skin following the rules in (20).

In the last step of the computation, the rules in (21) send out the answer to
the environment. Note that the object NO appears a step later than the object
Y ES in order to send out the right answer.

662 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

6 Required Resources

The presented family of recognizer P systems solving the Bin Packing problem is
polynomially uniform by Turing machines. It can be observed that the definition
of the family is done in a recursive manner, starting from a given instance, in
particular from the constants n, b, and ¢. Furthermore the required resources to
build an element of the family are:

— Size of the alphabet: 4n?b — 8nb — 4n? — 6n + 8¢ + 28 € O(max{n, b, c}?).
— Number of membranes: 2 € O(1).
— My + Mz =c+1€O(c).

— Sum of the rules’ lengths: 28n%b + 115nb — 28n? — 63n + 140c + 404 €
O(max{n, b, c}?).

Note that the instance u = (n, (w1,...,wn),b,c) is introduced in the initial
configuration as an input multiset, that is, encoded in an unary representation,
and thus we have |u| € O(n + w1 + -+ + wp).

The number of steps in each stage are the following:

1. First stage: 1 step.

2. For each bin from 1 to b — 1:

— Generation and calculation stages: 2n + 1 steps.

Transition to the checking stage: 2 steps.

Checking stage: 2¢ + 1 steps.
— Transition to the next bin: 3 steps.
3. For the bin number b: 2¢ + 8 steps.

4. In the output stage: 1 step.

Therefore, the overall number of steps is: 2nb+ 2bc —2n +7b € O(max{n, b, c}?).
From this analysis we obtain the following results:

1. BINPACKING € PMC 4 0/.

2. NP C PMC .

Proof. Tt suffices to make the following observations: the Bin Packing prob-
lem is NP —complete, BINPACKING € PMC 4 and the class PMC 4 is
closed under polynomial-time reduction.

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 663

This last result can be extended, if we notice that the class PMC 4 is
closed under complement.

3. NP Uco — NP C PMC .

7 A CLIPS Session forn =b=c =2

In this section we present a session with the CLIPS simulator presented in
[Pérez and Romero 2004] for an instance of the Bin Packing problem, namely,
for u =(2,(1,2),2,2).

CLIPS (V6.10 07/01/98)

CLIPS> (load "SIMULATOR4.clp")
CLIPS> (reset)

CLIPS> (run)

Write the path and the file where the P-system is written:
/home/Fran/binpacking.clp

3k 3k 3k ok ok 3k 3k 3k %k ok ok 3k 3k %k %k %k 3k 3k %k %k ok 3k %k %k %k %k %k %k %k *k *k

* P-SYSTEM SUCESSFULLY LOADED *
ek ok o ok ok Kok ok o ok KoK ok o o o KoK ok ok o o Kok Kok ok

Write the value of the parameter n : 2
Write the value of the parameter c : 2
Write the value of the parameter b : 2

Write the input multiset following the instructions given above:
rl1,s1,r2,s2,s2

Configuration number: 0
[environment [multiset]]
[skin
[children 2]
[label 1] [polarity 0]
[multiset , ,]1]
[membrane
[number 2] [children] [father 1]
[label 2] [polarity O]
[multiset , g0 ,D,D, r1,s1,r2,s2,s2,]]

Configuration number: 1

[environment [multiset]]

664 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

[skin
[children 2]
[label 1] [polarity O]
[multiset , ,]1]

[membrane
[number 2] [children] [father 1]
[label 2] [polarity 0]
[multiset , g1 ,D,D,z111,e111,2z122,
el122,e122,]1]

The initial configuration and the first step of the computation are illustrated
above.

Next, the generation stage takes place. In the first configuration of this stage
it can be seen how it works. The system produces two membranes, one where
the item number 1 is placed in the first bin and another one where the item
number 1 is left out of the first bin.

Configuration number: 2
[environment [multiset]]

[skin
[children 3 4]
[label 1] [polarity O]
[multiset , ,]1]

[membrane
[number 4] [children] [father 1]
[label 2] [polarity 0]
[multiset , g2 , D, D,
z1-11,e101,2z112,e112,e112,]]

[membrane
[number 3] [children] [father 1]
[label 2] [polarity +]
[multiset , g2 , D, D

z

E z s
el101, 112 ,e112,e112,]]

The checking stage begins when the objects g5 and chy appear in the inter-
nal membranes. In our example, in this moment the system has four internal
membranes representing every subset of the set of two items.

Configuration number: 5
[environment [multiset 1]

[skin
[children 7 8 5 6]
[label 1] [polarity 0]
[multiset , , # ,1]

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 665

[membrane
[number 8] [children] [father 1]
[label 2] [polarity O]
[multiset , g5 , ch 0O ,D , D, w,
z1-12,e1-12,e1-12,]]

[membrane
[number 5] [children] [father 1]
[label 2] [polarity 0]
[multiset , g5 , ch O, D, D,
z1-11,e1-11,w, w,]]

[membrane
[number 6] [children] [father 1]
[label 2] [polarity O]
[multiset , g5 , ch 0 ,D , D,
z1-11,e1-11,2z1-12,e1-12,e1-12,]]

[membrane
[number 7] [children] [father 1]
[label 2] [polarity 0]
[multiset , g5 , ch 0 ,D,D,w,w, w,]]

The checking stage ends when the objects chs, G, and 2y appear in the
internal membranes. Here we can see that only the subsets associated with three
of the four internal membranes satisfy the condition that their weights do not
exceed the capacity of the bins. Therefore, the membrane number 7 will be
dissolved.

Configuration number: 11
[environment [multiset]]

[skin
[children 7 8 5 6]
[label 1] [polarity O]
[multiset , # , # ,1]

[membrane
[number 8] [children] [father 1]
[label 2] [polarity 0]
[multiset , ch 5, G, z 0, D- , D- ,
Z122,E122,E122,]]

[membrane
[number 6] [children] [father 1]
[label 2] [polarity O]
[multiset , ch 5, G, =z0, D-, D~ , D- ,
Z111,E111,2Z2122,E122,E122,]1]

[membrane
[number 5] [children] [father 1]
[label 2] [polarity -]
[multiset , ch 56 , G, z0 ,D- ,D-,Z111,E111,]]

666 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

[membrane
[number 7] [children] [father 1]
[label 2] [polarity -]
[multiset , ch 5 , G, z0, D- , D- , W ,1]

There is no generation stage for the last bin, because all the remaining items
are introduced in this bin. The checking stage for the last bin starts when the
object Chgy appears in the internal membranes.

Configuration number: 16
[environment [multiset]]

[skin
[children 8 5 6]
[label 1] [polarity O]
[multiset , n1 , n1, n1,]]

[membrane
[number 5] [children] [father 1]
[label 2] [polarity -]
[multiset , Ch O , yO ,D-, D", D-, D, W,]]

[membrane
[number 6] [children] [father 1]
[label 2] [polarity -]
[multiset , Ch O, yO ,D-,D~,D-,D" , W, W, W,]]

[membrane
[number 8] [children] [father 1]
[label 2] [polarity -]
[multiset , Ch O , y 0O ,D-, D~ ,D-,D , W, Ww,l]

At the end of the checking stage for the last bin, we can see that there are
only two possible solutions to this instance of the Bin Packing problems codified
in the membranes number 5 and 8.

Configuration number: 21
[environment [multiset 1]

[skin
[children 8 5 6]
[label 1] [polarity O]
[multiset , n 6 , n 6 , n 6 ,]1]

[membrane
[number 5] [children] [father 1]
[label 2] [polarity 0]
[multiset , Ch 5 , y 5, D- , D- ,1]

[membrane

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 667

[number 6] [children] [father 1]
[label 2] [polarity -]
[multiset , Ch 5 , y 5, D-, D- , W ,1]

[membrane
[number 8] [children] [father 1]
[label 2] [polarity -]
[multiset , Ch 5 , y 5, D- , D- ,1]

In the next three steps, the system sends out the answer to the environment.
Configuration number: 23
[environment [multiset]]

[skin
[children 8 5]
[label 1] [polarity O]
[multiset , n 8, ... , # ,]1]

[membrane
[number 8] [children] [father 1]
[label 2] [polarity +]
[multiset , y 7 , D, D ,]1]

[membrane
[number 5] [children] [father 1]
[label 2] [polarity +]
[multiset , y 7 , D, D ,1]

Configuration number: 24
[environment [multiset 1]

[skin
[children 8 5]
[label 1] [polarity 0]
[multiset , n 9, ... , YES , YES ,]1]

[membrane
[number 5] [children] [father 1]
[label 2] [polarity +]
[multiset , D , D ,1]

[membrane
[number 8] [children] [father 1]
[label 2] [polarity +]
[multiset , D , D ,1]
Configuration number: 25

[environment [multiset , YES ,]]

[skin
[children 8 5]

668 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

[label 1] [polarity +]
[multiset , NO , ... , YES ,]1]

[membrane
[number 5] [children] [father 1]
[label 2] [polarity +]
[multiset , D , D ,1]

[membrane
[number 8] [children] [father 1]
[label 2] [polarity +]
[multiset , D , D ,1]

The system has reached a halting configuration in the step number 25
and the element YES has been sent out to the environment.

8 Conclusions

In this paper we have presented an effective solution for the Bin Packing prob-
lem using a family of recognizer P systems with active membranes. This has
been done in the framework of complexity classes in cellular computing with
membranes.

The design presented here is very similar to the solutions to numerical NP-
complete problems studied in [Pérez and Riscos 2004], [Pérez and Riscos 2002]
and [Gutiérrez et al. 2004]. The strong similarities of the solutions to these prob-
lems show that the idea of a cellular programming language is possible, indicating
some “subroutines” that can be used in a variety of situations and therefore could
be useful for addressing new problems in the future. As an example of the use-
fulness of the subroutines outlined in [Gutiérrez et al. 2004], let us see how the
design of the solutions for the Bin Packing would look like:

BINPACKING
fori=1,...,b—1do
gen — subsets(n;)
cale — weight(n;)

rename

check — weight

marker — leq

counter(n)

clean — dissolve
end for.

calc — weight(ny)

Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ... 669

rename
check — weight
marker — leq
counter(n)
clean — dissolve
detector

answer

The CLIPS simulator for P systems presented in [Pérez and Romero 2004] is
a very useful tool that has helped to debug the design and to understand better
how the P systems from the family IT work.

Acknowledgement

This work is supported by the Ministerio de Ciencia y Tecnologia of Spain, by
the Plan Nacional de I+D+I (2000-2003) (TIC2002-04220-C03-01), cofinanced
by FEDER funds, and, in the case of the second author, by a FPI fellowship
from the University of Seville.

References

[CLIPS web] CLIPS Web Page: http://www.ghg.net/clips/CLIPS.html

[Cordén et al. 2004] Cordén-Franco A., Gutiérrez-Naranjo M.A., Pérez-Jiménez M.J.,
Sancho-Caparrini F.: “A Prolog simulator for deterministic P systems with active
membranes”; New Generation Computing, in press

[Gutiérrez et al. 2004] Gutiérrez-Naranjo M.A., Pérez-Jiménez M.J., Riscos-Ninez A.:
“Towards a programming language in cellular computing”; 11th Workshop on
Logic, Language, Information and Computation (WoLLIC’2004), July 19-22, 2004,
Campus de Univ. Paris 12, Paris, France

[Pdun 2000] Piun Gh.: “Computing with membranes”; Journal of Computer and Sys-
tems Sciences, 61, 1 (2000), 108-143

[Pdun et al. 2000] Paun Gh., Rozenberg G., Salomaa A.: “Membrane computing with
external output”; Fundamenta Informaticae, 41, 3 (2000), 313-340

[Piun 2002] Paun Gh.: “Membrane Computing. An Introduction”; Springer, Berlin
(2002)

[Piun and Rozenberg 2002] Paun Gh., Rozenberg G.: “A guide to membrane comput-
ing”; Theoretical Computer Science, 287 (2002), 73-100

[Pérez et al. 2002] Pérez-Jiménez M.J., Romero-Jiménez A., Sancho-Caparrini F.:
“Teora de la complejidad en modelos de computacion celular con membranas”;
Editorial Kronos, 2002

[Pérez et al. 2003a] Pérez-Jiménez M.J., Romero-Jiménez A., Sancho-Caparrini F.:
“Solving VALIDITY problem by active membranes with input”; “Proceedings of
the Brainstorming Week on Membrane Computing” (M. Cavaliere, C. Martin-Vide,
Gh. Paun, eds.), Report GRLMC 26/03, University of Tarragona (2003), 279-290

[Pérez et al. 2003b] Pérez-Jiménez M.J., Romero-Jiménez A., Sancho-Caparrini F.: “A
polynomial complexity class in P systems using membrane division”; “Proceedings
of the 5th Workshop on Descriptional Complexity of Formal Systems” (E. Csuhayj-
Varji, C. Kintala, D. Wotschke, Gy. Vaszyl, eds.), Budapest (2003), 284-294

670 Perez-Jimenez M.J., Romero-Campero F.J.: An Efficient Family of P Systems ...

[Pérez and Romero 2004] Pérez-Jiménez M.J., Romero-Campero F.J.: “A CLIPS Sim-
ulator for Recognizer P Systems with Active Membranes”; “Proceedings of the
Second Brainstorming Week on Membrane Computing” (Gh. Pdun, A. Romero,
A. Riscos, F. Sancho-Caparrini, eds.), Report 01/04, Research Group on Natural
Computing, University of Seville (2004), 387-413

[Pérez and Riscos 2002] Pérez-Jiménez M.J., Riscos-Nifez,, A.: “A linear-time solu-
tion for the Knapsack problem using active membranes”; Lecture Notes in Com-
puter Science 2933, Springer, Berlin (2004), 140-152

[Pérez and Riscos 2004] Pérez-Jiménez M.J., Riscos-Nifez A.: “Solving the Subset-
Sum problem by active membranes”; New Generation Computing, in press

[P systems web] The P Systems Web Page: http://psytems.disco.unimib.it/

