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grL(An) ' k[x1; : : : ; xn; �1; : : : ; �l][Dl+1; : : : ;Dn]with relations: xixj = xjxi; xi�m = �mxi; xiDp = Dpxi � �ip; �mDp = Dp�mfor all 1 � i; j � n, 1 � m � l and l + 1 � p � n. The principal symbol of P is the element ofgrL(An), �L(P ) = XL(�;�)=ordL(P ) p��x���11 � � � ��ll D�l+1l+1 � � �D�nnLet us point out that in the commutative case, there is no condition of the type ei + fi � 0.Here, since �xiDi +Dixi = 1, we must require ordL(1) � ordL(xi) + ordL(Di).Let I be a non-zero left ideal of An and let grL(I) be the graded ideal associated withthe �ltration induced by FL� on I. Let �nally U denote the set of all linear form L for whichei+ fi � 0 for all 1 � i � n. The aim of this paper is to study, by using the theory of standardand Gr�obner bases, the stability of grL(I) when L varies in U .Let Y be the hypersurface of kn de�ned by x1 = 0. Given two non negative reals p; q, we de�nethe linear form Lp;q on R2n by Lp;q(�; �) = p:(Pni=1 �i) + q:(�1 � �1): this is an interpolationbetween the �ltration F by the order of operators (q = 0) and the V -�ltration of Malgrange-Kashiwara (p = 0). In [10], Y. Laurent proved, using 2-microdi�erential operators, that theradical ideal pgrLp;q(I) is not a (F; V )- homogeneous ideal for only a �nite set of rationalnumbers r = p=q (eventually empty), when p; q vary in R2+ (in [11] and [13], an analyticinterpretation of these numbers is given). C. Sabbah and F. Castro proved in [15] the sameresult by using a local 
attener. In [2] we obtained, using the theory of standard bases, aconstructive proof of this result. This allowed us to give an algorithm for the calculation ofthese numbers. So, it was natural to think about general �niteness results when L varies in U .Recall that the theory of Gr�obner bases (cf [5]) works very well in the Weyl algebra An (cf[6],[7] and [8]). However, when the coe�cients of the linear form L 2 U are negative, thedivision process in An can be in�nite. In [2], in order to avoid this di�culty, we worked inAn[t] by homogenizing with respect to the total order in a way inspired by [12]. However, thenon commutativity of An[t] causes some di�culty, since divisions by homogeneous elementsdo not produce necessarily homogeneous remainders. Although our algorithm (which consistsin rehomogenizing the remainders and iterating division) allows us the calculation of standardbases with respect to any L 2 U , it does not seem to be adapted to the question we are workingon. In [9], this di�culty is avoided in the following natural way: consider the graded k-algebraB, generated by xi;Di; i = 1; : : : ; n and t with homogeneous relations:[t; xi] = [t;Di] = [xi; xj] = [Di;Dj] = 0; [Di; xj] = �ijt2:This k-algebra coincides with the Rees algebra associated with the Bernstein �ltration on An.The homogenization process betweenAn and B verify the same properties as in the commutativecase, in particular the notion of the homogenized ideal h(I) of I is well de�ned. On the other2



hand, we can get the di�erent graded ideals grL(I) from calculations of the graded ideals ofh(I). Since the notion of reduced standard bases exists for ideals in B, then the natural wayin order to study our question is in adapting to the D{module case the theory of Gr�obner fandeveloped by T. Mora and L. Robbiano in [14].Let us summarize the structure of the paper: in Section 2 we recall some of the results of[9] related to the homogenization problem. We also prove that a standard basis w.r.t. theBernstein �ltration of an ideal I in An gives us a generating system of h(I) in B = An[t]. Insection 3, paragraph 3.2., we obtain �niteness results for the set of graded ideals grL(J) where Jis an homogeneous ideal of An[t]. The main tool we use here is the Hilbert function of J . Thisnotion has also been used by one of us [1] in order to prove similar results in the commutativecase. The results of paragraph 3.2. are then applied in order to prove that the set of gradedideals grL(I); L 2 U is �nite (paragraph 3.3.). Finally, in section 4, we study the repartitionof the graded ideals grL(h(I)), where L varies in U . We de�ne �rst the notion of privilegedexponent (or stairs) Exp�L(h(I)) of an ideal associated with a �xed well ordering on N1+2n (see3.3.). Our main result is then the following, which generalizes the results in the commutativecase as found in [1], [14] and [17]:Theorem 1.1 There exists a partition E of U into convex rational polyhedral cones, such thatfor all element � 2 E, grL(h(I)) and Exp�L(h(I)) do not depend on L 2 � (and the same istrue for grL(I)).Some results of this article has been used in [16].2 HomogenizationWe shall use here the results of [9]. Let An[t] denote the algebraAn[t] = k[t; x][D] = k[t; x1; : : : ; xn][D1; : : : ;Dn]with relations: [t; xi] = [t;Di] = [xi; xj] = [Di;Dj] = 0; [Di; xj] = �ijt2:The algebra An[t] is a graded algebra, the degree of the monomial tkx�D� being k + j�j+ j�j :In fact, the k{algebra An[t] is isomorphic to the Rees algebra associated with the Bernstein�ltration on An. The algebra k[t] is central in An[t], and the quotient algebra An[t]=ht� 1i isisomorphic to An.Let P = P�;� p�;�x�D� be a non-zero operator of An. We denote by N (P ) the Newtondiagram of P , N (P ) = f(�; �) 2 N2n; p�;� 6= 0g;then we denote by ordT (P ) the total order of P3



ordT (P ) = maxfj�j+ j�j ; p�;� 2 N (P )g:The di�erential operatorh(P ) =X�;� p�;�tordT (P )�j�j�j�jx�D� 2 An[t]is called the homogenization of P . If H =Pk;�;� hk;�;�tkx�D� is an element of An[t], we denoteby Hjt=1 the operator of An Hjt=1 = Xk;�;� hk;�;�x�D�:With the notations above, for all P;Q 2 An and for all homogeneous element H 2 An[t],1. h(PQ) = h(P )h(Q).2. There exists k; l;m 2 N such that tkh(P +Q) = tlh(P ) + tmh(Q).3. There exists k 2 N such that tkh(Hjt=1) = H.Let < be a total ordering onN2n (not necessarily a well ordering), compatible with sums. Werecall that the extension of <, denoted by <h, is the total well ordering on N1+2n (compatiblewith sums) de�ned by:(k; �; �)<h(k0; �0; � 0)()8<: k + j�j+ j�j < k0 + j�0j+ j� 0jor � k + j�j+ j�j = k0 + j�0j+ j� 0j and(�; �) < (�0; � 0)Since <h is a total well ordering compatible with sums, we have for all non-zero elementG =Pa;�;� g(a;�;�)tax�D� the notion of privileged exponent of G w.r.t. <h, which we denote byexp<h(G): IfN (G) = f(a; �; �); g(a;�;�) 6= 0g denote the Newton diagram ofG, then exp<h(G) =max<hN (G). Also we have for all non-zero ideal J of An[t], the notion of Gr�obner (or standard)basis of J , namely, if we denote byExp<h(J) = fexp<h(P ) jP 2 Jg;then fP1; : : : ; Prg � J is a standard basis of J ifExp<h(J) = r[i=1(exp<h(Pi) +N1+2n):We have �nally a division theorem in An[t], analogous to that in the ring of polynomials or inthe Weyl algebra An. For more details, see [9]. Let � : N1+2n = N �N2n ! N2n denote thenatural projection, then we have:1. If P 2 An, then �(exp<h(h(P ))) = exp<(P ).4



2. More generally, if H is an homogeneous element of An[t], then�(exp<h(H)) = �(exp<h(h(Hjt=1))) = exp<(Hjt=1):Let I be a left ideal of An. We denote by h(I) the homogeneous ideal of An[t], generatedby fh(P ) jP 2 Ig. We call h(I) the homogenized ideal of I. With these notations we have thefollowing (see [9]):1. �(Exp<h(h(I))) = Exp<(I):2. Let fP1; : : : ; Pmg be a generating system of I and let eI be the ideal generated byfh(P1); : : : ; h(Pm)g in An[t]. Then �(Exp<h(eI)) = Exp<(I).Let B�(An) denote the Bernstein �ltration on An (that is the case with ei = fi = 1 for alli = 1; : : : ; n). If P is a di�erential operator in An, then we denote by �B(P ) the principalsymbol of P w.r.t. the Bernstein �ltration. If I is an ideal of An, then we denote by grB(I) thegraded ideal associated with the induced Bernstein �ltration on I.A standard basis w.r.t. the Bernstein �ltration has the following interesting property:Lemma 2.1 Let I be a non-zero left ideal of An and let fP1; : : : ; Pmg be a family of di�erentialoperators of I. The following assertions are equivalent:i) h(I) = (h(P1); : : : ; h(Pm)):ii) grB(I) = (�B(P1); : : : ; �B(Pm)):Proof. The proof is classical and uses the structure of graded algebra of An[t] (see for details[3]). Remark that a standard basis with respect to the Bernstein �ltration satis�es ii), but theconverse is in general false.3 Finiteness resultsLet L 2 U (see 1) and consider the extension of L to R�R2n (by abuse of notation we continueto write L and U in R�R2n), L : R�R2n ! R, such that L(a; �; �) =Pni=1 ei�i+Pni=1 fi�i.Recall in particular that ei + fi � 0 for all 1 � i � n.Let P be a non-zero di�erential operator of An[t]. We de�ne the L{order of P in the usualway (we denote this element by ordL(P )). If P;Q 2 An[t], then ordL(PQ) = ordL(P )+ordL(Q),consequently the L{order de�nes a �ltration on An[t], which we shall call the L-�ltration and weshall denote by FL� (An[t]). We denote by �L(P ) the principal symbol of P w.r.t. the L-order,precisely, if P = P p��(t)x�D�, then �L(P ) = PL(�;�)=ordL(P ) p��(t)x���11 � � � ��ll D�l+1l+1 � � �D�nnwith l is as de�ned in the introduction. If J is a non-zero homogeneous ideal of An[t], we denoteby grL(J) the graded ideal associated with the induced L{�ltration on J (i.e. grL(J) is theideal of grL(An[t]) generated by f�L(P ) jP 2 Jg). In this section we shall prove that, if thecoe�cients ei; fi vary in R, then the set of grL(J) is �nite. We shall use in the proof the Hilbertfunction, therefore we shall start by recalling some of its properties.5



3.1 Hilbert functionLet E � N1+2n such that E +N1+2n = E. We de�ne the Hilbert function of E (and we denoteit by HE) to be the map HE : N 7�! N:HE(k) = ]f(a; �; �) 2 N1+2n n E; a+ j�j+ j�j = kg;8k 2 N:Let J be an homogeneous ideal of An[t] = �k2NAn[t]k, where An[t]k is the k{vector spacegenerated by the monomials tax�D� of total degree a+ j�j+ j�j = k. We set Jk = An[t]k \ J .Let � be a total well ordering on N1+2n compatible with sums, and let E� = Exp�(J).Lemma 3.1 For all k 2 N, we have:dimk(An[t]k=Jk) = ]f(a; �; �) 2 N1+2n nE�; a+ j�j+ j�j = kg = HE�(k)Proof. Let fP1; : : : ; Pmg be a family of homogeneous operators of J such that:E� = m[i=1(exp�(Pi) +N1+2n):If we denote by ki = ordT (Pi), then for all P 2 An[t]k, there exists a family of homogeneouselements Q1; : : : ; Qm; R of An[t] such that:1. P =Pmi=1QiPi +R.2. ordT (Qi) = k � ki; ordT (R) = k.3. If R 6= 0, then the Newton diagram N (R) �N2n+1 n E�. Thus P 2 Jk () R = 0.In particular, P + Jk = R + Jk. This proves that the classes, modulo Jk, of the monomialstax�D�, with a + j�j + j�j = k, (a; �; �) 62 E� form a basis for An[t]k=Jk over k. This provesour assertion.Let, for all k 2 N, HJ (k) = dimk(An[t]k=Jk). This de�nes a map HJ : N ! N which wecall the Hilbert function of J . By Lemma 3.1, HJ = HE� does not depend on �.3.2 Finiteness Theorems for homogeneous idealsLet O(N1+2n) denote the set of total well ordering on N1+2n compatibles with sums (for suchan order, 0 is the smallest element, this implies in particular that exp�(PQ) = exp�(P ) +exp�(Q))).Theorem 3.2 Let J be a non-zero homogeneous ideal of An[t]. ThenfExp�(J) j �2 O(N1+2n)gis a �nite set. 6



Proof. By Lemma 3.1, it su�ces to prove that the set of subsets E � N1+2n such that:1. E +N1+2n = E.2. HE = HJ .is �nite. Denote this set by E and assume that E is in�nite. Given an element E of E and aninteger k 2 N, we set E(k) = f
 2 E; j
j � kg:Let k0 2 N be the smallest integer for which HJ (k) < dimk(An[t]k) (such an integer existsbecause J 6= (0)). Since N1+2n(k0) is a �nite set, one of the possible choices of E(k0) occurs for allE in an in�nite subset E1 = fEigi�1 of E. Thus, there are elements 
i 2 N1+2n(k0) ; 1 � i � r suchthat Ei;(k0) = ([ri=1(
i +N1+2n))(k0) for all i � 1:Assume, without loss of generality, that E1 = E and setS0 = [ri=1(
i +N1+2n):Clearly S0 � Ei for all i � 1, on the other hand Ei 6= Ej for all i 6= j. In particular HJ 6= HS0 .Let consequently k1 > k0 be the smallest integer for which HJ(k1) < HS0(k1). For all j � 2,there exists �j 2 Ej n S0 such that j�jj = k1. The set N1+2n(k1) being �nite, there is an in�nitesubset E2 � E and elements 
r+i; 1 � i � r + r1, in (N1+2n n S0)(k1) such that:Ej;(k1) = ([r+r1i=1 (
j +N1+2n)(k1) for all Ej 2 E2:Let S1 = [r+r1i=1 (
j +N1+2n);then S0 � S1. Now repeat the same argument with E2 and S1,... We construct this way anin�nite sequence S0 � S1 � ::: of subsets of N1+2n with Si +N1+2n = Si for all i � 0. This isimpossible.As a consequence of Theorem 3.2. we get the following result:Theorem 3.3 Let J be a non-zero homogeneous ideal of An[t]. Then fgrL(J);L 2 Ug is a�nite set. 7



Proof. Fix �2 O(N1+2n), then for any L 2 U , denote by �L the total ordering on N1+2n suchthat:(k; �; �)�L(k0; �0; � 0)()8>>>>>>>><>>>>>>>>: k + j�j+ j�j < k0 + j�0j+ j� 0jork + j�j+ j�j == k0 + j�0j+ j� 0j and 8>><>>: L(k; �; �) < L(k0; �0; � 0)orL(k; �; �) = L(k0; �0; � 0) and(k; �; �) � (k0; �0; � 0)(Where we recall that L(k; �; �) = Pni=1 ei�i +Pni=1 fi�i). Clearly �L2 O(N1+2n). On theother hand, by 3.2, fExp�L(J) jL 2 Ug is a �nite set. Consequently we have only to provethat, if E � N1+2n with E + N1+2n = E, then fgrL(J) jExp�L(J) = E;L 2 Ug is a �niteset. Fix to this end E and let L 2 U be such that E = Exp�L(J). Then consider a reducedstandard basis B = fQ1; : : : ; Qmg of J w.r.t. �L (i.e. [mi=1(exp�L(Qi) + N1+2n) = E andN (Qi) n fexp�L(Qi)g � N1+2n n E, for all 1 � i � m, where N (Qi) is the Newton diagramof Qi). Clearly B is also a reduced standard basis of J w.r.t. �L0, for all L0 2 U such thatExp�L0 (J) = E (indeed, if exp�L0 (Qi) 6= exp�L(Qi), we would have exp�L0 (Qi) =2 E). Inparticular, as proved in [2], Lemma 1.3.3., f�L0(Q1); : : : ; �L0(Qm)g generates grL0(J) for allL0 2 U such that Exp�L0 (J) = E. Every N (Qi) being �nite, we have only a �nite number ofpossibilities. This proves our assertion.We shall �nally give a bound for the cardinality of O(J) = fExp�(J); � 2 O(N1+2n)g. Letfor all E 2 O(J), JE = (y�1; : : : ; y�s)k[y1; : : : ; y2n+1], where y1; : : : ; y2n+1 are indeterminatesand f�1; : : : ; �sg is the minimal boundary of E, that is E = [si=1(�i + N1+2n) and for allk = 1; : : : ; s, �k =2 [i6=k(�i +N1+2n). Clearly HJE = HE, then we have:]O(J) = ]fJE;E 2 O(J)g � ]fM � k[y1; : : : ; y2n+1] monomial ideal ;HM = HJgLet d(J) denote the maximal degree of the elements arising in the minimal boundaries offExp�(J); � 2 O(N2n+1)g. If (d1; d2; : : : ) denote the values of the Hilbert function of J , thenwe have:Proposition 3.4 ]O(J) � d(J)Yk=1 Cakak�dk ;where ak = dimkAn[t]k = C2n+kkand Cab is the binomial coe�cient. 8



Proof. The number of points in E which are exponents of monomials of degree k is exactlyak � dk. This proves our assertion.3.3 Finiteness Theorems for ideals in AnLet I be non-zero left ideal of An. The aim of this paragraph it to give for I analogous resultsto those of 3.2. Let to this end < be a total well ordering on N2n, compatible with sums, anddenote, for all L 2 U , by <L the total ordering on N2n such that:(�; �) <L (�0; � 0) , 8<: L(�; �) < L(�0; � 0)orL(�; �) = L(�0; � 0) and (�; �) < (�0; � 0)Let P 2 An be a non-zero di�erential operator. We denote by exp<L(P ) the privilegedexponent of P w.r.t. <L, i.e. exp<L(P ) = max<LN (P ) (See [2] for the main properties of theprivileged exponent of an operator). We also setExp<L(I) = fexp<L(P ) jP 2 I n f0gg:Clearly Exp<L(I) +N2n = Exp<L(I).Theorem 3.5 For a given total well ordering < onN2n, compatible with sums, fExp<L(I) jL 2Ug is a �nite set.Proof. This results follows from Theorem 3.2 as follows: �rstly we remark that, with thenotations of section 2, �L=<hL, for the following choice of �,(k; �; �) � (k0; �0; � 0) , 8<: (�; �) < (�0; � 0)or(�; �) = (�0; � 0) et k < k0Now apply �(Exp<h(h(I))) = Exp<(I), to the order <=<L.Theorem 3.6 fgrL(I) jL 2 Ug is a �nite set.Proof. Let h(I) be the homogenized ideal of I in An[t]. The associated graded ideal grL(h(I))is an ideal of the ring grL(An[t]) ' (grL(An))[t] (where [xi; �i] = 0 if ei+fi > 0 and [Di; xi] = t2if ei + fi = 0). Let � : An[t] 7�! An; �(H) = Hjt=1denote the deshomogenization morphism. If L 2 U , � gives rise to a morphism�L : grL(An[t]) 7�! grL(An) ' grL(An[t])=(t� 1):9



Clearly �(h(I)) = I, on the other hand, for all P 2 I; �L(�L(h(P ))) = �L(P ), in particular�L(grL(h(I)) = grL(I). Now apply Theorem 3.3 (remark that �L does not depend on L as faras we may identify di�erent grL(An)).Finally we shall give, using Proposition 3.4., a bound for the cardinality of fExp<L(I) jL 2 Ug.Let d(h(I)) denote the maximal degree of the elements arising in the minimal boundaries ofExp<hL(h(I)); L 2 U . If (d1; d2; : : : ) denote the set of values of the Hilbert function of h(I),then we have:Proposition 3.7 ]fExp<L(I) jL 2 Ug � d(h(I))Yk=1 Cakak�dk ;where: ak = dimkAn[t]k = C2n+kk :4 The Gr�obner fanLet I be a non-zero left ideal of An and let h(I) be the homogenized ideal of I in An[t].The purpose of this section is to study the stability of grL(h(I)) when L varies in U . For allE �N1+2n such that E +N1+2n = E, we set:UE = fL 2 U ; Exp�L(h(I)) = Eg;With these notations we have the following:Theorem 4.1 There exists a partition E of U into convex rational polyhedral cones, such thatfor all element � 2 E, grL(I) and Exp�L(I) do not depend on L 2 �. This partition is exactlythe partition into the set on which both grL(h(I)) and Exp�L(h(I)) are �xed. Furthermore,every UE is convex and a union of cones of E.In order to prove our Theorem, we shall �x some notations and give some preliminary results.Let E be a subset of N2n+1 such that E+N2n+1 = E and let L 2 UE. Then consider a reducedstandard basis Q1; : : : ; Qr of h(I) w.r.t. �L. As in the proof of Corollary 3.3., we can seethat Q1; : : : ; Qr is also a reduced standard basis w.r.t. �L0, for all L0 2 UE. Denote by � theequivalence relation on U de�ned from Q1; : : : ; Qr by :L � L0 () �L(Qk) = �L0(Qk) for all k = 1; : : : ; r:Lemma 4.2 � de�nes on U a �nite partition into convex rational polyhedral cones and UE isa union of a part of these cones. 10



Proof. Let L1; L2 2 U such that L1 � L2 and let L 2 [L1; L2], also let � 2 [0; 1] such thatL = � �L1+(1� �) �L2. Write for all 1 � k � r, Qk = �L1(Qk)+Rk = �L2(Qk)+Rk. Since forall (�; �) 2 N2n; L(�; �) = � � L1(�; �) + (1 � �) � L2(�; �), then �L(Qk) = �L1(Qk) = �L2(Qk)by an immediate veri�cation. On the other hand, if L1 � L2 and L1 2 UE, then L2 2 UE. Thisproves that UE is a union of classes for �.Proof of Theorem 4.1: We de�ne E as follows: for each E we consider the restriction EE toUE of the above partition and then E is the �nite union of the EE's. On each cone of thepartition, grL(h(I)) and Exp�L(h(I)) are �xed, and the same is true for grL(I) and Exp�L(I)because of the proof of the Theorems 3.5 and 3.6. Conversely, assume that L;L0 are in thesame UE. The ideal grL(h(I) has the same E as set of priveleged exponents with respect to�L and �L(Qk); k = 1; : : : ; r as a reduced standard basis (let us point out that here we usethe fact that h(I) is homogeneous with respect to the total degree, and therefore the reducedstandard basis Q1; : : : ; Qr is also homogeneous). Therefore if grL(h(I)) = grL0(h(I)), we obtain�L(Qk) = �L0(Qk) by the unicity of the reduced standard basis. This ends the proof of thetheorem except for the convexity of UE proved below:Lemma 4.3 UE is a convex set: If L1; L2 2 UE, then [L1; L2] � UE.Proof. Let L 2]L1; L2[ and let � 2]0; 1[ such that L = � � L1 + (1 � �) � L2. For all 1 �k � r, if exp�L1 (Qk) = exp�L2 (Qk) = exp�L1 (qk(t)x�D�), and if Qk = qk(t)x�D� + Rk, theneither Rk = 0, or ordL(qk(t)x�D�) � ordL(Rk). Furthermore, if ordL(qk(t)x�D�) = ordL(Rk),then ordLi(qk(t)x�D�) = ordLi(Rk) for at least one 1 � i � 2. In particular exp�L(Qk) =exp�L1 (qk(t)x�D�), which implies that E � Exp�L(h(I)), and consequently, by division, thatE = Exp�L(h(I)), i.e. L 2 UE.In the following we give some precisions about the partition:De�nition 4.4 We say that grL(h(I)) is a multihomogeneous ideal if we are in the commutativecase, and grL(h(I)) is homogeneous with respect to x; �, that is generated by monomials in x; �(Since h(I) is itself homogeneous, grL(h(I)) is in fact generated by monomials in t; x; �).Proposition 4.5 The set of L 2 U for which grL(h(I)) are multihomogeneous ideals de�nesthe open cones of dimension 2n of E (contained by construction in the part ei + fi > 0 of U).Proof. Let Q1; : : : ; Qr be a reduced standard basis of h(I) with respect to �L and let V (L)be an open neighbourhood of L such that for all L0 2 V (L) and for all 1 � k � r, �L0(Qk) =�L(Qk). In particular, exp�L(Qk) = exp�L0 (Qk), for all 1 � k � r. This proves that E �Exp�L0 (h(I)), and consequently that E = Exp�L0 (h(I)). Finally V (L) � UE. This proves ourassertion. Conversely, if L is in an open cone of UE, then for any L0 in a neighborhood of Land for all k, �L0(Qk) = �L(Qk). This implies that �L(Qk) is a monomial.11



De�nition 4.6 E is called the standard fan of h(I), or, with the notations of [14], the extendedGr�obner fan of I.Remarks 4.7 i) Let U 0 � U be the set of linear forms L : R2n �! R with coe�cients inR+. Consider on N2n the set of -total well ordering- <L; L 2 U 0, de�ned as in paragraph 3.3.Then the notion of reduced standard basis of I w.r.t. <L is well de�ned in this case. Withthese notations the result of Theorem 4.1 holds if we consider the set of grL(I); L 2 U 0. Theassociated fan E 0 is called the restricted Gr�obner fan of I. Obviously E 0 = �0(EU 0), where EU 0denote the restriction of E on U 0 and �0 denote the natural projection.ii) The result of Theorem 4.1 holds for the set of grL(I); L 2 U because of the relationshipbetween grL(h(I)) and grL(I) given in the proof of 3.6. Nevertheless, the analogous set of UEwith respect to I is not necessarily a convex set, as it can be shown in the following example:Consider in A2(C) the left ideal generated by P1 = x1 � x21; P2 = x1D2 � x1. If e1 > 0; f2 > 0,then EL(I) is generated by (2; 0; 0; 0) and (0; 0; 0; 1), whereas EL(I) is generated by (1; 0; 0; 0)elsewhere.iii) The Gr�obner fan as introduced in 4.6 can be re�ned in order to satisfy the boundaryconditions (if two strata satisfy CiTCj 6= ;, then Ci � Cj). We can use to this end theuniversal standard basis of h(I) which is the union of all reduced standard bases of h(I).References[1] A. Assi.- Some remarks on universal standard bases, Preprint, 1993[2] A. Assi., F. J. Castro-Jim�enez and J.-M. Granger, How to calculate the slopes of a D-module, Compositio Math., 104 (1996) 107-123.[3] A. Assi., F. Castro and J.-M. Granger, The standard fan of a D-module, Pr�epublicationno 54, Universit�e d'Angers, 1998.[4] D. Bayer and D. Mumford.- What can be computed in algebraic geometry?, in: D.Eisenbud and L. Robbiano, eds., Computational algebraic geometry and commutativealgebra, Procceding Cortona 1991, Cambridge University Press, 1993, pp. 1-48.[5] B. Buchberger, Ein algorithmisches Kriterium for die L�osbarkeit eines algebraischen Gle-ichungssystems Aequationes Math. 4 (1970) 374-383.[6] F. Castro, Th�ese de 3�eme cycle, Univ. de Paris VII, 1984.[7] F. Castro, Calculs e�ectifs pour les id�eaux d'op�erateurs di��erentiels, in: J.M. Aroca etal., eds., G�eom�etrie alg�ebrique et applications, Travaux en Cours, vol. 24, Hermann, Paris,1987, pp. 1-19. 12
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