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Abstract. In this paper we give a sub-supersolution method for nonlinear
elliptic singular systems with quadratic gradient whose model system is the

following 
−∆u+ vβ

|∇u|2

uα
= f1(x, u, v) in Ω,

−∆v + uµ
|∇v|2

vγ
= f2(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a smooth bounded domain of RN (N ≥ 3), β, µ ≥ 0, 0 < α, γ < 1

and regular f1, f2 functions. Moreover, we apply it to prove existence of solu-

tion for some systems, including the classical Lotka-Volterra models with gra-
dient terms. Specifically, we study the competition and the symbiotic Lokta-

Volterra systems.

1. Introduction

The aim of this paper is to provide a sub-supersolution method for the following
nonlinear elliptic singular system with natural growth

(1.1)


−∆u+ g1(v)

|∇u|2

uα
= f1(x, u, v) in Ω,

−∆v + g2(u)
|∇v|2

vγ
= f2(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a smooth bounded domain of RN (N ≥ 3) the functions g1, g2 ∈
C([0,+∞)) and f1, f2 ∈ C(Ω × [0,+∞) × [0,+∞)) verifying some general con-
ditions detailed below.

Regarding the literature there are several papers about equations with quadratic
gradient terms. The existence of solutions of the equation

(1.2) −∆u+ g(u)|∇u|2 = a(x) in Ω, u = 0 on ∂Ω,

for every function a(x) in a given Lebesgue space has been systematically stud-
ied in [4, 5, 6] and references therein (in fact, for a more general nonlinear term
H(x, u,∇u) instead of g(u)|∇u|2). They consider in the lower order term a contin-
uous g in R which does not satisfy any growth restriction and the sign condition
g(s)s ≥ 0 for every s ∈ R is assumed. Thanks to the presence of the lower or-
der term the Dirichlet problem associated to the equation is allowed to have finite
energy weak solutions.
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In [15] and [7] some of the above results were extended to the case of systems.
Specifically, in [7] the authors study systems of elliptic equations with quadratic
gradient. They consider a general system

(1.3) −∆ui +Hi(x, u,∇u) = ai(x) in Ω, u = 0 on ∂Ω, i = 1, . . . , n

where u = (u1, . . . , un), ai ∈ H−1(Ω) and the quadratic terms Hi(x, u,∇u) sat-
isfy a more general one-side condition than the sign condition, but in the case
Hi(x, u,∇u) = gi(u)|∇u|2 this one-side hypothesis is equivalent to the sign condi-
tion. In their case gi is continuous in Rn and they prove the existence of solution
in the Sobolev space.

In the last years, equation (1.2) has attracted much attention by the presence of
singular terms in front of the gradient, see [1, 2, 8] and references therein.

In [11] we prove that a sub-supersolution method works for equations of the form

−∆u+
|∇u|2

uα
= f(λ, u)

and we apply it to different models.
In this paper we focus our attention in systems with quadratic gradient and

singular terms as (1.1).
Let us mention that the sub-supersolution method is valid for semilinear systems,

see for instance [13] and [20]. In this case, when g1 ≡ g2 ≡ 0, the natural extension
of the scalar definition of sub-supersolution depends on the monotonicity of the
functions f1 and f2 with respect to v and u, respectively. A general definition was
given in [13] and [20] where a pair of functions (u, v), (u, v), u, u, v, v ∈ H1(Ω) ∩
L∞(Ω) is called a sub-supersolution if

u ≤ u, v ≤ v in Ω,
u ≤ 0 ≤ u, v ≤ 0 ≤ v on ∂Ω,

and
−∆u ≤ f1(x, u, v), −∆u ≥ f1(x, u, v), ∀v ∈ [v, v],
−∆v ≤ f2(x, u, v), −∆v ≥ f2(x, u, v), ∀u ∈ [u, u],

where, given two ordered functions z ≤ w, we have denoted

[z, w] := {q ∈ L∞(Ω) : z(x) ≤ q(x) ≤ w(x)}

(see also [19] where it is proved the validity of the method for singular semilinear
systems). Assuming the existence of a sub-supersolution, (u, v), (u, v), there exists
a solution (u, v) ∈ I ≡ [u, u] × [v, v] of the semilinear system (i.e. (1.1) with
g1 ≡ g2 ≡ 0).

When the reaction terms depend on the gradient, i.e.,

−∆u = f1(x, u, v,∇u,∇v), −∆v = f2(x, u, v,∇u,∇v)

and the functions f1 and f2 are regular verifying some hypotheses, the definition is
(see [21])

−∆u ≤ f1(x, u, v,∇u,∇v), −∆u ≥ f1(x, u, v,∇u,∇v), ∀v ∈ [v, v],

−∆v ≤ f2(x, u, v,∇u,∇v), −∆v ≥ f2(x, u, v,∇u,∇v), ∀u ∈ [u, u].

Assuming again the existence of a sub-supersolution, the existence of a solution
(u, v) ∈ I follows.
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In this paper, we use the above definition of sub-supersolution, and taking advan-
tage of the form of equation, we overcome the singularities difficulty of the system
(1.1) with respect to u and v. Hence, for our system (1.1) we define a couple of
sub-super solution as follows

−∆u+ g1(v)
|∇u|2

uα
≤ f1(x, u, v), −∆u+ g1(v)

|∇u|2

uα
≥ f1(x, u, v), ∀v ∈ [v, v],

−∆v + g2(u)
|∇v|2

vγ
≤ f2(x, u, v), −∆v + g2(u)

|∇v|2

vγ
≥ f2(x, u, v), ∀u ∈ [u, u].

Moreover, we apply this method to prove existence of positive solution for some
systems, including the classical Lotka-Volterra models confronted with the Lapla-
cian operator perturbed by a singular gradient term, that is, the following systems

(1.4)


−∆u+ g1(v)

|∇u|2

uα
= u(λ− u− bv) in Ω,

−∆v + g2(u)
|∇v|2

vγ
= v(µ− v − cu) in Ω,

u = v = 0 on ∂Ω,

where λ, µ ∈ IR and b · c > 0. Here, u(x) and v(x) denote the densities of two
species, λ and µ represent the growth rates of the species, b and c measure the
interaction rates between both species; if b, c > 0 they are competing and if b, c < 0
cooperating. Moreover, in (1.4) a nonlinear convective term is included with a
singular term. This term is accompanied by a nonlinear function depending on
the other species. We give conditions on λ and µ that assure the existence of a
coexistence state of (1.4), that is, a solution with both components positive.

The structure of the article is: in Section 2 we study an auxiliary scalar equation
that we use in Section 3 to prove the validity of the sub-supersolution method for
(1.1). Section 4 is devoted to applications of the method.

2. An auxiliary scalar equation

Frizzing one of the unknown in each equation of (1.1) we are led to consider the
scalar boundary value problem

(2.1)

 −∆w +m(x)
|∇w|2

wθ
= f(x,w) in Ω,

w = 0 on ∂Ω,

for convenient functions m and f and a parameter 0 < θ < 1. In order to use
monotone methods for (2.1), as was pointed out in [11] for m(x) constant, it is useful
to consider a positive function g ∈ C(0,+∞) such that, denoting G(u) =

∫ u
1
g(s)ds,

the function e−G(s) belongs to L1(0, 1) and we define also Ψ by

Ψ(s) :=

∫ s

0

e−G(t)dt, s > 0.

Observe that if there exists M ≥ 0 such that f(x, s) +Ms is nondecreasing for a.e.
x ∈ Ω then f(x, s)+MΨ(s)eG(s) is also nondecreasing for a.e. x ∈ Ω. Thus, adding
the term MΨ(w)eG(w) in (2.1) it becomes−∆w +m(x)

|∇w|2

wθ
+MΨ(w)eG(w) = f(x,w) +MΨ(w)eG(w) in Ω,

w = 0 on ∂Ω.
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Therefore, in order to study (2.1) using sub-supersolution, we need to establish a
comparison principle for the problem

(2.2)

 −∆w +m(x)
|∇w|2

wθ
+MΨ(w)eG(w) = f0(x) in Ω,

w = 0 on ∂Ω,

where 0 < m(x) ∈ L∞(Ω), 0 < θ < 1 and 0 ≤ f0(x) ∈ L2N/(N+2)(Ω), f0 6≡ 0.
Observe that this problem is similar to that studied in [11] but here the function g,
from which are defined G and Ψ, is arbitrary and non necessary related with the
gradiend lower order term. When M = 0, that is, −∆w +m(x)

|∇w|2

wθ
= f0(x) in Ω,

u = 0 on ∂Ω,

this problem has solution (see [8]) and it is unique (see [3]).
The concept of sub and super-solution for the problem (2.2) is the following:

Definition 2.1. A sub-solution of (2.2) is a function u ∈ H1
0 (Ω) such that 0 < u

a.e. in Ω,
|∇u|2

uγ
, Ψ(u)eG(u) ∈ L1(Ω) and for every φ ∈ H1

0 (Ω) ∩ L∞(Ω), φ ≥ 0,∫
Ω

∇u · ∇φ+

∫
Ω

m(x)
|∇u|2

uθ
φ+M

∫
Ω

Ψ(u)eG(u)φ ≤
∫

Ω

f0(x)φ.

Similarly u ∈ H1(Ω) such that 0 < u a.e. in Ω,
|∇u|2

uθ
,Ψ(u)eG(u) ∈ L1(Ω) and for

every φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ ≥ 0,∫

Ω

∇u · ∇φ+

∫
Ω

m(x)
|∇u|2

uθ
φ+M

∫
Ω

Ψ(u)eG(u)φ ≥
∫

Ω

f0(x)φ,

is called a super-solution of (2.2). We say that u ∈ H1
0 (Ω) is a solution of (2.2) if

it is a sub and super-solution of (2.2).

We recall some classical results about the regularity of the equation (2.2) with
f0(x) = f(x,w(x)), that is the non-linear equation

(2.3)

 −∆w +m(x)
|∇w|2

wθ
+MΨ(w)eG(w) = f(x,w) in Ω,

w = 0 on ∂Ω.

Concretely, it can be deduced from [22] the following two lemmas, summarizing
some known L∞(Ω)-estimates for sub-solutions of (2.3). The first one deals with a
subcritical function f , here the L∞(Ω)-estimate follows from a standard bootstrap
argument.

Lemma 2.2. Assume that there exists C > 0 such that |f(x, s)| ≤ C(1 + |s|q)
(q < (N + 2)/(N − 2)) for every s ≥ 0, a.e. x ∈ Ω, and that u is a sub-solution of
(2.3), then u ∈ L∞(Ω).

Remark 2.3. Once we have proved that it is bounded, under conditions of the
previous lemma, we have that any solution u is continuous in Ω arguing as in
[14] (see Remark 2.6 in [1] for a detailed proof). Moreover, since ∂Ω is smooth,
u ∈ C0,α(Ω) for some α ∈ (0, 1).
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Lemma 2.4. Assume that there exists s0 such that f(x, s) ≤ 0 a.e. x ∈ Ω and for
every s > s0. Assume also that u is a sub-solution of (2.3), then u ∈ L∞(Ω) and
‖u‖∞ ≤ s0.

We can prove that the problem (2.2) has solution arguing as in Lemma 3.3 of
[11]. We include here a sketch of the proof in order to show how to deal with the
term m(x) ∈ L∞(Ω).

Lemma 2.5. Assume that g ∈ L1(0, 1). Then there exists a solution for (2.2).

Proof. We use an approximative scheme, namely

(2.4)

{
−∆un +Bn(x, un,∇un) = min{f0(x), n} in Ω,
un = 0 on ∂Ω,

where the function Bn(x, s, p) is given, for every (x, s, p) ∈ Ω×R×RN and n ∈ N,
by

Bn(x, s, p) =
m(x)s+|p|2

( 1
n + s+)θ+1(1 + 1

n |p|2)
+

+
Me

∫ s+
1

g(t+ 1
n )dt

∫ s+
0

e−
∫ t
1
g(σ+ 1

n )dσdt

1 + 1
ne

∫ s+
1

g(t+ 1
n )dt

∫ s+
0

e−
∫ t
1
g(σ+ 1

n )dσdt
.

Since Bn(x, s, p)s ≥ 0 and Bn(x, s, p) ≤ ‖m‖L∞(Ω)n(nθ + M), the existence of

solution un ∈ H1
0 (Ω) of (2.4) is deduced from [16]. Moreover, since Bn(x, s, p) ≥ 0

then −∆un ≤ f0(x) and, using [22], un ∈ L∞(Ω) and the sequence un is bounded
in L∞(Ω), that is, there exists R > 0 such that

‖un‖L∞(Ω) ≤ R.

Moreover, taking u−n as test function we obtain that un ≥ 0. Similarly, taking un
as test function and using the positivity of the lower order term we get that un
is bounded in H1

0 (Ω). Even more, taking min{un, ε}/ε as test function and using
Fatou Lemma as ε→ 0 yields that∫

Ω

Bn(x, un,∇un) ≤ ‖f0‖1.

Therefore un weakly converges to u ∈ H1
0 (Ω), ∇un → ∇u a.e. (see [9, Theorem

2.1]) and using Fatou Lemma as n→∞,

m(x)
|∇u|2

uθ
χ{u>0} ∈ L1(Ω) and Ψ(u)eG(u)χ{u>0} ∈ L1(Ω).

In particular, since g is integrable at zero, we have that Ψ(u)eG(u) is bounded at
zero and thus, Ψ(u)eG(u) ∈ L1(Ω).

In order to pass to the limit and to prove that u is the solution of (2.2) it is
essential to prove that u > 0. In order to do that we follow the ideas in [8]. Given

m̃ ≥ ‖m‖L∞(Ω) we take e−m̃
∫ un
1

1

tθ
dtφ, with 0 ≤ φ ∈ C∞0 (Ω), as test function in

(2.4) and we obtain∫
Ω

e−m̃
∫ un
1

1

tθ
dt∇un · ∇φ+

∫
Ω

(
Bn(x, un,∇un)− m̃

uθn

)
e−m̃

∫ un
1

1

tθ
dtφ =

=

∫
Ω

min{f0(x), n}e−m̃
∫ un
1

1

tθ
dtφ ≥

∫
Ω

min{f0(x), 1}e−m̃
∫ un
1

1

tθ
dtφ.(2.5)
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We can use now that for 0 < s < R(
Bn(x, s, p)− m̃

sθ

)
e−

∫ s
1

1

tθ
dt ≤ m(x)− m̃

sθ
|p|2e−

∫ s
1

1

tθ
dt+(2.6)

+Me
∫ s
1 (g(t+ 1

n )− m̃

tθ
)dt
∫ s

0

e−
∫ t
1
g(σ+ 1

n )dσdt ≤

≤Me
∫ s
1 (g(t+ 1

n )− m̃

tθ
)dt
∫ s

0

e−
∫ t
1
g(σ+ 1

n )dσdt ≤

≤ C
∫ s

0

e−m̃
∫ t
1

1

σθ
dσdt.

The last inequality is due to the fact that

e
∫ s
1 (g(t+ 1

n )− m̃

tθ
)dt = e

∫ s+ 1
n

1+ 1
n

g(σ)dσ−
∫ s
1
m̃

tθ
dt
≤ e

∫R+1
1

g(σ)dσ+
∫ 1
0
m̃

tθ
dt

and ∫ s

0

e−
∫ t
1
g(σ+ 1

n )dσdt =

∫ s

0

e
∫ t
1 ( m̃

σθ
−g(σ+ 1

n ))dσe−m̃
∫ t
1

1

σθ
dσdt ≤

≤ e
∫R+1
1

m̃

σθ
dσ+

∫ 1
0
g(σ+ 1

n )dσ

∫ s

0

e−m̃
∫ t
1

1

σθ
dσdt ≤

≤ e
∫R+1
1

m̃

σθ
dσ+

∫ 2
0
g(σ)dσ

∫ s

0

e−m̃
∫ t
1

1

σθ
dσdt.

Thus, we can take C = Me
∫R+1
1

g(σ)dσ+
∫ 1
0
m̃

tθ
dte

∫R+1
1

m̃

σθ
dσ+

∫ 2
0
g(σ)dσ, using (2.6) in

(2.5) and denoting Ψ̃(s) =
∫ s

0
e−m̃

∫ t
1

1

σθ
dσdt we get∫

Ω

∇Ψ̃(un) · ∇φ+ C̃

∫
Ω

Ψ̃(un)φ ≥
∫

Ω

min{f0(x), 1}e−m̃
∫ un
1

1

tθ
dtφ.

From now on the proof deals exactly as in [11]. Passing to the limit in the
previous inequality it follows that∫

Ω

∇Ψ̃(u) · ∇φ+ C̃

∫
Ω

Ψ̃(u)φ ≥
∫

Ω

min{f0(x), 1}e−m̃
∫ u
1

1

tθ
dtφ.

Thus, the strong maximum principle allows us to assure that 0 < Ψ̃(u) ≤
e
∫ 1
0
m̃

σθ
dσu, in particular u > 0, and we can to pass to the limit in the approx-

imated problem to deduce that u ∈ H1
0 (Ω) is a solution of (2.2) arguing as in

[8]. �

Respect to the uniqueness we prove below a comparison principle for this equa-
tion that assures that this solution is unique. This comparison principle is one of
the keystones of the proof of our method. In the case M = 0 it correspond to the
comparison principle in [3, Corollary 3.5]. We include here, for the convenience of

the reader, the proof of that result with the new term MΨ(u)eG(u) at the left-hand
side of the equation, is that to say, we prove a comparison principle for the problem
(2.2) although the proof follows with no significant change that of Theorem 1.1 in
[3].

Proposition 2.6. Assume that 0 < θ < 1 and 0 < m(x) ∈ L∞(Ω). Let u, u ∈
C(Ω) be, respectively, a sub and a super-solution of (2.2). Suppose also that g ∈

https://www.researchgate.net/publication/237838848_Existence_and_non-existence_of_positive_solutions_for_nonlinear_elliptic_singular_equations_with_natural_growth?el=1_x_8&enrichId=rgreq-b27b4247d02748cbe2b6f333398f786d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTA0MzA0NTtBUzozNjA5MTgxNjk5OTczMTZAMTQ2MzA2MTAwNTkyNw==
https://www.researchgate.net/publication/288993511_Comparison_principle_for_elliptic_equations_in_divergence_with_singular_lower_order_terms_having_natural_growth?el=1_x_8&enrichId=rgreq-b27b4247d02748cbe2b6f333398f786d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTA0MzA0NTtBUzozNjA5MTgxNjk5OTczMTZAMTQ2MzA2MTAwNTkyNw==
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C1(0,+∞), e−G(t) ∈ L1(0, 1), g ≥ 0 and there exists τ ≥ 0 such that for a.e. x ∈ Ω
and for every 0 < s < max{‖u‖L∞(Ω), ‖u‖L∞(Ω)} we have

(2.7) τ

[(
−g′(s)− m(x)θ

sθ+1

)
+

(
−g(s) +

m(x)

sθ

)
g(s)

]
≥
(
−g(s) +

m(x)

sθ

)2

.

Then u ≤ u.

Proof. We will use the usual function Gε(s) = (s − ε)+ for every s ∈ R. We also
define w = Ψ(u) − Ψ(u) and observe that Gε(w) is bounded and has compact
support in Ω. In particular, e−G(u), e−G(u), g(u), g(u) are bounded in the support
of Gε(w). Thus, for n equal to the integer part of τ + 1, we can take e−G(u)Gε(w)n

as test function in the inequality satisfied by u and e−G(u)Gε(w)n in the inequality
satisfied by u. Subtracting we have

0 ≥
∫

Ω

(
−g(u) +

m(x)

uθ

)
e−G(u)|∇u|2Gε(w)n−

−
∫

Ω

(
−g(u) +

m(x)

uθ

)
e−G(u)|∇u|2Gε(w)n+

+ n

∫
Ω

Gε(w)n−1(e−G(u)∇u− e−G(u)∇u) · ∇w,

where we have used that ∫
Ω

(Ψ(u)−Ψ(u))Gε(w)n ≥ 0.

We denote s = Ψ−1(tΨ(u) + (1 − t)Ψ(u)) and ξ = t∇Ψ(u) + (1 − t)∇Ψ(u), this
means that

0 ≥
∫
{w>ε}

Gε(w)n
∫ 1

0

d

dt

((
−g(s) +

m(x)

sθ

)
eG(s)|ξ|2

)
dt+

+ n

∫
{w>ε}

Gε(w)n−1|∇w|2.

Now we perform the derivative and we get

0 ≥
∫
{w>ε}

wGε(w)n
∫ 1

0

((
−g′(s)− m(x)θ

sθ+1

)
e2G(s)|ξ|2

)
dt+

+

∫
{w>ε}

wGε(w)n
∫ 1

0

(
−g(s) +

m(x)

sθ

)
g(s)e2G(s)|ξ|2 dt+

+

∫
{w>ε}

Gε(w)n
∫ 1

0

(
−g(s) +

m(x)

sθ

)
eG(s)2ξ · ∇wdt+

+ n

∫
{w>ε}

Gε(w)n−1|∇w|2.

Multiplying by τ
n and taking into account that, by Young’s inequality,

τ

n

∣∣∣∣Gε(w)n
(
−g(s) +

m(x)

sθ

)
eG(s)2ξ · ∇w

∣∣∣∣ ≤
≤ τ2

n
Gε(w)n−1|∇w|2 +

Gε(w)
n+1

n

(
−g(s) +

m(x)

sθ

)2

e2G(s)|ξ|2,
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it follows that

0 ≥τ
(

1− τ

n

)∫
{w>ε}

Gε(w)n−1|∇w|2+

+

∫
{w>ε}

∫ 1

0

wGε(w)nτe2G(s)

n

[(
−g′(s)− m(x)θ

sθ+1

)
|ξ|2+

+

(
−g(s) +

m(x)

sθ

)
g(s)|ξ|2 − Gε(w)

τw

(
−g(s) +

m(x)

sθ

)2

|ξ|2
]
dt ≥ 0.

The last inequality due to the fact that Gε(w)/w ≤ 1, M ≥ 0 and (2.7). We deduce
that the integrands are zero, which implies that Gε(w) = 0 for every ε > 0, i.e.,
w+ ≡ 0, concluding the proof. �

The following technical result plays an essential role in the further work, and it
was proved in [3, Corollary 3.5] (see condition (3.6) of that paper).

Lemma 2.7. Fix m ∈ L∞(Ω), m > 0 in Ω and ν > 0. Then, there exist g ∈
C1(0,∞) ∩ L1(0, 1)1 and τ such that if u and u are a sub and a supersolution of
(2.2) such that max{‖u‖L∞(Ω), ‖u‖L∞(Ω)} ≤ ν, g satisfies condition (2.7), and as
consequence

u ≤ u.
In fact, g depends on ‖m‖L∞(Ω) and θ, but neither ν nor τ . Specifically, fixed
d,C,m1 with 0 < θ < d < 1, C > 0 and

m1 ≤ min

{
dC,C

(
d− θ
1− θ

)1−θ
}
,

for any m ∈ L∞(Ω) with ‖m‖∞ ≤ m1 we can choose g(s) ≡ gθ,d,C(s) given by

gθ,d,C(s) =


dC

sθ
, s <

(
θ
C

) 1
1−θ ,

dθ

θs+
(
θ
C

) 1
1−θ (1− θ)

, s ≥
(
θ
C

) 1
1−θ ,

for every s > 0. Moreover, τ is such that

τ > max


dC +m1

C(1− d)
,

2d
(
m2

1ν
2(1−θ) + θ2

)
(1− d)θ2

,
2m2

1

(
1−θ
d−θ

)2(1−θ)
+ 2d2C2

d(1− d)C2

(
1− m1

C

(
1−θ
d−θ

)1−θ
)
 .

3. The sub-supersolution method

Now, we are ready to state the method of sub and super-solutions in order to
get existence of solution of (1.1). In view of the results of the previous section the
concept of sub and super-solution for (1.1) is the following.

Definition 3.1. A pair (u, u), (v, v) is a sub-supersolution of (1.1) if u, u, v, v ∈
H1(Ω) ∩ C(Ω), u, v ∈ H1

0 (Ω) such that

(1) 0 < u ≤ u, 0 < v ≤ v almost everywhere in Ω,

(2)
|∇u|2

uα
,
|∇u|2

uα
,
|∇v|2

vγ
,
|∇v|2

vγ
∈ L1(Ω),

1in particular e−G(t) ∈ L1(0, 1)
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(3) for every φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ > 0,

(3.1)

∫
Ω

∇u · ∇φ+

∫
Ω

g1(v)
|∇u|2

uα
φ−

∫
Ω

f1(x, u, v)φ ≤ 0 ≤

≤
∫

Ω

∇u · ∇φ+

∫
Ω

g1(v)
|∇u|2

uα
φ−

∫
Ω

f1(x, u, v)φ ∀v ∈ [v, v],

(4) for every φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ > 0,

(3.2)

∫
Ω

∇v · ∇φ+

∫
Ω

g2(u)
|∇v|2

vγ
φ−

∫
Ω

f2(x, u, v)φ ≤ 0 ≤

≤
∫

Ω

∇v · ∇φ+

∫
Ω

g2(u)
|∇v|2

vγ
φ−

∫
Ω

f2(x, u, v)φ ∀u ∈ [u, u].

Remark 3.2. Observe that any of the four inequalities in (3.1) and (3.2) is verified
if it is satisfied in the classical sense, for instance, the first inequality in (3.1) is
satisfied if u is twice differentiable and

−∆u+ g1(v)
|∇u|2

uα
− f1(x, u, v) ≤ 0 a.e. x ∈ Ω,∀v ∈ [v, v].

Theorem 3.3. Assume that (u, u), (v, v) is pair of sub-supersolution of (1.1) and
denote I := [u, u]× [v, v] ⊂ C(Ω)×C(Ω). Assume also the following conditions on
f1, f2, g1 and g2:

(F) There exists a constant M ≥ 0 such that the maps s 7→ f1(x, s, v)+Ms and
r 7→ f2(x, u, r) + Mr are positive and increasing for (s, r) ∈ [0, supΩ u] ×
[0, supΩ v] and for all (u, v) ∈ I.

(G) g1, g2 are non-negative functions and gi(s) = 0 if and only if s = 0 for
i = 1, 2.

Then, there exists a solution (u, v) of (1.1) such that (u, v) ∈ I.

Proof. Taking into account (G), there exits a positive number 0 < m1 such that

0 < g1(z(x)), g2(w(x)) ≤ m1, ∀(w, z) ∈ I.

Then, taking ν = max{‖v‖L∞(Ω), ‖u‖L∞(Ω)}, by Lemma 2.7 there exist h1, h2 ∈
C1(0,+∞) ∩ L1(0, 1) and τ1, τ2 ≥ 0 such that for a.e. x ∈ Ω, for every 0 < s < ν
and for every (w, z) ∈ I we have

τ1

[(
−h′1(s)− g1(z(x))α

sα+1

)
+

(
−h1(s) +

g1(z(x))

sα

)
h1(s)

]
≥

≥
(
−h1(s) +

g1(z(x))

sα

)2

and

τ2

[(
−h′2(s)− g2(w(x))γ

sγ+1

)
+

(
−h2(s) +

g2(w(x))

sγ

)
h2(s)

]
≥

≥
(
−h2(s) +

g2(w(x))

sγ

)2

.

We would like to remark again that neither hi nor τi depend on (w, z), see Lemma
2.7.
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Now we define

Gi(s) :=

∫ s

0

hi(t)dt, Ψi(s) :=

∫ s

0

e−Gi(t)dt, s > 0, i = 1, 2.

On the other hand, observe that, using (F), we get that the maps

s 7→ f1(x, s, v) +MΨ1(s)eG1(s), r 7→ f2(x, u, r) +MΨ2(r)eG2(r)

are increasing for (s, r) ∈ [0, supΩ u]× [0, supΩ v] for all (u, v) ∈ I.
We define the operator

T : I 7→ C(Ω)× C(Ω), (w, z) 7→ (u, v) := T (w, z)

where (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) are solutions of

(3.3)


−∆u+ g1(z(x))

|∇u|2

uα
+MΨ1(u)eG1(u) = F1(x),

−∆v + g2(w(x))
|∇v|2

vγ
+MΨ2(v)eG2(v) = F2(x),

with
F1(x) := f1(x,w, z) +MΨ1(w)eG1(w)

and
F2(x) := f2(x,w, z) +MΨ2(z)eG2(z).

Taking into account (F), we have that F1, F2 > 0. Moreover, F1, F2 ∈ L
2N
N+2 (Ω),

in fact, F1, F2 ∈ L∞(Ω). Hence, the existence of u and v can be obtained from
Lemma 2.5 while the uniqueness from Proposition 2.6. Therefore T is well defined.

Now, we prove that T (I) ⊂ I. Indeed, take (w, z) ∈ I and consider (u, v) =
T (w, z), i.e. the unique solution to the problem (3.3). We are going to show that
(u, v) ∈ I.

Indeed, using the definition of sub-super solution, it follows that

−∆u+ g1(z)
|∇u|2

uα
+MΨ1(u)eG1(u) = f1(x,w, z) +MΨ1(w)eG1(w) ≥

≥ f1(x, u, z) +MΨ1(u)eG1(u) ≥ −∆u+ g1(z)
|∇u|2

uα
+MΨ1(u)eG1(u).

Proposition 2.6 allows to assure that u ≥ u. Analogously u ≤ u and v ≤ v ≤ v.
Next we show that T maps bounded sets into relatively compact sets. Indeed,

given a bounded sequence (wn, zn) in I and denoting by (un, vn) = T (wn, zn) we
have that un and vn are bounded in H1

0 (Ω). Even more, regularity arguments (see
[22] and [14]) show that sequences un, vn are also bounded in C0,α(Ω) and the
compact embedding of C0,α(Ω) in C(Ω) implies that un → u and vn → v strongly
in C(Ω).

Finally, in order to have that T is compact, we prove that T is continuous. In
order to do that, we claim that if (wn, zn) → (w, z) strongly in I then (u, v) =
T (w, z) (observe that this in particular implies that not only a subsequence but the
whole sequence (un, vn) strongly converges to T (w, z) in C(Ω)× C(Ω)).

In order to prove the claim we observe that∫
Ω

∇un · ∇φ+

∫
Ω

g1(zn)
|∇un|2

uαn
φ+M

∫
Ω

Ψ1(un)eG1(un)φ =

=

∫
Ω

f1(x,wn, zn)φ+M

∫
Ω

Ψ1(wn)eG1(wn)φ

https://www.researchgate.net/publication/265371157_Le_Probleme_de_Dirichlet_pour_les_Equations_Elliptiques_du_Second_Ordre_a_Coefficients_Discontinus?el=1_x_8&enrichId=rgreq-b27b4247d02748cbe2b6f333398f786d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTA0MzA0NTtBUzozNjA5MTgxNjk5OTczMTZAMTQ2MzA2MTAwNTkyNw==
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for every φ ∈ H1
0 (Ω) ∩ L∞(Ω). We recall that, as in the proof of Lemma 2.5, the

lower order term is bounded in L1(Ω) and we may assume that un → u weakly
in H1

0 (Ω), strongly in Lp(Ω) (p < 2∗), un(x) → u(x) and ∇un(x) → ∇u(x) a.e.
x ∈ Ω. Even more, since un ≥ u we have that u ≥ u > 0. In order to pass to the
limit, arguing as in [8], we first consider φ ≥ 0 and using Lebesgue theorem as well
as the weak convergence∫

Ω

g1(zn)
|∇un|2

uαn
φ→

∫
Ω

f1(x,w, z)φ+M

∫
Ω

Ψ1(w)eG1(w)φ−

−
∫

Ω

∇u · ∇φ−M
∫

Ω

Ψ1(u)eG1(u)φ.

Thus, using Fatou lemma∫
Ω

g1(z)
|∇u|2

uα
φ ≤

∫
Ω

f1(x,w, z)φ+M

∫
Ω

Ψ1(w)eG1(w)φ−

−
∫

Ω

∇u · ∇φ−M
∫

Ω

Ψ1(u)eG1(u)φ.

Now we prove the reverse inequality. We take m̃ > 0 such that m̃ ≥ g1(z)
for every z ∈ [v, v]. We consider φ with compact support, therefore we can take

e
∫ u
un

m̃
sα dsφ as test function in the equation satisfied by un and we get∫

Ω

e
∫ u
un

m̃
sα ds∇un · ∇φ+ m̃

∫
Ω

e
∫ u
un

m̃
sα dsφ

∇u
uα
· ∇un+

+

∫
Ω

(MΨ1(un)eG1(un) − f1(x,wn, zn)−MΨ1(wn)eG1(wn))e
∫ u
un

m̃
sα dsφ =

=

∫
Ω

m̃− g1(zn)

uαn
|∇un|2e

∫ u
un

m̃
sα dsφ.

We can pass to the limit in the left hand side of the previous inequality (using
Lebesgue theorem and the weak convergence) and then Fatou Lemma in the right
hand side assures that ∫

Ω

∇u · ∇φ+ m̃

∫
Ω

φ
|∇u|2

uα
+

+

∫
Ω

(MΨ1(u)eG1(u) − f1(x,w, z)−MΨ1(w)eG1(w))φ ≥

≥
∫

Ω

m̃− g1(z)

uα
|∇u|2φ

or equivalently∫
Ω

∇u · ∇φ+

∫
Ω

g1(z)
|∇u|2

uα
φ+M

∫
Ψ1(u)eG1(u)φ ≥

≥
∫

Ω

(f1(x,w, z) +MΨ1(w)eG1(w))φ.

From both inequalities it yields that∫
Ω

∇u · ∇φ+

∫
Ω

g1(z)
|∇u|2

uα
φ+M

∫
Ψ1(u)eG1(u)φ =

=

∫
Ω

(f1(x,w, z) +MΨ1(w)eG1(w))φ,
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for every φ ∈ H1
0 (Ω) ∩ Cc(Ω) and by density for every φ ∈ H1

0 (Ω) ∩ L∞(Ω). Anal-
ogously vn → v with (u, v) = T (w, z).

Therefore, applying the Schauder Fixed Point Theorem we conclude the proof.
�

4. Applications

In this section we apply the sub-supersolution method to different systems. For
that, we need some previous results.

Given q ∈ L∞(Ω), we denote by λ1(q) the principal eigenvalue of{
−∆u+ q(x)u = λu in Ω,
u = 0 on ∂Ω.

Recall that the map q 7→ λ1(q) is increasing. For simplicity, we denote by λ1 :=
λ1(0).

First consider the classical logistic equation

(4.1)

{
−∆u = u(λ+m(x)− u) in Ω,
u = 0 on ∂Ω.

It is well known that there exists a unique positive solution of (4.1) if and only if
λ > λ1(−m). If we denote the unique positive solution by θλ+m we have that

(4.2) θλ+m ≤ λ+mM ,

where we have denoted mM = supΩm.
Now consider the logistic equation with a singular term and natural growth

(4.3)

 −∆u+ k
|∇u|2

uα
= u(λ+m(x)− u) in Ω,

u = 0 on ∂Ω,

where k > 0, 0 < α < 1, λ ∈ R and m ∈ L∞(Ω).
Equation (4.3) was studied in [11] when m ≡ 0. We prove now the following

result.

Theorem 4.1. Any weak solution u of (4.3) is bounded, in fact, u ∈ C0,α(Ω) and

u ≤ θλ+m in Ω.

Moreover, there exists a positive solution of (4.3) if and only if

λ > λ1(−m).

Furthermore, in this case there exists a maximal positive solution of (4.3), denoted
by Θ[λ+m,α,k].

Finally, λ+m 7→ Θ[λ+m,α,k] is increasing and k → Θ[λ+m,α,k] is decreasing.

Proof. It is clear that if u is a solution of (4.3), then u is bounded. So, it is a
bounded subsolution of (4.1) and hence

u ≤ θλ+m.

Assume that λ ≤ λ1(−m) and that there exists a positive solution of (4.3). Then
multiplying (4.3) by ϕ1, a positive eigenfunction associated to λ1(−m), we get a
contradiction.

https://www.researchgate.net/publication/237838848_Existence_and_non-existence_of_positive_solutions_for_nonlinear_elliptic_singular_equations_with_natural_growth?el=1_x_8&enrichId=rgreq-b27b4247d02748cbe2b6f333398f786d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTA0MzA0NTtBUzozNjA5MTgxNjk5OTczMTZAMTQ2MzA2MTAwNTkyNw==
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Suppose from now on that λ > λ1(−m). We apply the sub-supersolution method
from [11] to prove the existence of a positive solution. Let us remark that al-
though Theorem 3.5 (the sub-supersolution method) in [11] was proved for functions
f(λ, u), it is easily extended for functions f(x, u).

Take
(u, u) = (εϕa1 , θλ+m)

where ε > 0, a > 0 and ϕ1 is a positive eigenfunction associated to λ1(−m), that
is, it satisfies {

−∆ϕ1 −m(x)ϕ1 = λ1(−m)ϕ1 in Ω,
ϕ1 = 0 on ∂Ω.

First, we recall that |∇u|2/uα ∈ L1(Ω), see for instance Lemma 2.5 in [11].
On the other hand, observe that

∇(ϕa1) = aϕa−1
1 ∇ϕ1,

∆(ϕa1) = a((a− 1)ϕa−2
1 |∇ϕ1|2 + ϕa1(−m(x)− λ1(−m))).

Hence, |∇u|2/uα ∈ L1(Ω) if a > 1/(2− α).
Since λ > λ1(−m), we can choose a > 1 and 0 < η < λ− λ1(−m) such that

λ > λ1(−m)a+ (a− 1)m(x) + η.

Then, u is subsolution of (4.3) if

aϕ−2
1 |∇ϕ1|2

(
(1− a) + kaε1−αϕ

a(1−α)
1

)
+ εϕa1 ≤ λ− λ1(−m)a− (a− 1)m(x).

Observe that the above inequality is true if

kaε1−αϕ
a(1−α)
1 ≤ a− 1 and εϕa1 ≤ η,

i.e., taking ε small enough. Finally, by the strong maximum principle we have that
∂θλ+m/∂n < 0 on ∂Ω, where n is the outer unit normal. Thus, taking ε small
εϕa1 ≤ θλ+m and so there exists a positive solution of (4.3) for λ > λ1(−m).

We go a little further now. We want to prove the existence of maximal solution
of (4.3). Define the sequence u0 = u and for n ≥ 1
(4.4) −∆un + k

|∇un|2

(un)α
+MΨ(un)eG(un) = f(x, un−1) +MΨ(un−1)eG(un−1) in Ω,

un = 0 on ∂Ω,

where G(u) =
∫ u

1
g(s)ds, Ψ(s) :=

∫ s
0
e−G(t)dt, with g(u) = ku−α, and M ≥ 0 is

such that f(x, s) +Ms is nondecreasing for a.e. x ∈ Ω, where

f(x, s) = s(λ+m(x)− s), s ∈ [0, sup
Ω

u].

Then, {un} is well-defined, and by Comparison Principle (see Lemma 3.2 in [11])
we have that

(4.5) u ≤ . . . ≤ un+1 ≤ un ≤ . . . ≤ u1 ≤ u0 = u.

Indeed, it is easy to show that u is supersolution of the equation of u1, and then
u1 ≤ u. Assume now that u ≤ un ≤ un−1. Then, un is supersolution of the
equation that verifies un+1, and u is subsolution, and so u ≤ un+1 ≤ un.

Moreover, we can show that

un → u∗ in H1
0 (Ω),
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https://www.researchgate.net/publication/237838848_Existence_and_non-existence_of_positive_solutions_for_nonlinear_elliptic_singular_equations_with_natural_growth?el=1_x_8&enrichId=rgreq-b27b4247d02748cbe2b6f333398f786d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTA0MzA0NTtBUzozNjA5MTgxNjk5OTczMTZAMTQ2MzA2MTAwNTkyNw==
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with u∗ a positive solution of (4.3). We claim that u∗ is the maximal solution.
Indeed, take any positive solution u of (4.3). We know that u ≤ θλ+m = u, and
then we can take as u = u in the above reasoning. Then, by (4.5) we obtain that

u ≤ u∗.

This shows the claim.
Assume that µ1 + m1 ≤ µ2 + m2 and µ1 > λ1(−m1). Then, it is clear that

µ2 > λ1(−m2). Moreover, Θ[µ1+m1,α,k] is sub-solution of (4.3) for λ+m = µ2 +m2

and u = K, K > 0 is a supersolution for large K. Hence, there exists a solution u
of (4.3) for λ+m = µ2 +m2 such that

Θ[µ1+m1,α,k] ≤ u ≤ K,

and so, since Θ[µ2+m2,α,k] is the maximal solution, it follows that

Θ[µ1+m1,α,k] ≤ Θ[µ2+m2,α,k].

Using the same ideas it is easy to prove that the map k → Θ[λ+m,α,k] is decreasing.
�

Remark 4.2. (1) Observe that when k = 0, Θ[λ+m,α,0] = θλ+m.
(2) Observe that the existence result of (4.3) does not depend on the value of

k > 0.

4.1. Example 1. We consider the system

(4.6)


−∆u+ g1(v)

|∇u|2

uα
= λuqvp in Ω,

−∆v + g2(u)
|∇v|2

vγ
= µumvn in Ω,

u = v = 0 on ∂Ω,

where λ, µ ∈ R, p, q,m, n ≥ 0, and g1 and g2 verify (G). The existence results
depend on the size of p+q and m+n and the increase and decrease of the functions
g1 and g2.

First, it is clear that if λ ≤ 0 or µ ≤ 0, by the maximum principle (4.6) does
not have positive solution. So, we assume that λ, µ > 0. It is clear that in this
case f1(x, u, v) = λuqvp and f2(x, u, v) = µumvn verify (F ) for any pair of sub-
supersolution of (4.6).

Theorem 4.3. Assume that p+q < 1 and m+n < 1. Then, there exists a positive
solution if and only if λ, µ > 0.

Proof. Take

(u, v) = (Ke,Ke), (u, v) = (εϕa1 , εϕ
a
1),

where e is the unique positive solution of{
−∆e = 1 in Ω,
e = 0 on ∂Ω,

ϕ1 is a positive principal eigenfunction associated to λ1, K and ε are positive
constants chosen large and small enough, respectively, and a > 1. Indeed, item (1)
of Definition 3.1 is trivially satisfied. Moreover, item (2) is a direct consequence of
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Lema 2.5 in [11] taking a > 1
2−α . With respect to items (3) and (4) we observe

that for every v ∈ [v, v]

−∆u+ g1(v)
|∇u|2

uα
− f1(x, u, v) = K + g1(v)K2−α |∇e|2

eα
− λKqeqvp ≥

≥ K + g1(v)K2−α |∇e|2

eα
− λKp+qep+q ≥ 0.

The last inequality is due to g1 ≥ 0, p+ q < 1 and that we can choose

K1−p−q ≥ λ‖e‖p+q∞ .

Similarly, in order to get

0 ≤ −∆v + g2(u)
|∇v|2

vγ
− f2(x, u, v)φ ∀u ∈ [u, u],

it is sufficient that

K1−m−n ≥ µ‖e‖m+n
∞ .

On the other hand,

−∆u+ g1(v)
|∇u|2

uα
− f1(x, u, v)φ =

= −div(aεϕa−1
1 ∇ϕ1) + g1(v)a2ε2−αϕ

2(a−1)−aα
1 |∇ϕ1|2 − λεqϕaq1 vp ≤

≤ λ1aεϕ
a
1 + a(1− a)εϕa−2

1 |∇ϕ1|2 + g1(v)a2ε2−αϕ
2(a−1)−aα
1 |∇ϕ1|2 − λεq+pϕaq+ap1 .

Extracting εq+pϕ
a(p+q)
1 we obtain that this quantity is negative if

λ1aε
1−(p+q)ϕ

a(1−(p+q))
1 +

+aε1−(p+q)ϕ
a(1−(p+q))−2
1 |∇ϕ1|2(1− a+ g1(v)aε1−αϕ

a(1−α)
1 )− λ ≤ 0

for all v ∈ [v, v]. But, since g1 in continuous in [0, supΩ v], it follows the existence
of a positive constant R(µ) such that g1(v) ≤ R(µ) for all v ∈ [v, v]. Thus, we can
choose ε such that

1− a+ g1(v)aε1−αϕ
a(1−α)
1 < 0 and λ1aε

1−(p+q)ϕ
a(1−(p+q))
1 − λ < 0.

Moreover, we can take ε small and K large such that u ≤ u. Similarly, we can
argue with v, v. �

Theorem 4.4. Assume that p+ q < 1 and 1 ≤ m+ n < 2− γ.

(1) Assume that g2 is increasing, g2(0) > 0. Then, for each λ > 0 there exists
K(λ) > 0 such that if λ > 0 and µ > K(λ), system (4.6) possesses at least
a positive solution.

(2) Assume that g2 is decreasing. Then, there exists K > 0 such that if λ > 0
and µ > K system (4.6) possesses at least a positive solution.

Proof. With the same notation of the previous proof we take on both cases

(u, v) = (K1e,K2E), (u, v) = (εϕa1 , ϕ
a
1),

where E(x) = σ · x + b for some σ ∈ RN with |σ| > 0 and b > 0 such that
E(x) > η > 0 for every x ∈ Ω. Thus, items (1) and (2) of Definition 3.1 are
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satisfied. In order to verify the second inequality in (3.1) and in (3.2) it is enough

to take K1−p−q
1 ≥ λ‖e‖p+q∞ and

K2(−∆E) + g2(u)K2−γ
2

|∇E|2

Eγ
≥ µKm+n

2 emEn, ∀u ∈ [u, u],

for which it suffices that

g2(u)K2−γ−m−n
2 |σ|2 ≥ µ‖e‖m∞‖E‖n+γ

∞ , ∀u ∈ [u, u].

If g2 is increasing, then g2(u) ≥ g2(0) and so we need that 2 − γ > m + n and
g2(0) > 0. Thus, in this case, K1 and K2 depend only on λ and µ, respectively.

However, if g2 is decreasing then g2(u) ≥ g2(K1‖e‖∞) > 0 and, using that
2− γ > m+ n we can choose K2 depending on K1 (which depends on λ) and µ.

On the other hand, the first inequality in (3.1) is satisfied if ε is small enough
and (3.2) is satisfied if

aϕ
a(1−(m+n))−2
1 |∇ϕ1|2

[
(1− a) + g2(u)aϕ

a(1−α)
1

]
+ ϕ

1−(m+n)
1 ≤ µ,

∀u ∈ [u, u].

If g2 is increasing, then g2(u) ≤ g2(K1(λ)e) ≤ K3(λ), and so the above inequality
is true for µ > K(λ) for some constant K(λ) > 0.

If g2 is decreasing, then g2(u) ≤ g2(0) and so the above inequality is true for µ
large and independent of λ. This completes the proof. �

Remark 4.5. (1) Similar result for the case 2−α > p+ q ≥ 1 and m+n < 1.
(2) We could obtain results for any positive function g2 imposing more restric-

tive conditions in λ and µ.

Using similar arguments of the proofs of the above results, we can show the
following result.

Theorem 4.6. Assume that 1 ≤ p+ q < 2− α and 1 ≤ m+ n < 2− γ.

(1) Assume that g1 and g2 are increasing and g1(0), g2(0) > 0. Then, there
exist K1(µ) and K2(λ) such that if λ > K1(µ) and µ > K2(λ) system (4.6)
possesses at least a positive solution.

(2) Assume that g1 is increasing, g2 decreasing and g1(0) > 0. Then, there
exist K1(µ) and K2 such that if λ > K1(µ) and µ > K2, system (4.6)
possesses at least a positive solution.

(3) Assume that g1 and g2 are decreasing. Then, there exist K1,K2 > 0 such
that if λ > K1 and µ > K2, system (4.6) possesses at least a positive
solution.

4.2. Example 2: competition Lotka-Volterra system. We consider the sys-
tem

(4.7)


−∆u+ g1(v)

|∇u|2

uα
= u(λ− u− bv) in Ω,

−∆v + g2(u)
|∇v|2

vγ
= v(µ− v − cu) in Ω,

u = v = 0 on ∂Ω,

where λ, µ ∈ R, b, c ≥ 0, and g1 and g2 verify (G). When g1 ≡ g2 ≡ 0 system (4.7)
is the classical competition Lotka-Volterra model, studied extensively in the last
years, see for instance [10].

https://www.researchgate.net/publication/247602033_Spatial_Ecology_via_Reaction-Diffusion_Equations?el=1_x_8&enrichId=rgreq-b27b4247d02748cbe2b6f333398f786d-XXX&enrichSource=Y292ZXJQYWdlOzI4NTA0MzA0NTtBUzozNjA5MTgxNjk5OTczMTZAMTQ2MzA2MTAwNTkyNw==
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First, it is clear that if λ ≤ λ1 or µ ≤ λ1 then (4.7) does not have positive solution.
So, assume that λ, µ > λ1. Again, it is clear that f1(x, u, v) = u(λ − u − bv) and
f2(x, u, v) = v(µ− v − cu) verify (F ) for any pair of sub-supersolution of (4.7).

Theorem 4.7. Assume that one of the following conditions holds:

(1) g1 and g2 are increasing and (λ, µ) satisfies

(4.8) λ > λ1(bΘ[µ,γ,g2(0)]) and µ > λ1(cΘ[λ,α,g1(0)]);

(2) g1 and g2 are decreasing and (λ, µ) satisfies

(4.9) λ > λ1(bΘ[µ,γ,g2(λ)]) and µ > λ1(cΘ[λ,α,g1(µ)]);

(3) g1 is increasing, g2 is decreasing and (λ, µ) satisfies

(4.10) λ > λ1(bΘ[µ,γ,g2(0)]) and µ > λ1(cΘ[λ,α,g1(µ)]).

Then (4.7) possesses a least a positive solution.

Remark 4.8. Observe that conditions (4.8), (4.9) and (4.10) define regions in
the plane (λ, µ) which could eventually be empty. For the semilinear case, that is
g1 ≡ g2 ≡ 0, it can be shown, see for example [18] and [17], that these regions are
not empty, imposing some conditions (b or c small). The study of these regions are
out of the scope of this paper, but let us remark some aspects. Observe that the
map

λ ∈ [λ1,∞) 7→ λ1(cΘ[λ,α,g1(0)])

is increasing. Hence, for example, the region defined by (4.8) in not empty if b or
c is small.

Proof. (1) Assume that g1 and g2 are increasing. Then, take

(u, v) = (Θ[λ,α,g1(0)],Θ[µ,γ,g2(0)]),
(u, v) = (Θ[λ−bΘ[µ,γ,g2(0)],α,R],Θ[µ−cΘ[λ,α,g1(0)],γ,S]),

for some positive constants R and S to be chosen. Since u, v, u and v are solutions
of logistic equations as (4.3), then items (1) and (2) of Definition 3.1 are satisfied.

Using the equation of u, it can be shown that u satisfies the second inequality
in (3.1) if

u(λ− u)− g1(0)
|∇u|2

|u|α
≥ u(λ− u− bv)− g1(v)

|∇u|2

|u|α
,

or equivalently,

buv + (g1(v)− g1(0))
|∇u|2

|u|α
≥ 0,

which is true because g1 in increasing and v > 0.
For u, we need that

|∇u|2

|u|α
(g1(v)−R) ≤ 0, ∀v ∈ [v, v].

Take R ≥ g1(v).
Observe that by the increase of the map λ+m 7→ Θ[λ+m,α,k], it follows that

u ≤ Θ[λ,α,R] ≤ Θ[λ,α,g1(0)] = u,

this last inequality because R ≥ g1(0).
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(2) Assume that g1 and g2 are decreasing. Then, take

(u, v) = (Θ[λ,α,g1(µ)],Θ[µ,γ,g2(λ)]),
(u, v) = (Θ[λ−bΘ[µ,γ,g2(λ)],α,g1(0)],Θ[µ−cΘ[λ,α,g1(µ)],γ,g2(0)]).

Indeed, observe that, with a similar argument to the used in the first paragraph, u
satisfies the second inequality in (3.1) if

u(λ− u)− g1(µ)
|∇u|2

|u|α
≥ u(λ− u− bv)− g1(v)

|∇u|2

|u|α
,

for what it is sufficient that

g1(v) ≥ g1(µ).

But, from (4.2) we have that v ≤ θµ ≤ µ, and since g1 is decreasing, it follows that

g1(v) ≥ g1(µ).

With respect to u, it can be proved that u satisfies the first inequality in (3.1)
because g1(v) ≤ g1(0).

Again, it can shown that u ≤ u.
(3) Assume that g1 is increasing and g2 is decreasing. Then, take in this case

(u, v) = (Θ[λ,α,g1(0)],Θ[µ,γ,g2(λ)]),
(u, v) = (Θ[λ−bΘ[µ,γ,g2(λ)],α,R],Θ[µ−cΘ[λ,α,g1(0)],γ,g2(0)]).

�

4.3. Example 3: symbiotic Lotka-Volterra system. We consider the system

(4.11)


−∆u+ g1(v)

|∇u|2

uα
= u(λ− u+ bv) in Ω,

−∆v + g2(u)
|∇v|2

vγ
= v(µ− v + cu) in Ω,

u = v = 0 on ∂Ω,

where λ, µ ∈ R, b, c > 0, g1 and g2 verify (G).

Theorem 4.9. Assume that bc < 1 and (λ, µ) satisfies

(4.12) λ > λ1(−bΘ[µ,γ,g2]) and µ > λ1(−cΘ[λ,α,g1]),

where gi = gi(0) when gi is decreasing and

g1 = g1

(
µ+ cλ

1− bc

)
when g1 is increasing,

and

g2 = g2

(
λ+ bµ

1− bc

)
when g2 is increasing.

Then (4.11) possesses a least a positive solution.

Proof. First, recall that Θ[µ,γ,g2] ≤ µ, and then if λ and µ verify (4.12), we have
that

λ > λ1(−bΘ[µ,γ,g2]) ≥ λ1(−bµ) = λ1 − bµ,
and so λ+ bµ > 0. Analogously, µ+ cλ > 0.

Now, take

(u, v) = (R,S)
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where R and S are large positive constants and

(u, v) = (Θ[λ+bΘ[µ,γ,g2],α,g1],Θ[µ+cΘ[λ,α,g1],γ,g2]).

Indeed, R and S must verify

λ−R+ bS ≤ 0 and µ− S + cR ≤ 0.

Since bc < 1, we can take

R =
λ+ bµ

1− bc
, S =

µ+ cλ

1− bc
.

On the other hand, u is subsolution provided of

g1(v) ≤ g1, ∀v ∈ [v, v].

Then, if g1 is decreasing (respectively increasing) we can take g1 = g1(0) (respec-

tively g1 = g1(v) = g1(µ+cλ
1−bc )).

Finally, observe that

u = Θ[λ+bΘ[µ,γ,g2],α,g1] ≤ λ+ b(Θ[µ,γ,g2])M ≤ λ+ bµ ≤ λ+ bµ

1− bc
= u.

�

Remark 4.10. Observe again that condition (4.12) could define an empty region
in the plane (λ, µ). As in Remark 4.8 we point out that the maps

λ ∈ [λ1,∞) 7→ λ1(−cΘ[λ,α,g1(0)])

and

µ ∈ [λ1,∞) 7→ λ1(−bΘ[µ,γ,g2(0)])

are decreasing, and so the region defined by (4.12) is non empty when g1 and g2

are decreasing, see also [12] for the semilinear case g1 ≡ g2 ≡ 0.
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