
Computing Partial Recursive Functions by
Transition P Systems

Alvaro Romero-Jiménez and Mario J. Pérez-Jiménez

Abstract. In this paper a variant of transition P systems with exter-
nal output designed to compute partial functions on natural numbers is
presented. These P systems are stable under composition, iteration and
unbounded minimization (µ–recursion) of functions. We prove that ev-
ery partial recursive function can be computed by such P systems, from
which the computational completeness of this model can be deduced.

1 Introduction

In 1998 G. Păun initiated a new branch of the field of Natural Computing by
introducing a new model of molecular computation, based on the structure and
functioning of the living cell: transition P systems (see [2]). The framework within
which computations are performed in this model is the membrane struc-ture,
which resembles the cell-like one. Multisets of symbol-objects are processed along
the computations, making them to evolve and distributing them among the
membranes. The result of a halting computation is the number of objects
collected in a specified output membrane.

Since the introduction of this model of computation many variants of it have
been proposed. One of them, presented in [4] by G. Păun, G. Rozenberg and A.
Salomaa, is the model of transition P systems with external output. In this model,
the result of a halting computation is not collected in a fixed membrane of the
membrane structure, but in the external environment associated with it. In this
way, the output of a computation can be thought as a set of strings, instead of as a
natural number, as occurred in the basic model.

P systems are usually considered as devices which generate numbers. Nev-
ertheless, besides generating devices, they can also be thought as recognizing
devices and as computing devices. These kinds of P systems have been studied
in [6] and [8].

In this paper we work with computing P systems, but instead of the basic
transition ones we consider those with external output. Thanks to the special
functioning of these devices, we have been able to define, in a suitable manner,
several operations between computing P systems with external output. More
specifically, we have defined the following operations: composition, iteration and
unbounded minimization (or µ–recursion). This has allowed us to prove the

computational completeness of these devices through the capability of computing
any partial recursive function.

2 Transition P Systems with External Output

A multiset over a set A is an application m : A → N, where N is the set of
natural numbers. A subset B ⊆ A can be identified with the multiset over A
given by the application m(a) = 1, if a ∈ B, and m(a) = 0, if a �∈ B. We denote
by M(A) the set of all the multisets over A. Note that if A is a non-empty finite
set, then M(A) is a countable set.

The support of m ∈ M(A) is the set supp(m) = {a ∈ A | m(a) > 0}. A
multiset is said to be finite if its support is finite. Analogously, a multiset is said
to be empty, and it is denoted by m = ∅, if its support is the empty set.

2.1 Syntax

The framework within which computations of a cellular computing system with
membranes take place is a membrane structure. The latter can be thought as a
hierarchically arranged collection of vesicles.

Definition 1. A membrane structure is a rooted tree in which the nodes are
called membranes, the root is called skin, and the leaves are called elementary
membranes.

The degree of a membrane structure is the number of membranes it contains
(that is, the number of nodes of the tree).

The skin membrane of a membrane structure, to which we will generically
refer using the meta–label skin, isolates the structure from what is known as the
environment of the structure, to which we will refer with the meta–label env. In
the variant of P systems that we are going to consider, it is in the environment
where the output of the computations will be collected. This is why we must
associate it in some way with the membrane structure.

Definition 2. Let µ = (V (µ), E(µ)) be a membrane structure. The membrane
structure with environment associated with µ is the rooted tree Ext(µ) where:
(a) V (Ext(µ)) = V (µ) ∪ {

env
}
; (b) E(Ext(µ)) = E(µ) ∪ {{env, skin}}

; and
(c) the root of the tree is the node env.

The new node is called the environment of the structure µ.

Observe that what we do is only adding a new node that represents the
environment and that, therefore, is only adjacent to the skin, whereas the original
membrane structure remains unchanged.

Next, we define what we understand by a transition P system with external
output, describing the syntax and semantics of this computing model in an
informal manner. Nevertheless, a formalization for transition P systems can be
found in [5] and an improved one for those with external output can be found
in [6].

Definition 3. A transition P system with external output (and without input)
is a tuple

Π =
(
Γ, Λ, #, µ

Π
,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp)

)

where:

– Γ is the working alphabet of the system.
– Λ is the output alphabet, and it is contained in Γ .
– # is a distinguished element in Γ \ Λ.
– µΠ

is a membrane structure of degree p. We suppose that the membranes are
labelled, in a one-to-one manner, from 1 to p.

– Mi is a multiset over Γ associated with membrane i, for each i = 1, . . . , p.
– Ri is a finite set of (transition) evolution rules associated with membrane i,

for each i = 1, . . . , p.
An evolution rule over is a pair (u, v), usually written u → v, where u is a
string over Γ and v = v′ or v = v′δ, where v′ is a string over

Γ × ({here, out} ∪ {inmb | mb is a membrane in µ
Π

})
.

– ρi is a strict partial order over Ri, for each i = 1, . . . , p. Given (r1, r2) ∈ ρi,
usually written r1 > r2, we will say that r1 has higher priority than r2.

For such system with input we also consider an input alphabet, Σ (such that
Σ ⊆ Γ and # ∈ Γ \ (Σ ∪ Λ)), and an input membrane, im.

2.2 Semantics

Now we show in which way a transition P system with external output evolves
according to the multisets of objects contained in each of the compartments of
its membrane structure, as well as to the evolution rules associated with the
membranes.

Definition 4. Let Π be a transition P system with external output. A con-
figuration of Π is a pair C =

(
Ext(µ), M

)
such that it verifies the following

conditions:

– µ = (V (µ), E(µ)) is a membrane structure.
– Ext(µ) is the membrane structure with environment associated with the

structure µ.
– The set V (µ) of nodes of µ is a subset of V (µ

Π
), and contains the root of

µ
Π
.

– The roots of both membrane structures coincide.
– M is a function with domain V (Ext(µ)) and range contained in M(Γ).

Notation. We will denote by C = (µ, Menv, Mi1 , . . . , Miq) a configuration of Π,
where V (µ) = {i1, . . . , iq}, Menv = M(env) is the multiset associated with the
environment of µ and Mij = M(ij) is the multiset associated with the membrane
ij of µ, for each j = 1, . . . , q.

When defining the configurations that specify the initial state of a P system
(that is, its initial configurations) we must take into account whether the system
has an input membrane or not.

Definition 5. Let Π =
(
Γ, Λ, #, µ

Π
,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp)

)
be a

transition P system with external output.

– If Π has no input membrane, then there exists an unique initial configuration
of the system, namely

C0 = (µ
Π

, ∅,M1, . . . ,Mp).

– If Π has an input membrane, then there exists an initial configuration for
each multiset m ∈ M(Σ) that can be introduced in the input membrane,
namely,

C0(m) = (µ
Π

, ∅,M1, . . . ,Mim + m, . . . ,Mp).

We can pass, in a non-deterministic manner, from one configuration of Π to
another configuration by applying to its multisets the evolution rules associated
with their corresponding membranes. This is done as follows: given a rule u → v
of a membrane i, the objects in u are removed from Mi; then, for every (ob, out) ∈
v an object ob is put into the multiset associated with the parent membrane (or
the environment if i is the skin membrane); for every (ob, here) ∈ v an object ob
is added to Mi; for every (ob, inj) ∈ v an object ob is added to Mj (if j is a child
membrane of i; otherwise, the rule cannot be applied). Finally, if δ ∈ v, then the
membrane i is dissolved, that is, it is removed from the membrane structure (the
objects associated with this membranes are collected by the parent membrane,
and the rules are lost. The skin membrane cannot be dissolved). Moreover, the
priority relation among the rules forbids the application of a rule if another one
of higher priority can be applied.

Given two configurations, C and C ′, of Π, we say that C ′ is obtained from
C in one transition step, and we write C ⇒

Π
C ′, if we can pass from the first

one to the second by using the evolution rules associated with the membranes
appearing in the membrane structure of C in a parallel and maximal way, and for
all the membranes at the same time. If no configuration can be derived from C
by applying those evolution rules, then we say that it is a halting configuration.

Definition 6. A computation, C, of a P system is a (finite or infinite) sequence
of configurations, {Ci}i<r, where:

– C0 is an initial configuration of the system.
– Ci ⇒

Π
Ci+1, for every i < r.

– Either r ∈ N
+ and Cr−1 is a halting configuration (C is then a halting

computation performing r − 1 steps), or r = ∞ (C is then not halting).

Notation. Let Π be a transition P system with external output and let
C = {Ci}i<r be a computation of Π. Then we denote Ci =

(
Ext(µi), M i

)
.

The idea of a transition P system with external output consists of not taking
into account what happens inside the system, but only focusing on what it expels
to the external environment. It emerges then the question of determining when
a computation halts, and it is here where the distinguished object # comes into
play.

Definition 7. We say that r = ur → vrδr is a halting indicator rule if
(#, out) ∈ vr.

Definition 8. We say that a transition P system with external output Π is valid
if given a computation C = {Ci}i<t of the system it is verified the following:

– If C is halting, then a halting indicator rule must be applied in the skin
membrane, and only in the last step of the computation.

– If C is not halting, then no halting indicator rule is applied in the skin mem-
brane in any step of the computation.

In this way, the fact that a computation has halted or not is determined by
the presence of an object # in the environment of the system.

Note that we have not defined what the output of a computation is. This is
because we can consider different modes for transition P systems by only fixing a
definition for an Output function over the set of the computations of the system
(see [6]).

3 (Function) Computing P Systems

Given an order between the symbols of an alphabet, we can represent tuples of
natural numbers by means of multisets over this alphabet with only focusing on
the multiplicities of the symbols in the multiset. Thus, in the cellular computing
systems with membranes defined below we will impose that both the input and
the output alphabets are ordered. In this way, it makes sense to consider that the
multisets received as input and obtained as output represent tuples of natural
numbers.

Definition 9. A computing P system, Π, of the order (m, n) is a cellular com-
puting system with membranes that verifies the following properties:

– Π is a transition P system with external output and with input membrane.
– The input alphabet, Σ, of Π is an ordered alphabet with m elements. We

denote it by Σ = {a1, . . . , am}.
– The output alphabet, Λ, of Π is an ordered alphabet with n elements. We

denote it by Λ = {b1, . . . , bn}.
– The output of a computation C = {Ci}i<r is given by the following function:

Output(C) =

undefined, if C is not halting,
(
Mr−1

env (b1), . . . , Mr−1
env (bn)

)
, if C is a halting computation

performing r − 1 steps.

In this way, the output of a halting computation of Π is a tuple of n natural
numbers.

According to the previous definition, in a computing P system every halting
computation returns a tuple of natural numbers. However, for the same input
data there can exist computations that are halting and others that are not
halting. Furthermore, the output of two halting computations over the same
input data do not have to be the same tuple. This does not happen for functions:
given a tuple of natural numbers, either the function is undefined over that tuple,
or it is defined and returns a single value. Therefore, we must impose that the
systems we are going to work with capture these properties.

Definition 10. A computing P system, Π, of order (m, n) is said to be valid if
it verifies the following properties:

– Π is a valid transition P system with external output.
– Given an initial configuration, C, of Π, either no computation with initial

configuration C is halting, or every computation with initial configuration C
is halting.

– If C1 and C2 are two halting computations of Π with the same initial confi-
guration, then Output(C1) = Output(C2).

Notation. We will denote by FCm,n the class of valid computing P systems of
order (m, n). The class FC is the union of all the previous collections.

The cellular computing systems with membranes belonging to the class FC
allow us to compute partial functions between natural numbers, according to
the following criterion.

Definition 11. We say that a system Π ∈ FCm,n computes the partial function
f : N

m− → N
n if the following conditions are verified for each (k1, . . . , km) ∈

N
m:

– f is defined over (k1, . . . , km) if and only if there exists a halting computation
of Π with the multiset ak1

1 . . . akm
m as input.

– If C is a halting computation of Π with the multiset ak1
1 . . . akm

m as output,
then Output(C) = f(k1, . . . , km).

From Definition 10, in the previous definition the expression “a computation”
can be substituted by the expression “any computation”.

4 Computational Completeness through Partial
Recursive Functions

The purpose of this section is to point out that using valid computing P systems
we are able to reproduce the behaviour of any partial recursive function. Indeed,
we are going to design systems such that:

1. Compute the basic or initial functions: constant zero function, successor
function and projection functions.

2. Compute the composition of functions, from systems computing the func-
tions to compose.

3. Compute the iteration of functions, from a system computing the function
to iterate.

4. Compute the unbounded minimization of functions, from a system computing
the function to minimize.

Taking into account that the class of partial recursive functions coincides with
the least class that contains the basic functions and is closed under composition,
iteration and unbounded minimization (see [1]), it is then guaranteed that it is
possible to construct cellular computing systems with membranes that compute
any partial recursive function.

4.1 Basic or Initial Functions

We begin by describing computing P systems that allow us to compute the basic
functions.

– The constant zero function, O : N → N, defined by O(k) = 0, for every
k ∈ N, can be computed by the system

Πzero =
(
Σ, Γ, Λ,#, µ

Πzero ,M1, (R1, ρ1), im
)
,

where:

Σ = {a}, Γ = {a, b, #}, Λ = {b},

µ
Πzero = [1]1 , M1 = #, im = 1,

R1 = {# → (#, out)}, ρ1 = ∅.

– The successor function, S : N → N, defined by S(k) = k+1, for every k ∈ N,
can be computed by the system

Πsuc =
(
Σ, Γ, Λ,#, µ

Πsuc ,M1, (R1, ρ1), im
)
,

where:

Σ = {a}, Γ = {a, b, #}, Λ = {b},

µ
Πsuc = [1]1 , M1 = #, im = 1,

R1 = {a → (b, out), # → (b, out)(#, out)}, ρ1 = ∅.

– The projection functions, Πn
j : N

n → N, with n ≥ 1 and 1 ≤ j ≤ n, defined
by Πn

j (k1, . . . , kn) = kj , for every (k1, . . . , kn) ∈ N
n, can be computed by

the systems

Πproj
n,j =

(
Σ, Γ, Λ,#, µ

Π
proj
n,j

,M1, (R1, ρ1), im
)
,

where:

Σ = {a1, . . . , an}, Γ = {a1, . . . , an, b, #}, Λ = {b},

µ
Π

proj
n,j

= [1]1 , M1 = #, im = 1,

R1 = {aj → (b, out), # → (#, out)}, ρ1 = ∅.

4.2 Composition of Functions

We introduce now the operation of composition between computing P systems.
For that we start by defining the corresponding operation for functions.

Definition 12. Let f : N
m− → N

n and g1 : N
r− → N

s1 , . . . , gt : N
r− → N

st

such that s1 + · · · + st = m. Then, the composition of f with g1 to gt, denoted
C(f ; g1, . . . , gt), is a partial function from N

r to N
n defined as follows

C(f ; g1, . . . , gt)(k1, . . . , kr) = f(g1(k1, . . . , kr), . . . , gt(k1, . . . , kr))

Next, we are going to design a P system that computes the compo-
sition of functions, from systems that compute the given functions. Let
Πf , Πg1 , . . . , Πgt ∈ FC be systems computing, respectively, the function f :
N

m− → N
n and the functions g1 : N

r− → N
s1 , . . . , gt : N

r− → N
st , with

s1 + · · · + st = m.
We can suppose that

Πf =
(
Σf , Γf , Λf , #f , µΠf

, Mf
1 , . . . , Mf

pf
, (Rf

1 , ρf
1), . . . , (Rf

pf
, ρf

pf
), imf

)
,

Πg1 =
(
Σg1 , Γg1 , Λg1 , #g1 , µΠg1

, Mg1
1 , . . . , Mg1

pg1
, (Rg1

1 , ρg1
1), . . . , (Rg1

pg1
, ρg1

pg1
), img1

)
,

. . .

Πgt =
(
Σgt , Γgt , Λgt , #gt , µΠgt

, Mgt
1 , . . . , Mgt

pgt
, (Rgt

1 , ρgt
1), . . . , (Rgt

pgt
, ρgt

pgt
), imgt

)
.

Renaming adequately the elements of the alphabets (and, consequently, also
of the rules) we can suppose, besides, that

– Σg1 = · · · = Σgt = {a1, . . . , ar}.
– Λg1 = {b1, . . . , bs1}, . . . , Λgt

= {bs1+···+st−1+1, . . . , bm}.
– Σf = {c1, . . . , cm} and Λf = {d1, . . . , dn}.
–

(
Λg1 ∪ · · · ∪ Λgt

)
∩ Γf = ∅.

– The object #gi is distinct from the object #f , for each i = 1, . . . , t.
– The object #gi is distinct from the object #gj , for each i �= j.

Let us consider the computing P system

Π =
(
Σ, Γ, Λ,#, µ

Π
,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp), im, env

)
,

given by:

– Σ = {e1, . . . , er}. We suppose, besides, that Σ is disjoint from
⋃t

i=1 Γgi
.

– There exist the distinguished elements ⊕,,� ∈ Γ \ (Γf ∪ ⋃t
i=1 Γgi).

– Λ = {d1, . . . , dn}.
– The object # is distinct from the objects #f and #gi

, for each i = 1, . . . , t.
– µ

Π
= [1µΠg1

. . . µ
Πgt

µ
Πf

]1 , where the membranes of µ
Πg1

, . . . , µ
Πgt

, µ
Πf

have
been adequately renamed (and, consequently, also the rules of the corres-
ponding systems have been adapted). We will denote by σg1 , . . . , σgt , σf the
skin membranes of these systems. Besides, we consider that img1 , . . . , imgt ,
imf reflect the new labeling of the input membranes of Πg1 , . . . , Πgt , Πf ,
respectively.

– p = pg1 + · · · + pgt
+ pf + 1.

– M1 = #. The remaining multisets are all empty.
– im = 1.
– The evolution rules and their priorities are the following:

• Evolution rules for membrane 1:

ei → (ei, inσg1
) . . . (ei, inσgt

) for i = 1, . . . , r,

 → (, inσg1
) . . . (, inσgt

),

#g1 . . .#gt# → (, inσf
) > # → # > bi → (bi, inσf

) for i = 1, . . . , m,

di → (di, out) for i = 1, . . . , n,

#f → (#, out).

• For every function fun ∈ {g1, . . . , gt, f} and for every membrane j of
µ

Πfun
, the following rules are included:

 → ⊕(, inj1) . . . (, injk
)

�u ⊕ → Mfun
j > ⊕ → ⊕ �

The rules and priorities associated with membrane j in Πfun

Here, j1, . . . jk are the children membranes of membrane j and u is its
depth level within the tree µ

Πfun
. Moreover, if j = imfun, then the rule

⊕ → ⊕� has higher priority than the original rules of Πfun for this
membrane.

• Let fun ∈ {g1, . . . , gt, f} and let j1, . . . , jq be the membrane path
in µ

Πfun
from σfun to the input membrane, imfun. Then, for each

k = 1, . . . , q − 1 the following rules are included in membrane jk:

ei → (ei, injk+1), for i = 1, . . . , r, and fun = g1, . . . , gt,

bi → (bi, injk+1), for i = 1, . . . , m, and fun = f.

The following rules are also included in membrane jq = imfun:

ei → ai, for i = 1, . . . , r, and fun = g1, . . . , gt,

bi → ci, for i = 1, . . . , m, and fun = f.

Thus, the initial membrane structure of this system can be pictorially rep-
resented as in figure 1. Furthermore, its functioning can be considered arranged
in two stages:

Stage 1: Calculation of the functions g1 to gt over the input data:

– Sending of the input data to the input membranes of Πg1 to Πgt
.

– Local synchronization of the membranes in each Πgi .
– Global synchronization in the skin of Π of the computed values.

Stage 2: Calculation of the function f :

– Sending of the computed values in the previous phase from the skin to the
input membrane of Πf .

– Local synchronization of the membranes in Πf .
– Sending the result to the environment.

Fig. 1. Composition of computing P systems

Notation. We say that the system Π designed above, which we denote by
C(Πf ;Πg1 , . . . , Πgt), is the system obtained from the composition of Πf with
Πg1 . . . , Πgt

.

Next we are going to justify, in an informal manner, that C(Πf ;Πg1 , . . . , Πgt)
is a computing P system that is valid and that, besides, computes the composi-
tion of f with g1, . . . , gt. This system also preserves the use or not of membrane
dissolution from the P systems that compute the functions.

Stage 1: Computing the functions g1, . . . , gt over the input data.
To perform this stage, it is necessary to carry out two operations: the first one
consists of transporting the input arguments from membrane 1, which recall
is the input membrane of Π, to each of the input membranes of the systems
Πg1 , . . . , Πgt . This is easily done by displacing the objects that represent the
arguments through all the necessary membranes.
The second operation is a little bit more difficult: for a specific system, Πgj ,
to correctly compute the value of the function gj over the input data, we
need that all the membranes of this system start to apply their original rules
at the same time (that is, we have to achieve a local synchronization of all

the membranes of each Πgj). This can be done by using counters for each
of these membranes. First, we use the object to activate the counters,
represented by objects ⊕, in all the membranes. These last objects use, in
turn, objects � to count and, when a certain quantity has been reached, the
corresponding membrane is allowed to apply the rules of Πgj . From the way
it has been implemented, these quantities coincide with the depth levels of
each one of the membranes in the structure µ

Πgj
.

It is also important to observe that when the system Πgj
begins to compute

the value, the objects that represent the input data must have reached their
corresponding input membrane. However, as we perform the two previous
operations simultaneously, this is obtained automatically.
Finally, before permitting that the system Πf activates itself, it is necessary
to make sure that all the values of Πg1 , . . . , Πgt

have been computed (that
is, there must be a global synchronization in the skin of Π).
Let us see in detail the rules involved in this stage:
a) In the first step of a computation of Π in which the value of the com-

position function over the tuple (k1, . . . , kr) is computed, in membrane
1 we have the multiset ek1

1 . . . ekr
r # and the remaining membranes are

empty. Therefore, the only rules that can be applied are those that send
the objects ei and the object into the corresponding skin membranes
of µ

Πg1
, . . . , µ

Πgt
, and the rule # → # in membrane 1.

b) Now membrane 1 waits for the values of the functions g1, . . . , gt over
the tuple (k1, . . . , kr) by means of the rule # → #. With respect to the
membrane structures µ

Πg1
to µ

Πgt
, the rule → ⊕(, inj1) . . . (, injk

)
makes the object to propagate to all of their membranes, since when
it reaches a specific membrane, it immediately transforms itself into a
counter object ⊕ and it is also sent to the children membranes. Thus,
from a computation step to the next one, the object reaches the mem-
branes with one level below. Meanwhile, the rule ⊕ → ⊕� makes the ob-
ject ⊕ to generate objects �. A close look to the situation created shows
us that the activating object has reached all the membranes exactly
when the counter object ⊕ has generated in each membrane a number of
objects � equal to their levels in the tree µ

Πfun
(for fun ∈ {g1, . . . , gt}).

At that moment, the rule �u⊕ → Mfun
j introduces in membrane j the

objects associated with it in Πfun, and this is done for all the membranes
of each Πfun at the same time. From now on, the values of g1, . . . , gt

over (k1, . . . , kr) are computed exactly in the same way than the systems
Πg1 , . . . , Πgt would do it.
An example of how the process of local synchronization works is shown
in figure 2, for a P system with ten membranes.

c) Simultaneously, the objects ei cover the path from the skin membrane
of each µ

Πgj
to the input membrane of Πgj

, by means of the rules ei →
(ei, injk+1), and they evolve there into the corresponding objects ai, by
means of the rules ei → ai. Take into account that the objects ei and
the object reach the input membrane of Πgj

at the same time. In this

Fig. 2. Local synchronization of a P system

way, when Πgj
begins to perform its original work, the input data is in

the suitable place.
Stage 2: Computing the function f over (g1(k1, . . . , kr), . . . , gt(k1, . . . , kr))

The first stage ends when membrane 1 has collected at least one copy of each
object #g1 , . . . ,#gt . In that moment the computed values have to be sent
as input data to the system Πf . To synchronize the end of the first stage
with the beginning of the second one, in membrane 1 the rule # → # is
repeatedly applied until the rule #g1 . . .#gt# → (, inσf

) can be used.
This rule sends an object to the skin of µ

Πf
, with the goal of initiating

the counters of its membranes in such a way that these membranes can start

to apply their original rules at the same time (local synchronization within
Πf). This process is performed in a similar way as the previous one of stage
1. Also in the next step of the computation the objects bi, that represent
the values obtained in the first stage, are put inside the skin of µ

Πf
and,

subsequently, are moved by means of the rules bi → (bi, injk+1), through all
the membranes of µ

Πf
, from the skin to the corresponding input membrane

of Πf .
It is easy to check that, although there exists a gap of one computation step
between the moment when the object arrives into a membrane and the
moment when the objects bi arrive, this entails no problem.
Next, the value of the function f over the arguments represented by the
objects ci is computed and, along this computation, objects di that represent
the result are expelled from µ

Πf
. These objects are collected in membrane

1 and are immediately expelled from µ
Π

. The computing process ends when
some object #f is collected in membrane 1, and all these objects are sent to
the environment of µ

Π
as objects #.

4.3 Iteration of a Function

We introduce now the operation of iterating a computing P system. For that,
we begin by defining the corresponding operation for functions.

Definition 13. Let f : N
m− → N

m. Then, the iteration of f , denoted It(f), is
a partial function from N

m+1 to N
m defined as follows:

It(f)(x1, . . . , xm, 0) = (x1, . . . , xm),
It(f)(x1, . . . , xm, n + 1) = It(f)(f(x1, . . . , xm), n).

Next, let us see how we design, from a system Πf ∈ FC that computes
the function f : N

m− → N
m without using the dissolution of membranes, a

computing P system that computes the iteration of f .
Let us suppose that

Πf =
(
Σf , Γf , Λf ,#f , µ

Πf
,Mf

1 , . . . ,Mf
pf

, (Rf
1 , ρf

1), . . . , (Rf
pf

, ρf
pf

), imf

)
.

Renaming adequately the elements of the alphabets (and, therefore, also of
the rules) we suppose, besides, that Σf = {a1, . . . , am} and Λf = {b1, . . . , bm}.

Let us consider the computing P system

Π =
(
Σ, Γ, Λ,#, µ

Π
,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp), im, env

)

that verifies the following:

– Σ = {c1, . . . , cm+1}. We can suppose, besides, that the condition Σ ∩Γf = ∅
is satisfied.

– There exist the distinguished elements ⊕,,�,⊗,� ∈ Γ \ Γf .
– Λ = {c1, . . . , cm}.

– The object # is distinct from the object #f .
– µ

Π
= [1µΠf

]1 , where the membranes of µ
Πf

have been adequately renamed
(and, therefore, the rules of Πf have also been adapted). We denote by σf

the skin membrane of this system. Also, we consider that imf is the new
label of the input membrane of Πf .

– p = pf + 1.
– M1 = #. The remaining multisets are all empty.
– im = 1.
– The evolution rules and their priorities are the following:

• Evolutions rules for membrane 1:

#cm+1 → (, inσf
) > #ci → #(ci, out) >

> # → (#, out) > #f#f → #f > #f → (�, inσf
) >

> ⊗ubi → ⊗uci > ⊗u → # >

> ci → (ci, inσf
); in all cases i = 1, . . . , m;

u is the number of membranes of the structure µ
Πf

.
• For each membrane j distinct from membrane 1 the following rules are

included:

 → ⊕(, inj1) . . . (, injk
),

�v ⊕ → Mf
j > ⊕ → ⊕�,

� → ⊗(�, inj1) . . . (�, injk
),

ob⊗ → ⊗ > ⊗ → (⊗, out), for all ob ∈ Γf .

The rules and priorities associated with membrane j in Πf

Here, j1, . . . , jk are the children membranes of membrane j and v is its
depth level within µ

Πf
. Moreover, if j = imf , then the rule ⊕ → ⊕�

has higher priority than the original rules of this membrane in Πf .
• Let j1, . . . , jq be the membrane path in µ

Πf
from σf to the input mem-

brane, imf ,. Then, for each k = 1, . . . , q − 1, the following rules are
included in membrane jk:

ci → (ci, injk+1), for i = 1, . . . , m.

The following rules are also included in membrane jq = imf :

ci → ai, for i = 1, . . . , m.

Thus, the initial membrane structure of this system can be represented as in
figure 3. Furthermore, its functioning can be considered arranged in two stages:

Stage 1: Computation of one iteration of f :

– Sending of the input data to the input membrane of Πf .
– Local synchronization of the membranes in Πf .

Fig. 3. Iteration of computing P systems

Stage 2: Restarting of the system Πf :

– Erasing of the objects remaining in Πf .
– Beginning of a new iteration of f .

Notation. We say that the system Π designed above, which we denote by
It(Πf), is the system obtained by the iteration of the system Πf .

Next, we are going to justify, in an informal manner, that the system It(Πf)
is a computing P system that is valid and computes the iteration of f .

The number of iterations of f to perform is given by the (m+1)-th argument
supplied to It(f). What we do then is to reduce this argument by one and, next,
we perform a process consisting of two stages: the first one consists of computing
one iteration of f ; the second one consists of “reseting” the system Πf to its
initial state. We iterate this process until the (m + 1)-th argument makes zero.

The condition to decide if a iteration has to be performed or not is checked
in membrane 1 examining how many objects cm+1, that represent the (m +
1)-th argument are present. If any of those objects is present, then the rule
#cm+1 → (, inσf

) is applied (followed by the rules ci → (ci, inσf
)), starting

the calculation of a new iteration of the function f .

Stage 1: Computation of one iteration of f :
This stage begins when an object is introduced in the skin of µ

Πf
. This

object initiates counters in the membranes of µ
Πf

, in an analogous manner
as it was done for composition, in order to make sure that they will begin
to apply their original rules at the same time (local synchronization within
Πf). Also, with a gap of a computation step that is not relevant, the input
data, represented by the objects ci, is transported from the skin of µ

Πf
to

the input membrane of Πf . Although along the execution of this stage the
result of a iteration is sent out of µ

Πf
, being collected in membrane 1 of Π,

it is necessary to observe that in this membrane no rule is activated.

Stage 2: Restarting of the system Πf

The first stage ends when some object #f is collected in membrane 1 of Π.
Before we can begin the simulation of another iteration of f , it is necessary
to erase all the objects that remain in the membranes of µ

Πf
. This is done

in this stage, that begins by reducing the number of objects #f present in
membrane 1 to only one. Then the rule #f → (, inσf

) in this membrane
introduces an object � in the skin of µ

Πf
.

This object spreads to all the membranes in the same way as does in the
previous stage, and put an object ⊗ in each of them. These last objects act
as erasers, eliminating all the objects in the membranes by means of the
rule ob⊗ → ⊗. When a membrane has been emptied (that is, when only an
object ⊗ remains in it), then the object ⊗ is expelled.
Therefore, this stage finishes when membrane 1 collects as many objects ⊗
as the degree of µ

Πf
indicates. It is only then when the rules ⊗ubi → ⊗uci

can be applied, transforming the result of one iteration of f into input data
of Π. Finally, the rule ⊗u → # is applied to start the process again.
An example of how the process of restarting a P system works is shown in
figure 4, for a P system with ten membranes.

At the moment when no object cm+1 is present in membrane 1, it is necessary
to finish the simulation of iterations. Then it is necessary to send the objects
c1, . . . , cm of this membrane to the environment, followed by an object #.

Note that along the evaluation of the halting condition no rule can be applied
in any membrane distinct from the skin membrane, because they are empty.

4.4 Unbounded Minimization of a Function

We introduce now the operation of unbounded minization of a computing P
system. For that, we begin by defining the corresponding operation for functions.

Definition 14. The operation of unbounded minimization or µ–recursion
applied to the partial function f : N

n+1− → N produces the function
Min(f) : N

n− → N given by

Min(f)(x1, . . . , xn) =

{
yx1,...,xn

, if yx1,...,xn
exists,

undefined, otherwise,

for every (x1, . . . , xn) ∈ N
n, where

yx1,...,xn = min{y ∈ N |∀z < y
(
f is defined over (x1, . . . , xn, z)

) ∧
f(x1, . . . , xn, y) = 0}.

Finally, we are going to describe a computing P system that, from a system
Πf ∈ FC computing the function f : N

m+1− → N without using the dissolution
of membranes, computes the function obtained by the unbounded minimization
from f .

Fig. 4. Restarting of a P system

Let us suppose that

Πf =
(
Σf , Γf , Λf ,#f , µ

Πf
,Mf

1 , . . . ,Mf
pf

, (Rf
1 , ρf

1), . . . , (Rf
pf

, ρf
pf

), imf

)

Renaming adequately the elements of the alphabets (and, therefore, also of
the rules) we can also suppose that Σf = {a1, . . . , am+1} and Λf = {b}.

Let us consider the computing P system

Π =
(
Σ, Γ, Λ,#, µ

Π
,M1, . . . ,Mp, (R1, ρ1), . . . , (Rp, ρp), im, env

)

verifying the following conditions:

– Σ = {c1, . . . , cm}. We can also suppose that the condition Σ ∩ Γf = ∅ is
satisfied.

– There exist distinguished elements ⊕,,�,⊗,� ∈ Γ \ Γf .
– Λ = {cm+1}.
– The object # is distinct from the object #f .
– µ

Π
= [1µΠf

]1 , where the membranes of µ
Πf

have been adequately renamed
(and, therefore, the rules of Πf have also been adapted). We denote by σf

the skin membrane of this system. Moreover, we consider that imf is the
new label of the input membrane of Πf .

– p = pf + 1.
– M1 = #. The remaining multisets are all empty.
– im = 1.
– The evolution rules and priorities are the following:

• Evolution rules for membrane 1:

#f#f → #f > #fb → bcm+1(�, inσf
) > ⊗u → # > #b → # >

#ci → #di > # → (, inσf
) >

di → ci(di, inσf
) > #fcm+1 → #f (cm+1, out) >

#f → (#, out), for i = 1, 2, . . . , m + 1;

u is the number of membranes of the structure µ
Πf

.
• For each membrane j distinct from membrane 1 the following rules are

included:

 → ⊕(, inj1) . . . (, injk
)

�v ⊕ → Mf
j > ⊕ → ⊕ �

� → ⊗(�, inj1) . . . (�, injk
)

ob⊗ → ⊗ > ⊗ → (⊗, out), for ob ∈ Γf .

The rules and priorities associated with membrane j in Πf .

Here, j1, . . . , jk are the children membranes of membrane j and v is its
depth within µ

Πf
. Moreover, if j = imf , then the rule ⊕ → ⊕� has

higher priority than the original rules for this membrane in Πf .
• Let j1, . . . , jq be the membrane path in µ

Πf
from σf to the input mem-

brane, imf . Then, for each k = 1, . . . , q − 1, the following rules are
included to membrane jk:

di → (di, injk+1), for i = 1, . . . , m + 1.

The following rules are also included in membrane jq = imf :

di → ai, for i = 1, . . . , m + 1.

Thus, the initial membrane structure of this system can be represented as
shown in figure 5. Furthermore, its functioning can be considered arranged in
two stages:

Stage 1: Calculation of f(x, y) (starting with y = 0):

– Erasing of the results obtained previously.
– Sending of the input data to the input membrane of Πf .
– Local synchronization of the membranes in Πf .

Stage 2: Checking the result of f(x, y):

– If the result is zero, sending y to the environment and halting.
– If the result is not zero, reseting the system Πf and increasing y by 1. Then

go back to stage 1.

Fig. 5. Unbounded minimization of computing P systems

Notation. We say that the system Π defined above, which we denote by
Min(Πf), is the system obtained by the unbounded minimization of the system
Πf .

Next, we are going to justify, in an informal manner, that the system
Min(Πf) is a computing P system that is valid and computes the unbounded
minimization of f .

Given an input data (x1, . . . , xm) ∈ N
m we have to compute the values

f(x1, . . . , xm, y) for y = 0, 1, 2 and so on, until finding the first one that is zero,
in which case we return the corresponding value of y. The data (x1, . . . , xm) is
represented by the objects ci, with i = 1, . . . , m, and the number y will be given
by the number of objects cm+1 present in the system.

To perform this, the system Π repeats a process arranged in two stages:
the first one consists of computing the value of f applied to the input data
(x1, . . . , xm) and to a specific number y; in the second stage the obtained result

is checked. If it is zero, then we have finished and it suffices to expel the objects
cm+1 to the environment. If it is not zero, then we add a new object cm+1, in
such a way that these objects represent the number y+1, and return the system
Πf to its initial configuration, starting again with the first stage.

Stage 1: Calculation of f(x1, . . . , xm, y)
This stage is activated with the presence of an object # in membrane 1 of Π.
What is done first is the erasing, by means of the rule #b → #, the result of
f(x1, . . . , xm, y−1) that we would have obtained previously. Next, we change
the objects ci into objects di, with the goal of being able to send them to the
system Πf and, at the same time, keep them in the input membrane of Π.
Once done this, we send an object to the skin of µ

Πf
in order to perform,

in an analogous way as we have seen for composition and iteration, a local
synchronization of its membranes. Also, with a gap of one computation step
that is not relevant, the objects di, that represent the arguments to which
we are going to apply the function f , is transported from the skin of µ

Πf

to the input membrane of Πf . Furthermore, we keep a copy in membrane 1
using objects ci.
From now on no rule can be applied in membrane 1 until Πf does not finish
computing the value of the function f applied to the tuple (x1, . . . , xm, y).

Stage 2: Checking of the result
In this stage what is first done is reducing to only one the number of objects
#f collected in membrane 1 of Π. Then, if the result of f(x1, . . . , xm, y) has
been zero, the only rules applicable are the rule #fcm+1 → #f (cm+1, out),
that sends the objects cm+1 to the external environment, followed by the
rule #f → (#, out), that finishes the computation.
If the result of f(x1, . . . , xm, y) has been different from zero, then in mem-
brane 1 of Π some object b has been collected and, therefore, the rule
#fb → bcm+1(�, inσf

) will be applicable. This rule adds a new object cm+1,
for its multiplicity to represent the number y + 1. Furthermore, that rule
sends and object � to the skin membrane of µ

Πf
to restart the system Πf ,

exactly in the same way as we did with iteration. Then no rule in membrane
1 of Π can be applied until as many objects ⊗ as membranes in µ

Πf
do not

appear. At this moment, the rule ⊗u → # introduces an object #, so that
stage 1 starts again.

From these constructions and discussions we infer the following result.

Theorem 1. Let f ∈ P be a partial recursive function. Then there exists a
system Πf ∈ FC, which uses priority and cooperation, but not dissolution, com-
puting the function f .

Proof. It suffices to take into account that if f is a recursive function then there
exist functions g1, . . . , gn such that gn = f and for each j = 1, . . . , n either gj

is a basic function, or gj is obtained from some of the functions g1, . . . , gj−1 by
means of the operations of composition, iteration or unbounded minimization
(see [1]).

5 Conclusions

We have studied in this paper computing P systems. This is a variant of the
model of computation introduced in [4], which in turn is a variant of the basic
model of transition P system introduced by G. Păun in [2]. The idea behind
this new model is to be able to compute functions without worrying about the
content of the membrane structure used to do it, but only considering the objects
collected in its environment.

We have defined three operations for computing P systems with external
output: composition, iteration and minimization. These operations have allowed
us to prove, in a constructive manner, the computational completeness of this
model, since using these operations any partial recursive function can be com-
puted by such a system.

Acknowledgement. The authors gratefully acknowledge the support of the
project TIC2002-04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of
Spain, cofinanced by FEDER funds.

References

1. D.E. Cohen. Computability and Logic. Ellis Horwood, 1987.
2. G. Păun. Computing with Membranes. Journal of Computer and System Sciences,

61(1):108–143, 2000.
3. G. Păun. Membrane Computing. An Introduction. Springer–Verlag, 2002.
4. G. Păun, G. Rozenberg, and A. Salomaa. Membrane Computing with External

Output. Fundamenta Informaticae, 41(3):259–266, 2000.
5. M.J. Pérez-Jiménez and F. Sancho-Caparrini. A Formalization of Transition P

Systems. Fundamenta Informaticae, 49(1–3):261–272, 2002.
6. A. Romero-Jiménez. Complejidad y Universalidad en Modelos de Computación

Celular. PhD thesis, Universidad de Sevilla, 2003.
7. A. Romero-Jiménez and M.J. Pérez-Jiménez. Generation of Diophantine Sets by

Computing P Systems with External Output. In C.S. Calude, M.J. Dinneen, and
F. Peper, editors, Unconventional Models of Computation, volume 2509 of Lecture
Notes in Computer Science, pages 176–190. Springer–Verlag, 2002.

8. F. Sancho-Caparrini. Verificación de Programas en Modelos de Computación no
Convencionales. PhD thesis, Universidad de Sevilla, 2002.

9. The P Systems Web Page. (URL http://psystems.disco.unimib.it/).
10. Web Page of the Research Group on Natural Computing of University of Sevilla.

(URL http://www.cs.us.es/gcn/).

http://psystems.disco.unimib.it/
http://www.cs.us.es/gcn/

	Introduction
	Transition P Systems with External Output
	Syntax
	Semantics

	(Function) Computing P Systems
	Computational Completeness through Partial Recursive Functions
	Basic or Initial Functions
	Composition of Functions
	Iteration of a Function
	Unbounded Minimization of a Function

	Conclusions

