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Abstract
We prove some results on the existence and uniqueness of solutions for a class of evolution
equations of second order in time, containing some hereditary characteristics. Our theory is
developed from a variational point of view, and in a general functional setting which permits
us to deal with several kinds of delay terms. In particular, we can consider terms which contain

spatial partial derivatives with deviating arguments.
1. Introduction

In the modelling of many evolution phenomena arising in physics, biology, engineering,
etc., some hereditary characteristics such as time-delay can appear in the variables. Typical
examples can be found in the researches of materials with termal memory, biochemical reac-
tions, population models, etc. (see, for instance, Wu [12] and references cited therein). Thus
these problems are better modeled by considering a functional differential equation which takes

into account the history of the system.

From the pioneering works of Artola [1,2], Baiocchi [3] and Travis and Webb [10, 11],
a wide literature has appeared on the existence of different kind of solutions (strong, mild,
integral, etc.) to functional differential equations of first order in time, even in the more general
context of differential inclusions (see, for instance, Ruess [7, 8] and references cited therein).
However, to our knowledge, in the case of functional differential equations of second order in

time, there is only partial results.



Recently, in Kartsatos and Markov [5], some questions on existence of solutions for func-
tional differential inclusions of second order in time, and in particular, for equations of the

form

{ u”(t) + A(t)u(t) = F(t,ug), t>0, an

u(t) =(t), te[-h0]
have been analized.

Our aim is to obtain some results of existence and uniqueness of solution for some problems
that are related to (1.1) in the case in which a damping term is added. Then, we can consider
right hand terms of the form F(¢, us, u;) with F eventually depending of spatial derivatives of
u and/or u'.

Our analysis will be made from a variational point of view, in the spirit of Artola [1], and
makes use of the results of Lions and Strauss [6] and Strauss [9].

In Section 2, we prove some results for the case in which F(t,us,u;) does not depend on
the spatial derivatives of w and/or u’. These are extensions of previous results of Artola [1].
In Section 3, we study, in a hilbertian framework, the case in which F (¢, u, u;) depends of the
spatial derivatives of u and/or «’, and we obtain some new results of existence of solutions
under a coercivity condition (cf. condition (H) in Theorem 3.1 below). Finally, two examples
are given in Section 4 to illustrate our theory.

2. The case without spatial derivatives in the delayed terms.

To start off, let us state the abstract framework in which our analysis will be carried out.
Let V a real Hilbert space, H a real separable Hilbert space and W a reflexive real Banach
space, such that VUW C H, V and W are dense in H and the injections of V and W in H
are continuous.

We assume also that V N W is separable and a dense subset of V and W.

We identify H with its dual space H*, and we have
VAW cCcVCHCV C(VnWw)",

VnWcWcHcCW cC(VnWw)*,

where the injections are continuous and dense.

We denote by |||, |-| and ||-||, the norms in V, H and V* respectively; by |||y, the norm

in W, and by |||+ the norm in W*. We also denote by ((-,-)) and (-,-) the scalar products
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in V and H respectively; and by (-,-) the duality product between V* and V or the duality

product between W* and W.

Let us fix a real number T' > 0, and consider given {A(¢);t € [0,7]} a family of linear

operators satisfying:

(A1) {A(t);t € [0,T]} € L(V,V*) and A(¢) is selfadjoint for each ¢ € [0, 7.

(A.2) there exist a > 0 such that (A(t)u,u) > a|ul®>, YueV, Vie[0,T].

(A.3) (A(-)u,u) € C([0,T)) Yu,u € V, and, if we denote for ¢ € [0,T] by (A’(t)u,u) the
value of % (A(t)u, u), the operator A’(t) so defined belongs to L(V; V™).

(A4) (At)u,u) <0 YueV, Vte|0,T].

Observe that A(-) and A’(-) belong to L>(0,T; L(V,V*)).

Given real numbers a < b, and a Banach space V, we will denote by C(a, b; V) the Banach

space of all continuous functions from [a, b] into V equipped with sup norm.

2
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We will denote v’ = I and v’ = proR the first and second derivatives of u as a vectorial

distribution, and by p’ the conjugate exponent of p. We have the following result due to
Strauss [9].

Theorem 2.1 Assume that hypothesis (A.1)-(A.4) hold. For p € (1,00) given, let u €
L>°(0,T;V) such that ' € LP(0,T; W) N L®(0,T; H), and u" + Au = G € L¥' (0,T; W*) +
LY(0,T; H). Then, u € C(0,T;V),u' € C(0,T; H), (Au,u) € C([0,T]), and for eacht € [0,T],

[/ () + (A()u(t), u(t)) = [u'(0)* + (A(0)u(0),u(0))

—l—/o (A (s)u(s),u(s)) ds+2/0 (G(s),4/(s))) ds. (2.1)

Let B(t,-) : W — W* be a family of nonlinear operators defined a.e.t € (0,7) and

satisfying:
(B.1) Vv € W, the map t € (0,T) — B(t,v) € W* is Lebesgue measurable.
(B.2) the map 6 € R —— (B(t,v + 6w), z) € R is continuous Vv, w,z € W, a.e.t € (0,T).
For some p € (1, 0),
(B.3) there exists ¢ > 0 such that | B(t,v)||lw- < c|v|/b ' Yo e W, aete (0,T).
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(B.4) there exists § > 0 such that (B(t,v),v) > B|lv|},, Yve W, aete (0,T).
(B.5) (B(t,v) — B(t,v),v —v) >0 Yv,v €W, aetec(0,T).
Using Theorem 2.1 and the results in Lions and Strauss [6], we have:

Theorem 2.2 Assume that hypothesis (A.1)-(A.4) and (B.1)-(B.5) hold. Then, for every
up €V, vo € H and f € L¥ (0,T;W*) + LY(0,T; H), there exists a unique solution to the

problem
uwe L*0,T;V), o e€L>®0,T;H)NLP0,T;W),

u”(t) + A(t)u(t) + B(s, u'(t) = f(t), € (0,T),
u(0) = ug, u'(0) = vo.

Moreover, the solution u satisfies u € C(0,T;V), ' € C(0,T; H), and for each t € [0,T],

|u' ()] + (A()u(t), u(t)) +2/0 (B(s,u'(s)),u'(s)) ds =
vo? Ug, U t "(s)u(s),u(s)) ds t s),u'(s)) ds.
[vol” 4 (A(0)uo o>+/O<A()() ()>d+2/0<f() (s)) d

Consider also fixed a real number h > 0. For a given Banach space V, if we consider
a function z : [—h,T] — V, for each ¢t € [0,T] we will denote by z; the function defined by
xi(s) =z(t+s), s € [-h,0].

Let now Fy : (0,T) x C(—h,0; V) x C(—h,0; H) — H be a family of nonlinear operators

defined a.e.t € (0,7T) such that:

(Fo.1) Y(&,m) € C(=h,0;V) x C(—h,0; H), the map t € (0,T) — Fo(t,&,n) € H is

Lebesgue measurable,
(F()2) Fo(t,070) =0, aete (O,T),

(Fy.3) 3Cp, > 0 such that V&,€ € C(—h,0; V), ¥n,7 € C(—h,0; H) and a.c. t € (0,T),

|F0(t7£77’) - FO(tagvﬁ)F < OFO (”g - 5”%’(—h,0;\/) + |77 - mQC(—h,O;H)) :

Remark 2.1 If (u,v) € C(=h,T;V) x C(—=h,T; H), it is not difficult to deduce from
(Fy.1)-(Fp.3) that the mapping ¢t € (0,T) — Fo(t,us,v,) € H is measurable, and consequently

the function Fy(t, ut,v:) belongs to L>°(0,T; H).
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We consider the problem
uwe C(=h,T;V), u e€C(=h,T;H)NLP(0,T;W),
u”(t) + A(t)u(t) + B(t,u'(t)) = Fo(t,ug, uy) + f(t), t € (0,7T), (Po)
u(t) = (1), t € [=h,0],

where f € L?' (0, T;W*) + L*(0,T; H), and ¢ € C(—h,0;V) such that ¢’ € C(—h,0; H),

are given.
We can prove the following result:

Theorem 2.3 Assume that (A.1)-(A.4), (B.1)-(B.5) and (Fy.1)-(Fy.3) hold. Then, for
each f € L¥ (0,T;W*) + LY0,T; H), and ¢p € C(—h,0;V) such that ¢/’ € C(—h,0; H), there
exists a unique solution u to the problem (FPp).

Proof.

Uniqueness of solutions. Assume that u,u are two solutions of problem (FPp). Denote

v(t) =/ (t) and v(t) = @'(t), t € [=h,T]. Then, by Theorem 2.1, for each ¢t € [0, 7], we obtain

o(t) = B(t)[* + (A() (u(t) — U(t)), u(t) — (1)) =
/0 (A'(s)(u(s) —u(s)),u(s) —u(s)) ds
- 2/ (B(s,v(s)) — B(s,0(s)),v(s) —v(s))) ds
0
2 [ (Fuloteam) = Fos, . 70) os) = (s) s

(From this equality, and (A.2), (4.4) and (B.5), we have for each t € [0,T],

sup [v(0) —(0)]* + a sup [u(®) —u(0)]?
0<O<t 0<6<t

< 4/0 [(Fo(s,us,vs) — Fo(s,us,Vs),v(s) —0(s)))| ds. (2.2)

By (F03)7

4/; |(Fo(s, us, vs) — Fo(s,Us, 0s),v(s) — 0(s))| ds

t
< ! {sup [v(s) —5(5)2} +8T/ |Fo(s, us, vs) —Fo(s,ﬁs,53)|2 ds
2 [o<s<t 0
1
< [sup v(s)—%(s)g}
2 |o<s<t
t
+8TCFO/ (Sup u(8) — T(O)] + sup |v(e>—a(e)2) ds.
0 0<0<s 0<6<s



Thus, from (2.2), we can assure that there exists a constant k > 0 such that

sup [v(0) —(0)|* + sup [u(6) — u(0)|
0<0<t 0<0<t

< t<sup Jul6) —TO)I* + sup 10(6) 0 ) ds

0<6<s 0<0<s

for all ¢ € [0,T]. Uniqueness follows immediately from Gronwall’s lemma.

Existence of solutions: We denote u® = v® = 0 € V N W, and define by recurrence a

sequence {u",v"},>1 of pairs of functions as solutions to the problem

u" € C(~h,T;V), v" € C(—h,T;H)NLP(0,T; W),
vt (t) = (u")'(t), te[-hT],

v"(t)—i—/o A(s)u”(s)ds—i—/o B(s,v"™(s))ds = ¢'(0) (Po.)

+/t(Fo(8,u?_l»v?_1) + f(s))ds, t €[0,T7,
0
w(t) = b(t), te[—h,0].

The existence and uniqueness of solution to the problem (P, ) is guaranteed by Remark 1.1.

and Theorem 2.2. Now, we want to prove that {u"}, ., converges to the solution of (Fp).

Applying Theorem 2.1 to u™* — ", and using (A.2), (4.4) and (B.5), we obtain

sup [v"F1(0) — 0" } +a sup [Ju"t( )—u”(H)H2
0<0<t 0<0<t
< 4/ [(Fo(s,ul, vl) — Fy(s,um 1 om= 1) o (s) —v"(s))| ds. (2.3)

Thanks to condition (Fp.3), we have

/ |(Fo(s, um, o) — Fo(s, a1, om1), 0" (s) — 0(s))] ds

< = [ sup [v"(s) — v”(s)ﬂ
2 lo<s<t

¢
+8TC’FO/ (sup [|w(6) — w” || + sup |v"(0 Un_l(&)f) ds. (2.4)
0 \o<6< 0<0<s

Thus, if we define for each ¢ € [0, T

p" T (t) = sup [v"T1(0) — ’ + sup |[u"T(0) —u”(9)’2, Vn > 1,

0<6<¢t 0<0<t
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from (2.3)-(2.4) we can assure that there exists a constant k > 0 such that
t
p"TH(t) < k/ p"(s)ds, Vn>1, Vtel[0,T]. (2.5)
0

(From (2.5), it is easy to deduce that

krTm

n+1
A O

pN(T), Yn>1, Vtel0,T). (2.6)

JFrom (2.6), and the fact that "t (t) = u™(t) and v"*1(t) = v"(¢), Vt € [~h,0] and Vn > 1,
we obtain that {u”}, ., is a Cauchy sequence in C(—h,T;V), and that {v"}, ., is a Cauchy
sequence in C(—h,T; H), being (u™)'(t) = v"(t) in [—h,T]. Consequently, there exists u €
C(=h,T;V), with v’ € C(—h,T; H) such that

u" —win C(=h,T;V), v" =o' in C(—h,T;H). (2.7)

(From (2.7), the linearity and uniform boundedness of A(t) and A’(t), and (Fp.3), we obtain
At)u™(t) — At)u(t) in C(0,T;V™),
A'()u"(t) — A'(t)u(t) in L=(0,T; V™), (2.8)
Fo(t,u,vp) — Fo(t,ug,uy) in L°(0,T; H).

On the other hand, applying (2.1) to u™, we obtain

0" (8)|* + (A(t)u" (1), u™ (£)) + 2/ (B(s,v"(s)),v"(s)) ds =

0

[ (0)? + (A(0)(0), 1:(0)) + 2 / (Fos, a1, 071, 07 (5)) ds
+2/O <f(s),v”(s))ds+/0 (A'(5)u™ (5), u™(5)) ds. (2.9)

But, if we write f = f1 + fo with f; € L?' (0,7;W*) and fo € L*(0,T; H), then by Young’s
inequality, for all ¢ € [0, T,

’

t t D T ,
2 [0 as <8 [ @y s+ o [ IR ds

Hence, using this last inequality, (A.2), (A.4), (Fy.3), (B.4), (Fp.4) and the boundedness of
{u"},>; in C(=h,T;V) and {v"},5, in C(=h,T;H), one obtain from (2.9) that {v"}, -,
is bounded in LP(0,T;W). Hence, by (B.3), the sequence {B(t,v™(t))}n>1 is bounded in
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LY (0, T;W*). Consequently, there exist a subsequence {v™ },,, >1 C {v"},>1, and two func-

tions v € LP(0,T; W) and B(t) € L? (0,T; W*), such that
V™ — v in LP(0,T; W), B(t,v™(t)) = B(t) in L? (0, T; W*),

where — denotes weak convergence. Obviously, as v — u' in C(—h,T; H), v =o' in (0,T).

Thus, we can take limits in (P, ), and obtain that u is solution of
ueC(=hT;V), o eC(-h,T;H),
t t
u'(t) +/ A(s)u(s)ds +/ B(s)ds = '(0)
0 0

+/ (Fo(s,us,ul) + f(s))ds, t €0,T],
0

u(t) = ¥(t), t € [~h,0].

To simplify the notation, observe that from (]/35), B is uniquely determined by u, and thus,

the whole sequence {B(t,v™(t))}n>1 converges weakly to B in LP' (0, T; W*).

In order to prove that u is in fact a solution of problem (Fy), we only need to prove that
B(t) = B(t,u/(t)) in (0,T). Firstly, from (2.7)-(2.9), we have
T
|u/(T))* 4+ (A(T)u(T), w(T)) + QIimsup/ (B(s,v™(s)),v"(s)) ds
n— oo 0

T
<[¢'(0)” + (A(0)%(0),¥(0)) + 2/0 (Fo(s, us, us),u'(s)) ds

+2 / (F(s),u'(5)) ds + / (A'(s)u(s), u(s)) ds,

and consequently, using identity (2.1) applied to (ﬁo)7 we obtain

timsup [ (Bl (9).07(5) ds < [ (B).(9) ds.
{From (B.5),
/OT (B(s,v™(s)) — B(s, X(s)),v"(s) — X(s)) ds >0 VX € LP(0,T;W), ¥n>1. (2.10)
Taking limits in (2.10), we get
/OT (B(s) — B(s, X(5)),u/(s) — X(s)) ds > 0 VX € LP(0,T; W), (2.11)
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Now, if we set X =u' — 67, with Z € LP(0,T; W) and ¢ > 0, we obtain from (2.11)
T
/ (B(s) — B(s,u'(s) —0Z(s)),6Z(s)) ds >0 VZ € LP(0,T; W), V6> 0. (2.12)
0
If we divide by ¢ in (2.12), and take limits as § — 0, we obtain from (B.2) and (B.3)
T
/ (B(s) — B(s,u/(s)), Z(s)) ds >0 ¥ Z € LP(0, T; W),
0

and consequently, B(s) = B(s,u/(s)) in (0,T). [ |
Remark 2.2 Suppose now that Fy satisfy (Fp.1)-(Fp.3), and

(Fv.4) 3K g, > 0 such that Vz,z € C(—h,T;V), Vy,5 € C(—h,T; H), and V¢ € [0,T],
K 2 K 2 2
| IRt = Fa(o. Gl ds < Ky [ (lolo) = 7G6) P+ lus) = 7)) ds. (213
0 —

We know that, by (Fy.1)-(Fo.3), if (z,y) € C(—=h,T;V) x C(—h,T; H), the function Fém’y) :
(0,T) — H defined by Fo(m’y)(t) = Fo(t,ze,y¢) aet € (0,T), belongs to L>(0,T; H). But,

thanks to (Fp.4), the mapping
Zo: (z,y) € C(=h,T;V) x C(=h,T; H) —> F\"™Y) ¢ L2(0,T; H)

has a unique extension to a mapping EO which is uniformly continuous from the product space
L*(=h,T;V) x L?(—=h,T; H) into L?(0,T; H). From now on, we will also write Fy(t, z¢,y;) =
Eo(x, y)(t) for each (x,y) € L*(—h,T;V) x L?(—h,T; H). Consequently, for every =, €

L?(—h,T;V), y,y € L?(—h,T; H) and Vt € [0,T], inequality (2.13) will be satisfied.
Now, we are in a position to prove the following result:

Theorem 2.4 Assume that hypothesis (A.1)-(A.4), (B.1)-(B.5) and (Fy.1)-(Fy.4) hold.
Then, for each ug € V, vg € H, f € L”/(O,T; W*) + LY(0,T; H), ¥ € L?*(—h,0;V) and
¢ € L*(—h,0; H) given, there exists a unique solution (u,v) to the problem
we LA(=h,T; V)N CO0,T;V), wve L¥(—h,T; H) N C(0,T; H) N LP(0, T; W),

u'(t) =v(t), t €[0,T],

v'(t) + A(t)u(t) + B(t,v(t)) ds = Fo(t,ur,ve) + f(t), t € (0,T), (Qo)
u(0) = ug, u'(0) = vo,

u(t) = ¥(t), v(t) = ¢(t), ae.t e (=h,0),

Proof. The proof is similar to that of Theorem 2.3, and so, we omit it.

9



Remark 2.3 Observe that in Theorems 2.3 and 2.4 we can add to A(t)u(t) terms of the
form Ag(t,u(t)), and to B(t,u/(t)) terms of the form Bo(t,u’(t)), with Ay and By satisfying
adequate conditions. More exactly, consider given Ag(t,-) : V - H and Bo(t,-) : H — H, two
families of nonlinear operators defined a.e.t € (0,7") and satisfying:

(Ag.1) Yu € V, the map ¢ € (0,T) — Ag(t,u) € H is Lebesgue measurable,

(A0.2) Ao(t,0) =0, a.e.t € (0,7).

(A0-3) IL, > 0 such that [Ag(t,u) = Ao(t,0)| < Lz [lu =7l Vu,GeV,aete(0T),

(Bo.1) Vv € H, the map t € (0,T) — Bo(t,v) € H is Lebesgue measurable,

(Bo.2) By(t,0) =0, a.e.t € (0,T).

(Bo-3) AL, > 0 such that |Bo(t,v) — Bo(t,0)| < L [v 70| Vv,5 € H, ae.t € (0,T).

Then, under the conditions of Theorem 2.3, we can assert existence and uniqueness of
solution to the problem

ue C(=h,T;V), ueC(-h,T;H)NLP(O,T;W),
u(8) + A(t)ut) + Ao(t, u(t)) + B(t, /(1)) + Bo(t, w' (1)) = ~
Fo(t, ug,up) + f(t), t € (0,7),
U(t) = d)(t)a te [_hv 0}7
and, under the conditions of Theorem 2.4, we can assert existence and uniqueness of solution
to the problem
u€ L2(—h, T;V)NC(0,T;V), veL*(~h,T;H)NC(0,T;H)NLP0,T; W),
u'(t) =w(t), t €[0,T],
o' (t) + At)u(t) + Ao(s, u(t)) + B(t, v(t)) + Bo(t, v(t)) = o)
0
Fo(t7ut7 Ut) + f(t)7 te (O,T),
U(O) = Uo, U(O) = Yo,
u(t) =9¢(t), v(t)=0¢(), ae te (=h0).

It is enough to observe that we can substitute in problem (P,), or in problem (@), the term

Fo(t, ut, uy) by the term ﬁo(t, ug, uy), with Fy defined by

ﬁO(taé.:n) = FO(ta§777) - Avo(tvg(o)) - Eo(t7n(0))7

vEe C(—h,0;V),Vne C(—h,0;H), ae. t € (0,T).
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3. The case with delays depending on the spatial derivatives
We consider the hypothesis of Section 2, in the particular case W =V and p = 2.
Let Fy : (0,T) x C(—=h,0;V) x C(=h,0;H) — V* and Fy : (0,T) x C(—h,0;V) x
C(—h,0; V) — V* be two families of nonlinear operators defined a.e.t € (0,7 such that:
(F1.1) V(&,m) € C(=h,0;V) x C(=h,0; H), the map ¢ € (0,T) — Fi(t,&,n) € V* is
Lebesgue measurable,
(F1.2) Fy(t,0,0) =0, a.e.t € (0,7),

(F1.3) 3CE, > 0 such that vgfe C(=h,0;V),Vn,ne C(—h,0; H) and a.e. t € (0,7,
IFL(t & m) — Fu(t,€, D)2 < O (”5 - EHQC(fh,o;v) +n— 77|2C(7h,0;H)) .

(F3.1) Y(&,m) € C(—h,0;V) x C(=h,0;V), the map t € (0,T) — F5(t,&,n) € V* is
Lebesgue measurable,
(F2.2) F5(t,0,0) =0, a.e.t € (0,T),

(F».3) 3CF, > 0 such that Vf,g,n,ﬁ € C(=h,0;V), and a.e.t € (0,T),
||F2(t,£,’l7) - FQ(ta€7 77)”3 < CFz (Hf - €||2C(7h,0;v) + ||77 - ﬁ”%(fh,o;v)) )
(F».4) 3KF, > 0 such that Va,7,y,y € C(—h,T;V), and Vt € [0,T],
K 2 ¢ 2 2
[ 1Pxtss) = Pals 35 2 s < K, [ (el = TP + () = 7)) ds. (1)

We consider the problem
ueC(=h,T;V), u' €L?-hT;V)NC(=h,T;H),
u’(t) + A(t)u(t) + B(t,u'(t)) = Fi(t,ug,uy) + Fo(t,u, uy) + f(t), t € (0,T), (P)
u(t) = ¢(t), t € [=h,0],
where f € L?(0,T;V*) + L'(0,T; H), and ¢ € C(—h,0;V) such that ¢’ € L?(—h,0;V) N
C(—h,0; H) are given.

Remark 3.1 If (z,y) € C(—h,T;V)xC(=h,T; H), we deduce from (F;.1)-(F;.3) that the
function Fi (¢, 2, y¢) belongs to L>°(0,T;V*). Also, by (F3.1)-(F3.3), if (x,y) € C(=h,T;V) x
C(=h,T;V), the function FQ(I’y) : (0,T) — V* defined by Fz(m’y)(t) = Fy(t,x,y1) ae. t €
(0,T), belongs to L>°(0,T; V*). Then, thanks to (F5.4), the mapping

Syt (2,y) € C(=h,T;V) x C(=h,T; V) — F\"Y) € L*(0,T; V*)
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has a unique extension to a mapping EQ which is uniformly continuous from the product space
L?(—=h,T;V) x L3(—=h,T;V) into L?(0,T;V*). From now on, we will also write Fy(t, 2, v;) =
ég(:v, y)(t) for each (z,y) € L?(—=h,T;V) x L*(—=h,T;V), and thus, for every z,y,7,y €
L*(=h,T;V) and Vt € [0, 7] the inequality (3.1) will continue to hold.

As a consequence of the preceding remark, the terms appearing in problem (P) make
sense. Now, we are interested in establishing some results on the existence and uniqueness of

solution to (P) under some additional assumptions. Firstly, we can prove the following result:

Theorem 3.1 Assume that hypothesis (A.1)-(A.4), (B.1)-(B.5) with W =V andp =2,
(F1.1)-(F1.3) and (F2.1)-(F2.4) hold. Suppose also the following condition:

(H) 3y >0, A, X > 0 such that V&, %,y,5 € L2(—h, T; V), and ¥Vt € [0, T,
t
2 [ (Blo,y(s) - BT y(s) - ) ds
0

t

te_’\s s) — (s)|? ds e (A(s) (2(s) — F(s)), 2(s) — F(s)) ds
“/0 ly(s) y<>|d+x/0 (A(s)(w(s) — T(s)), x(s) — F(s)) d
R 0
X [ e (o) = + lu(s) = 7)) s
te*’\s s) —4(s)1? ds
27/0 lu(s) — F(s)I? d
+2/0 e—)\s (Fg(s,xs7ys)—Fg(s,fs,ﬂs),y(s)—ﬂ(s» ds. (32)

Then, for each f € L*(0,T;V*)+ LY (0,T; H), v € C(=h,0;V) such that ¢ € C(—h,0; H) N

L?(—h,0; V) given, there exists a unique solution to the problem (P).
Proof.

Uniqueness of solutions. Assume that v and @ are two solutions of problem (P).
Denote v(t) = /(t) and v(t) = @'(t), t € [—h,T]. Then, by Theorem 2.1 we obtain for each

te[0,T],
e M Ju(t) = T(t)[* + e M (A(t) (ul(t) — u(t)), ult) — u(t))
i\ /O = u(s) — 5(s)|? ds + A /0 =3 (A(s)(u(s) — W(s)), uls) — (s)) ds
= /0 e (A (s)(u(s) — u(s)), u(s) — u(s)) ds
- 2/0 e M (B(s,v(s)) — B(s,7(s)),v(s) — 0(s)) ds
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+2 [ e (Fi(s,us,vs) — Fi(s, s, Vs),v(s) — 0(s)) ds

+2 e s F2 S Us;'Us) F2(3»ﬂs»:‘75)vv(s) - 5(8» ds.

/

t
/
v (A.2), (A.4), (H), the fact that e T < e ™ <1, Vt € [0,7], and (F}.3), we obtain

[o(t) =T + aflut) — a@)||* + 7/0 lo(s) —a(s)|* ds

< 2 AT/ (F1(s,us,vs) — F1(8,Us,Vs),v(8) —0(s)) ds

< /||v —o( || ds
2

2AT O FL [t
+C/O (sup lu(0) = @(O)]* + sup |v(9)—5(9)|2> ds. (3.3)

Y 0<0<s 0<0<s

(From (3.3) we obtain that there exists £ > 0 such that for all ¢ € [0, T

sup |v(0) —5(0)]> + sup [u(6) — @(0)|?
0<0<t 0<0<t

< t<sup Ju(6) = 5O + s o0) - TO)F) ds,

0<6<s 0<0<s

and thus, uniqueness follows from Gronwall’s lemma.
Existence of solutions. We will proceed in two steps.

Step 1. Firstly, we consider that F; = 0. We have to prove existence of solution to

ue C(=h,T;V), veC(-h,T;H)NL*(—~h,T;V),
u/(t) - ’U(t), te [7th]a

o(t) + /0 A(s)u(s) ds + /0 B(s, v(s)) ds = /(0) "
+/ (Fo(s,us,vs) + f(s))ds, t €[0,T],
0

u(t) = p(t), t € [~h,0].

We will use a Galerkin scheme. Let {w;};>1 be a Hilbert basis of H such that {w;};>1 C V
and the subspace of V' spanned by {w; };>1 is dense in V.

We will denote by V,,, the subspace of V' spanned by {wy,...,wn}, by Pn € L(H; V),
the orthogonal proyection from H onto V,,,, and by ﬁm € L(V;V,,), the orthogonal proyection

from V onto V,,.
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We consider the problem

u™ € L?(—h,T; Vy,) NC(0,T; V), v™ € L?(=h, T; Vi) N C(0,T; Vi),
(u™)'(t) =v™(t), t € [0,T],

(v™(t), w) —1—/0 (A(s)u™(s),w) ds +/0 (B(s,v™(s)),w) ds -
= (Pt (0),w) + /O (Fa(s,u ™) + f(s),w) ds, t € [0,T], Yw € Vi,

t

u™(t) = Puip(t), t € [~h, 0],
V™ (t) = Pptp/(t), t € (—h,0).

The existence and uniqueness of solution to problem (ﬁm) is guaranteed by Theorem 2.4

(notice that in thiscase V=W =H =V*=W"*=1V,,).
It is easy to obtain for ¢ € [0, 77,
t t
N O + e A (0,07 0) 44 [ e ) ds 3 [ e (Als)um(s),um(5) ds
0 0
- - t
= Pt O)F + (AOP,(0). Pt 0)) + [ €2 (A(5)um(5). 7 () ds

2 / e (B(s,0™ (), 0™ (5)) ds +2 / o (Fys,ul w™) + £(s),0™(s)) ds. (3.4)

By (H), (A.2), (A.4) and thanks to the fact that | Pt (0)] < [1/(0)] and || But(0)] < [l (0)]],

if we denote ag = [|A(0)||z(y,y+), we obtain from (3.4), for all ¢ € [0,T7,
o™ ()] + e [lu™ ()] + V/Ot [v™ ()1 ds
<M [/ (0)* + aoe [ (0)[2 + Ae /_Oh(|um(<‘>‘)||2 + ™ (s)II?) ds
AT / | (F(s), 0™ (s)) | ds. (3.5)

Observe that, if f = f1 + fo with f; € L2(0,T;V*) and fo € L'(0,T; H), then

AT/‘ |dS

eQAT T 9
™ (s s ds
S : / 151651
T 2
+6 sup |v™(s)|? + 63T (/ |f2(s)|ds> . (3.6)
0<s<T 0

As

0 0, 9 o ,
[ e as= [ [P as< [ i
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and

[ ek as= [ o] as [ o e

—h —h

we obtain from (3.5)-(3.6) that there exists a constant C' > 0 such that
2 2 [ 2
[ (O + e lu™ (@) + 5/0 [o™(s)]” ds < C, (3.7)

for all m > 1 and all ¢ € [0,T]. Consequently, the sequence {u"},,>1 is bounded in C(0,T;V),
and {v™},,>1 is bounded in C(0,T; H). Moreover, {u™},,>1 and {v™},,>1 are bounded in
L2(—h,T;V) (observe that Pp,¢) — ¢ and Ppt) — ¢ in L%(—h,0;V)).
Thanks to (B.3) (with p = 2), the sequence {B(-,9™(-))} is bounded in L?(0,T;V*).
Also, by (F.2) and (Fs.4) the sequence {F5(-,u™,v™)}ym>1 is bounded in L?(0,T;V*).
Thus, there exist {u*(-)}m,>0 C {u™(-)}m>1, £ € V, n € H, and four functions u €

L?(=h,T;V), v € L?>(—h,T;V), B L*(0,T;V*) and F» € L?(0,T;V*) such that

u™ —q in L*(=h,T;V), and in L°°(0,T; V) weak star,

W™ (T)—=¢& inV,

™~y in L*(=h,T;V), and in L*°(0,T; H) weak star,

™ (T) —=n in H,

B(-,v™(-)) = B(-) in L*(0,T;V*),

Fy(-,u™s 0™ — Fo(-) in L2(0,T; V™).
Observe that A(-)u™*(-) — A(-)u(-) and A’(-)u™*(-) = A’()u(-) in L*(0,T;V*). Observe also
that the sequence u™ converges to ¢ in L?(—h,0; V), that v"™ converges to ¢’ in L?(—h,0; V),

and that v™(0) converges to ¢’'(0) in H. Also, for each t € [—h, 0], u™(t) converges to t(t) in

V. Consequently, v =% in [—h,0] and v = ¢ in (—h,0).
Now, we prove that ' = v in (0,7). As (u™*)" = v™* in [0,7], if x is an absolutely

continuous function on [0, T such that x’ € L?(0,T) and x(T) = 0, and we fix w € H, then
B T T
PO = [ @il ds + [ (s w) () ds,
0 0
and consequently, making k — oo,

—((0), w)x(0) = / (v(s), w)x(s) ds + / (u(s), w)y'(s)ds Ywe H.  (38)
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1
Fix t € (0,T), and for each n > 1 such that ¢ + o < T, define
n

1
1 if0<s<t— —,
2n
X" (s) = 1—‘—n(t—s) ift—i<s<t—6—i (3.9)
2 on — 2n’
1
0 if t4+4—<s<T.
2n

Then, by (3.8),
t+ 5=

T
—(w(O),w)z/o (v(s),w)x"(s)ds—n/t (u(s),w)ds Vw € H,

1

n

and thus, by the separability of H, making n — oo we obtain that a.e.t € (0,7,
t
0O w) = [ o) w)ds — (u(®)w) Vo H,
0

¢
and consequently, a.e.t € (0,7"), then u(t) = 1 (0) + / v(s) ds. If we define
0

»(0) + /Ot v(s)ds, iftel0,T],

b(o), it 1 [h,0]
thenw e C(=h,T;V), u=ua.et € [-h,T) and @ = v in [—h,T]. We can thus redefine u =4

and we obtain that u € C(—h,T;V), u = ¢ in [-h,0] and v’ = v in [—h, T]. Observe also that
_ T
u™ (T) = Py, 1(0) —|—/ V™ (s) ds,
0
T
and thus, taking weak limits in V' as k — oo, we obtain £ = ¥(0) —|—/ v(s)ds, and conse-
0

quently, u(T) = &.

On the other hand, if we continue to denote by x an absolutely continuous real function

on [0,7] such that x' € L?*(0,T) and x(T) = 0, and fix m; and w € Vjy,, differentiating

(™ (t), w)x(t) with 1 < m; < my, we get
T T
(Pt (0), w)x(0) = / (A(s)u™ (3), w) X(5) ds — / (B(s, 0™ (s)), w) x(s) ds
0 0

T T
+ / (Ba(s, ul™ ™) + £(s), w) x(s) ds + / (0™ (s), w) ' (s) ds.

We can take limits in the last equality as mj, — oo, and observing that m; is arbitrary and

that Up,>1Vy, is dense in V', we can ensure that
T T
—(/(0), w)x(0) = — / (A(s)u(s), w) x(s) ds / (B(s), w) x(s) ds
T t
+/0 (Fals) + F(5),w) x(s) ds +/0 (v, w) ' (s)ds, Yw € V. (3.10)
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If we fix t € (0, T) and use the functions x™ defined by (3.9), we obtain from (3.10)

T T
(W (0),w) = — / (A(s)u(s), w) X" (s) ds — / (B(s),w) X" (s) ds

1
t+55

T
+/0 <]-"2(3)+f(s),w>x"(s)ds—n/t (w(s),w) ds,  (3.11)

L
2n

Vw € V. We can take limits in (3.11) and obtain

—((0),w) = — / (A(s)u(s), w) ds — / (B(s),w) ds
+ / (Fals) + F(3),w) ds — (v(t),w), (3.12)

a.e.t € (0,T), Yw € V. By the separability of V', we obtain from (3.12)
t t t
olt) =4/(0) - / Als)u(s) ds — / B(s) ds + / (Fals) + f(s)) ds, (3.13)
0 0 0
(equality in V*), a.e.t € (0,T). Thus, if we define

1//(0)—/0 A(s)u(s)ds—/o B(s)ds—i—/o (Fals) + f(s))ds, ift€0,T],

P'(¢), if t € [—h,0],

o(t) =

we have that ¥ = v a.e.t € (—=h,T), and consequently © € L?(—h,T; V)N L>(0,T; H). More-
over, as '(0) € H, A(-)u(-), B(+), F2(:) and f belong to L*(0,T;V*)+ L*(0,T; H), and ¥ = u,
with u € L*°(0,T;V) and v’ € L*(0,T; H), according to Theorem 2.1, we can assert that v €
C(—h,T; H). Thus, we choose ¥ as being v, and we obtain that v € C(—h, T; H)NL?(—h,T;V),

and satisfies (3.13) for all ¢ € [0, T]. Finally, if w € V;,, and m; < my, then
T
(0™ (T), w) =(Prm1)’(0), w) —/ (A(s)u™(s),w) ds
0
T T
- [ B ds [ (Fas o)+ 1(6),w) s
0 0

and thus, taking weak limits in H as k — oo, and using that the vector space spanned by

{w;};>1 is dense in V, we obtain
(1, w) =(8/(0), w) / (As)u(s), w) ds
T T
—/ (B(s), w) ds +/ (Fals) + f(5),w) ds, Y € V,
0 0

and consequently v(T') = 7.
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We have thus proved that

uGC’(fh,T;V)7 veC(-h,T;H)NL*(—h,T;V),
o(t) =u'(t), te[-hT],

o(t) + / ds+/ B(s /t< Fals) + £(s)) ds, ¥t € [0,T],

u(t) = 9(t), te[=h,0
w(T) =¢, o(T)=n.

To finish with the step 1, it is enough to prove that B(t) — Fa(t) = B(t,v(t)) — Fa(t, ug, vr),

€ (0,T). Consider X, Y € L?(—h,T;V), such that X =, Y =4’ a.e.t € (—h,0). Define

a™r =2 Te*” — B(t, Y (t)), 0™ (t) — Y (t)) dt
0

o "N LA™ (1) — X(O)u ()~ X(0) di

[ ([P -stof ool )
=y "N () — () de— / SN () — v ()
-2 /OTe—WFz(t W ) = Fyft, Xo, Yi), 0™ (8) = Y (1) dt
- "N A 1) — X)), 0™ 1) — X(0) dr

Then, thanks to hypothesis (H) and (A.3), we can assert that a™* > 0.

Now, define

M T e—)\t o M r e—At M wmE
=2 [ B ()0 ) de+ A [ A )0 (1)
T T
+ /\/0 e M o ()] di — 7/0 e o™ (8)])* dt
T T
- 2/0 e N (Fy(t,ul™ vl ), u™ (1)) —/0 e M (A ()u™ (L), u™ (t)) dt.

Then

k—oo

T T
hm(ﬂ“—ym):—ZA d“%B@A%ﬂMﬁ—QA M (B(,Y (1)), v(t) — Y (1) dt
T T
fx/"*wA@XQ%mnfxu»dp+/ = (A (yu(t), X (1)) dt
0

—A/ - )ﬁ+A/ MUy ()2 dt
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T T
o) / M ((0(t), Y (1)) dt — / MY (1) dt
+27/0 e_/\t((v(t),Y(t)))dt+2/o e N (Fa(t), Y (t)) dt
= e Byt X, Vo) olt) — Y (1)) dt
0
+ /T e M(A ()X (), u(t) — X (1)) dt.
0
On the other hand, by (3.4) written in t =T,
b = — e M o ()P — e (A(T)u™ (T), u™ (T))
+ 1Pt ) + (A(0) P (0), P, :(0))
T T
s / N de+2 [ e (.0 o) at
and consequently,

limsup p™ < — e [o(T)|” — e M (A(T)u(T), uw(T)) + (A(0)%(0), ¥(0))

k—oo

T T
+10/(0)/” —7/0 e M o(t)]? dt+2/0 e (f (1), v(t)) dt.

Taking into account that
e |u(1)* + e (A(T)u(T), u(T)) — [/ (0)]* = (A(0)3(0), ¥(0))
T T
+>\/0 e M u(t)? dt+)\/0 e M (A(t)u(t), u(t)) dt
T T
_ / =M (A (Eyu(t), u(t)) db — 2 / =M (B(1), v(t)) dt
0 0
T
2 [0 + 7000 .
we obtain from (3.15),

k—oo

T T
limsupb™ <A [ e [o()[? dt + A / =M (AW ult), u(t)) d
0 0
T

T
_/ e M (A (t)u(t), u(t)) dt—v/ e M lu(t)|* dt
0

0

Te_’\t v — Te_’\t 9 v .
2 [ B 0) a2 [ (Fi)00) o
(From (3.14) and (3.16), we have
T
0 <limsupa™* < 2/ e M(B(t) — B(t,Y(t),v(t) — Y(t)) dt
k—oo 0
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— /OT e M A (1) (u(t) — X (1), u(t) — X (1)) dt + /\/OT e Mu(t) — Y (1) dt

- v/OT e M lu(t) = Y (8)]|* dt 2/0T e M (Fa(t) = Fo(t, X, V), 0(t) = Y (1)) dt

+A OT M (A®) (u(t) — X (1)), u(t) — X (1)) dt. (3.17)
If we take in (3.17) X =u— 60X, and Y = v —§Y, with § > 0, X and Y in L2(—h, T; V) such

that X(t) = Y (t) = 0 a.e.t € (—h,0), we obtain

T
0 §25/ e M <B(t) — B(t,v(t) — 5Y(t)),Y(t)> dt
0
T ~ ~
5 / (AR, K1) dr
0
T ~ ~ ~
- 25/ e M <]—'2(t) — Fy(t,ug — 6Xy, 00 — 6Yt),Y(t)> dt
0
T L T 9
+ /\62/ e M <A(t)X(t),X(t)> dt + /\52/ e~ A ‘X(t)‘ dt. (3.18)
0 0
Dividing by ¢ in (3.18), and letting § — 0, we get by (B.2), (B.3), (F2.4) and Remark 3.1,
T ~
0<2 / oM <B(t) — Fat) — B(t,v(t)) + Fa(t, us,v), Y(t)> dt. (3.19)
0
As 'Y is an arbitrary element of L2(0,T; V), from (3.19) we obtain clearly that B(t) — Fy(t) =

B(t,v(t)) — Fa(t,us,v;) as elements of L2(0,T;V*).

Step 2. Now, we consider the problem (P) under the conditions in the theorem. We
denote u® = v° = 0 € V, and consider the sequence {u™, v}, of pairs of functions defined

recursively by

ut € C(=h,T;V), "€ C(—h,T;H)NL2(—=h,T;V),
(u™) (t) = v™(t) t € [=h,T],

V" (t) +/0 A(s)u™(s)ds —|—/0 B(s,v"™(s))ds = ' (0) (P,)

t
—|—/ (Fl(s,uz_lwg_l) + Fao(s,ul, o) + f(s))ds, t € 10,7,
0

u™(t) =(t), t € [~h,0].

Remember that if u"~! € C(—h,T;V) and v"~' € C(—h,T; H), then, Fy(t,u} ", v "!) €
L?(0,T;V*). Consequently, by Step 1, we can ensure that problem (P,) has a unique solution
pair.
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Now, we can argue as in the proof of Theorem 2.3, and prove first that {u"}n21 is a
Cauchy sequence in C(—h,T; H), and that {v"}, 5, is a Cauchy sequence in L*(—h,T;V) N
C(=h,T; H). Then, {u"}, -, converges in C(—h,T; H) to a function u that is the solution to

(P). We easily obtain by (F7.3), that there exists k > 0 such that

sup |v"+1(s)—v”(s)|2—|— sup ||u”+1(s)—u"(s)||2+/0 Hv"“(s)—v”(s)”2 ds

0<s<t 0<s<t
t
Sk/ sup ||u"(s) fu”(s)HQ ds
0 0<6<s
t
+k:/ ( sup ||u"(6) —u”_1(9)H2 + sup [v"(0) —v”_l(e)f) ds, (3.20)
0 \0<6<s 0<6<s

for all n > 1 and all ¢t € [0,7]. In particular, if we denote

X'(8) = sup |o"(s) ="M (s)|" + sup [lu(s) — "N (s)||,
0<s<t 0<s<t

then
t

t
X"“(t)gk/ X"(s)ds+k/ H(s)ds, Ve 0,T], vn > 1.
0 0

Consequently, if we fix ¢ € (0,7, then
t 0
O <k [ sk [ ds voe o,
0 0
for each n > 1, and thus, by Gronwall lemma,
t
X"THO) < <k/ X" (s) ds) e Vo € [0,1].
0

In particular,
t
X" THt) < (kz/ X" (s) ds) MVt € (0,7,
0

for each n > 1, and from this last inequality, one easily deduces that

X" THT) < XHT) Vn>1. (3.21)

(From (3.20) and (3.21), and the fact that u™(t) = ¢(t) andv™(t) = ¢’(¢t) for all t € [—h, 0]
and all n > 1, we deduce that {u"}, -, is a Cauchy sequence in C(—h,T;V), and {v"}, 5, is a
Cauchy sequence in L?(—h,T; V)N C(—h,T; H). Thus, there exist u and v such that " — u
in C(—h,T;V), and v"* — v in L?(—h,T;V) N C(—=h,T; H). Now, by a similar argument to

the one in the proof of Theorem 2.3, we can deduce that u is the solution of problem (P). W
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With a similar proof to that in Theorem 3.1, we can obtain the following result:

Theorem 3.2 Assume that hypothesis (A.1)-(A.4), (B.1)-(B.5) with W =V andp =2,
(FL.1)-(Fy.3), (Fy.1)-(Fy.4), and (H) hold. Suppose also given a family of operators Fy :
(0,T) x C(=h,0; V) x C(—h,0; V) — H, such that:

(F1.1) Y(€,m) € C(=h,0;V) x C(=h,0;V), the map t € (0,T) — Fy(t,&,n) € H is

Lebesgue measurable,

(F1.2) a.e.t € (0,T), the map (£,1) € C(—h,0;V) x C(=h,0;V) — Fy(t,&,n) € H is

linear,

(F1.3) there exists Cg, > 0 such that V&, n € C(=h,0;V) and a.e.t € (0,T),

Fi(teml? < Cg (€13 oy + InlE o))

(ﬁ1.4) there exists KFI > 0 such that Va,y € C(—h,T;V), and Vt € [0, T,

t
/ ‘Fl(saxsays)
0

Then, for each f € L?>(0,T;V*) + LY(0,T;H), ug € V, vo € H, and 1 € C(—h,0;V) such

as<kg [ th (1)1 + lly(s)1) ds.

that ¢’ € C(—h,0; H) N L?(—h,0; V) given, there exists a unique solution to the problem

we C(=h,T;V), u €L*(—h,T;V)NC(=h,T; H),
u’(t) + A(t)u(t) + B(t,u/'(t)) = ' (0) + Fy (¢, ug, u})
FFy (t ug, u)) + Fo(t,ug, ul) + f(1), t € (0,T),

u(t) = (t), t € [—h,0].

Remark 3.2 Suppose now that I} satisfies

(F1.4) 3Kp, > 0 such that Vo, z € C(=h,T;V), Yy, € C(—=h,T; H), and Vt € [0,T],

[ IR ) = A5 I2 ds < K, [ (e =761 + o) = 7)) ds.

Then, reasoning as in the proof of theorem 3.3 above, one can obtain the following result:

Theorem 3.3 Assume that hypothesis (A.1)-(A.4), (B.1)-(B.5) with W =V and p =
2, (F1.1)-(Fy.4), (F.1)-(Fy.4), (F2.1)-(Fy.4) and (H) hold. Then, for f € L2(0,T;V*) +
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LY 0, T;H), ug € V, vg € H, ¥ € L*(—=h,0;V) and ¢ € L*(—h,0;V) given, there exists a
unique solution to the problem

u€ L2(=h,T;V)NC(0,T;V), wveL?*(—h,T;V)NC(0,T;H),

u'(t) =v(t), t €10,T],

V'(t) + A(t)u(t) + B(t,v(t)) = vo + Fi(t, ug, vr)

FF(t, ug, vp) + Fa(t,ug, v0) + f(t), t € (0,T),

u(0) = uyg,

u(t) =v(t), v(t) =¢t), ae. t € (—h,0).

Remark 3.3 Consider given A(t,-) : V. — V* and B(t,-) : H — V*, two families of

nonlinear operators defined a.e.t € (0,7) and satisfying:
(A1) Yu € V, the map t € (0,T) — A(t,u) € V* is Lebesgue measurable,
(A.2) A(t,0) =0, a.e.t € (0,T).
(A.3) 3L > 0 such that [|A(t,u) — A(t, )|, < Lillu—3l| Yu,i€V,aete(0,7)
(B.1) Vv € H, the map t € (0,T) — B(t,v) € V* is Lebesgue measurable,
(B.2) B(t,0) = 0, a.e.t € (0,T).
(B.3) 3L > 0 such that ||B(t,v) — B(t,9)||l. < Lzlv—71] Yv,5 € H, ae.te (0,7T).
Suppose also given g() € L>(0,T;L(V; H)).
Then, as in Remark 2.3, we can assert, under the conditions of Theorem 3.2, existence
and uniqueness of solution to the problem
u€C(—h,T;V), u €L?*~hT;V)NC(~h,T;H),
() + A(tyu(t) + At,u(t)) + B(s, /' (t)) + B(t,u'(t)) + B(t)u'(t)
=/ (0) + Py (t, up,up) + Fu(tyug, up) + Fo(t,up,up) + f(1), ¢ € (0,T),
u(t) = ¢(t), t € [=h,0],
Also, under the conditions of Theorem 3.3, we can assert existence and uniqueness of solution
to the problem
u€ L2(=h,T;V)NC(0,T;V), veL*(-hT;V)NC(0,T;H),
u'(t) = v(t), t € 10,7,
(t) + A(t)u(t) + A(t,u(t)) + B(t,v(t)) + B(t,v(t)) + B(t)o(t) =

v (t) +
vo + Fl(t7ut7vt) + ﬁl(t,’U/t,’Ut) + Fg(t,Ut,Ut) + f(t)7 te (O’T)7

u(t) =¥(t), v(t) =), ae t e (—h,0).
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4. Examples
To illustrate our theory, we shall consider two examples.

Example 1. Assume O C R" is a bounded open set with smooth boundary 0O. Let us
set H=L?(0) and V = H'(O). Let A(t) = —A for all t € (0,T).
Let b : [0,7] x R x R® — R be a measurable function such that h(t,0,0) = 0 for all

t € 0,7, and there exists Ly > 0 such that
‘E(taay) - E(taa7g)‘ < I/E(|a - Zi' + |y - /m)a

for all (a,y),(a,7) € R x R"™, and all ¢t € [0,T].

For each w € H*(O), and ¢ € [0,T], denote by Ag(t, w) the element of L2(0) defined by
Ag(t,w)(z) = h(t,w(z), Vw(z)), ac. z € O.

Let k£ : [0,T] x R — R be a continuous function such that (k(¢,a) — k(t,a))(a —a) > 0

Va,a € R, Vt € [0,T], and such that there exist p > 1, ¢ > 0 and § > 0 satisfying
|k(t,a)| < crlalP™t, k(t,a)a > Bla? YaeR, Vtel0,T).

A classical example of such a function is k(t,a) = Ba3, for p = 4.

Given w € LP(0), denote, for t € [0,T], by B(t,w) the function of LP/P~*(O) defined by
B(t,w)(x) = k(t,w(z)), ae xze€O.

Consider given k : [0,7] x R — R, a measurable function such that k(t,0) = 0 for all ¢ € [0, 77,

and there exists L7 > 0 such that
‘k(tva) - k(tva” < If}z‘a - a|7
for all a,a € R and t € [0, 7], and denote, for w € L%(O), t € [0,T], by By(t,w) the functions
of L%(O) defined by By(t,w)(z) = k(t,w(z)), ae. z€ O.
Let us consider now a measurable map, fo : [0,7] x RxR™ xR — R and three measurable

functions w; : [0,7] — R, i = 1,2,3, such that 0 < w;(t) < h for all ¢ € [0,T]. Suppose that

f0(¢,0,0,0) =0, V¢ € [0,T], and that there exists L > 0 such that

|f0(t7aay7b> - fO(taaug7g)| < L(|a—2i| + |y_§| + |b_g|)7
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Vte[0,T], Va,a,b,b € R, Yy, € R™

For each (¢,€,m) € [0,T] x C(—h,0; V) x C(—h,0; H), denote by Fy(t,&,n) the function

of L?(0) defined by

Fo(t,&n)(x) = fo(t, §(=wi(8))(2), VE(—wa (1)) (2), n(—ws (1)) (2))-

Then, all the conditions in Theorem 2.3 and Remark 2.3 are satisfied, and consequently,

for each f €

LPIP=HO x (0, 7)) + LH(0,T; L*(0)), and ¢ € C(—h,0; H'(0)) such that '

C(—h,0; L2(0)) we can assert the existence and uniqueness of a solution u € C'(—h, T; H*(0)),

such that % € C(—=h,T; L*(0)) N LP(O x (0,T)), of the corresponding problem (P,). This

solution can

be seen as generalized solution of the problem
0%u ~ ou ~ Ou
g — Ault) + Bt u(t), Vu(t) + bt S (0) + Rt 5 (1) =
0 .
Jo(t,u(t —wi(t)), Vu(t — wa(t)), ai:(t —ws(t))) + f(t), nOx(0,T),
% =0, indO x(0,T),

u(t) = ¥(t), inO x[~h,0],

where we denote by 77 the outward unit normal to 0O.

If the functions w; are such that for i = 1,2,3, w; € C([0,7]) and max wi(t) < 1,

t€[0,T

the Fy satisfies the condition (Fy.4), and consequently, for each vy € H*(O), vo € L*(0O),

f € LP/P=H(Ox(0, T))+LY(0,T; L*(0)), ¢ € L*(—h,0; H'(0)) and ¢ € L?((—h,0)xO) we can

also assert the existence and uniqueness of a solution u € L%(—h,T; H'(0))NC(0,T; H*(0)),

such that Ou € L*((—=h, T)x O)NLP(Ox (0, T))NC(0,T; L*(0)), of the corresponding problem

ot

(@0). Now, this solution can be seen as generalized solution of the problem

0%u ou ou

o~ Ault) + h(t, u(t), Vu(t)) + k(t, o)+ k(t, o) =
folt,u(t —wi(t)), Vu(t — ws(t)), %(t —ws(t))) + f(t), inOx(0,71),
% =0, ind0 x (0,T),

u(0) =wup, o'(0)=wg, inO,
u(t) = 9(t), () =¢(), inO x (=h,0).

Example 2. Assume O C R" is a bounded open set. Let us set H = L?(0), V = H}(O)

and V* = H=1(0). Let A(t)w = —Aw + w for all w € H}(O) and all t € [0,T].
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Let h : [0,7] x R x R” — R™ be a measurable function such that h(t,0,0) = 0 for all

t € 10,71, and there exists Ly > 0 such that
(bt 0, y) = h(t,,9)| < L(la —al + [y 5),

for all (a,y), (a,y) € R x R™, and all t € [0,T].

For each w € H}(O), and ¢ € [0,T], denote by A(t, w) the element of H~1(O) defined by

<Z(t,w)7v> = /o h(t,w(z), Vw(z)) - Vu(z) dz — /O w(z)v(z)de Yv e Hy(O),

where we denote by - the escalar product in R"™.

For each w € L2(0), and t € [0,T], denote by B(t,w) the element of L2(O) defined by

~

B(t,w)(z) = —w(x), a.e. z € O.
Consider also given k : [0,7] x R™ — R", a continuous function such that k(¢,0) = 0 for

all t € [0, 7], there exists ¢ > 0 such that |k(t,y)| < c|y| for all y € R™® and all ¢ € [0,T], and

(k(t,y) = k(t,9) - (y—y) 20, VyyeR" vVie[0,T].

For each w € H(O), and t € [0,T], denote by B(t,w) the element of H~1(0) defined by

(B(t,w), v) :ﬁ/@ Vu(z) - Vo) da:+/Ow(x)v(x)dx+/ok(t,w(x))-vu(x) da,

Vv € H(O), with 8 > 0 fixed.

Let now n measurable maps f1; : [0,7] x R x R" x R — R" and 3n measurable functions
pi; [0, T] = R,i=1,2,3, j = 1,...,n, such that for each (i, j), 0 < p;,;(t) < hforallt € [0,T].
Suppose that f1,(¢,0,0,0) =0, Vt € [0,7] for all j =1,...,n, and that for each j, there exists
Ly, >0 such that, Va,d,b,b € R, Vy,§ € R, Vt € [0, ],

|1, (t.0.b) — f1,(£.3.5.0)| < Ly, (la—al + [y — 3] +[b— b).

Denote by Fi(t,-,-) the family of operators defined by

(Ft.&m)0) = =3 [ 1 (61, (0)(w). TE(pa, (@) (=05, () 5 (x) o

vV (&n) € C(—=h,0;V) x C(—h,0;H), Vv € V, for each t € [0, T].

26



Consider now n measurable maps fo, : [0, T]x RxR"xRxR"™ — R, and 4n functions 7;; :
0,T] = R,i=1,2,3,4,j = 1,...,n, such that for each (i, j), s, € C([0,77),0 < 7, (t) < hfor
all t € [0,7], and 7} = 112%)(482%&% 7;.(t)) < 1. Suppose that f2;(¢,0,0,0,0) =0, V¢ € [0,7]
for all j =1,...,n, and that for each j, there exists Lf2j > 0 such that

|f2j (taa7y7b) - f2j (t7aa g’5)|2 < Lf2j (|CL 7Ei|2 + |y - g|2 + |b 7’5|2 + ‘Z - g|2)7

Va,a,b,b e R, Yy, 7,2, € R", Yt € [0,T).

Denote by Fy(t,-,-) the family of operators defined by

<F2(t7§= 77)7U> =

ov

—(x)d
. (#)da

fZ/szj (&, &(=71; (1) (2), VE(=72; (1)) (@), 1(=73,(1)) (), Vi (=74, () (2))

V(& n) e C(=h,0;V) x C(=h,0; V), Vv €V, for each t € [0,T].

Then, if it is true one of the following conditions

1
3
) < e 'max(26,T71),

1
Lf2. 2 z Lf2'
J < —BT ) 3J
1T:f> < fer™ Z(lﬂf
J j=1 J

all the hypothesis in Theorem 3.3 and Remark 3.3 are satisfied, and consequently, for each f €
L2(0,T; H-1(0)), and ¢ € C(—h,0; H} (O)) such that ¢’ € C(—h, 0; L>(O))NL*(0,T; Hi(0)),

we can assert the existence and uniqueness of a solution u € C(—h,T; Hi(0O)), such that
ou

o € C(=h,T; L*(0)) N L*(=h,T; H}(O)), of the corresponding problem (R). This solution

can be seen as generalized solution of the problem

2, _ Y .
G~ Bu) = Rl ue). Vo) - 58 (G0)) - 9 ke, V(G 0) =
Z aaj;ij (t7 u(t — 71, (t))v V’U,(t — Ty (t))a %(t — T3, (t))a V(%(t — T4, (t)))) + f(t)
+ Z 88]; (t,u(t — pa, (t)), Vu(t — pa, (1)), %(t — p3,(t))), inOx(0,T),
u=0, indO x (0,T),
u(t) = ¥(t), in O x[—h,0].
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