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Galois representations and Galois groups over Q
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Marusia Rebolledo, Lara Thomas and Núria Vila

Abstract

In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More
precisely, let C/Q be a hyperelliptic genus n curve, let J(C) be the associated Jacobian
variety and let ρ̄ℓ : GQ → GSp(J(C)[ℓ]) be the Galois representation attached to the
ℓ-torsion of J(C). Assume that there exists a prime p such that J(C) has semistable
reduction with toric dimension 1 at p. We provide an algorithm to compute a list of
primes ℓ (if they exist) such that ρ̄ℓ is surjective. In particular we realize GSp

6
(Fℓ) as a

Galois group over Q for all primes ℓ ∈ [11, 500000].

Introduction

In this paper we present the work carried out at the conference Women in numbers - Europe,
(October 2013), by the working group Galois representations and Galois groups over Q. Our
aim was to study the image of Galois representations attached to the Jacobian varieties of
genus n curves, motivated by the applications to the inverse Galois problem over Q. In the
case of genus 2, there are several results in this direction (e.g. [LD98], [Die02a]), and we
wanted to explore the scope of these results.

Our result is a generalization of P. Le Duff’s work to the genus n setting, which allows
us to produce realizations of groups GSp6(Fℓ) as Galois groups over Q, for infinite families of
primes ℓ (with positive Dirichlet density). These realizations are obtained through the Galois
representations ρ̄ℓ attached to the ℓ-torsion points of the Jacobian of a genus 3 curve.

The first section of this paper contains a historical introduction to the inverse Galois prob-
lem and some results obtained in this direction by means of Galois representations associated
to geometric objects. Section 2 presents some theoretic tools, which we collect to prove a
result, valid for a class of abelian varieties A of dimension n, that yields primes ℓ for which
we can ensure surjectivity of the Galois representation attached to the ℓ-torsion of A (see
Theorem 2.10). In Section 3, we focus on hyperelliptic curves and explain the computations
that allow us to realize GSp6(Fℓ) as a Galois group over Q for all primes ℓ ∈ [11, 500000].
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1 Images of Galois representations and the inverse Galois

problem

One of the main objectives in algebraic number theory is to understand the absolute Galois
group of the rational field, GQ = Gal(Q/Q). We believe that we would get all arithmetic
information if we knew the structure of GQ. This is a huge group, but it is compact with
respect to the profinite topology. Two problems arise in a natural way: on the one hand, the
identification of the finite quotients of GQ, and on the other hand, the study of GQ via its
Galois representations.

The inverse Galois problem asks whether, for a given finite group G, there exists a Galois
extension L/Q with Galois group isomorphic to G. In other words, whether a finite group
G occurs as a quotient of GQ. As is well known, this is an open problem. The origin of this
question can be traced back to Hilbert. In 1892, he proved that the symmetric group Sn and
the alternating group An are Galois groups over Q, for all n. We also have an affirmative
answer to the inverse Galois problem for some other families of finite groups. For instance,
all finite solvable groups and all sporadic simple groups, except the Mathieu group M23, are
known to be Galois groups over Q.

A Galois representation is a continuous homomorphism

ρ : GQ → GLn(R),

where R is a topological ring. Examples for R are C, Z/nZ or Fq with the discrete topology,
and Qℓ with the ℓ-adic topology. Conjectures by Artin, Serre, Fontaine-Mazur and Langlands,
which have experienced significant progress in recent years, are connected with these Galois
representations.

Since GQ is compact, the image of ρ is finite when the topology of R is discrete. As a
consequence, images of Galois representations yield Galois realizations over Q of finite linear
groups

Gal(Q
ker ρ

/Q) ≃ ρ(GQ) ⊆ GLn(R).

This gives us an interesting connection between these two questions and provides us with
a strategy to address the inverse Galois problem.

Let us assume that ρ is an ℓ-adic Galois representation associated to some arithmetic-
geometric object. In this case, we have additional information on the ramification behavior,
like the characteristic polynomial of the image of the Frobenius elements at unramified primes
or the description of the image of the inertia group at the prime ℓ. This gives us some control
on the image of mod ℓ Galois representations in some cases and we can obtain, along the way,
families of linear groups over finite fields as Galois groups over Q.

More precisely, let X/Q be a smooth projective variety and let

ρℓ : GQ → GL(Hk
ét(XQ,Qℓ)),

be the ℓ-adic Galois representation on the k-th étale cohomology. We know that:
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• ρℓ is unramified away from ℓ and the primes of bad reduction for X,

• if p is a prime of good reduction and p 6= ℓ, the characteristic polynomial of ρℓ(Frobp)
has coefficients in Z, is independent of ℓ and its roots have absolute value pk/2.

Let us consider an attached residual Galois representation

σλ : GQ → GLn(Fℓr),

where λ is a prime in a suitable number field, dividing ℓ and r ≥ 1 an integer. To determine
the image of σλ, we usually need to know the classification of maximal subgroups of GLn(Fℓr),
as well as a description of the image of the inertia group at ℓ and the computation of the
characteristic polynomial of σλ(Frobp), for some prime of good reduction p 6= ℓ.

Let us summarize the known cases of realizations of finite linear groups as Galois groups
over Q, obtained via Galois representations.

In the case of 2-dimensional Galois representations attached to an elliptic curve E defined
over Q without complex multiplication, we know, by a celebrated result of Serre [Ser72], that
the associated residual Galois representation is surjective, for all but finitely many primes.
Moreover, it can be shown that if we take, for example, the elliptic curve E defined by the
Weierstrass equation Y 2 + Y = X3 −X, then the attached residual Galois representation is
surjective, for all primes ℓ. Thus we obtain that the group GL2(Fℓ) occurs as a Galois group
over Q, for all primes ℓ. Actually we have additional information in this case: the Galois
extension Q(E[ℓ])/Q is a Galois realization of GL2(Fℓ), and it is unramified away from 37
and ℓ, since E has conductor 37.

The image of 2-dimensional Galois representations, attached to classical modular forms
without complex multiplication, has been studied by Ribet [Rib75]. The image of the residual
Galois representations attached to a normalized cuspidal Hecke eigenform without complex
multiplication is as large as possible, for all but finitely many primes λ. This gives us that
the groups PSL2(Fℓr) or PGL2(Fℓr) can occur as Galois groups over Q. Moreover, we have
effective control of primes with large image for the mod ℓ Galois representation attached to
specific modular forms. This gives us Galois realizations over Q of the groups PSL2(Fℓr), r
even, and PGL2(Fℓr), r odd; 1 ≤ r ≤ 10, for explicit infinite families of primes ℓ, given by
congruence conditions on ℓ (cf. [RV95], [DV00]).

Recently, it has been proven that the groups PSL2(Fℓ) are Galois groups over Q for all
ℓ > 3, by considering the Galois representations attached to an explicit elliptic surface (see
[Zyw13]).

Results on generically large image of compatible systems of 3-dimensional Galois repre-
sentations associated to some smooth projective surfaces and to some cohomological modular
forms are obtained in [DV04]. The effective control of primes with large image for the resid-
ual 3-dimensional Galois representations attached to some explicit examples gives us that the
groups PSL3(Fℓ), PSU3(Fℓ), SL3(Fℓ), SU3(Fℓ) are Galois groups over Q, for explicit infinite
families of primes ℓ (cf. [DV04]).

In the case of 4-dimensional Galois representations, we have results on large image for
compatible systems of Galois representations attached to abelian surfaces A defined over Q
such that EndQ(A) = Z, to Siegel modular forms of genus two and to some pure motives (cf.
[LD98], [DKR01], [Die02b], [DV11]). The effective control of primes with large image in some
explicit cases gives us that the groups PGSp4(Fℓ), for all ℓ > 3; and the groups PGSp4(Fℓ3),
PSp4(Fℓ2), PSL4(Fℓ) and PSU4(Fℓ), for explicit infinite families of primes ℓ, are Galois groups
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over Q (cf. [AdV11], [DKR01], [Die02b], [DV08]).

In the next section we consider the image of residual Galois representations attached to
principally polarized abelian varieties of dimension n, which provides Galois realizations over
Q of the general symplectic group GSp2n(Fℓ), for almost all ℓ.

Finally, we remark that, using these methods, we can expect to obtain realizations of the
groups PSL2(Fℓr), PGL2(Fℓr), PGSp2n(Fℓr) and PSp2n(Fℓr) as Galois groups over Q. In fact,
by considering compatible systems of Galois representations attached to certain automorphic
forms, we know (cf. [Wie08], [DW11], [KLS08], [AdDSW14]) that these groups are Galois
groups over Q, for infinitely many integers r and infinitely many primes ℓ. More precisely, we
have:

• “Vertical direction”: For every fixed prime ℓ, there are infinitely many positive inte-
gers r, such that PSL2(Fℓr) can be realized as a Galois group over Q. Moreover, for
each n ≥ 2, there are infinitely many positive integers r, such that either PGSp2n(Fℓr)
or PSp2n(Fℓr) are Galois groups over Q (cf. [Wie08], [KLS08]).

• “Horizontal direction”: For every fixed r, there is a positive density set of primes ℓ, such
that PSL2(Fℓr) can be realized as a Galois group over Q. Moreover, for each n ≥ 2,
there is a set of primes ℓ of positive density for which either PGSp2n(Fℓr) or PSp2n(Fℓr)
are Galois groups over Q (cf. [DW11], [AdDSW14]).

2 Galois representations attached to abelian varieties

2.1 The image of the ℓ-torsion Galois representation

Let A be an abelian variety of dimension n defined over Q. The set of Q-points of A admits a
group structure. Let ℓ be a prime number. Then the subgroup of the Q-points of A consisting
of all ℓ-torsion points, which is denoted by A[ℓ], is isomorphic to (Z/ℓZ)2n and it is endowed
with a natural action of GQ. Therefore, it gives rise to a (continuous) Galois representation

ρA,ℓ : GQ → GL(A[ℓ]) ≃ GL2n(Fℓ).

As explained in Section 1, we obtain a realization of the image of ρA,ℓ as a Galois group
over Q.

In this section, we will consider principally polarized abelian varieties, i.e. we will consider
pairs (A,λ), where A is an abelian variety (defined over Q) and λ : A → A∨ is an isogeny of
degree 1 (that is, an isomorphism between A and the dual abelian variety A∨), induced from
an ample divisor on A. Not every abelian variety A admits a principal polarization λ and,
when it does, it causes certain restrictions on the image of ρA,ℓ.

Let V be a vector space of dimension 2n, which is defined over Fℓ and endowed with a
symplectic (i.e. skew-symmetric, nondegenerate) pairing 〈·, ·〉 : V × V → Fℓ. We consider the
symplectic group

Sp(V, 〈·, ·〉) := {M ∈ GL(V ) : ∀v1, v2 ∈ V, 〈Mv1,Mv2〉 = 〈v1, v2〉}

and the general symplectic group

GSp(V, 〈·, ·〉) := {M ∈ GL(V ) : ∃m ∈ F×
ℓ such that ∀v1, v2 ∈ V, 〈Mv1,Mv2〉 = m〈v1, v2〉}.
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When A is a principally polarized abelian variety, the image of ρA,ℓ lies inside the general
symplectic group of A[ℓ] with respect to a certain symplectic pairing. More precisely, denote
by µℓ(Q) the group of ℓ-th roots of unity inside a fixed algebraic closure Q of Q. Recall that
the Weil pairing eℓ is a perfect pairing

eℓ : A[ℓ]×A∨[ℓ] → µℓ(Q).

If (A,λ) is a principally polarized abelian variety, we can consider the pairing

eℓ,λ : A[ℓ]×A[ℓ] → µℓ(Q)

(P,Q) 7→ eℓ(P, λ(Q))

which is a non-degenerate skew-symmetric pairing (i.e. a symplectic pairing), compatible with
the action of GQ. This last condition means that, for any σ ∈ GQ,

(eℓ,λ(P,Q))σ = eℓ,λ(P
σ , Qσ).

Note that GQ acts on µℓ(Q) via the mod ℓ cyclotomic character χℓ, so that (eℓ,λ(P,Q))σ =
(eℓ,λ(P,Q))χℓ(σ). If we fix a primitive ℓ-th root of unity ζℓ, we may write the pairing eℓ,λ(·, ·)
additively, i.e. we define

〈·, ·〉 : A[ℓ]×A[ℓ] → Fℓ

as 〈P,Q〉 := a such that ζa = eℓ,λ(P,Q).
In other words, we have a symplectic pairing on the Fℓ-vector space A[ℓ] such that, for all

σ ∈ GQ, the linear map ρ(σ) : A[ℓ] → A[ℓ] satisfies that there exists a scalar, namely χℓ(σ),
such that

〈ρ(σ)(P ), ρ(σ)(Q)〉 = χℓ(σ)〈P,Q〉. (1)

That is to say, the image of the representation ρA,ℓ is contained in the general symplectic
group GSp(A[ℓ], 〈·, ·〉) ≃ GSp2n(Fℓ). Therefore, below we will consider ρA,ℓ as a map into
GSp(A[ℓ], 〈·, ·〉) ≃ GSp2n(Fℓ) and we will say that it is surjective if ImρA,ℓ = GSp(A[ℓ]) ≃
GSp2n(Fℓ).

The determination of the images of the Galois representations ρA,ℓ attached to the ℓ-
torsion of abelian varieties is a topic that has received a lot of attention. A remarkable result
by Serre quoted in [Ser00, n. 136, Theorem 3] is:

Theorem 2.1 (Serre). Let A be a principally polarized abelian variety of dimension n, defined
over a number field K. Assume that n = 2, 6 or n is odd and furthermore assume that
EndK(A) = Z. Then there exists a bound BA,K such that, for all ℓ > BA,K ,

ImρA,ℓ = GSp(A[ℓ]) ≃ GSp2n(Fℓ).

For arbitrary dimension, the result is not true (see e.g. [Mum69] for an example in dimen-
sion 4). However, one eventually obtains symplectic image by making some extra assumptions.
For example, there is the following result of C. Hall (cf. [Hal11]).

Theorem 2.2 (Hall). Let A be a principally polarized abelian variety of dimension n defined
over a number field K, such that EndK(A) = Z, and satisfying the following property:

(T) There is a finite extension L/K so that the Néron model of A/L over the ring
of integers of L has a semistable fiber with toric dimension 1.
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Then there is an (explicit) finite constant BA,K such that, for all ℓ ≥ BA,K ,

ImρA,ℓ = GSp(A[ℓ]) ≃ GSp2n(Fℓ).

Remark 2.3. In the case when A = J(C) is the Jacobian of a hyperelliptic curve C of genus
n, say defined by an equation Y 2 = f(X) with f(X) ∈ K[X] a polynomial of degree 2n + 1,
Hall gives a sufficient condition for Condition (T) to be satisfied at a prime p of the ring of
integers of K; namely, the coefficients of f(X) should have p-adic valuation greater than or
equal to zero and the reduction of f(X) mod p (which is well-defined) should have one double
zero in a fixed algebraic closure of the residue field, while all the other zeroes are simple.

Applying the result of Hall with K = Q yields the following partial answer to the inverse
Galois problem:

Corollary 2.4. Let n ∈ N be any natural number. Then for all sufficiently large primes ℓ,
the group GSp2n(Fℓ) can be realized as a Galois group over Q.

Remark 2.5. Several people, including the anonymous referee, pointed us to the following
fact: if we consider a family of genus n hyperelliptic curves Ct defined over Q(t), with big
monodromy at ℓ, then Hilbert’s Irreducibility Theorem provides us with infinitely many spe-
cializations t = t0 ∈ Q such that the Jacobian Jt0 of the corresponding curve Ct0 satisfies that
ImρJt0 ,ℓ ≃ GSp2n(Fℓ). Such families of curves exist for any odd ℓ (see e.g. [Hal08] or [Zar14]).
In particular, for any n ∈ N and any odd ℓ, the Inverse Galois problem has an affirmative
answer for the group GSp2n(Fℓ). Although ensuring the existence of the desired curve, this
fact does not tell us how to find such a curve explicitly.

In the case of curves of genus 2, Le Duff has studied the image of the Galois representations
attached to the ℓ-torsion of J(C), when Condition (T) in Theorem 2.2 is satisfied. The main
result in [LD98] is the following:

Theorem 2.6 (Le Duff). Let C be a genus 2 curve defined over Q, with bad reduction of
type (II) or (IV) according to the notation in [Liu93] at a prime p. Let Φp be the group of
connected components of the special fiber of the Néron model of J(C) at p. For each prime ℓ
and each prime q of good reduction of C, let Pq,ℓ(X) = X4 + aX3 + bX2 + qaX + q2 ∈ Fℓ[X]
be the characteristic polynomial of the image under ρJ(C),ℓ of the Frobenius element at q and

let Qq,ℓ(X) = X2 + aX + b− 2q ∈ Fℓ[X], with discriminants ∆P and ∆Q respectively.
Then for all primes ℓ not dividing 2pq|Φp| and such that ∆P and ∆Q are not squares in

Fℓ, the image of ρJ(C),ℓ coincides with GSp4(Fℓ).

Using this result, he obtains a realization of GSp4(Fℓ) as Galois group over Q for all odd
primes ℓ smaller than 500000.

2.2 Explicit surjectivity result

A key point in Hall’s result is the fact that the image under ρA,ℓ of the inertia subgroup at
the place p of L which provides the semistable fiber with toric dimension 1 is generated by a
nontrivial transvection (whenever ℓ does not divide p nor the cardinality of the group Φp of
connected components of the special fiber of the Néron model at p). A detailed proof of this
fact can be found in Proposition 1.3 of [LD98].
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We expand on this point. Given a finite-dimensional vector space V over Fℓ, endowed
with a symplectic pairing 〈·, ·〉 : V × V → Fℓ, a transvection is an element T ∈ GSp(V, 〈·, ·〉)
such that there exists a hyperplane H ⊂ V satisfying that the restriction T |H is the identity
on H. We say that it is a nontrivial transvection if T is not the identity1. It turns out that
the subgroups of GSp(V, 〈·, ·〉) that contain a nontrivial transvection can be classified into
three categories as follows (for a proof, see e.g. [AdDW14, Theorem 1.1]):

Theorem 2.7. Let ℓ ≥ 5 be a prime, let V be a finite-dimensional vector space over Fℓ,
endowed with a symplectic pairing 〈·, ·〉 : V ×V → Fℓ and let G ⊂ GSp(V, 〈·, ·〉) be a subgroup
that contains a nontrivial transvection. Then one of the following holds:

1. G is reducible.

2. There exists a proper decomposition V =
⊕

i∈I Vi of V into equidimensional non-
singular symplectic subspaces Vi such that, for each g ∈ G and each i ∈ I, there exists
some j ∈ I with g(Vi) ⊆ Vj and such that the resulting action of G on I is transitive.

3. G contains Sp(V, 〈·, ·〉).

Remark 2.8. Assume that V is the ℓ-torsion group of a principally polarized abelian variety A
defined over Q and 〈·, ·〉 is the symplectic pairing coming from the Weil pairing. If G = ImρA,ℓ

satisfies the third condition in Theorem 2.7, then G = GSp(V, 〈·, ·〉). Indeed, we have the
following exact sequence

1 → Sp(V, 〈·, ·〉) → GSp(V, 〈·, ·〉) → F×
ℓ → 1,

where the map m : GSp(A[ℓ], 〈·, ·〉) → F×
ℓ associates to M the scalar a satisfying that, for all

u, v ∈ V , 〈Mu,Mv〉 = a〈u, v〉. By Equation (1), the restriction of m to Im(ρA,ℓ) coincides
with the mod ℓ cyclotomic character χℓ. We can easily conclude the result using that χℓ is
surjective onto F×

ℓ .

Even in the favourable case when we know that Im(ρA,ℓ) contains a nontrivial transvection,
we still need to distinguish between the three cases in Theorem 2.7. In this paper, we will
make use of the following consequence of Theorem 2.7 (cf. Corollary 2.2 of [AdK13]).

Corollary 2.9. Let ℓ ≥ 5 be a prime, let V be a finite-dimensional vector space over Fℓ,
endowed with a symplectic pairing 〈·, ·〉 : V × V → Fℓ and let G ⊂ GSp(V, 〈·, ·〉) be a sub-
group containing a nontrivial transvection and an element whose characteristic polynomial is
irreducible and which has nonzero trace. Then G contains Sp(V, 〈·, ·〉).

In order to apply this corollary in our situation, we need some more information on the
image of ρA,ℓ. We will obtain this by looking at the images of the Frobenius elements Frobq
for primes q of good reduction of A.

More generally, let A be an abelian variety defined over a field K and assume that ℓ
is a prime different from the characteristic of K. Any endomorphism α of A induces an
endomorphism of A[ℓ], in such a way that the characteristic polynomial of α (which is a
monic polynomial in Z[X], see e.g. §3, Chapter 3 of [Lan59] for its definition) coincides, after
reduction mod ℓ, with the characteristic polynomial of the corresponding endomorphism

1We adopt the convention that identity is a transvection so that the set of transvections for a given hyper-

plane H is a group.
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of A[ℓ]. In the case when K is a finite field (say of cardinality q), we can consider the
Frobenius endomorphism φq ∈ EndK(A), induced by the action of the Frobenius element
Frobq ∈ Gal(K/K). Then the reduction mod ℓ of the characteristic polynomial of φq coincides
with the characteristic polynomial of ρA,ℓ(Frobq). This will turn out to be particularly useful
in the case when A = J(C) is the Jacobian of a curve C of genus n defined over K, since
one can determine the characteristic polynomial of ρJ(C),ℓ(Frobq) by counting the Fqr -valued
points of C, for r = 1, . . . , n.

As a consequence, we can state the following result, which will be used in the next section.

Theorem 2.10. Let A be a principally polarized n-dimensional abelian variety defined over
Q. Assume that there exists a prime p such that the following condition holds:

(Tp) The special fiber of the Néron model of A over Qp is semistable with toric
dimension 1.

Denote by Φp the group of connected components of the special fiber of the Néron model at p.
Let q be a prime of good reduction of A, let Aq be the special fiber of the Néron model of A
over Qq and let Pq(X) = X2n + aX2n−1 + · · ·+ qn ∈ Z[X] be the characteristic polynomial of
the Frobenius endomorphism acting on Aq.

Then for all primes ℓ which do not divide 6pq|Φp|a and are such that the reduction of
Pq(X) mod ℓ is irreducible in Fℓ, the image of ρA,ℓ coincides with GSp2n(Fℓ).

Remark 2.11. The condition that ℓ does not divide a corresponds to the Frobenius element
having non-zero trace modulo ℓ. Note that the theorem is vacuous when a = 0.

3 Galois realization of GSp2n(Fℓ) from a hyperelliptic curve of

genus n

Let C be a hyperelliptic curve of genus n over Q, defined by an equation Y 2 = f(X) where
f(X) ∈ Q[X] is a polynomial of degree 2n + 1. Let A = J(C) be its Jacobian variety.
We assume that A satisfies condition (Tp) for some prime p. In this section we present an
algorithm, based on Theorem 2.10, which computes a finite set of prime numbers ℓ for which
the Galois representation ρA,ℓ has image GSp2n(Fℓ). We apply this procedure to an example
of a genus 3 a curve using a computer algebra system.

3.1 Strategy

First, to apply Theorem 2.10, we restrict ourselves to hyperelliptic curves of genus n whose
Jacobian varieties will satisfy Condition (Tp) for some p. Namely, we fix a prime number p and
then choose f(X) ∈ Z[X] monic of degree 2n + 1 such that both of the following conditions
hold:

1. The polynomial f(X) only has simple roots over Q, so that Y 2 = f(X) is the equation
of an hyperelliptic curve C over Q.

2. All coefficients of f(X) have p-adic valuation greater than or equal to zero, and the
reduction f(X) mod p has one double zero in Fp, and its other zeroes are simple. This
ensures that A = J(C) satisfies Condition (Tp) (see Remark 2.3).
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Any prime of good reduction for C is also a prime of good reduction for its Jacobian A.
Primes of good reduction for the hyperelliptic curve can be computed using the discriminant
of Weierstrass equations for C (see [Loc94]). In our case, it turns out that any prime not
dividing the discriminant of f(X) is of good reduction for C, hence for A.

We take such a prime number q of good reduction for A. Recall that Pq(X) ∈ Z[X] is the
characteristic polynomial of the Frobenius endomorphism acting on the fiber Aq.

Let Sq denote the set of prime numbers ℓ satisfying the following conditions:

(i) ℓ divides neither 6pq|Φp| nor the coefficient of X2n−1 in Pq(X),

(ii) the reduction of Pq(X) modulo ℓ is irreducible in Fℓ.

Note that if the coefficient of X2n−1 in Pq(X) is nonzero, condition (i) rules out only finitely
many prime numbers ℓ, whereas if it vanishes, condition (i) rules out all prime numbers ℓ.
By Theorem 2.10, for each ℓ ∈ Sq the representation ρA,ℓ is surjective with image GSp2n(Fℓ).
Also, primes in Sq can be computed effectively up to a given fixed bound.

Since we want the polynomial Pq(X) (of degree 2n) to be irreducible modulo ℓ, its Galois
group G over Q must be a transitive subgroup of S2n with a 2n-cycle. Therefore, by an
application of a weaker version of the Chebotarev density theorem due to Frobenius ([SL96],
“Theorem of Frobenius”, p. 32), the density of Sq is

#{σ ∈ G ⊂ S2n : σ is a 2n-cycle}

#G
.

This estimate is far from what Theorem 2.2 provides us, namely that the density of ℓ’s with
Im(ρA,ℓ) = GSp2n(Fℓ) is 1.

This leads us to discuss the role of the prime q. First of all, we can see that

⋃

q

Sq = {ℓ prime: ℓ ∤ 6p|Φp| and ρA,ℓ surjective},

where the union is taken over all primes q of good reduction for A. Note that the inclusion ⊂
follows directly from Theorem 2.10. To show the other inclusion ⊃, suppose now that ℓ ∤ 6p|Φp|
and that the representation at ℓ is surjective. Its image GSp2n(Fℓ) contains an element with
irreducible characteristic polynomial and nonzero trace (see for instance Proposition A.2 of
[AdK13]). This element defines a conjugacy class C ⊂ GSp2n(Fℓ) and the Chebotarev density
theorem ensures that there exists q such that ρA,ℓ(Frobq) ∈ C, hence ℓ ∈ Sq.

Moreover, if, for some fixed ℓ, the events “ℓ belongs to Sq” are independent as q varies,
the density of primes ℓ for which ρA,ℓ is surjective will increase when we take several different
primes q. A sufficient condition for this density to tend to 1 is that there exists an infinite
family of primes q for which the splitting fields of Pq(X) are pairwise linearly disjoint over Q.

Therefore, it seems reasonable to expect that computing the sets Sq for several values of
q increases the density of primes ℓ for which we know the surjectivity of ρA,ℓ. This is what
we observe numerically in the next example.

3.2 A numerical example in genus 3

We consider the hyperelliptic curve C of genus n = 3 over Q defined by Y 2 = f(X), where

f(X) = X2(X − 1)(X + 1)(X − 2)(X + 2)(X − 3) + 7(X − 28) ∈ Z[X].
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This is a Weierstrass equation, which is minimal at all primes ℓ different from 2 (see [Loc94,
Lemma 2.3]), with discriminant −212 ·7·73·1069421·11735871491. Thus, C has good reduction
away from the primes appearing in this factorization. Clearly, p = 7 is a prime for which
the reduction of f(X) modulo 7 has one double zero in F7 and otherwise only simple zeroes.
Therefore, its Jacobian J(C) satisfies Condition (T7). As we computed with Magma, the
order of the component group Φ7 is 2. Recall that Pq(X) coincides with the characteristic
polynomial of the Frobenius endomorphism of the reduced curve C modulo q over Fq.

Our method provides no significant result for q ∈ {3, 5} because for q = 3 the characteristic
polynomial Pq(X) is not irreducible in Z[X] and for q = 5 it has zero trace in Z. So in this
example, we first take q = 11. The curve has 11, 135 and 1247 points over F11, F112 and F113 ,
respectively. The characteristic polynomial P11(X) is

P11(X) = X6 −X5 + 7X4 − 35X3 + 77X2 − 121X + 1331

and it is irreducible over Q. Its Galois group G has order 48 and is isomorphic to the wreath
product S2 ≀ S3. This group is the direct product of 3 copies of S2, on which S3 acts by
permutation (see [JK81, Chapter 4]): An element of S2 ≀S3 can be written as ((a1, a2, a3), σ),
where (a1, a2, a3) denotes an element of the direct product S2 × S2 × S2 and σ an element of
S3. The group law is defined as follows:

((a1, a2, a3), σ)((a
′
1, a

′
2, a

′
3), σ

′) = ((a1, a2, a3)(a
′
1, a

′
2, a

′
3)

σ, σσ′),

where (a′1, a
′
2, a

′
3)

σ = (a′σ(1), a
′
σ(2), a

′
σ(3)). One can also view the wreath product S2 ≀ S3 as

the centralizer of (12)(34)(56) in S6, through an embedding ψ : S2 ≀ S3 → S6 whose image is
isomorphic to the so-called Weyl group of type B3 ([JK81, 4.1.18 and 4.1.33]). More precisely,
under ψ, the image of an element ((a1, a2, a3), σ) ∈ S2 ≀ S3 is the permutation of S6 that acts
on {1, 2, ..., 6} as follows: it first permutes the elements of the sets E1 = {1, 2}, E2 = {3, 4}
and E3 = {5, 6} separately, according to a1, a2 and a3 respectively (identifying E2, E3 with
{1, 2} in an obvious way) and then permutes the pairs E1, E2, E3 according to the action of
σ on the indices. For example, denoting S2 = {id, τ}, the image under ψ of ((τ, id, id), (123))
is the 6-cycle (135246).

Let us now determine the elements of S2 ≀ S3 which map to 6-cycles in S6 through the
embedding ψ. For an element in S2 ≀S3 to be of order 6, it has to be of the form ((a1, a2, a3), γ)
with γ a 3-cycle in S3. Now, ψ sends an element ((a1, a2, a3), γ) where either one or three ai’s
are id, to a product of two disjoint 3-cycles in S6. So the elements of S2 ≀S3 which are 6-cycles
in S6 are among the eight elements ((id, id, τ), γ), ((id, τ, id), γ), ((τ, id, id), γ) and ((τ, τ, τ), γ)
with γ = (123) or γ = (132). Moreover, [JK81, Theorem 4.2.8] (see also [Gra08, Lemma 3.1]
or [Tay12]) ensures that these 8 elements are conjugate. Since ψ((τ, id, id), (123)) = (135246)
is a 6-cycle, we deduce that the 8 elements listed above are exactly the elements of S2 ≀ S3
which are 6-cycles in S6.

To conclude, the Galois group G, viewed as a subgroup of S6, contains exactly 8 elements
that are 6-cycles. Therefore, the density of S11 is 8/48 = 1/6.

We can compute Pq(X) using efficient algorithms available in Magma [BCP97] or Sage
[S+14], which are based on p-adic methods. We found that there are 6891 prime numbers
11 ≤ ℓ ≤ 500000 that belong to S11. For these ℓ, we know that the image of ρA,ℓ is GSp6(Fℓ),
so the groups GSp6(Fℓ) are realized as Galois groups arising from the ℓ-torsion of the Jacobian
of the hyperelliptic curve C. For instance, the first ten elements of S11 are

47, 71, 79, 83, 101, 113, 137, 251, 269, 271.
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Also, the proportion of prime numbers 11 ≤ ℓ ≤ 500000 in S11 is about 0.1659, which is quite
in accordance with the density obtained from the Chebotarev density theorem.

By looking at polynomials Pq(X) for several primes q of good reduction, we are able to
significantly improve the known proportion of primes ℓ, up to a given bound, for which the
Galois representation is surjective. Namely, we computed that

{ℓ prime, 11 ≤ ℓ ≤ 500000} ⊆
⋃

11≤q≤571

Sq.

As a consequence, for any prime 11 ≤ ℓ ≤ 500000, the group GSp6(Fℓ) is realized as a
Galois group arising from the ℓ-torsion of the Jacobian of the hyperelliptic curve C. This is
reminiscent of Le Duff’s numerical data for GSp4(Fl) (see Theorem 2.6).

Combining all of the above suggests that the single hyperelliptic curve C might provide a
positive answer to the inverse Galois problem for GSp6(Fℓ) for any prime ℓ ≥ 11.
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[DV04] Luis Dieulefait and Núria Vila. On the images of modular and geometric three-
dimensional Galois representations. Amer. J. Math., 126(2):335–361, 2004.
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[RV95] Amadeu Reverter and Núria Vila. Some projective linear groups over finite fields
as Galois groups over Q. In Recent developments in the inverse Galois problem
(Seattle, WA, 1993), volume 186 of Contemp. Math., pages 51–63. Amer. Math.
Soc., Providence, RI, 1995.

[S+14] William A. Stein et al. Sage Mathematics Software (Version 6.0). The Sage
Development Team, 2014. http://www.sagemath.org.

[Ser72] Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des courbes
elliptiques. Invent. Math., 15(4):259–331, 1972.

[Ser00] Jean-Pierre Serre. Œuvres. Collected papers. IV. Springer-Verlag, Berlin, 2000.
1985–1998.

[SL96] Peter Stevenhagen and Hendrik W. Jr. Lenstra. Chebotarëv and his density
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